
Why the James Webb Space Telescope won’t see the first galaxiesTom Fuchstomfuchs@gmail.comI  explain  why  the  Webb  telescope  won’t  see  the  first  galaxies.  Among  thefurthest galaxies it sees will be ones that look much older than expected. I makethe  case  that,  rather  than  assume  that  galaxies  can  mature  faster  than  wethought, we should adopt a model of the universe in which space itself doesn’texpand. The new model is based on a new, experimentally confirmed metric forSchwarzschild geometry. Unlike the Schwarzschild metric, the new metric obeysthe equivalence principle,  thereby it can explain our observations when spaceitself doesn’t expand. In the new model: space expands relatively, so that theexpansion depends on the observer; an object thrown upward can accelerate up;black holes aren’t predicted, so there’s no black hole information paradox; andthere’s no flatness problem, horizon problem, or need for dark energy. I give codeto numerically integrate the relativistic motion of an object thrown upward.
1 An object thrown upward can accelerate upA formal statement of the Einstein equivalence principle (EP) isIn any and every locally Lorentz (inertial) frame, the laws of special relativitymust hold.See the equations of special relativity at The Relativistic Rocket, for a rocket having a constantproper acceleration a > 0. For example: (1)This equation returns the velocity of a rocket after the time t, as measured in the local inertialframe (LIF) in which the rocket blasted off. The speed of light is c.Equations for a falling body gives the  velocity of a free-falling object that  was dropped in auniform gravitational field (ignoring air resistance) as (2)where a is the acceleration of gravity and t is the elapsed time.The EP shows that The Relativistic Rocket’s (1) supplants (2):
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https://www.npl.washington.edu/eotwash/equivalence-principle
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Figure 1: Ball falling to the floor in an accelerating rocket (left) and on Earth (right). ByPbroks13     / Markus Poessel (Mapos)  , CC     BY-SA 3.0  , via Wikimedia Commons.According  to  the  EP,  the  laws  of  special  relativity  hold  in  both  scenarios  in  Fig.  1.  TheRelativistic  Rocket  equations  describe  the  ball’s  motion  relative  to the  rocket.  Then  thoseequations describe the ball’s  motion  relative to the  room on Earth as  well,  where  a is  theacceleration of gravity. The time t in (1) is measured in the ball’s LIF, in which the rocket (orroom) blasted off when the ball was dropped.Experiment #1: A ball is thrown upward from the ground to a maximum height H = 10 km ina hypothetical 1 g uniform gravitational field.Let’s  model  this  experiment  in  the  ground’s  frame,  using  the  following  Relativistic  Rocketequations: (3)
(4)
(5)The thrower is like the person in the rocket in Fig. 1. The elapsed time in their frame (i.e. howmuch they age) is T. To plot the ball’s rise and fall we plot h, the ball’s height in the ground’sframe, versus T. The distance d is measured in the ball’s frame; in the ground’s/rocket’s frameit’s length contracted by the gamma factor γ, so h = d/γ. At the ball’s apex its velocity v = 0,so that γ = 1 and h = d there.Do a one-time calculation of the elapsed time for the ball to fall from its apex to the ground,using (3): (6)

https://en.wikipedia.org/wiki/Lorentz_factor
https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Elevator_gravity.svg


3Use c = 299,792,458 m/s, a = 9.80665 m/s2, and H = 10,000 m. The ground accelerates like arocket to reach the ball after the time Ta. Since an object’s fall reverses its rise, Ta is also thetime for the ball to rise from the ground to its apex. So you need many values of T that rangefrom 0 to 2Ta.Calculate γ for each value of T, using (4) with an offset to the time: (7)Calculate d for each value of T, using (5) with an offset to the distance, and the γ from (7): (8)Now we can plot h (in km) versus T:

