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The general traits of the Planck’s quantization procedure for the case of light are 

considered. The Procopiu’s quantization is presented as a result of this quantization 
procedure, only applied not to light, but to matter structures. Using its guidance, the general 
possibility of quantization in matter is discussed, by analogy with the quantization in light. 
A dynamics is then constructed from the point of view of the classical natural philosophy, 
revealing invariants that are analogous to Planck’s constant. The Procopiu’s quantum is 
then justified, based on this dynamics. Rules are recognized for quantization in general, as 
a physically justifiable theory, to be applied in the case of matter, and to describe the 
coexistence of matter and light. 
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No matter how far we come, our parents are always in us. 
Brad Meltzer 

 

1. INTRODUCTION 

Max Planck’s discovery of the fact that the light admits quantization for its energy 

has opened a real possibility of conceiving that the same might be the case with the matter 

itself. However, in the case of matter the things get complicate, by a couple of interrelated 

details. The first – and, actually, the main of these details – is that the matter is not a 

simple physical structure like the light itself. Whereby, secondly, it follows a subordinate 

aspect, as it were, in that the concept of energy can hardly be defined for matter as 

precisely as in the case of light. Fact is that all the attempts to apply the quantization in 

matter, following the primeval example of quantization in the case of light, have touched 

one or another of its physical aspects, but only through the concept of energy. 

Unfortunately, this route is not quite as flawless as it is needed for quantization, for the 

simple reason that the concept of energy is quite uncertain for a complex physical 

structure. And this lack of certainty can be made rather precise on two, again mingling, 

levels: first, on a qualitative theoretical level, and then, as a consequence, at the 

corresponding  quantitative level, which, for quantization is essential. In the case of light, 

the Maxwellian electromagnetic theory brought a substantial clarification of the concept 

of energy, allowing a quantitatively more precise estimation of this physical magnitude, 

necessary in describing the light as a thermodynamical process. 

This is not to say that the concept of energy in the case of light was absolutely 

clarified, and that the quantization is an absolute method, as unfortunately appears to be 

considered in the modern physics. All we want to say is that, in the case of matter, the 

quantization is a scale dependent physical manifestation of the world, that, again 

fortunately or unfortunately, depends on the quantitative definition of the energy, which 

is only available mechanically for a limited number of physical systems. The things get 

further complicated if the electrostatics and electrodynamics enter the stage. To wit: it 

was quite clear, even from a classical point of view, i.e., at the daily scale of things, that 

in the case of matter the energy cannot be precisely defined. The following excerpt from 
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an old work shows clearly what are the kinds of imprecision in the classical definition of 

energy: 

… For example, Weber assumes that the reciprocal action of two 
electric molecules depends not only on the distance between them, but also 
on their velocity and acceleration. Should the material points attract each 
other by a similar law, then U would depend on velocity, and could even 
contain a term proportional to the square of velocity. 

Then how are we to discern, among the terms proportional with the 
square of velocity, those of T (the kinetic energy, n/a) from those of U (the 
potential energy, n/a)? Therefore, how are we to distinguish the two parts 
of the energy? 

Even more, how do we define the energy itself? We have no reason to 
take as definition T + U instead of any other function of T + U, when the 
property characterizing T + U of being the sum of two terms of particular 
form disappeared. 

And this is not even all of it, because we will have to account not only 
for the mechanical energy proper, but also for some other forms of energy, 
heat, chemical energy, electric energy etc. The principle of conservation of 
energy must then be written 

T + U + Q = const., 
where T would represent the sensible kinetic energy, U the potential 

energy, depending only on the positions of the bodies, Q the internal 
molecular energy in thermal, chemical or electric forms. 

Everything would go just fine, should these terms be perfectly distinct, 
i.e., should T be proportional to the square of velocities, should U be 
independent of these velocities and of the state of bodies, should Q be 
independent of the velocities and positions of the bodies and depend only 
on their internal state. 

The expression of energy could then be decomposed in just one single 
way into three terms of this form. 

But it is not so; consider some electrified bodies: the electrostatic 
energy due to their reciprocal action will obviously depend on their charge, 
i.e., on their state; but it will depend equally well on positions. If these 
bodies are in motion, they will interact electrodynamically and the 
electrodynamic energy will depend not only on their state and positions, but 
also on their velocities. 

We have therefore no means to select the terms which belong to T, to U 
and to Q, in order to separate the three parts of the energy.” [(Poincaré, 
1897); our translation and emphasis.] 
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We took this extensive excerpt from a work classical – at least in our opinion – but 

otherwise largely ignored today, in order to illustrate that the present situation in 

theoretical physics is by no means any different from what it was a century or so ago. The 

actual status of the field and gauge theories – based, in a way or another, upon a method 

of Lagrangian construction, for instance, that introduces an a priori structure for matter 

analyzing subsequently its feasibility – just proves this conclusion, but there is a subtle 

change in emphasis. Indeed, in those old times, the uncertainty in the definition of energy, 

as revealed by our experience at the daily scale of things, would prevent the precise 

quantitative definition of the energy at the very same daily scale, as Poincaré shows in the 

above excerpt. On the other hand, today, on the ground of the daily scale-based experience, 

we seek the definition of energy for the microscopic scale of the world we perceive. And 

the truth is that in the microscopical world not only the energy, but the very physical 

structure of the world is, by and large, a product of our imagination. This fact was 

basically unrecognized in the old times, when one used to talk freely about molecules for 

instance, as about any real things that falls under our senses. And our spirit was taken by 

surprise, so to speak, when the involvement of imagination became critical, as soon as 

physics inched its way into getting the transfer of quantization from the realm of light 

into the realm of ponderous matter. 

The quantization needs, indeed, the concept of energy in order to be accomplished, 

but, as the above excerpt from Poincaré plainly shows, according to our experience the 

physics has not such a precise concept at its disposal in order to properly operate the 

procedure. At least it does not have it but in quite a few simple cases, where the energy 

either can be sharply defined from a mechanical point of view, or it can be defined only 

statistically, as an ensemble average or as a standard deviation on a statistical ensemble. 

Only this last procedure of quantization is efficient in extending for matter in general the 

Planck’s original quantization condition from the case of light, for that is basically a 

statistical procedure. Its application, though, raises a few fundamental problems in 

understanding the Planck statistics, and finding its expression inside matter. 

Stefan Procopiu’s quantization, the subject-matter of this work, is an outcome of the 

method of quantization of this last kind [60], [61], and has a few particular physical and 

mathematical pointers that may shed some light even on the modern theoretical physics 
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at large. The most important one of these aspects is that the Procopiu’s quantization is 

completely analogous to Planck’s quantization. In this respect it is unique among the 

methods of quantization in matter. This analogy was the principal incentive of the present 

work, which is mainly dedicated to inferring, based on it, of what, in hindsight, appear to 

be the physical laws of quantization. The points of difference also show our criteria of 

analogy: the first and foremost of these is the statistics. Although the statistics in the two 

cases are described by the same general family of probability distributions, in the case of 

Planck’s quantization the distribution is referring to a discrete statistical variate, while in 

the case of Procopiu’s quantization we have a continuous statistical variate. However, 

the statistics has the same general properties in both cases, apparently imposed by the 

natural requirements of quantization process. On the other hand, the matter is present for 

the quantization of Planck – in the form of resonators – while the light is missing in the 

case of Procopiu, where the main quantization unit is the Weiss magneton [75] which, in 

hindsight, proved to be quite unreliable in such a capacity [62]. 

The present work is assembled along the following lines: in order to bring the 

discussion to a proper fruition, we first need to promote a few points of principle for the 

existing quintessential Planck’s quantization case of light. This, obviously, requires the 

presentation in some detail of the main arguments of Planck’s quantization procedure. 

The presentation is conducted along an obvious path that led to the idea of quantum, so 

those points of principles are surfacing themselves as milestones on this path, so to speak. 

Then we need to describe the correspondent in matter of the procedure of quantization. 

For this, Procopiu’s quantization is typical and suggests a proposal, in view of its close 

analogy with Planck’s model, as we already mentioned. Thus, the Procopiu’s quantization 

is presented, with special emphasis on the points of analogy. The general principles of 

quantization are then extracted as part of the classical Newtonian natural philosophy. That, 

in fact, in its historical unfolding the physics followed this path objectively, with no 

exception, is shown here by the case of the planetary Kepler motion in two theoretical 

instances: the classical Bertrand theorem and the modern regularization procedures. It is 

in view of this last observation that we need to ask one question that during the 

development of the present work became hotter and hotter, almost burning white, if we 

may be allowed such a secular expression: was the classical physics completely devoid of 
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quantization? Regarding the answer that we propose to this question, we just need to 

notice here that the Procopiu’s magneton answers to a classical necessity regarding the 

existence of general gauge fields, a necessity that could not be fulfilled but by the modern 

gauge fields of the Yang-Mills type. 

2. ESSENTIALS OF LIGHT QUANTIZATION AND A CASE FOR MATTER 

The Planck’s quantization was a theory apparently without precedent in the existing 

natural philosophy, even though, based on the results of the present work, we have strong 

reasons to argue against that: the quantization seems to have been with us from the very 

beginning of the modern science, i.e., from the times of Galilei, and especially Newton. 

However, in those historical times the universe of knowledge was too small to include 

the light in the structure of its microscopic world, so that its planetary model – the one 

physical structure called for accommodating the light at that scale – was only a concern 

of finite scale of the space at our disposal. Fact is that the presence of light in the world 

was bound to radically change our way of thinking, insofar as the light is conspicuously 

a transcendent phenomenon: it comes to us from afar, which suggests the transfinite space 

scale of a universe. It is produced in microscopic processes, which suggests the infrafinite 

space scale of the microscopic world. These two worlds are by and large figments of our 

imagination, inasmuch as we cannot reach too far within either one of them. They are 

only rationally structured based on our experience at the finite space scale, where our 

senses dominate the natural philosophy, and where the light is, with a word of the wise… 

the life of man. In broad strokes, the scientific attitude accommodating such a 

transcendental existence of light was at a crossroad by the end of the 19th century, and 

Max Planck was the one called for indicating a new path that led us to the physics of 

today: the quantum physics. 

In building the quantum statistics for blackbody radiation Max Planck had at his 

disposal the two formulas for the spectral density of radiation, corresponding to the limit 

cases of high and low temperatures. Both these cases were theoretically ratified, in the 

sense that they would satisfy the Wien’s displacement law, which was, and still is in fact, 

the only theoretical criterion for the choice of the correct physical radiation laws. They 

are currently known as the Rayleigh-Jeans and Wien laws of radiation. The story that 
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follows is basically due to Max Born, who created it long after the founding of the 

Planck’s quantization procedure for light, with the precise purpose of delineating the 

Einstein’s contribution to the subject [80]. 

2.1. THE PLANCK’S LAW OF RADIATION ACCORDING TO MAX BORN 

According to Born, Planck’s first line of reasoning can be linked to the properties of 

the Gaussian probability distribution, therefore even without mentioning anything else 

related to a specifically used statistics. Because, the Planck’s quantization is, indeed, all 

about a specifically used statistics. This fact was discovered and considered in detail by 

Einstein in his repeated attempts to properly assess the quantization procedure for light, 

in order to be correctly applied for the case of matter [23], [24], [25]. Even by this moment 

in the course of the present work, we can add that Planck’s is a statistics based on 

exponential distributions with densities given by quadratic variance function. Used by 

statisticians every now and then, incidentally we might say, under this name, it was finally 

systematized as a concept only late in the last century [51]. 

