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Abstract. In this paper we introduce and develop the method of diagonal-

ization of functions f : N −→ R. We apply this method to show that the
equations of the form Γr(n) + k = m2 has a finite number of solutions n ∈ N
with n > r for a fixed k, r ∈ N, where Γr(n) = n(n − 1) · · · (n − r) is the rth

truncated Gamma function.

1. Introduction and problem statement

Brocard’s problem is an unsolved problem which - roughly speaking - asks if the
set of integers whose factorials are unit left translate of a square is either finite or
infinite. As the origin of the problem suggests, it was first formulated by the French
mathematician Henri Brocard around 1876 and 1885 and subsequently rediscovered
by the Indian mathematician Srinivasa Ramanujan in 1913. More formally the
problem states

Problem 1.1. Does the equation n!+1 = m2 has integer solutions other than 4, 5, 7?

It is widely believed any other solutions to Brocard’s equation - if they exist -
must be finite. In fact, Paul Erdős conjectured that no further solution to Brocard’s
equation exists. It has also been verified computationally for numbers up to 109 for
a posssible solution to the equation and within this threshold no further solution to
Brocard’s problem has been found [4]. Albeit the problem remains unsolved, a good
number of theoritical progress has been made. The first major progress has been
made by M. Overholt, who showed that there are only a finite number of integer
solutions to the Brocard equation n! + 1 = m2 by assuming the ABC conjecture
[1]. These result has also been extended to equations with arbitrary shifts of the
form n! + A = m2 [2]. A further extension has been made in [3] where it is shown
that the equation n! = P (x), where P (x) is a polynomial of degree at least two,
also has a finite number of solution by assuming the ABC conjecture.

In this paper we apply the method of diagonalization of functions to show that
the equation Γr(n) + k = n2 has a finite number of solutions for n ∈ N.

1.1. Notations. In this paper, we will write f(n) � g(n) to mean there exists
an absolute constant c > 0 such that for all sufficiently large n, then f(n) ≤
c|g(n)|. Conversely, we will write f(n) � g(n) if the reverse inequality holds for
all sufficiently large values of n. If both inequalities hold then we write in simple
terms f(n) � g(n).
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2. The notion of diagonalization

In this section we introduce and study the notion of diagonalization of a func-
tion. We study this notion together with associated statistics and explore some
applications.

Definition 2.1. Let f : N −→ R. Then we say f is k - step diagonalizable at
the spot n ∈ N if there exists some m ∈ N such that

f(n) + k = m2.

We call the set of all spots n ∈ N such that f is k - step diagonalizable the kth

- step diagonal of f and denote by Dk(f). We call the set of all truncated spots
Dk(f) ∩ Ns := Dk(f, s) the sth scale diagonal. We call the set of all squares

Bk(f) :=
{
m2 ∈ N | f(n) + k = m2

}
the kth-step diagonal squares. We write the length of this diagonal as

|Dk(f, s)| := #{n ≤ s | f(n) + k = m2}.

It is easy to see that |Dk(f, s)| < s.

2.1. The s-level trace of the diagonal. In this section we introduce the notion
of the trace of the diagonal. We launch and examine the following languages.

Definition 2.2. By the sth level trace of the diagonal Dk(f), denoted Tf (s, k), we
mean the partial sum

Tf (s, k) :=
∑
n≤s

n∈Dk(f)

f(n).

Let us suppose that f is a function with continuous derivative on [1, s] for s ≥ 1
with s ∈ R, then by applying the Stieltjes integration by parts, we can write the
sth level trace of the diagonal in the form

Tf (s, k) : =
∑
n≤s

n∈Dk(f)

f(n)

=

s∫
1−

f(t)d|Dk(f, t)|

= f(s)|Dk(f, s)| −
s∫

1

f ′(t)|Dk(f, t)|dt.

Theorem 2.3 (Diagonal inequality). Let f be a function with continuous derivative
on [1, s] for s ≥ 1 with s ∈ R. If

Dk(f, s)− 1

f(s)

(√√√√√ s∫
1

|f ′(t)|2dt
)
×
( s∫

1

|Dk(f, t)|2dt
) 1

2

≥ 0
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for all s ≥ 1 then the inequality holds

(

s∫
1

|Dk(f, t)|2dt) 1
2 �

(
1

f(s)

∑
n≤s

f(n)

)(
1− 1

f(s)

√√√√√ s∫
1

|f ′(t)|2dt
)−1

.