Figure 2: Ball thrown upward from the ground to a maximum height H = 10 km in a 1 guniform gravitational field.Compare Fig. 2 to a plot drawn by a projectile motion calculator that uses Newton’s equationsfor a uniform gravitational field. They look alike, because Newton’s equations approximate theRelativistic Rocket equations when both the acceleration of gravity a and the maximum heightH are sufficiently small.Experiment #2: A ball is thrown upward from the ground to a maximum height H = 10 lightyears in a hypothetical 1 g uniform gravitational field.Use c = 1 ly/yr, a = 1.03 ly/yr2 ≈ g, and H = 10 ly.
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Figure 3: Ball thrown upward from the ground to a maximum height H = 10 ly in a 1 guniform gravitational field.See  that  Fig.  3  looks  close  to  the  plot  at  The  Relativistic  Rocket,  in  the  section  “TheEquivalence Principle and a Stone Thrown Upwards”. (The site uses  a = 1 ly/yr2 there.) Aprojectile motion calculator that uses Newton’s equations would invalidly plot a parabola.Fig. 3 shows that the ball accelerates up initially, and when it falls it decelerates as it nears theground.
2 Space expands and contracts relativelyThe ball accelerates  up in Fig. 3 due to the reverse of length contraction (hereafter “lengthexpansion”) of the space between the thrower and the ball, that occurs in the ground’s frame.Throw  a ball upward, while imagining that a string  dangles down  from it.  The string  movesrelative to you, so it’s length contracted in your frame, however  slightly.  The string expandstoward its proper length while passing you, so some of the ball’s movement away from you isdue to the length expansion of the string. As this length expansion still  happens when youremove the string from the picture,  it’s  simpler seen as  an expansion of  space  that occursbetween you and a free-falling object that’s rising away from you. It’s a relative expansion thatcauses the object to accelerate up when the expansion is large enough. The reverse happensbetween you and a free-falling object that’s falling toward you. In that case the space betweenyou and the  object  relatively  contracts  due  to  length  contraction.  This  causes  the  ball  todecelerate down in Fig. 3.The  Relativistic  Rocket  gives  an  equation to predict  when an object  will  accelerate  up ordecelerate down (in which case its plot of h vs. T will be bell-shaped, however slightly): (9)
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5and says “This means that if you want to perform such an experiment, either [a] or H will haveto be very large.” Note that the minimum a is inversely proportional to H.

Figure 4: This is Fig. 3 with extended tails.The relative expansion and contraction of space also affects light. Shine light upward. Then themaximum height H in (9) is infinite, so the light accelerates away. (A ball thrown upward atclose to c is a proxy for the light that recedes faster.) The right tail of Fig. 4 shows that lightshone downward decelerates away. Measure the height of a building with a sufficiently preciselaser rangefinder, from both the top and bottom of the building. This measures the time takenby a laser pulse to reflect off a target and return to its sender. Whether the height is measuredfrom the top or bottom, the same set of one-way pulses are used; only their order differs. Theheight measures taller from the top, because clocks run faster there due to gravitational timedilation, hence more time elapses between the start and end of the same set of one-way pulses.Fig. 4 shows what happens to the light. When the height is measured from the bottom, the lightaccelerates up and decelerates down, its speed averaging > c. When the height is measured fromthe top, the light decelerates down and accelerates up, its speed averaging <  c. The properheight of the building is between the two heights reported by the rangefinder.
3 Numerical integration for a non-uniform gravitational fieldThe Relativistic Rocket equations apply only to uniform gravitational fields.  Here is code tonumerically integrate the relativistic motion of a ball thrown upward to a given maximum radialcoordinate in a non-uniform gravitational field. Click the Run button to get the output:

The ball apexes at 1.0000e+01 ly after 3.0230e+00 yr
Its velocity v = 0.3559% of c at the apexThis result approximates the expected result for experiment #2, as depicted by Fig. 3. Theprogram stops when the ball apexes. You can change the inputs at the top of the program, asexplained therein. The closer the reported velocity  v at the apex is to the expected zero, the
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6better the approximation. To get closer to v = 0 increase the segmentCount, the number of stepsin the numerical integration. At a high enough segmentCount the program times out when runonline. You can install the Go language to run the program on your own machine. The programoutputs data points for T and h when outputCount > 0.