It is worth going into a little detail along Max Born’s path, inasmuch as it gives us, 

indeed, the clear overall idea of this important gnoseological process. Born’s starting 

point is, like Planck’s, the spectral energy density of the radiation field as a function of 

temperature, with its two extreme cases: 

 (2.1.1) 

Here β ≡ (kT)–1, with k the Boltzmann constant, T the absolute temperature and ε0 an 

energy that must be proportional with the frequency of light in order to satisfy the 

requirement of Wien’s displacement law. Then Born proceeds to the first of Planck’s 

steps, which was to study the entropy of such a system, that he assimilated with a system 

of oscillators. The rationale of this association should have been like this: the entropy is 

classically related to the heat exchanged, at equilibrium, between two thermodynamical 

systems, or between a thermodynamic system and the universe containing it. And here 

we have the very heat in the form of thermal radiation! Thus, nothing more natural, than 

considering the heat as represented by the energy of the radiation field. According to Born, 
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Planck’s intention has been facilitated by the important discovery that the coefficient u'(β) 

– a prime denoting the derivative of function with respect to its variable, as usual – has a 

simple statistical meaning, which can be derived starting from the equilibrium 

thermodynamics. Indeed, as the radiation represents the heat exchanged in equilibrium, 

in the classical formula defining the thermodynamical entropy: 

 (2.1.2) 

we only have to identify the amount of heat (dQ) with the differential (du) of the 

density of radiation energy. In so doing, equation (2.1.2) can be rewritten as 

 (2.1.3) 

At this point one must recall the Einstein’s procedure of transferring the concepts 

from thermodynamics to statistics, whereby one identifies the thermodynamic entropy 

with the statistical entropy as related to the probability by the Boltzmann relation: 

 (2.1.4) 

Here two arguments must be used: first, the energy as carried by radiation is in fact 

characterized by fluctuations and, as these fluctuations take place at equilibrium, the 

entropy must be maximum according to classical precepts. Then the entropy, as a function 

of energy density can be expanded around the equilibrium value u0, thus providing an 

approximative form 

 (2.1.5) 

and the Boltzmann formula reveals (although, approximately) a Gaussian describing 

the fluctuations of the physical system represented by the thermal radiation. We write it 

in the normalized form necessary for statistical purposes, as: 

 (2.1.6) 

where X  º Δu and σ2 is the statistical variance of this process which, in view of 

equation (2.1.3), can be written as: 

 (2.1.7) 
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provided u is a continuous function of temperature. In other words, the first derivative 

of the energy density with respect to the inverse temperature is, in fact, a statistic 

describing this system: the variance of a normal distribution characterizing, although 

approximately, as we have seen, the fluctuations of energy of the field representing the 

thermal radiation. 

In this connection, it is worth recalling that, for the archetypal ideal gas of the 

classical thermodynamics, it was the absolute temperature that played such a role, not its 

reciprocal. It is quite significant that only the statistical role has not changed here: for 

both statistics, the classical and the new one, it is the variance that plays the part of a 

physical statistic, even though it has different physical meanings for the two cases. Still 

significant from a physical point of view, is the fact that the variance of the distribution 

remains, in both instances, connected to the absolute temperature, as defined by the 

classical ideal gas. 

The equation (2.1.7) was the statistical meaning apparently revealed by Max Planck, 

and the reason he insisted upon a close consideration of the equation (2.1.1), which in 

view of this discovery can be rewritten as [80]: 

 (2.1.8) 

Here e0 is a proportionality constant, introduced here for reasons of dimensional 

homogeneity. Actually, Planck worked with the entropy directly [54]. As mentioned 

above, the approach based on consideration of energy density is the mark of an Einstein 

style approach of the problem, but it closely parallels Planck’s own way. The reason we 

assume this approach will be shortly apparent. For now, recalling the equation (2.1.7), 

which shows that we are looking, in fact, at the variance of a Gaussian process, the 

equation (2.1.8) can be interpreted as representing two copies of the light as a 

thermodynamical process, for the cases of high and low temperatures. If these two 

processes are statistically independent, and the two components are assumed to coexist, 

the variance of the compound process is the sum of the two component variances, so one 

can infer that, in general, the law of radiation could be represented by the following 

differential equation: 
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 (2.1.9) 

This equation is the cornerstone of the Planck’s method of quantization, and its 

solution becomes part and parcel of the method. One has an immediate particular solution 

 (2.1.10) 

From this moment on everything is recorded history. Mention should be made, 

though, that the general solution of equation (2.1.9) depends on one more arbitrary 

constant of integration. The choice of this constant leads to what later became known as 

the Bose-Einstein and Fermi-Dirac statistics, to be applied to the two different spin 

particles. 

However, limiting our discussion strictly to equation (2.1.10), it has an outstanding 

physical interpretation unveiling a statistical ensemble that has it for a mean. This 

physical interpretation is the key point that started the process of establishing of the 

modern concept of quantum. It goes on describing an ensemble of harmonic oscillators, 

each one having the energy an integer multiple of ε0, of which we know nothing but that 

it is an energy – to make the equation (2.1.9) physically meaningful – proportional to the 

frequency – to make the equation (2.1.10) physically meaningful, inasmuch as the density 

of thermal spectrum must satisfy to Wien’s displacement law. The partition function of 

this ensemble can be written as 

 (2.1.11) 

so that u(β) from equation (2.1.10) appears indeed as the mean over this ensemble of 

oscillators, as we said, for we have: 

 (2.1.12) 

The presence of quantum is here suggested by the random variable characterizing this 

distribution in equation (2.1.11), which is a natural integer. The photon, as a carrier of the 

energy e0, enabling the interpretation of the thermal light as a physical system, enters the 

stage only later. However, taking in consideration the idea of interpretation in order to 

delineate a physical system, it seems that the modern theoretical physics relies 

predominantly upon what has been left behind along the way towards quantum mechanics, 
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that started from this very beginning. Let us, therefore, see what is going on here, by 

revealing some well-known facts from a new angle. 

2.2. A FIRST VIEW TO PLANCK’S CONSTANT 

According to previous plot set up by Max Born everything is based on the normal 

distribution. Moreover, it seems that the Planck’s pursuit was, indeed, for statistically 

independent processes. One can easily be induced into thinking that the two processes 

might not be statistically independent and then, assuming that we have definitely two 

Gaussian processes representing the two limit cases of radiation, they are in a general 

statistical relationship. One may further assume that the general radiation should actually 

be a linear combination between the two processes, but we limit here the line of reasoning 

to just the sum of the two processes. The general bivariate normal distribution is given by 

 (2.2.1) 

In terms of the variances σx, σy of the two processes and their correlation coefficient 

r, the coefficients a, b, c can be written as 

 (2.2.2) 

Now we can write the probability density of the compound process (X+Y) having the 

values x, which is given by 

 (2.2.3) 

i.e., a Gaussian of zero mean, having the variance (a+c-2b)/(ac-b2) or, in terms of 

variances and correlation coefficient of the two component processes, as introduced in 

equation (2.2.2): 

 (2.2.4) 

Still maintaining the Planck’s philosophy above, represented by equation (2.1.7), 

instead of equation (2.1.9) we should have 

 (2.2.5) 

This equation can be integrated to give 

 (2.2.6) 
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Here something is immediately obvious, which shows that our focus might have been 

misplaced by the mirage of a quick interpretation already at hand, when using the 

mathematical fact represented by equations (2.1.11) and (2.1.12). Namely the energy ε0, 

which has been introduced from dimensional considerations, according to the Wien’s 

displacement law, and which has subsequently been explained as a quantum of energy to 

be carried by an invented particle, must have been, in fact, a priori explained. 

Indeed, it is the case to take notice of a fact of concern here: when considering the 

radiation as a thermodynamical system, a contradiction creeps into our reasoning. This 

can be relegated to the fact that the formula (2.1.2), used in calculating the entropy of 

radiation, is an equilibrium formula from thermodynamical point of view. In other words, 

we cannot physically conceive one and the same system having two parts existing at 

different temperatures, without exchanging energy between them. In fact, according to 

Born, the equation (2.1.9) was taken by Planck only as an interpolation between the two 

extreme cases, which is a purely mathematical trick. Still, if the system at a given 

temperature is described by the equation (2.1.9), this means that in the interaction with 

the environment it behaves partly as being at high temperature and partly as being at low 

temperature: the temperature plays a dual role, and even this needs to be physically 

explained. Planck himself opted, as well known, for the idea of resonator, whose 

existence is not only allowed, but even imposed we should say, by the established 

Kirchhoff’s laws of equilibrium radiation. 

However, the Kirchhoff’s laws do not ask specifically for an oscillator physical 

structure, as Planck assumed for the resonator. This issue is still in suspension even today, 

and here is one scenario of possible explanations: the idea of particle – specifically, the 

photon – resides in the correlation between the two fundamental ‘sub-processes’ of the 

light, considered as a thermodynamical process. It is quite significant then – mostly for a 

source of inspiration of this idea – that Einstein established the properties of quantum 

only based on only one of the two parts of the light process [22], which may be taken as 

a particular case of this general explanation. That one part represented a single 

temperature from the two temperatures involved here, and thus was ‘legal’, as it were, 

from the point of view of equilibrium thermodynamics. In general, however, i.e., 

considering the whole process representing the light, a particle becomes a means of 
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transition between the light at the high temperature and the light at the low temperature. 

In modern terms this can be translated thus: insofar as the light is considered as the modus 

essendi of the vacuum, the particle accomplishing its interpretation can just as well be 

seen as the modus essendi of the vacuum tunneling process. Fact is, that the multiplicity 

of vacuum – the existence of an infinity of vacua simultaneously – seems to be an already 

settled issue, at least from a modern theoretical point of view [34]. 

In the statistical context of the present section of our work, this conclusion can be 

ascertained in the limit where the statistics depends exclusively on the correlation 

coefficient, as follows: in the good old fashion of statistical mechanics, we correlate the 

energy e0 with an exponential factor, which can play the role of a partition function over 

a certain ensemble, and which can be easily extracted from equation (2.2.6) as 

 (2.2.7) 

The left-hand side of this equation is a Boltzmann factor that represents a thermal 

ensemble for the energy ε0, having the mean β. The odd thing here is that the right-hand 

side also depends on ε0. However, this dependence occurs through the intermediary of the 

ratio w, which allows us to say that a statistical interpretation depends, in fact, on a sort 

of ε0-content of the density of energy of the thermal radiation. This conclusion sounds 

quite normal: an experimentalist knows exactly how to characterize the radiation 

depending on its density. Should this density be of the order of ε0 then w ≈ 1, and the 

right-hand side of equation (2.2.7) does not depend but on the correlation coefficient 

between the two processes: 

 (2.2.8) 

This is the limit we are seeking for. Almost four decades ago, H. Ioannidou tried to 

explain the quantum through the correlation of ensembles associated with oscillators, 

based on the uncertainty relation [33]. The attempt has been forgotten, probably due to 

the connection it suggested with an idea of contingency. However, that connection seems 

to be sound, for here it is again, in equation (2.2.8), which can be taken as a relationship 

between the quantum and the correlation coefficient of the two statistical processes 
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representing the whole thermodynamical radiation. Further on, one can speculate that if 

the correlation of the two processes is faint, which is the Einstein’s case, then 

 (2.2.9) 

independently of any other consideration. Thus, in this limit, the ‘quantum’, and 

therefore the frequency, is directly proportional to the temperature, i.e., it can be 

expressed by the intermediary of a statistic thermodynamically established. This fact has 

been discussed at length by Louis de Broglie [8], who identified the action with the 

entropy, based on the idea of cycles of phase. As we shall see, such cycles are a necessity 

from the point of view of characterization of the phase. 

In the general case, though, when the ε0-content units and the correlation of the two 

processes are both arbitrary, it helps noticing that the right-hand side of (2.2.7) is the 

generating function of a particular class of Pollaczek polynomials [17]. Specifically, we 

can write (2.2.7) in the form 

 (2.2.10) 

The orthogonality relation of the polynomials involved here is given by 

 (2.2.11) 

with the weight function ρ given by 

 (2.2.12) 

where Γ is the Euler function of the first kind, generalization of the factorial. Should 

we agree to interpret ε0 as the energy of a photon, as historically has been the case, then 

the formula (2.2.10) would be the source of constructions of some modern quantum states 

related to the coherence properties of radiation. 

2.3. GETTING OVER THE GAUSSIAN: PLANCK’S NEW STATISTICS 

The contradiction still remains, though, and it cannot be removed, at least not from 

thermodynamical point of view, as long as we do not settle on an independent statistical 

meaning of ε0, and, perhaps, even a true statistical meaning for the temperature. Indeed, 

as long as one and the same thermodynamical system is characterized by two different 

temperatures and there are reasons to assume that it is physically unique, there is room 

for contradiction with the second principle of thermodynamics. In a specific way, such a 
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contradiction flared up in the last half of the 20th century in the form of the problem of 

zero point energy [11], [12]. That problem extended conceptually the old observation that 

the connection between the Planck’s formula (2.1.10) and the classical meaning of the 

temperature requires the consideration of one half quantum in order to agree with each 

other [26]. 