Proof. By appealing to the ensuing discussion, we obtain the upper bound

|Dk(f, s)| ≤ 1

f(s)

∑
n≤s

f(n) +
1

f(s)

s∫
1

f ′(t)|Dk(f, t)|dt

so that by appealing to the Cauchy-Schwartz inequality, we obtain further the upper
bound

|Dk(f, s)| ≤ 1

f(s)

∑
n≤s

f(n) +
1

f(s)

( s∫
1

|f ′(t)|2dt
) 1

2

×
( s∫

1

|Dk(f, t)|2dt
) 1

2

.

By rearranging terms, appealing to the condition

Dk(f, s)− 1

f(s)

(√√√√√ s∫
1

|f ′(t)|2dt
)
×
( s∫

1

|Dk(f, t)|2dt
) 1

2

≥ 0

and noting that

(

s∫
1

|Dk(f, t)|2dt) 1
2 ≥ |Dk(f, s)|

for all s ≥ 1, then the claimed inequality holds. �

Proposition 2.3 supplies a useful inequality to study Brocard’s problem, which
ask whether there exists a finite number of solutions to the equation n! + 1 = m2.
The current development can be leveraged to study a much more general version
of the problem. By applying the Diagonal inequality, we can obtain further the
result

Proposition 2.1 (The Diagonal method). Let

|Dk(f, s)| − 1

f(s)

(√√√√√ s∫
1

|f ′(t)|2dt
)
×
( s∫

1

|Dk(f, t)|2dt
) 1

2

≥ 0

for all s ≥ 1. If

lim
s−→∞

(
1

f(s)

∑
n≤s

f(n)

)(
1− 1

f(s)

√√√√√ s∫
1

|f ′(t)|2dt
)−1

<∞

then the equation f(n) + k = m2 has only a finite number of solutions in N for a
fixed k ∈ N.

Proof. Appealing to Proposition 2.3, it follows under the requirements that |Dk(f)| <
∞, and the claim follows immediately. �
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Remark 2.4. The upper bound derived in Proposition 2.3 supplies a somewhat
useful tool to study the size of the quantity

#{n ≤ s | f(n) + k = m2}

and in particular Brocard’s problem which asks if the set of integers whose factorials
are unit left translate of a square is either an infinite set or a finite set. It is worth
noting that the upper bounds we have derived do not depend on the size of the
shift but on the underlying function. This uniformity does suggest the actual size
of the quantity

#{n ≤ s | f(n) + k = m2}

will mostly be influenced by the function under consideration. In various circum-
stances the ease with which to verify the underlying conditions will inform the
category of bounds to exploit. Now we apply the Diagonal method to study a slight
variant of Brocard’s problem.

Lemma 2.5. The estimate holds( s∫
1

|Dk(f, t)|2dt
) 1

2

� |Dk(f, s)| 32 .

Remark 2.6. The upper bound in Lemma 2.5 can easily be obtained by exploiting
the methods of integrating a function in elementary calculus.

Definition 2.7 (The rth truncated Gamma function). Let r ∈ N be fixed. Then
by the rth truncated Gamma function Γr, we mean the function

Γr(n) :=

{
n(n− 1) · · · (n− r) if n > r

0 otherwise.

Lemma 2.8. For all s > r, we have

1

Γr(s)

√√√√√ s∫
1

|Γ′r(t)|2dt � 1

s
1
2

.

Proof. It follows naturally from the definition of the rth truncated Gamma func-
tion that Γr(s) � sr so that

s∫
1

|Γ′r(t)|2dt � s2r−1

and the claimed upper bound is an easy consequence. �

Theorem 2.9 (variational Brocard). The equation Γr(s) + k = m2 has finitely
many solutions s ∈ N with s > r for a fixed k, r ∈ N, where Γr is the rth truncated
Euler Gamma function.
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Proof. We first apply Lemma 2.8 and notice that( s∫
1

|Dk(Γr, t)|2dt
) 1

2

� |Dk(Γr, s)|
3
2 � |Dk(Γr, s)|

√
s

since |Dk(Γr, s)| < s. It suffices to check that

lim
s−→∞

1

Γr(s)

∑
n≤s

Γr(n) <∞

and that

lim
s−→∞

1

Γr(s)

√√√√√ s∫
1

|Γ′r(t)|2dt <∞

and using the inequality

(

s∫
1

|Dk(Γr, t)|2dt)
1
2 ≥ |Dk(Γr, s)|.

�
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u Zagrebu, 2002, 269–273.

4. Berndt, Bruce C and Galway, William F On the Brocard–Ramanujan Diophantine equation
n!+ 1= m2, The Ramanujan Journal, vol. 4(1), Springer, 2000, pp. 41–42.

Department of Mathematics, African institute for mathematical sciences, Ghana,

Accra

E-mail address: Theophilus@ims.edu.gh/emperordagama@yahoo.com