Figure 5: This is Fig. 3, except that the ball’s rise to its apex uses the data output by thenumerical  integration  program,  for  a  non-uniform  gravitational  field  where  theacceleration of gravity stays close to 1 g.Here is code for a helper program to get inputs for the numerical integration program. Click the Run button to get the output:
Use these inputs for the numerical integration program:

M = 1.0300e+12 ly
rMin = 1e+06 ly
rDiff = 6.1500e+01 ly

Acceleration of gravity at
rMin = 1.0300e+00 ly/yr^2
rMax = 1.0299e+00 ly/yr^2

The ball apexes at 1.0000e+01 ly after 3.0252e+00 yrThis program helps especially for getting inputs for a gravitational field that’s close to uniform.The output above is for experiment #2, using geometric units. The time to reach the apex ispredicted by The Relativistic Rocket’s (6). See that the acceleration of gravity at rMin is aboutthe same as at rMax (= rMin + rDiff). Increase the input for the uniformityLevel to make thegravitational field more uniform. Decrease the uniformityLevel, even to a negative value, for aless uniform field. But then don’t expect the results to approximate those from the numericalintegration program.Let’s use the helper program to get inputs for the numerical integration program for experiment#1. Change the inputs at the top to a = 9.80665,  H = 10000,  MLabel = "kg",  dLabel = "m",
tLabel = "s", G = 6.67430e-11, and c = 299792458. Run the program. When uniformityLevel
= 5, the output includes
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7
Use these inputs for the numerical integration program:

M = 1.4693e+27 kg
rMin = 1e+08 m
rDiff = 1.0000e+04 m

The ball apexes at 1.0000e+04 m after 4.5160e+01 sInput those values into the numerical integration program, along with the values above for
dLabel, tLabel, G, and c. Run the program. When segmentCount = 1e+7, the output is

The ball apexes at 1.0000e+04 m in 4.5154e+01 s
Its velocity v = 0.0000% of c at the apexWhen the following values for Earth are input:
M = 5.9724e+24 kg
rMin = 6.3781e+06 mthe output is
The ball apexes at 1.0000e+04 m in 4.5227e+01 s
Its velocity v = 0.0000% of c at the apexHere are finer points of the numerical integration program:The  rDiff doesn’t  mean the same as  the  maximum height  H that’s  input  into the  helperprogram. The height there is the distance d covered by the ball in its frame. The helper programfinds rDiff for a uniform gravitational field by using the Relativistic Rocket equation (10)The inputted H is plugged in for d. This gives the elapsed time in the ball’s frame. Then rDiffis found by plugging that value for t into (11)from Equations for a falling body. In (11),  d is the same as the difference between two radialcoordinates, or rDiff. Radial coordinate distances are length contracted in the ball’s frame untilthe ball apexes, so rDiff > H.The code is similar to that in How the twins each age less than the other for a twin paradoxexperiment. The ball is the stationary twin. The thrower is the traveling twin, as if acceleratingin a rocket. Their velocity relative to each other, in either’s frame, is calculated by (12)from Equations for a falling body, described therein as the “Instantaneous velocity vi of a fallingobject that has travelled distance d on a planet with mass M and radius r.” We can use thisvelocity as well for the ball that’s rising, since an object’s fall reverses its rise. Except that this

https://en.wikipedia.org/wiki/Equations_for_a_falling_body
https://vixra.org/abs/2204.0035
https://en.wikipedia.org/wiki/Equations_for_a_falling_body