In this specific case, the concept per se was the one liberating physics from the 

authority of the second principle of thermodynamics: the existence of zero point radiation, 

i.e., an electromagnetic radiation having a spectrum depending exclusively on frequency, 

without the intervention of the temperature. As to the classical meaning of the 

temperature, it is that of a statistic: the variance of the velocity field of the gas molecules, 

as measured by the kinetic energy, considered itself as a statistical variate on an ensemble 

of classical material points. Our point of view is that the application of the absolute 

temperature in order to describe the radiation as a thermodynamical system, revealed the 

fact that it is not a sufficient statistic [50]. This would mean, first and foremost, that in 

describing such physical systems as the radiation from a thermodynamical point of view 

requires more than the heuristic point of view represented by the Gaussian statistic. 

Fact is that by accepting the Boltzmann’s and Gibbs’ views regarding the relation 

between probability and entropy, physics placed itself at the disposal of a statistical 

science based on the so-called class of exponential families of distributions. In the case 

of one statistical variable X such a family, having the elementary probability given by 

 (2.3.1) 

is known as natural exponential family. Here ξ is the parameter scanning the family, 

while ν(dx) is a Stieltjes measure of the domain of statistical variable X. The parameter ξ, 

usually related to the measurement of the variate X, is connected to the mean of the 

ensembles characterized by (2.3.1) through equation 

 (2.3.2) 

a relation used explicitly before in order to interpret u as a mean over an ensemble of 

oscillators. 

Now, the previous stride of reasoning may be flawed by the fact that the differential 

equation (2.1.9) looks, indeed, very much like an interpolating equation, having no 

substance of physical principle involved in its derivation. Its formal inference based on 
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Gaussian distribution in the previous section might thus be tarnished not only as being 

too particular, if not very approximate, but, as we have seen, on the very physical grounds. 

The only fact to start with here is that one can get the equation for the fluctuations starting 

from physical considerations upon the field sustaining the fluctuations, and the result is a 

quadratic polynomial for the variance. This proves to be essential from a certain point of 

view. Indeed, if we limit the considerations to natural exponentials, we then have 

necessarily 

 (2.3.3) 

where V(ξ) is the variance function of the family of exponential distributions. If this 

function depends on the parameter x in such a way that it can be arranged into a quadratic 

polynomial in the mean m(x) of the family of distributions, then we have a particular case 

of exponentials, nowadays termed as exponential distributions with quadratic variance 

functions [51]. These distributions cover just about everything we use today in the realm 

of physics and engineering: Binomial, Negative Binomial, Poisson, Gaussian, Gamma, 

and Generalized Hyperbolic Secant. The first three of these are distribution for discrete 

statistical variates, while the last three are referring to continuous variates. 

Then, one can notice the advantage of the Born’s approach to Planck’s problem even 

if we do not use the Gaussian approach: it is referring, in a way, to all of the six 

distributions enumerated, because all of them have the Gaussian as a limit case ([51], 

Table 1). Therefore, in principle, the statistics of radiation has to be characterized by such 

a quadratic relationship between the mean and the variance of an ensemble representing 

the radiation. The corresponding distribution should not be necessarily a Gaussian, even 

though in limiting situations it can be reduced to a Gaussian, as most of the known 

statistical distributions can indeed. In this case the whole problem of radiation can be 

treated in its utmost generality, for the two limiting processes are quite different by their 

nature, albeit quadratic variance type processes both. 

To wit, take the Planck’s case: the equation (2.1.9) which is the characteristic of 

Born’s line of reasoning can, by a simple and natural metamorphosis, be put into one of 

the Morris’ canonical forms devised for the generic quadratic variance function 

distributions ([51], Table 1): 
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 (2.3.4) 

Here m, which is, statistically speaking, the mean of the distribution, is assumed to 

also be the measured density of spectral energy, and we used the notations 

 (2.3.5) 

where u0 is an arbitrary constant energy density. Here, the parameter r is not a 

correlation coefficient anymore, but we still use the same letter to denote the parameter 

as in the original work. Then, according to Morris’ scheme of describing such 

distributions, Planck’s result is a Negative Binomial distribution [NB(r, p)] with the 

density of probability given by 

 (2.3.6) 

where the variable X is discrete, with values x = 1, 2, …, p º eθ is a probability (the 

‘Boltzmann factor’ mentioned earlier) and q = 1 – p is the complementary probability. 

The mean of this distribution is provided by: 

 (2.3.7) 

which is Planck’s formula, written, however, so as to make the occurrence of unit u0 

explicit: u = mu0. Let us try to find some limit distributions for NB(r, p). 

First, we are interested, for instance, in those probabilities p close to one, describing 

highly probable events. As we have 

 (2.3.8) 

and by definition 

 (2.3.9) 

one can directly write 

 (2.3.10) 

According to Morris’ classification, this represents a Gamma distribution from his 

Table 1, having the density 
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 (2.3.11) 

for values X real and positive. In case of r = 1, i.e., ε0 = u0, this distribution is the 

classical exponential. In general, for finite r, this limit distribution of radiation is referring 

to the case where the mean energy of the ensemble characterizing the heat radiation is 

high i.e., we have m → ∞. The temperature of this state cannot be but high too, in order 

to make up for the condition p ~ 1. At arbitrary but finite densities of radiation energy 

this limit distribution is also characteristic for r → 0, which comes down to ε0 << u0, no 

matter of the relationship between ε0 and kT, i.e., no matter of the value of the mean m. In 

other words, the process can be a Gamma process in classical as well as in quantum case, 

depending on the unit we choose for the measurement of the radiation spectrum. 

Another limiting case of the general Negative Binomial distribution characterizing 

the Planck process, is the opposite one, i.e., that where the probability p is very small. 

According to the definition of p this happens for low temperatures, so that θ → -∞, and 

is realized by an ensemble of very low energy density. In equation (2.3.8) the linear term 

prevails so that, according to Morris’ classification the process is a Poisson one from his 

Table 1, and is characterized by the probability density 

 (2.3.12) 

for the variable x = 0, 1, 2, … For arbitrary energy densities, the Poisson limit 

distribution can also be realized when r → ∞, i.e., when ε0 >> u0, no matter of the 

relationship between ε0 and kT. Again, just as before, the process can be a Poisson process 

in classical as well as in quantum case, depending on the unit we choose for the 

measurement of the radiation spectrum. 

The previous limiting cases of the Negative Binomial Distribution recommend it as 

universal in the case of light, of course. However, the actual physical experience of the 

last century shows that the Negative Binomial is a universal distribution in a much larger 

acceptance [15]: it seems to be also the natural distribution for the fundamental 

phenomena occurring in just about any of the intimate matter structures. If so, then the 

quantization in matter is only a normal course of the natural philosophy and should be 

entirely analogous to the quantization in light. There remain, though, a few problems of 
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detail, related to the statistics really involved in the case of matter. As the Table 1 of [51] 

shows, all of the quadratic variance function distributions have the Gaussian as a limit 

law. As we said, in view of this circumstance, the Gaussian cannot be more than a 

heuristic tool in a physical argument, just as it was to Planck himself. The weight of the 

argument in a physical statistics must fall on the idea of variance, involving therefore one 

or more of the other five distributions from the Morris’ table. As we will see presently, 

the Procopiu’s quantization seems to indicate this very prospect for the case of matter. 

We cannot close this case without highlighting once more that quantization 

interpretation of the statistic of light is simply due to an accident: Planck’s formula 

(2.1.10) can also be produced by the ‘mainstream’ physical statistical argument 

represented by equations (2.1.11) and (2.1.12). If physics does not enter the play, the 

statistics per se seems to have no suggestion of quantum in producing the formula, as its 

deduction by Planck, or even the deduction of equation (2.3.7) shows it. Thus, even 

though the scheme involving the equations (2.1.11) and (2.1.12) may seem a happy ‘brain 

wave’, as it were, the fact of the matter is that the right procedure of quantization must 

contain it necessarily, in order to enact the concept of quantum. Otherwise, we are not 

able to say if the quantization procedure is physically correct or not. Whence the 

importance of having such a scheme ingrained in the statistical procedure from the very 

beginning. This was the case of Procopiu’s quantization procedure. 

2.4. GETTING OVER THE DISCRETENESS: PROCOPIU QUANTIZATION 

Like anyone in the field of theoretical physics at the beginning of the 20th century, 

Stefan Procopiu was mainly interested in two issues connected to the application of 

quantization for the case of matter: the structure of the Planck’s constant [60], and the 

structure of the physical unit carrying the quantum of energy i.e., the analogous of the 

Planck’s resonator. He calls it a magneton [61], and associates it with the Weiss magneton 

[75]. Mention should be made that this kind of magneton stayed also in the views of 

Einstein and Stern on the occasion of introducing the half quantum of energy to the natural 

philosophical awareness [26]. The present section of our work follows closely the general 

structure of Procopiu’s own work, only skipping the original details. On the other hand, 

such details will appear later along our proceedings here, but only as acquired via 

theoretical physics in its historical development during the last century. They are due to 
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a natural philosophy entirely analogous to Newtonian natural philosophy, but constructed 

here for the case of matter exclusively. 

Regarding the blackbody radiation, Procopiu takes the Planck’s law of radiation in 

the old form expressed in terms of the wavelength of light, which we write in the 

differential form of spectral radiance: 

 
(2.4.1) 

In connection with this formula, Procopiu concentrates on a fundamental issue, which, 

in his mind appears closely correlated with the intimate structure of the matter. Quoting: 

If one would find for h a physical meaning, the constants c1 and c2 would 
not depend but on physical quantities. 

This interpretation will be satisfactory, when the oscillator emits energy 
in discrete parts, this energy not depending on the nature of the oscillator 
but only on its own period. When this period is large, the emitted energy is 
small, and vice versa. 

Therefore, the problem is to find a mechanical or electrodynamical 
model for the oscillator, whether it resides within the molecule of O, H, N, 
etc. or it represents itself the molecule, the atom or the electron. ([60]; our 
translation and emphasis) 

Obviously, by ‘oscillator’ here, Procopiu means ‘resonator’: otherwise, an 

‘electrodynamical model’ for oscillator does not seem to make much sense. In order to 

understand the problem, we need to translate it in the language of the §2.1., in order to be 

able to connect it with the Planck’s formula (2.1.10). Transcribing (2.4.1) in frequency, 

it becomes 

 (2.4.2) 

where we used the symbolistic of the §2.1., with u º u(b) given by equation (2.1.10). 

This equation contains two factors including the differential, out of which only one was 

provided by the Planck’s statistics before, as u(b). The other factor, namely n2dn comes 

from a Euclidean geometry of the frequency: the frequency n is considered here as the 

magnitude of a three-dimensional frequency vector, uniformly distributed in the 



Nicolae Mazilu, PhD 
 
 
 
 

 
 
 
 
 

22 

frequency space over the blackbody radiation realm, whose structure is assumed to be 

that of an ensemble of plane waves. 

The previous excerpt is referring only to u(b), though, which incorporates the two 

constants targeted by Procopiu, by replacing them equivalently with the Planck’s constant 

and the Boltzmann’s constant: 

 (2.4.3) 

However, in the interest of the correctness, it is necessary to always remember that 

the experimental results on light are expressed by the spectral density (2.4.1) or (2.4.2), 

which, when judging the Planck’s result (2.1.10) may not mean too much. When we try 

to apply the quantization outside the realm of light, though, for instance into matter, the 

consideration of (2.4.1) or (2.4.2) makes all the difference. They tell us what the 

frequency is in the case of Planck’s quantization: a three-dimensional vector uniformly 

distributed over an ensemble of plane waves. If this condition is not satisfied, the 

quantization may not work properly, and needs amendments. A case in point may be 

illuminating, mostly because it is quintessential when it comes to quantization in matter. 

The Louis de Broglie’s quantization of matter, by assigning a ponderous particle to 

the Planck’s quantum [7], worked only under condition of a plane wave in phase with the 

motion of the ponderous particle in question. This assignment was completely made in 

the spirit of the initial statistics of frequencies in the case of thermal light. However, the 

point of association here is the definition of phase of the particle: it is assumed to be its 

uniform motion. Then, the relativistic precepts can be applied to this motion, and this 

opens Pandora’s box, if we may be allowed, again, the sin of a secular term. For, when 

this is done, the results show that as long as the frequency is defined by time intervals, de 

Broglie’s quantization does not work. It works properly only if the particle does not move. 

In the case of motion, there is a group of waves that represents the particle, not a single 

plane wave, as in the case of light. However, in the cases of more complex structures, the 

plane wave does not even work anymore, so we need to look either for some other kinds 

of waves, or for a different approach to quantization, etc., etc. 

Coming back to our present discourse, Procopiu tried first to identify the material 

units suspected as being liable of representing fundamental ‘bricks’, so to speak, for the 

construction of matter in general, and then calculated their energy. His leitmotif is 
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constituted by the molecular magnetic properties of matter, especially because the fresh 

discovery of the electrons encouraged, in the epoch, a certain reality of the classical 

Ampère currents within the realm of matter. The fundamental idea was here that of 

frequency: an Ampère current is liable to have a definite frequency which can be retrieved 

from the light it emits as electromagnetic radiation, according to Hertz theory. Quoting: 

… Thus, an electron that revolves around a molecule a certain number 
of times, can render molecular magnetism phenomena observable. 

But a molecule has a central positive nucleus, and around it the negative 
electrons circulate. 

Assume that the positive center is at rest, and that an electron revolves 
around it. Their electric charges are equal and of different signs,  ± e. The 
electron will prompt a convection current, and, according to Ampère, a 
magnet. 

Imagine that this revolving electron can be identified with the Planck 
resonator, that is it will absorb or emit energy discontinuously. This is not 
possible but only if the electron is removed from the molecule, thus making 
some magnetic phenomenon disappear, or under condition that a foreign 
electron is introduced into the molecule, thus making such a phenomenon 
happen. If in these conditions, the electron prompting the magnetism can 
be taken as a Planck resonator, one can apply the relation e = h×n, which 
connects its energy e, to the frequency n. That is, when e, the revolving 
electron energy, and n, its frequency, are known, one can have h. ([60]; our 
translation and emphasis) 

The method of calculating the Planck’s constant is thus quite simple: calculate the 

energy of the fundamental structure, and the pulsation of the electron making it up, and 

then, their ratio is Planck’s constant. At the time when Procopiu took the challenge, there 

seemed to be an established value of the Weiss magneton, independent of the nature of 

substances used in establishing this value, of 1.64 × 10–21 erg/Gauss. Procopiu took it and 

calculated the energy and frequency of such a magneton, after which he calculated the 

Planck’s constant. The result is: 

 (2.4.4) 

where M is the value of Weiss magneton, m is the mass of the electron and e its charge. 

The epoch’s value of the Planck’s constant was of 6.55 × 10–27 erg·sec, which shows that 
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the Procopiu’s evaluation is way too far from the truth. But he had another chance: the 

physical structure of the magneton, as an Ampère current, involved ‘a positive center at 

rest, and an electron that revolves around it’, as he states in the previous excerpt. So, the 

chance is to evaluate the energy as the static potential energy of the orbiting electron. He 

did it, and based on the same principle of calculating the Planck’s constant he found: 

 (2.4.5) 

where epoch’s value for r was about 10–9 cm. This value is closer to the target, but in 

hindsight it cannot be satisfactory, knowing the unreliability of the Weiss magneton value 

[62]. However, as we shall show here, there may be an explanation involving a principle 

for such a blatant improvement in the numerical result, when calculating the Planck’s 

constant this way, i.e., by considering the electrostatic energy. 

Be it as it may, fact is that Procopiu himself was discontented with both results so 

that he tried one more way of evaluation, and this was radically different. Quoting: 

I also tried to find a relation for h, starting from one of the most general 
phenomena for the molecules, the diamagnetism. 

Consider a molecule having the shape of a sphere – which is true at 
least for the monoatomic gases. In order that this molecule possesses a 
magnetic moment, i.e., a quantity that characterizes a magnet, it must be 
assumed that this molecule has inside arrangements which manifest 
themselves as magnets, or even magnets. Long time ago Ampère has 
imagined that the magnetism of a molecule issues from an electric current 
displacing on the surface of the molecular sphere. ([60]; our translation and 
emphasis) 

The work per se on this new settlement of ideas, was deferred to another paper [61], 

and this one, we think, has a great importance of principle. The numerical results are, 

again, quite qualitative: the Planck’s constant is taken this time as known numerically and 

based on this the value of magneton is calculated and compared with values existing in 

the specialty literature. But this is not the point we want to make: the fact of the matter is 

that Procopiu finds a relation identical to Planck’s (2.1.10) or, better, to equation (2.4.2) 

here, but for a continuous univariate distribution from the same class with the Negative 

Binomial Distribution of Planck: the quadratic variance function exponential distribution. 
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We are talking about the Generalized Hyperbolic Secant distribution. In the process of 

quantization, the scheme involving equations like (2.1.11) and (2.1.12) is incorporated 

into method and does not have to appear as a lucky guess based entirely on mathematical 

contingencies. Moreover, the statistic is referring explicitly to the physical unit carrying 

the magneton, just as the Planck’s statistics is referring to the physical unit carrying the 

photon. This would mean that regarding the procedure of quantization per se, but mostly 

the quantization in the realm of matter, it is not important the distribution, as much as the 

family of distributions: they must be, indeed, quadratic variance function distributions. 

Moreover, it seems that within matter, unlike the light, the quantization should go mainly 

for continuous distributions. But let us see the case in point. 

Following the Langevin’s theory of the magnetism [37], Procopiu’s quantization 

replicates the equations (2.1.11) and, implicitly, (2.1.12), based on the fact that a resonator 

– the physical structure producing or absorbing the light – must be an ensemble of 

magnetons, therefore appropriate for statistical treatment. To wit, Procopiu gets for the 

mean energy of an ensemble of magnetons entering the structure of a resonator, instead 

of equation (2.1.10) of Planck, the equation of Langevin: 

 (2.4.6) 

This mean is prone to a classical statistical treatment using the partition function, for 

we then can infer right away: 

 (2.4.7) 

No question, we have here a perfect parallel with the case of Planck: the mean (2.4.6) 

is first inferred by a statistics having a physical content, and then shown to be calculable 

by a partition function. It is just that, in the Planck’s case, the statistics having a physical 

content was invented ad hoc, while here it was undertaken from Langevin’s theory. Based 

on the analogy carried only this far, Procopiu identifies e0 with a Planck quantum, in spite 

of the fact that there is no frequency involved here. This is why he tries to find regularity 

in some spectral series in order to rustle up a frequency, based on which to calculate the 

magneton M. As we said, the numerical results are only qualitative, but this does not 

diminish by any means the merit of the method. 
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Indeed, we have to ask: should a resonator structure be identical with the light 

structure? The analogy with Planck’s theory goes to details. In fact, we may not even be 

interested on the provenance of the function (2.4.6) as long as we know that it is 

obtainable from a known partition function by the recipe from equation (2.4.7). Here too, 

e0 is an energy that does not depend on the temperature, just like the (h×n) in the statistics 

of blackbody radiation. However, a major problem still remains for us to solve: is the 

function (2.4.6) exactly of the type (2.1.10) or of the type (2.4.2), involving two 

statistics?! And while trying to answer this question, we discover an essential fact: 

Procopiu’s quantization procedure is centered on a statistics based on a quadratic variance 

function distribution, just like Planck’s statistics. The analogy, therefore, goes to details! 

Indeed, it is the very formula (2.4.7) that tells us which case is to be considered here. 

Fact is that not quite u(b) from (2.4.6), but Z(b) from (2.4.7) involves a priori two 

identical statistics, of the Hyperbolic Secant type. It is time to show that here too, we have 

a formula analogous to (2.1.11), not quite for Z(b) but for its logarithm, which is actually 

sufficient for physics’ tasks. In order to do this, we follow closely [69] (see also [35], pp. 

113 – 163). Indeed, we have the identity: 

 (2.4.8) 

so that 

 (2.4.9) 

Thus, the theory can go just like in the Planck’s case taking the quantum as 2×e0, and 

the hyperbolic tangent replacing the exponential from (2.1.11). Provided, of course, the 

hyperbolic tangent has the necessary physical properties. But this is not momentarily our 

concern, for the formula we are looking for, is, again, in front of us: the one representing 

the convolution property: 

 (2.4.10) 

This is showing that the distribution used by Procopiu is of the type from equation 

(2.4.2): there is a ‘dummy’ distribution, analogous to the a priori distribution over the 

frequencies in the case of blackbody radiation, and a main distribution, analogous to 
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(2.1.11). Just like in the Planck’s case, both these distributions are here of the same type: 

quadratic variance function distributions, but of continuous type, namely Hyperbolic 

Secant. The problem is only to establish their physical meaning, and the meaning of the 

convolution from the equation (2.4.10). As there is no physical theory allowing an 

interpretation leading to ensembles supporting these distributions, such a theory has to be 

constructed by starting from new principles. 

This would mean that, inasmuch as there is no principle involved in the identification 

of the Procopiu’s quantum with Planck’s quantum, they should be taken as different. In 

fact, one is referring explicitly to the structure of the resonator while the other is referring 

to the structure of light. Then, just as a theory of light has been developed based on the 

existence of quantum, so it has to be developed a theory of matter based on the existence 

of a different quantum. Therefore, we need also a quantization for the resonator, a fact 

obvious even from the times of Planck himself. The way this quantization was achieved 

was by ad hoc involving the Planck’s constant only [9], [65]. Procopiu himself does not 

make exception. However, if there is a frequency involved in the interpretation of 

Procopiu’s quantum, this must be constructed from the fundamental physical 

characteristics of the matter, just like the physical frequency of a harmonic oscillator: this 

is the whole morale of the identification of the resonator with an oscillator. As it turns 

out, a quantum theory of matter has, indeed, always been with us even from the times of 

Newton. 

 

3. THE NATURAL PHILOSOPHY OF QUANTIZATION IN MATTER 

Two issues have to be discussed, starting with this chapter of our work. First, is the 

physics of quantization in matter, based on which, according to previous analysis, the 

quantum must be constructed. Secondly, the structure of the quantum itself, and its 

connection with the replacements, within matter, of the frequency from the case of light. 

We are following thus the idea to find in matter the analogous of the Planck’s constant 

from the case of light. The place to start in constructing a theory is that of any physical 

theory whatsoever: the classical natural philosophy. 
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3.1. THE THOMSON’S PHYSICAL THEORY 

Joseph John Thomson’s work specifically addressed to the problem of quantization 

in matter is the only one known in history that can be taken in the capacity of a natural 

philosophy. Its fundamental point of view is, just like the one of the prototypical 

Newtonian natural philosophy, the presence of forces in matter. And just like in the case 

of that precursor natural philosophy the accent here falls, indeed, upon the presence of 

forces determining a trajectory of motion via the dynamics instituted by Newton. 

However, unlike that forerunner, this new natural philosophy had to account for the 

presence of radiation in the world it describes. Then, the idea surfaced that the 

quantization in the case of matter is a natural physical law regulating the interaction of 

the matter with radiation: Planck’s quantization in the case of light should be an 

expression of this physical law, by exacting the necessity of inventing the resonators. The 

Thomson addition to the classical natural philosophy, however, seems to point out 

naturally to their dynamical necessity. To wit: the ancestor classical natural philosophy 

appears to inherently hold facts, even mathematical facts, that make the quantization in 

matter a natural law. It is this aspect of classical physics that we shall pursue in the 

remaining part of the present work. 

In hindsight, one can precisely label the Thomson’s dynamics as a Newtonian 

dynamics, whereby the controlling forces had to cope with the idea of open orbits in the 

case of Kepler problem. It is well known, indeed, that the foundation of Newtonian natural 

philosophy is provided by an image of heavens where the Kepler systems are routine, if 

we may say so. In order to elucidate this point in connection with the existence of the 

light as a fundamental phenomenon in the world, we need to appeal to the classical  

theorem of Joseph Bertrand, which proves that the only forces admitting closed orbits for 

the dynamical system that describes the classical Kepler problem are the central 

Newtonian forces and the central elastic forces [6]. Therefore, one can say that the closed 

orbits are only connected with these two classes of forces. In this case then, the problem 

can be aroused as to what is, theoretically speaking, beyond the closed orbits, inasmuch 

as the observations show that they are, in fact, not quite a routine. In order to get an answer, 

let us show the case in detail. 
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Joseph Bertrand proves these statements by taking the classical Binet’s equation in 

the form 

 (3.1.1) 

where the magnitude of the central force determining the Newtonian dynamics that 

controls the motion has the magnitude f(r). The polar coordinates (r,f) of the mobile 

material point are reckoned with respect to the center of force, and the dependent variable 

u is defined by equation u×r = 1; further on,  denotes the area rate from the second of the 

Kepler’s laws. The equation (3.1.1) has the immediate integral 

 (3.1.2) 

where a prime means derivative with respect to the independent variable, as usual. 