8velocity  isn’t  relativistic/valid because  it  can be >=  c.  So  vi is  converted to a  relativisticvelocity using (13)This equation derives from the following reasoning: Drop an object from a radial coordinate. Forthe first small segment of the object’s fall, in which the acceleration of gravity a is constant, (2)approximates (12),  and The Relativistic  Rocket’s (1) approximates  the new velocity vi.  So,substituting the two terms at in (1) with the velocity returned by (12) gives the new velocity vi.This is the same as dividing vold by the gamma factor, since (14)from The Relativistic Rocket.  This conversion effectively changes general relativity’s equationfor escape velocity (which is (12) when d is infinite) such that the value it returns is always < c,thus black holes aren’t supported. See also  A solution to the black hole information paradox,which gives a new metric for Schwarzschild geometry. More on this below.The message “Reduce the segmentCount” means that division by zero would otherwise occur,due to limited precision.
4 Space itself expanding is superfluousI  posit  that  instead of  space  itself  expanding,  space  expands  only relatively  due  to  lengthexpansion, still  stretching light. This eliminates the  flatness problem, which depends on theassumption that space itself is expanding. The Relativistic Rocket says “For distances greaterthan about a thousand million light years, the formulae given here are inadequate because theuniverse  is  expanding.”  When  space  expands  only  relatively  then  those  equations  for  flatspacetime apply to arbitrarily large distances in principle. Parallel light rays can remain parallelindefinitely.The gamma factor equation shows that all objects have a gamma factor γ as a function of theirvelocity, and regardless of their other properties. You might need a LIF to measure or predictvelocity or γ, but not to apply them. As you measure, a radially moving free-falling object islength contracted by its current factor of  γ along that axis of motion, and so is its properdistance from you. Imagine that a string of unconnected beads, that are all momentarily at restrelative to the object, dangles from the object all the way to you. See that the string is lengthcontracted.  (Using  beads  in  this  way  makes  the  tidal  force  ignorable.)  For  example,  theAndromeda galaxy is somewhat length contracted as we measure, and its proper distance fromus is contracted by the same gamma factor.  The space between you and the object lengthexpands or further contracts as the object decelerates or accelerates radially under gravity.The Relativistic Rocket shows that a rocket can blast off from Earth, accelerate and decelerateat 1 g to arrive at the center of our galaxy at relative rest, 30,000 light years away from Earth,

https://en.wikipedia.org/wiki/Lorentz_factor
https://en.wikipedia.org/wiki/Flatness_problem
https://vixra.org/abs/2006.0231


9while its crew ages just ~20 years. At the midpoint of the trip the rocket is less than (20 yr  / 2)× c = 10 light years away from the center as measured by the crew, due to length contraction.The whole Milky Way is contracted by the same gamma factor, lest it be physically deformed.Let’s model the second half of the trip. Let a ball be free-floating at the midpoint. A plot of theball’s height over time in the rocket’s frame is the left half of the plot given by eqs. (6)-(8).

Figure 6: Ball passed by a rocket at the midpoint of a trip from Earth to the center ofour galaxy, arriving at relative rest. The rocket decelerates at 1 g.Fig. 6 shows that the ball accelerates up initially. This is due to length expansion of the spacebetween the rocket and the ball, that occurs in the rocket’s frame. The whole Milky Way lengthexpands by the same change in the gamma factor. When the rocket arrives at the center of thegalaxy at relative rest, the galaxy is no longer length contracted. If the rocket kept its enginesrunning and accelerated back to the ball, then the plot would be the full bell-shaped plot givenby eqs. (6)-(8). As if the crew had thrown the ball upward to a maximum height H = 15,000 ly,and then it fell back to the rocket/“ground”, all in a time T ≈ 20 years.Since a whole galaxy length contracts when a rocket accelerates across it, why isn’t a wholeblack hole contracted to zero length when an observer reaches its event horizon at the speed oflight? That’s an illogical discrepancy. When the whole galaxy contracts, so must any black holesin it, lest the galaxy physically deform. The gamma factor equation tells us that we’re free tothink of velocity in terms of  γ. Knowing an object’s velocity, if only locally, we can know towhat extent the whole object is contracted. If the numerical integration program didn’t do theconversion described above using (13), which effectively changes general relativity’s equation forescape velocity such that black holes aren’t supported, then it wouldn’t predict that an objectcan accelerate up. Therefore, its results for a gravitational field that’s negligibly non-uniform(i.e. where the ground accelerates in a LIF) wouldn’t always approximate the results from eqs.(6)-(8).  This  means  that  the  Relativistic  Rocket  equations  can’t  be  derived  from  theSchwarzschild metric, thus the metric violates the EP, and means that a theory of gravity thatobeys the EP can’t predict black holes.
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10The universe needn’t have a center or an edge when space itself doesn’t expand or contract. Allof the objects in any region of space can coalesce under gravity when space itself doesn’t expandor contract. We can “run the film backward” to see that the reverse is true as well. As there’sno size limit for the region,  it  can be the whole universe,  with no center or edge.  For aninformative description of an expanding flat universe, see the book  Relativity Visualized, byLewis Carroll Epstein, in the chapter “The Big Bang”.
5 An object thrown upward in a highly non-uniform gravitational fieldLet’s use the numerical integration program to plot a ball thrown upward to a great height in ahighly non-uniform gravitational field. Change the inputs at the top to  M = 1e+14,  rMin =
1e+10,  rDiff = 1e+12,  dLabel = "ly",  tLabel = "yr",  G = 1, and  c = 1. Run the program.When segmentCount = 1e+7, the output is