Now, in order to have a closed orbit the function u(f) must vary between two limits, a 

and b in Bertrand’s notations, and this imposes definite requirements on the period of 

central angle f of the motion. Bertrand describes this period in connection with the 

dynamical properties of the motion, using the differential of angular variable which 

results from the equation (3.1.2), written in the form 

 (3.1.3) 

Then, notice that the two extremes of u correspond to the extremes of r at the vertices 

of the orbit, where it cuts its axes of symmetry. In such points we have u¢(f) = 0, so that 

a and b should satisfy the algebraic equation 

 (3.1.4) 

which ensues from (3.1.2) under this condition. The two equations corresponding to 

a and b provide the constants from (3.1.3): 

 (3.1.5) 

and these two equations show that the condition 

 (3.1.6) 
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must be valid no matter what values a and b may have. Here they represent a 

minimum and the maximum that follows immediately after it, or vice versa, and q must 

be a rational number. This is a purely geometrical condition defining the closed plane 

curves. Specifically, the equation (3.1.6) is an expression of the geometrical theorem 

saying that when a plane curve admits two axes of symmetry, it is a closed curve if, and 

only if, the angle between the two axes is a rational multiple of p. The equations from 

(3.1.5) secure the conclusion that the condition (3.1.6) should be valid for any values that 

a and b may happen to have. 

Now, the most common among the cases one practically meets in astronomy, is that 

of an orbit with very small eccentricity. According to Bertrand, two things happen in such 

a case. First, the integral from equation (3.1.6) can be approximately carried through, with 

the result 

 (3.1.7) 

with the usual notation for the derivative of a function with respect to its argument. 

Secondly, this result can be turned into a differential equation, having the remarkable 

solution 

 (3.1.8) 

where A is an integration constant. In view of equations (3.1.1) and (3.1.2) this 

solution means 

 (3.1.9) 

Starting from this point, by a reasoning which, in our opinion, involves a space scale 

transition, because it asks for a further convenient integration and differentiation, 

Bertrand concludes to the existence of only two possible values of q: 1 and 1/2, so that 

the only central forces having closed orbits are those of magnitudes 

 (3.1.10) 

Therefore, the only forces responsible for this dynamics, cannot be but central forces, 

with the magnitude depending only on the distance between center of force and the 

position of action, in a special way: inversely proportional with the square of that distance, 

and directly proportional to it. The first kind of forces is that of the Newtonian forces, like 
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the gravitational and electric or magnetic Coulomb ones, while the second kind is given 

by elastic isotropic forces. Thus, only these two categories of forces can have closed orbits 

according to classical Newtonian dynamics. 

This theorem shows that the dynamics with Newtonian and elastic forces – that is, 

those forces that laid the foundation of the classical dynamics – excludes from the very 

beginning the possibility of description of one of the best documented phenomena in 

astronomy: the planetary perihelion advance. One possibility of incorporating the 

description of this conspicuous phenomenon into the classical theory is to assume the 

existence of some other kinds of forces for the fundamental dynamics, not necessarily 

central. Newton himself, though, imprinted a particular custom to the classical natural 

philosophy, insofar as he persevered on central forces in order to solve the issue, in a 

manner that, by today’s standards may be deemed as a ‘perturbation method’: he added 

to the force inversely proportional to the square of distance, that describes the planet’s 

motion as a dynamical problem, a force which is still central but weaker than it at the 

location of its action. To wit: a central force of the same type as those from equation 

(3.1.10), and generated by the same center of force, but with magnitude inversely 

proportional to the third power of distance [(Newton, 1974), Book I, Propositions IX & 

XLIV]. By today’s standards, such a perturbed Newtonian force generates a Kepler 

motion with a different area rate according to the second of the Kepler’s laws (see [45], 

and the literature cited there). Therefore, if the area constant itself varies in a certain way 

in this dynamics, a family of rotated ellipses is generated having different orientations in 

the plane of motion. Notably, if the force of perturbation with the inverse cube magnitude 

is acting only by itself, it generates an open trajectory of the kind of spirals [(Newton, 

1974), Book I, Propositions IX]. 

Notice, however, in connection with the very Bertrand’s result as described by us 

above, that the magnitude of the central force from the equation (3.1.9), which, being 

determined by a solution of the differential equation (3.1.7), would not involve any space 

scale transition. This means that this force would describe a dynamics in the very same 

same realm characterized by the condition (3.1.7). And in this realm the equation (3.1.9) 

has an interesting limiting case, when the angle between the two successive extrema of 

the distance of the mobile point from the center of force appears as very large, in a precise 
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sense: it takes a great many turns of the trajectory in order to complete that angle ([82]; 

see Figure 2 of this reference in order to get an idea for the concept of ‘turn’). 

Mathematically this means: 

 (3.1.11) 

This is exactly the magnitude of the central perturbative force invoked by Newton in 

explaining the perihelion advance. It would correspond, indeed, to a practically open orbit, 

having a very big number of revolutions around the center of force, between a maximum 

and the minimum following it. Such an orbit can practically count as an open orbit, 

something like a spiral indeed, as Newton himself noticed. The action of the force (3.1.11) 

can also be described by a succession of ellipses in rotation, as noticed by Newton too, 

but only in those cases where it acts concurrently with a Newtonian inverse quadratic 

force, and issues from the same center, in such a way that their magnitudes are linearly 

combined [(Newton, 1974), Book I, Propositions XLIII and XLIV]. 

It is this last case that attracted Joseph John Thomson’s attention to the point where 

he took for granted that the dynamics within the realm of matter that would be proper for 

quantization – a manifold that we would like to call Thomson’s realm, not just to honor 

the name of great theorist, but mainly to indicate, as we said, the space proper for 

quantization in the matter – is dictated by an equation like [70], [71]: 

 (3.1.12) 

Here A and C are two constants, e is the charge of the moving particle and m its 

inertial mass. This is a ‘radial’ dynamics generated by Newtonian forces and perturbed 

by the weaker forces of the kind (3.1.11) generated by the same center of force and acting 

in conjunction. It would appear as quite particular from the point of view of the 

Newtonian natural philosophy. However, we shall attempt to prove here that it is the most 

general force that would describe the dynamics in the world where the light dominates 

the phenomenology. 

To start with, notice that the corresponding Binet equation of (3.1.12) is 

 (3.1.13) 

where the notations 
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 (3.1.14) 

have been used. The general solution of the second-order equation (3.1.13), can be 

written in the form 

 (3.1.15) 

with a and b two constants of integration. Obviously, if r can be written as a quadratic 

form in a binary domain generated by the hyperbolic functions, then this equation can be 

interpreted as a family of conics in that binary domain. This is an important issue that 

came up in astronomy mostly in the second half of the last century, under the name of 

regularization, and we shall address it in due time. For the moment though, we 

concentrate in the Thomson’s path to constructing this dynamics. 

Thomson starts from the observation that r0 is a ‘static point’, as it were: at that radial 

position, the two radial forces from the equation (3.1.12) are in equilibrium, and u²(f) = 

0. It is thus interesting to see what is happening around this point, and this task is easy to 

carry out. Namely, Thomson considers small departures q from the equilibrium point r0, 

for which the equation of motion can be written as: 

 (3.1.16) 

which, in the first order in q this becomes an equation of the harmonic oscillator: 

 (3.1.17) 

It is only natural then to assume that any real perturbation – for a common instance 

say a collision event – of an electric corpuscle located at the equilibrium distance in an 

atom described by the above fields of forces, will lead to a harmonic motion described by 

equation (3.1.17) destined to recover the equilibrium of the two forces. Then, Thomson’s 

contention is that the frequency of this harmonic disturbance is to be retrieved from the 

electromagnetic radiation emitted on the occasion of a collision. Applying to this radiation 

the Planck’s quantization procedure, it should carry an energy amounting to: 

 (3.1.18) 
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where  is, in today’s terms, the reduced Planck’s constant. We have here an 

identification of the frequency with an expression in terms of fundamental constants of 

the matter, while still holding the Planck’s constant as fundamental for the case of matter. 

However, the Thomson’s theory adds on important observation: such fundamental 

constants must characterize some equilibria. For once, the free particle in this dynamics 

is due to an equilibrium of forces. On the other hand, the specific dependence of this 

energy on the equilibrium position where the radiation is assumed to be created, indicates 

that it cannot originate but in the field of inverse cube forces. Indeed, their potential 

energy would be, according to its classical definition: 

 (3.1.19) 

and a comparison with (3.1.18) proves our statement. Therefore, in order to have a 

quantization via the energy, like in the Planck’s case, the inverse cubic force must be 

universal in the Thomson’s realm: it is not just a perturbation, inasmuch as its existence 

is mandatory for quantization. Then the constant C of the universal third inverse power 

forces can be evaluated by the conservation law of energy, from which Thomson gets 

 (3.1.20) 

which is about 2.05´10–19 SI units. The next point in order now, is to theoretically 

assess this new universal force, to which Thomson assigned only centrifugal properties, 

intuitively obvious by the concept of inertia. As it turns out, from this assessment, the 

case seems to be more involved than exacting the existence of the centrifugal forces: the 

whole structure of a quantum in the Thomson realm, depends on these universal forces. 

In fact, it is the Newtonian force that turns out to be incidental, however not in the sense 

of its weakness. 

3.2. THOMSON PREREQUISITES: THE INVERSE CUBIC FORCE 

To start in our assessment, one must notice that there is not any reason to assume the 

universal validity of the central force (3.1.11), while knowing that, according to classical 

natural philosophy, the Newtonian field of force should be also universally present in the 

charged matter. In other words, the classical planetary atom, for instance – if not the 

classical planetary model at all – would be compromised with the dynamics described by 
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equation (3.1.12). At this point Thomson invokes one of the conspicuous properties of 

the forces in the classical dynamics: they are acting in limited spaces. From this point of 

view, they resemble Planck’s light, which can only be physically studied and, therefore, 

quantized as such, within Wien-Lummer enclosures [76]. And, we must add, that from 

this point of view, the Newtonian forces are invariant to a special dimensional gauging 

[79]. To be specific, dynamically, the Newtonian forces act only along the orbits, exactly 

the way the Coulomb forces act statically, i.e., only along the lines of force. Then 

Thomson contends that within the space of an atom, for instance, the inverse quadratic 

forces act only inside some tubes of flux, centered around the lines of electric force, while 

outside such tubes the moving particle is under the exclusive control of the universal 

inverse cubic forces. 

On the other hand, there is a result due to Paul Langevin, according to which there 

cannot be a purely radial motion unless the central force controlling the dynamics of 

motion has a magnitude of the form (3.1.11) (see [37], pp. 97 – 102). In other words, the 

Kepler orbits are ‘frozen by default’, as it were, in the framework of the classical 

dynamics with Newtonian forces. Then the quantization of such orbits appears to be just 

a convenient manner of expression of the classical fact that the Newtonian forces are 

defined only along with the orbits. And if this quantization is accepted in the way of Niels 

Bohr for instance [9], then the forces (3.1.11) are the natural forces in the realm of matter, 

while the Newtonian forces become subordinate ([77]; see also [50], Chapter 7). 

Thomson’s contention is that this should be a fact that takes precedence over any kind of 

quantization within matter. All that counts now, is to be able to put in order two apparently 

contradicting facts: the confinement of the action of Newtonian forces and the lack of 

confinement of the action of the inverse cubic force. Quoting: 

If a corpuscle at P were inside one of the tubes of attractive force inside 
the atom, it could be removed to an infinite distance: (1) by moving it 
gradually outwards and keeping it inside the tube the whole way. If the 
attractive force on unit charge at a distance r from the centre is A/r2, the 
work required to remove the corpuscle in this way from r to an infinite 
distance is Ae/r. The corpuscle could however be moved to an infinite 
distance in another way (2) by moving it sideways out of the tube at P and 
then moving it outside the tube to an infinite distance; this later process will 
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absorb no work as the attractive force vanishes outside the tube. By the 
conservation of energy, the work required must be the same, whether we 
adopt the process (1) or (2); hence the work required to move the corpuscle 
sideways out of tube at P, must be equal to Ae/r. ([71]; our emphasis) 

In what is left from this very section we shall be occupied with that ‘motion sideways’ 

that seems to be counter-intuitive, even paradoxical we should say, in a classical central 

field: the Thomson’s assumptions would be, indeed, capable to save the day, provided 

one is able to argue how the moving particle manages to get out of a flux tube. 

In order to do this, we first need to characterize the forces, and not just anyway, but 

in matter. Thus, define a generic reference frame which, while independent of any 

particular geometry, still retains a geometrical spirit. We present here a case of ‘second 

degree’ vectors in Cartesian coordinates, that can be very well taken as a Cartesian 

reference frame in the general case. Indeed, a reference length geometrically described as 

a distance r, can be taken in constructing three unit vectors in the matrix form, as follows: 

 (3.2.1) 

where (x, y, z) are any three real numbers satisfying the quadratic condition r2 = åx2. 

These vectors form an orthonormal reference frame, in the Euclidean sense, as one can 

easily verify. A short elaboration on the possible origin and realm of this reference frame, 

from a continuous mechanics’ point of view, should be salutary for what we have to say 

further in this work. 

The classical Poisson equation was, from its very beginning [59], taken to mean the 

preponderance of matter over the field. Both these concepts were naturally brought to 

human knowledge, but only along with the idea of apparently natural ‘dominance’, as it 

were, of the matter via the Newtonian theory of forces. There is, however, a renowned 

case whereby the Poisson’s equation is taken out of this classical habit of defining the 

field when the density of matter is known, and used into defining the density of matter 

when the field is known. Considering this doctrine, we are compelled to find such an idea 
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significant from yet another point of view: it is a construction that served to build an 

image of the electric ether, based on considerations of statics. 

Indeed, the essence of ether, is well epitomized physically by the so-called Maxwell 

stress system, describing a continuum in a given space. This stress system was described 

by Clerk Maxwell in the Chapters 4 and especially 5 of the first volume of his classical 

treatise [47]. This system is mostly cited as an example of the failure to describe the ether 

as what is classically conceived as an isotropic incompressible medium (see especially 

[43], where the system of Maxwell stresses is presented from different mechanical 

perspectives in various places of the book). However, we think that it is still in position 

to straighten up some of our modern physical concepts, especially that of static ensemble 

of equilibrium, so necessary, for instance, to any theory of interpretation in the wave 

mechanics [19]. Maxwell himself did not seem to have used very much the system of 

stresses defined this way. In hindsight, this appears to have happened mostly because he 

seems to have been carried away by the electromagnetic image of the light, whereby the 

dynamics appears to be the essential working ingredient. By the same token, however, 

the subsequent neglect of the Maxwell stress system in physics may have been due to a 

deeper, objective reason, that can be assigned to the necessity of interpretation in physics, 

as aroused through the occurrence of the wave mechanics [19]. 

Maxwell’s problem was to find the stresses induced by the action of forces in ether, 

in order to explain the omnipresent gravitational and electric forces. The attraction was 

represented in those times just as it is today, by the Newton’s forces, which proved also 

to be valid for electricity, as Charles Coulomb would have long shown. On the other hand, 

the ether was considered, by default as it were, to be matter. Maxwell did not take into 

consideration these properties directly, but first translated them into a problem involving 

the continua, in order to describe the local action, not the action at distance: to find those 

stresses statically equivalent to a system of forces in general. Notice that these stresses 

had also to face, later though, the fact that the matter does not seem to be dragged by ether, 

which was proved experimentally toward the end of the 19th century. This circumstance 

too, indicating that the ether might not be matter after all, may have added to ignoring the 

case as inessential, inasmuch as neither the gravitation, for instance, nor the electric action 

could be subsequently explained as drag forces. This conclusion was even reinforced by 
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Henri Poincaré, who specifically showed that the electric matter of Lorentz is in default 

with respect to classical dynamics, inasmuch as it does not obey the classical principle of 

action and reaction (Poincaré, 1900). He even pushed this property into describing the 

forces of gravitation, and the forces of cohesion of matter in general, thus inventing the 

so-called Poincaré stresses for instance, in order to explain the material structure of an 

electron (Poincaré, 1906). 

As mentioned above, the mathematics of a force generated by matter within matter 

was in those times, and still is today for that matter, expressed by the Poisson equation, 

which we rewrite here in the form: 

 (3.2.2) 

In this equation U(x, y, z) represents the potential of the forces in the medium of 

density ρ(x, y, z). If this medium is electrically active, then ρ is the density of electricity 

and U is an electric potential. Maxwell apparently took equation (3.2.2) as defining the 

density of the medium, rather than the potential, for the following good reason: he proved 

that the equation of equilibrium of a system of stresses is satisfied with the volumetric 

forces corresponding to a matter with density given by (3.2.2). Indeed, the equation of 

equilibrium of a continuous stress system in general – which, in its simplest form, asserts 

that the divergence of the second order stress tensor, t say, is given by the density of 

volume forces f – can be written as [43]: 
 (3.2.3) 

When this theory is specifically applied to the stress tensor t defined by the matrix 

 (3.2.4) 

the equilibrium equation is identically satisfied for a force density f given by 

 (3.2.5) 

In other words, the stress system (3.2.4) is statically equivalent to the system of 

volume forces (3.2.5) of the matter having a density given by Poisson’s equation. Thus, 

the gravitation, for instance, can be conceived as a tension due to these stresses through 
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ether; and likewise, the electric force. Poincaré’s conclusion about Lorentz material 

system, which is based exclusively on electric forces, can be taken as showing that such 

stresses are insufficient to do the job they are called for, regardless the system of electric 

forces taken into consideration. 

Obviously, the matrix having the vectors (3.2.1) as columns fits into this picture for 

a special potential: 

 (3.2.6) 

and therefore, the field of static forces (3.2.5) equivalent to the stresses given by 

(3.2.4) in the sense of equilibrium equation (3.2.3) is given by the logarithmic force: 

 (3.2.7) 

This force represents a Maxwell continuum of the kind once ‘criticized’ by Eugenio 

Beltrami as being unrealistic according to human experience [5]. We should even add 

more beyond the Beltrami’s conclusions: standing in the words of Poincaré, this 

continuum even qualifies as fictitious according to human experience. However, in a note 

of disagreement with Beltrami, we have to add that, far from being a drawback in the 

description of matter, this quality is actually its ‘strength’, as it were. In fact, the matter 

thus described cannot have any physical reality without an interpretation in the sense once 

defined for the necessities of the wave mechanics [19], and the key to such an 

interpretation stays in the existence of static forces (3.2.7) equivalent to this tensor, as 

described above. 

By the same token, the conservative central forces (3.2.7) are defined by a logarithmic 

potential. For this very reason, we would like to designate them like we did above, as 

logarithmic forces for future references in the present work. They are essentially 

described by the equations: 

 (3.2.8) 

analogous to (3.2.6). They have a Maxwell field of stresses (3.2.4) equivalent to a 

volume field of forces of the kind assumed by J. J. Thomson: 

 (3.2.9) 
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Therefore, the two forces (3.2.7) and (3.2.9) are connected: if the force (3.2.7) is the 

conservative force that creates a stress in space, this stress is equivalent to a local action 

of a force which is central and has a magnitude going inversely with the third power of 

distance. This localized force is, therefore, universal, and in this sense it is a physical field 

defined all over the space comprising the matter. 

We need to insist a little more on the Maxwell system of forces, revealing some facts 

apparently not considered properly in the literature. The Maxwell definition involves two 

forces: the one a priori defined by a potential, a conservative force, as they call it, and the 

one a posteriori defined, as it were, by the system of forces equivalent to the stress 

generated by the conservative force. Of course, the a posteriori force can be itself a 

conservative force, as it happens in the two examples above. Moreover, one and the same 

force may happen to be of both kinds: a priori defined, according to classical dynamics 

for instance, it turns out to be equivalent with a stress system in a continuum. This 

happens to the case of logarithmic forces in the examples above: a priori defined as in 

equation (3.2.8), they are statically equivalent to the Maxwell stress of the a priori defined 

elastic forces from equation (3.2.6). We need to discern between the two occurrences of 

forces: this is the case that can best explain the concept of field, and especially of the kind 

called gauge field. 

Fact is that the sideways displacements can be defined like a field too, just as 

universally as the Thomson’s field force. Indeed, considering the displacements as 

differentials, in any position r with respect to a Euclidean frame, the displacements dr 

defined by equations 

 (3.2.10) 

is a priori perpendicular to the position vector. Here x, y, z are the coordinates, i.e., 

the components of the position vector, so that the definition of these displacements is 

local but universal: in any position, the whole linear span of the vector of components 
 (3.2.11) 

is perpendicular to the position vector r. Indeed, for arbitrary a1, a2, a3 we have 
 (3.2.12) 
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which proves the statement. Here a is the vector of components a1, a2, a3 in the 

reference frame where the position vector is defined. Thus, the linear span (3.2.12) can 

be taken as the transversal space of the position vector r. 

Now, assuming that a particle may have the displacements (3.2.10), they describe a 

motion that can be further characterized as follows: the common value of the ratios from 

equation (3.2.10) is an abstract differential, of the nature of a phase, say dq, where q is 

the metric on the unit sphere. Thus, the system (3.2.10) becomes 
 (3.2.13) 

where a prime means derivative with respect to q. Differentiating two more times and 

using along the original system conveniently, results in identical equations for all three 

components. In other words, the components of the position vector giving the positions 

in the transversal space, are all solutions of the same third-order differential equation. 

Thus, we can infer that the vector is a solution of such an equation. It is: 

 (3.2.14) 

The solution of this equation is given by the vector: 

 (3.2.15) 

where a, b, c are some constant vectors. Eliminating the phase, we end up with a 

geometrical characterization of the sideways motion. Namely, the motion is performed 

on some quadratic cones with their vertex in the origin of the reference frame: 
 (3.2.16) 

Thus, the Thomson tubes are primarily cone surfaces. The history of sideways motion 

goes back to Newton’s times, who actually had to solve the same problem, but somehow 

in reverse. The force was, of course, a fact of social experience, but Newton ‘invented’ a 

related concept, in order to describe in actuality facts thought to have happened in the 

past of the universe and imprinted in its structure. The established structure that led to the 

construction of the force concept, made by Newton into the condition of ‘imprint’, was 

the Kepler motion, thought of as an everlasting material structure. This structure was 

presented by Newton as the mark of an accident in a possible evolution of the universe, 

therefore as an expression of the memory of such an event, we should say. 

That possible evolution of the universe was an assumed evolution, of course, leading 

to an event imaginable by the sheer analogy with nowadays facts of experience on Earth: 
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the free fall of the bodies toward what, again, is assumed to be the unique center of the 

Earth. Quoting from a first letter to Bishop Richard Bentley: 

…it seems to me that if the matter of our sun and planets, and all the 
matter of the universe, were evenly scattered throughout all the heavens, 
and every particle had an innate gravity towards all the rest, and the whole 
space throughout which this matter was scattered was but finite; the matter 
on the outside of this space would, by its gravity, tend towards all the matter 
on the inside, and, by consequence, fall down into the middle of the whole 
space and there compose one great spherical mass. But if the matter was 
evenly disposed throughout an infinite space, it could never convene into 
one mass; but some of it would convene into one mass, and some into 
another, so as to make an infinite number of great masses, scattered at great 
distances from one to another, throughout all that infinite space. And thus 
might the sun and fixed stars be formed, supposing the matter were of a 
lucid nature. But how the matter should divide itself into two sorts, and that 
part of it which is fit to compose a shining body should fall down into one 
mass and make a sun, and the rest which is fit to compose an opaque body 
should coalesce, not into one great body, like the shining matter, but into 
many little ones; or if the sun at first were an opaque body like the planets, 
or the planets lucid bodies like the sun, whilst he alone should be changed 
into a shining body, whilst all they continue opaque, or all they be changed 
into opaque ones, whilst he remains unchanged; I do not think explicable 
by mere natural causes, but am forced to ascribe it to the counsel and 
contrivance of a voluntary Agent. ([81], pp. 203 – 204, our Italics) 

The structure of matter in this primary instance of natural philosophy is simple: it is 

made out of particles. Now, if these particles had innate gravity, then they would fall 

toward each other, insofar as the gravity is universal, and manifests itself attractively 

according to our experience. As one can see right away, the Newton’s fundamental 

condition for the multiplicity of matter formations in the universe is the infinity of space 

of matter’s existence. Only under this proviso can we consider escaping rationally from 

the condition of finiteness of the classical view of the universe. 