The ball apexes at 1.0328e+11 ly after 2.9044e+10 yr
Its velocity v = 0.4428% of c at the apexIncreasing the segmentCount to 2e+10 improves the results to
The ball apexes at 1.0328e+11 ly after 2.9077e+10 yr
Its velocity v = 0.0099% of c at the apexwhich gives the plot:

Figure 7:  Ball thrown upward to a great height in a highly non-uniform gravitationalfield.The ball apexes at ~103 billion light years after ~29 billion years. The acceleration of gravityranges from ~1 one-millionth of  g at  rMin (the ground, if only the “surface” of a sphere thatcontains the mass M) to ~1 ten-billionth of g at the ball’s apex. So see that the acceleration ofgravity needn’t be large to cause an object to accelerate up, as predicted locally by (9).
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6 Why the Webb telescope won’t see the first galaxiesEqs. (6)-(8) and the numerical integration program show that

• An object can in principle be thrown upward to any distance and fall back to the ground,all in an arbitrarily small time  T. Then an object or light can in principle rise to anydistance, or fall from any distance, in an arbitrarily small time  T. This eliminates thehorizon problem. A region of space that’s any distance from us can have been in causalcontact with a region of space that’s any distance from us in the opposite direction, sinceany age of our length-expanding universe > 0 as we measure. The observable universe cannow be arbitrarily large.
• Free-falling objects that rise at sufficiently close to c accelerate away. This obviates theneed for dark energy. The evidence for dark energy is high-redshift supernovae that seemto be accelerating away.  Since  space  itself  doesn’t  expand in the new model,  a  highredshift indicates a velocity close to c.It follows that the first galaxies can in principle be much further away or much more redshiftedthan the current model predicts. For this reason, and because we’ve already seen galaxies thatlook much older than expected, such as ALESS 073.1, I expect that the Webb telescope won’tbe able to image the first galaxies.

Appendix A – Code for the programsBelow is the Go language code for the numerical integration program that’s referenced in section3, in case the link to the code is broken. You can run the code at the Go Playground after fixingthe formatting.
package main

import (
"fmt"
"math"

)

const (
// The mass of the massive body
M = 1.0300e+12

// The ground's radial coordinate (r-coordinate)
rMin = 1e+06

// The ball is thrown upward from rMin and apexes at rMin + rDiff
rDiff = 6.1500e+01

// The number of steps in the numerical integration below. More 
steps gives greater accuracy

segmentCount = 1e+7

https://go.dev/play/
https://go.dev/
https://en.wikipedia.org/wiki/ALESS_073.1
https://www.nasa.gov/feature/goddard/2021/back-to-the-beginning-probing-the-first-galaxies-with-webb
https://en.wikipedia.org/wiki/Dark_energy
https://en.wikipedia.org/wiki/Observable_universe
https://en.wikipedia.org/wiki/Horizon_problem
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// The distance label used for output
dLabel = "ly"

// The time label used for output
tLabel = "yr"

// The gravitational constant
G = 1

// The speed of light
c = 1

// The number of data points to output
outputCount = 0

// End of user input

// The maximum r-coordinate
rMax = rMin + rDiff

// The r-coordinate distance that is considered in each step
rSegment = rDiff / segmentCount

)

func main() {
// Test whether "+Inf" would be output, due to limited precision
if rMin + (float64(segmentCount - 1) * rSegment) == rMax {

fmt.Println("Reduce the segmentCount")
return

}

outputEvery := 0
if outputCount > 0 {

// Output data every outputEvery-th iteration
// Adjust for: The origin and last data points are always 

output
outputCount2 := math.Max(1, float64(outputCount) - 2)
outputEvery = int(math.Ceil(segmentCount / outputCount2))
fmt.Printf("T, h = d/γ\r\n") // Print data header
fmt.Printf("%0.4e, %0.4e\r\n", 0.0, 0.0) // Print origin 

data point
}

// The twins in this twin paradox experiment are the ball and the 
thrower

d := 0.0 // The distance the twins move relative to each other in 
the ball's frame