It is according to this view, that the science discovered an apparently eternal matter 

structure involving a motion, that is another motion than the free fall: the Kepler motion. 

And, leaving aside the facts of faith, Newton made out of this structure, just via a process 
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of thinking by analogy, the first one of the physical structures used today as depositories 

of memory. Quoting from a second letter to Bishop Richard Bentley: 

To the last part of your letter, I answer, first, that if the earth (without 
the moon) were placed any where with its centre in the orbis magnus, and 
stood still there without any gravitation or projection, and there at once were 
infused into it both a gravitating energy towards the sun, and a transverse 
impulse of a just quantity moving it directly in a tangent to the orbis magnus; 
the compounds of this attraction and projection would, according to my 
notion, cause a circular revolution of the earth about the sun. But the 
transverse impulse must be a just quantity; for if it is too big or too little, it 
will cause the earth to move in some other line. Secondly, I do not know any 
power in nature which would cause this transverse motion without the 
divine arm. Blondel tells us somewhere in his book of Bombs, that Plato 
affirms, that the motion of the planets is such, as if they had all of them been 
created by God in some region very remote from our system, and left fall 
thence towards the sun, and so soon as they arrived at their several orbs, 
their motion of falling turned aside into a transverse one. And this is true, 
supposing the gravitating power of the sun was double at the moment of 
time in which they all arrive at their several orbs; but then the divine power 
is here required in a double respect, namely, to turn the descending motions 
of the falling planets into a side motion, and, at the same time, to double the 
attractive power of the sun. So, then, gravity may put the planets into motion, 
but, without the divine power, it could never put them into such a circulating 
motion as they have about the sun; and therefore for this, as well as other 
reasons, I am compelled to ascribe the frame of this system to an intelligent 
Agent ([81], pp. 209 – 210, our Italics) 

There is, therefore, in the mind of Newton, an event imprinted in the ‘transverse’ 

circular motion, that can be described in the following fashion: the initial motion of the 

planets is radial towards a center represented by the Sun; this radial motion turned into 

transverse motion at the moment when ‘they arrived at their respective orbs’. This 

description is only true provided some incidentals occur, in the form of a gravitating 

power of Sun, which has to be double at the moment when, in their free fall, the planets 

reached their ‘orbs’. All these are rational conjectures, produced by imagination 

according to the rules of logic; no doubt about that. The only reality connected to them is 

their present motion, that stands witness to the imaginary past event thus described, 



Nicolae Mazilu, PhD 
 
 
 
 

 
 
 
 
 

44 

thereby representing the material form of its memory. This material form can then be 

taken even as a depository of such a memory in the very modern sense of such a device. 

The rest of Newton elaborated opinion is a matter of faith, as we said, for there is no other 

possible explanation. 

3.3. NEWTONIAN FORCES ARE NOT FIELD FORCES 

The forces in general are defined by Newton using a method that resembles a 

measurement procedure. Because of this, they are not field forces in the sense defined 

above according to Maxwell. However, they possess an important scale invariance like 

no other forces [79], and it is this scale invariance that puts them in connection with the 

universal Thomson forces in matter. Let us insist on an analytical rendition of the 

Newton’s definition of the forces. 

James Whitbread Lee Glaisher’s work on Newton’s definition of forces [29], does 

show, among others, that all of the results in characterizing the forces, can be recovered 

from Newton’s essential propositions, by casting them into analytical form. And the basic 

proposition Glaisher chose to put in analytical form is the Corollary 3 of the Proposition 

VII from Book I of Newton’s Principia. Quoting: 

The force by which the body P in any orbit revolves about the center of 
force S, is to the force by which the same body may revolve in the same 
orbit, and the same periodic time, about any other center of force R, as the 
solid SP×RP2, contained under the distance of the body from the first center 
of forces, and the square of its distance from the second center of force R, 
to the cube of the right line SG, drawn from the first center of force S 
parallel to the distance RP of the body from the second center of force R, 
meeting the tangent PG of the orbit in G. For the force in this orbit at any 
point P is the same as in the circle of the same curvature. ([52], p. 51; our 
Italics) 

As we see it, this is a definition of the force based, indeed, on the idea of measurement. 

The only real and, in fact, physically necessary ingredients here are the orbit of motion 

and the periodic time. Of the two points, S and R, helping in defining the force, one is our 

choice – the point toward which we want to calculate the acting force – while the other 

one can be arbitrary at random in the plane of orbit, provided we know the force acting 
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toward it. Apparently, as Newton presents the idea, both of these points should be chosen 

inside the orbit. However, with the analytical development of the theory, even this 

condition became obsolete, allowing, for instance the Newtonian definition of the force 

correlated with the light phenomenon. 

Using the geometry of triangle in order to handle the concepts in the excerpt above, 

Glaisher reduces the ratio of those two forces, as it was defined by Newton himself, to 

the expression 

 (3.3.1) 

This expression involves, on one hand, the perpendiculars SN and SM of the two 

centers of force onto tangent in P to the orbit, and, on the other hand, the distances RP 

and SP of the moving point to the two centers of force. This expression is particularly 

prone to an analytical form and, furthermore, to a differential calculus. Let us reproduce 

them both here. 

Choosing S as the origin of a reference frame - which, by the way, means a reference 

frame fit to the source of force - and referring the generic coordinates, (x,h) say, in the 

plane of motion to such a frame, the equation of orbit in a Kepler motion, can be written 

in the form 

 (3.3.2) 

where C here is taken as meaning ‘Conic’. The tangent to this conic is one essential 

ingredient in Newton’s procedure. In the current point P, of coordinates (x, y) say, its 

equation is 

 (3.3.3) 

Thus, one can calculate the distances from the two centers of force to this straight 

line, by a well-known analytical procedure. One gets expressions dependent on the 

coordinates of the point of application of force: 

 (3.3.4) 

where z is the vector of components 
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 (3.3.5) 

By the same token, we have 

 (3.3.6) 

where e1 and e2 are the components of the position vector of the center of force R in 

the chosen reference frame: e º . On account of (3.3.4) and (3.3.6) the equation (3.3.1) 

can then be written in the form 

 (3.3.7) 

Therefore, if we know the force toward R, we can calculate the force toward S. 

Obviously, the reciprocal is also true, and for such an occasion Newton analyzed a 

number of particular cases in order to be used appropriately according to necessities. One 

of these cases shows that, if the center of force R is located in the center of the conic, then 

the force between P and R is proportional to the distance between them [(Newton, 1974), 

p. 54; Corollary 1 of Proposition X, Problem V]. Therefore, if we choose R as the center 

of the conic section, then (3.3.7) simplifies to: 

 (3.3.8) 

Here µ is a constant coming from the law of force towards center of the conic. So, if 

S is in an arbitrary position in the plane of orbit, while R is located at the center of orbit, 

we can calculate the parenthesis from equation (3.3.8), using the fact that the coordinates 

of the center of orbit are solution of the system: 
  

Then, the equation (3.3.6) gives 

  

so that equation (3.3.8) simplifies to 

 (3.3.9) 

which is the main of Glaisher’s results. It was established earlier by William Rowan 

Hamilton, which is why it is also known under name the name of Hamilton’s theorem 
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[31]. Based on equation (3.3.3) we can formulate it in words: the force toward the center 

S acting on P is proportional to the distance from P to S, and inversely proportional to the 

cube of distance from P to the straight line conjugated to S with respect to the orbit. This 

straight line is the polar of this center of force with respect to orbit, and such an instance 

gives us the possibility of a significant choice of the position of point S so as to correspond 

to reality. And this reality, embodied, as it were, in the Kepler’s laws, shows that S needs 

to be located in one of the foci of orbit. In this case, by the very definition of the ellipse 

we have, in our reference frame: 

 (3.3.10) 

where e is the eccentricity of the orbit, appropriately gauged. Consequently, (3.3.9) 

becomes: 

 (3.3.11) 

which is the regular expression of the magnitude of a Newtonian force responsible 

for the existence of the Kepler motion. 

The equation (3.3.11) does not represent the magnitude of a force field: such a force 

needs to be defined irrespective of the motion, everywhere in the realm, and (3.3.11) is 

valid only along specific cycles, in the form of orbits. This force can be, therefore, of the 

a priori type only. To wit: it is only defined with respect to a reference frame with its 

origin in the center of force and, on the other hand, according to Maxwell, it describes a 

continuum of zero density. In other words, the Newtonian force is not a field force, in 

spite of the fact that it can be derived from a potential. It is this property that explains its 

connection with the Thomson’s universal force within matter. 

The explanation in question involves oscillators, however, not physical oscillators, 

but only mathematical, whereby the part of frequency is assigned to different physical 

magnitudes. Two such physical magnitudes played an essential part in the problem of 

regularization of the Kepler motion: the energy and the area constant of the second of 

the Kepler laws. Inasmuch as the concept of frequency is instrumental for the quantization 

in matter, seems worth our while learning a few things from the theory of regularization. 
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3.4. THE PHYSICS AND GEOMETRY OF REGULARIZATION 

To begin with, let us consider the mathematical procedure of integration of the 

classical equation of motion of a generic particle moving in a Newtonian field of force, 

but from an entirely new perspective. When we confer the qualification ‘field’ to 

Newtonian forces here, there is no contradiction with the definition of field above: we 

automatically consider vacuum as the matter of zero density. Therefore, the classical 

dynamical equation describing the Kepler motion in vacuum can be written in a 

condensed vector form as: 

 (3.4.1) 

Here a dot over means differentiation on time, and k is a physical constant: a 

monomial cumulating the physical properties of the center of force and the inertial 

properties of the revolving body. Dot-multiplying here by the velocity vector (dr/dt), and 

then integrating the result – by this we simply mean constructing what sometimes are 

designated as anti-differentials, while concurrently using the vector properties of the 

algebraical expression involved – we get what the astronomers used for a long time to 

designate as ‘the integral of energy’, which they usually denote by h [72], [73]: 

 (3.4.2) 

Further multiplying this relation by r2, we can rearrange it as: 

 (3.4.3) 

On the other hand, cross-multiplying (3.4.1) by r and subsequently integrating 

produces the vector of the rate of area defined as ȧ = (r´dr)/dt, which is, of course, a 

constant vector. Thus, we have an important a priori vector identity, to be conveniently 

used in what follows: taking just the magnitude of this vector, we can write: 
 (3.4.4) 

The equations (3.4.3) and (3.4.4) can still be rewritten in a somewhat simpler form, 

if we use as time variable not quite the time given by Kepler’s time equation, but a time, 

t say, which is simply linear in the eccentric anomaly: a ‘fictitious time’ in astronomical 

terms. With respect to this time, the time of dynamics (3.4.1) satisfies the first order 

differential equation t' = r, where the diacritic accent means derivative with respect to τ. 