T := 0.0 // The thrower's aging
v := 0.0 // Their velocity relative to each other, in either's 

frame

for i := 0; i < segmentCount; i++ {
r := rMin + (float64(i) * rSegment)
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// From 

https://en.wikipedia.org/wiki/Equations_for_a_falling_body
vOld := math.Sqrt((2 * G * M) * ((1 / r) - (1 / rMax)))

// From the Relativistic Rocket site
gamma := math.Sqrt(1 + math.Pow(vOld / c, 2))

// Convert vOld to a relativistic velocity, as explained in 
the paper

v = vOld / gamma

// rSegment is divided by gamma because r-coordinate 
distances length expand in the ball's frame as it rises

// For example, see the muon experiment at 
https://en.wikipedia.org/wiki/Experimental_testing_of_time_dilation

// r-coordinate distances length contract in the muon's 
frame as it falls

dSegment := rSegment / gamma

d += dSegment

// dSegment / v is the time taken in the ball's frame to 
cover dSegment

// dSegment / gamma is the distance the ball covers in the 
ground's frame

T += dSegment / (v * gamma)

if outputCount > 0 {
if i % outputEvery == 0 || i == (segmentCount - 1) {

fmt.Printf("%0.4e, %0.4e\r\n", T, d / gamma)
}

}
}

fmt.Printf("The ball apexes at %0.4e %s after %0.4e %s\r\n", d, 
dLabel, T, tLabel)

fmt.Printf("Its velocity v = %0.4f%% of c at the apex\r\n", (v / 
c) * 100)
}Below is the Go language code for the helper program that’s referenced in section 3.
package main

import (
"fmt"
"math"

)

const (
// The acceleration of gravity at rMin
a = 1.03

// The ball's maximum height
H = 10
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// The mass label used for output
MLabel = "ly"

// The distance label used for output
dLabel = "ly"

// The time label used for output
tLabel = "yr"

// The gravitational constant
G = 1

// The speed of light
c = 1

// Increase this number to make the gravitational field more 
uniform, at the expense of larger numbers output for "Use these inputs"

// Decrease this number (even to a negative value) to make the 
gravitational field less uniform

uniformityLevel = 5

// End of user input

aLabel = dLabel + "/" + tLabel + "^2"
)

func main() {
// These equations are from the Relativistic Rocket site
// The ball's aging
tExpected := math.Sqrt(math.Pow(H / c, 2) + 2 * H / a)
// The thrower's aging
TExpected := (c / a) * math.Acosh(a * H / math.Pow(c, 2) + 1)

// Calculate the difference d between rMin and rMax, given t
// This equation is from 

https://en.wikipedia.org/wiki/Equations_for_a_falling_body
rDiff := a * math.Pow(tExpected, 2) / 2

// Let the acceleration of gravity at rMin be the acceleration a
// Calculate an rMin where the acceleration of gravity at rMax 

won't differ much
rMin := math.Pow(10, math.Floor(math.Log10(rDiff)) + 

uniformityLevel)

M := math.Pow(rMin, 2) * a / G

rMax := rMin + rDiff

fmt.Printf("Use these inputs for the numerical integration 
program:\n")

fmt.Printf("\tM = %0.4e %s\n", M, MLabel)
fmt.Printf("\trMin = %0.0e %s\n", rMin, dLabel)
fmt.Printf("\trDiff = %0.4e %s\n", rDiff, dLabel)
fmt.Printf("Acceleration of gravity at\n")



15
fmt.Printf("\trMin = %0.4e %s\n", a, aLabel)
fmt.Printf("\trMax = %0.4e %s\n", G * M / math.Pow(rMax, 2), 

aLabel)
fmt.Printf("The ball apexes at %0.4e %s after %0.4e %s\n", 

float64(H), dLabel, TExpected, tLabel)
}

Text is available under the Creative Commons Attribution-ShareAlike License 4.0.
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