So, finally, equations (3.4.3) and (3.4.4) provide the result: 
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 (3.4.5) 

Notice that the second equality in equation (3.4.4) can be regarded as an identity 

allowing us to calculate the magnitude of the area rate. In other words, the area rate is 

always held as such a rate, but only with respect to the original time of the dynamics, not 

with the ‘fictitious’ time: while the conservation of the plane of motion is independent of 

time, the second of the Kepler laws depends on the ‘reality’ of the time of motion. One 

more differentiation with respect to τ in the last relation of equation (3.4.5), and the 

assumption that the area rate ȧ is a constant, results in a second order differential equation 

for the radial coordinate of the Kepler problem: 

 (3.4.6) 

provided r¢ ¹ 0. This equation represents in fact a first integral of the third-order 

differential equation 

 (3.4.7) 

whereby the integration constant is taken as κ. Starting afresh from equation (3.4.1) 

and transforming it directly in the time scale described by the parameter τ, we get 
 (3.4.8) 

which looks like a three-dimensional damped oscillator, provided we consider r 

simply a parameter as any other one, depending on time. Differentiating once more with 

respect to τ and using in the result thus obtained the equation (3.4.6), we get a three-

dimensional replica of the equation (3.4.7). Summarizing, the final result of this 

regularization procedure is: 
 (3.4.9) 

provided r¢ ¹ 0. The first one of these equations, when compared to equation (3.2.14) 

gives a clue as to the interpretation of these results. Namely, the Kepler motion can be 

always described in a Thomson realm, it is part of the transversal space: it is an essential 

example showing what the transversality actually means. Now, elimination of the time 

parameter from the general solutions of (3.4.9), leads to cone surfaces, as in the equation 

(3.2.16). This means that Thomson’s hypothesis actually sanctions a fact to be taken into 

consideration in this physics. For the rest, equation (3.4.9) leads to a corresponding three-

dimensional replica of the equation (3.4.6) itself: 

′′′r − h ′r = 0
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 (3.4.10) 

where A is the Laplace-Runge-Lenz vector of this problem. The transition from 

equation (3.4.8) to equation (3.4.9) depends on the constant from the right-hand side of 

equation (3.4.6). Should we start directly from (3.4.7) in order to get (3.4.6) by integration, 

in the right-hand side of this last equation we would have an arbitrary constant. Not 

knowing anything about the origin of (3.4.6), the constant could remain arbitrary forever: 

it is only the fact that we are aware of having originally to deal with the Kepler problem, 

that allows us to identify our integration constant with κ from this problem, and thus get 

the previous results. We should therefore assume that the binary representation of the 

radial coordinate when using the time τ defined by t¢ = r is the only guarantee of the fact 

that this procedure might have some physical background and is not just a simple trick of 

formal validation. 

As far as time is concerned in the theory of regularization presented by us up to this 

point, it is obvious that it was always defined with respect to the first power of the radial 

distance involved in the Kepler motion by the equation t¢ = r: starting from the equation 

(3.4.5) on, we have not used but this equation in defining the time with respect to which 

the derivative is denoted with a prime. The highpoint of this theory is the equation (3.4.10), 

which depicts a three-dimensional harmonic oscillator representing a conic with center, 

having the following geometrical characteristics [13]: 

 (3.4.11) 

Here a is the major semiaxis, c is the position of the center of oscillator with respect 

to the center of force, and e is the eccentricity of the orbit. However, insofar as the physics 

is concerned here, we may need a regularization associated with oscillators having their 

center in the center of force, i.e., at r = 0. The reason for this need, although obvious from 

a natural philosophical point of view, can be presented in more technical terms as follows. 

Claude Alain Burdet [13] gets the equation (3.4.10) too, only he is explicit in noticing 

that this happens as a result of what he calls the central regularization procedure. This is 

the regularization by two oscillators like those from equation (3.4.8), indeed, but when 

referred to the center of Kepler’s orbit. This regularization procedure is, indeed, related 

to the time definition t' = r, as before. However, there is one more possibility to proceed 

in regularization, to wit, the one involving two oscillators related not to the center of orbit, 
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but to the center of force, whereby the time scale transition is defined by the differential 

equation t' = r2. This is what Burdet calls the focal regularization procedure, and he 

proceeds in doing it as follows: going back to the original dynamical equation (3.4.1), we 

rewrite it in the form 

 (3.4.12) 

and then go over to the time τ defined by equation t' = r2. The final result of these 

calculations is: 

 (3.4.13) 

The quantity in the curly brackets of this equation is a known constant for the Kepler 

motion. Indeed, in view of the fact that the unit vector r̂ is always perpendicular to its 

time derivative, no matter of this time – the relation of orthogonality is actually a 

comprehensive differential relation, in the sense already mentioned before, namely: r̂×dr̂ 

= 0 – when dot-multiplying by r̂ in (3.4.13), we get the result: 

 (3.4.14) 

This quantity is the square of the rate of area swept by the position vector of the 

revolving body, as given by us before in equation (3.4.4). This can be shown as follows: 

dot-multiplying (3.4.1) by r results in the equation 

 (3.4.15) 

Now, using this equation into the a priori natural geometrical relation: 

 (3.4.16) 

produces the result 

  

Changing here the time over to the ‘fictitious’ one defined by equation t' = r2 we get 

on account of (3.4.4): 

 (3.4.17) 

which, for once, is to be compared to (3.4.14) in order to justify our present contention. 

Furthermore, it provides a radial equation by itself, equivalent to the area rate of the 

Kepler’s second law for this definition of time. Let us emphasize again: the vector area 
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law, as defined in equation (3.4.4), equivalent to the physical law of conservation of the 

momentum, is ‘universal’ so to speak, in the sense that it is independent on the time used 

to describe the motion. On the other hand, the genuine second Kepler law involves a 

measure of the area rate of this motion, and this depends on the measure of time involved 

in calculations. Anyway, the conclusion is that the focal regularization of Claude Burdet 

still portrays the mobile position in a Kepler motion by an isotropic harmonic oscillator 

(3.4.13) on the unit sphere with the center in the center of force, together with one radial 

harmonic oscillator of equation coming out of (3.4.17). This radial oscillator is constantly 

forced with a force having the magnitude equal to the constant from the expression of 

Newtonian force governing the original Kepler dynamics. Notably, this force is due 

exclusively to the physical characteristics of the bodies involved in the Kepler problem – 

masses and charges – a fact that may come in handy later on. Both these Burdet oscillators 

are described by a dynamics in the time τ defined by t' = r2 and have a ‘frequency’ defined 

by the area constant specific to the original Kepler problem. In view of the condition of 

quantization associated with the idea of Newtonian force, this conclusion is of utmost 

importance: the area constant, or something related to it is quantized too. To wit: this was 

the very case of the Bohr-Sommerfeld quantization, historically speaking. Summarizing 

all these results, we can say that the focal regularization procedure provides the following 

equations: 

 (3.4.18) 

Mention should be made, that Victor Bond obtained the very same results by a more 

involved independent calculation [10], a fact that can be taken as an alternative 

verification of the above simpler theory carried out by Claude Burdet. The essential 

difference between the two approaches resides in an equivalence involved naturally in the 

Bond’s approach – a two-body problem – of which we shall have to discuss later. 

Let us close this section by reiterating the main point of regularization: the 

equivalence of the Kepler dynamical problem with a system of oscillators. In the case of 

central regularization, it is the energy that plays the part of frequency of the oscillators, 

while in the case of focal regularization, the area constant plays that part. In this sense 

there is always a regular dynamics for the Newtonian forces, no matter of the space scale 

we are using the Kepler model. We just have to adjust the time in order to make the 
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motion cope with the space scale. In the case of central regularization, the ‘frequency’ of 

the oscillators, given by the mechanical energy, is still singular for the center of force. As 

a general conclusion, the central regularization is a transversal dynamics, judging by the 

identity between equations (3.2.14) and (3.4.9). Thus, Thomson sideways motion is a 

geometrical solution of a transversal dynamics. On the other hand, in the case of focal 

regularization, such a conclusion is pending on the inversion with respect to a sphere with 

the center in the center of force. In any case, the theory of regularization points toward 

the legitimacy of Thomson’s dynamics as a fundamental dynamics within matter, 

showing also that the vacuum is matter of zero density. 

4. THE FUNDAMENTAL DYNAMICS IN MATTER 

The previous natural philosophy – we like to call it Thomson’s natural philosophy – 

like the precursor Newtonian natural philosophy, depends on the validity of a certain 

dynamics, explaining the basic structure within matter. In the classical Newtonian case, 

the basic dynamics was the one explaining the Kepler structure, thought to be universal. 

Here, on the other hand, the basic dynamics is restricted only to the radial part of a 

classical dynamics, and the legitimacy of Thomson’s natural philosophy is pending on 

the dimension of the domain representing the values of radial coordinate. To wit, such a 

range should be a binary domain. Indeed, as we have seen in the §3.1, but especially in 

the §3.4, disregarding a space inversion with respect to a certain sphere, the radial 

coordinate range in the Thomson realm must be a binary domain, for it is the linear span 

of the ensemble of solutions of a linear second-order differential equation of the type 

(3.1.13), (3.4.9) or (3.4.18). However, while in the last two cases there is no problem in 

deciding on this issue, in the first case such a conclusion is pending on the validity of the 

equation (3.1.12), which may not be in order. Indeed, as we have seen, of the two forces 

assumed to be issuing from the origin of the reference frame, only one is a field force – 

i.e., a force defined by the local action in any position covered by the reference frame, 

and that one is not the Newtonian force. In other words, a legitimate dynamics in this 

realm can be based on the equation (3.1.12), however only with A = 0, which obviously, 

can be taken as meaning r0 ® ¥. This condition is in accordance with all of the basic 

propositions of classical natural philosophy. Suffice it to mention the idea of inertia: 
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according to Ernst Mach it is controlled by the matter beyond the reach of our senses. In 

this respect one can say that Thomson’s dynamics based on equation (3.1.12) does 

nothing else than bringing the infinity at a finite distance, as it should be, indeed, the case 

within matter. 

On the other hand, the legitimacy of quantization in matter is pending on the structure 

of a Planck-type constant for the case of matter, in which case we do not know but of one 

quantum: the Procopius’s quantum. Maintaining the same constant for matter is pending 

on the existence of the Planck resonators, having the properties indicated for the case of 

Procopiu’s quantization. Up to this point in time the constant deciding the structure of a 

quantum is considered as being the one discovered by Planck himself for light. This needs 

to be combined with the frequency as a fundamental variable of the resonator, thus 

considered as an oscillator. There are, however, reasons to believe that for the case of 

matter things change quite significantly, and the equivalent of the Planck’s constant may 

acquire a more complex algebraical structure [41]. To wit: the equation (3.4.18) of the 

focal regularization, indicate the area rate of the second of Kepler laws as playing the part 

of frequency. If a resonator is such an oscillator, the quantum should be connected with 

its ‘frequency’. As long as the Planck’s original constant is maintained in the picture, the 

closest physically meaningful quantum thus constructed is that correlated with the kinetic 

momentum, by Niels Bohr [9] and by Arnold Sommerfeld, based on different criteria [68]. 

However, in general, the case is by far more intricate. The Thomson’s dynamics indicates, 

through equation (3.1.18) the feasibility of Procopiu quantization. The possibility of 

describing mathematically the matter at the scale where the quantization becomes 

significant, depends fundamentally on a connection between the time and the radial 

coordinate. The present chapter addresses this issue. 

4.1. THE FUNDAMENTAL EQUATION OF MOTION IN MATTER 

According to a Maxwell-type criterion, based on the system of stresses given in the 

equation (3.2.4), the Newtonian forces cannot be field forces in matter. We can rephrase 

this apparently harsh conclusion, in order to make it concordant with the historical truth. 

And this historical truth is that the dynamical description of the Kepler motion was 

successful with the Newtonian forces considered as field forces, giving the right results. 

Mention should be made though, that according to the Maxwellian criterion the matter to 
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which these field forces is referring has zero density: the Newtonian forces are vacuum 

forces. In view of these facts, we assume that the equation equivalent, in the matter of 

non-zero density, to that generating the dynamics that solves the Kepler problem, should 

be the one used by Thomson, i.e., the equation (3.1.12), but with the point of equilibrium 

at infinity: 

 (4.1.1) 

where K may be, in general, a complex constant. That this should be the basic 

dynamics in the world of matter, would have been suspected even before Thomson’s work 

cited by us here [37], [42]. One can say that the idea was ‘floating in the air’ by the 

beginning of the 20th century. Now, history aside, the general solution of equation (4.1.1) 

has the form 

 (4.1.2) 

with a, b and c some constants, of which, obviously, only two are independent. Then, 

with a convenient choice of those two constants, we can define a ‘fictitious time’ for the 

Thomson realm, according to the last of the equation (3.4.18): 

 (4.1.3) 

A first observation: there is an interpretation of the realm within which the force 

inversely proportional with the third power of the radial coordinate acts universally. This 

means that there is always an ensemble of free classical particles, of the kind of ideal gas 

molecules, for which r defined by equation (4.1.2) is the radial coordinate in a Euclidean 

reference frame. From this point of view, the theory above is akin to the first ever 

interpretation of the blackbody radiation, once given by Albert Einstein, that led in its 

time to the concept of photon [22]. There was a continuum in those times, that Einstein 

interpreted as a molecular gas ensemble. Recall, indeed, his conclusion that… 

… radiation of low density behaves as though it consisted of a number 
of independent energy quanta ([22], our Italics) 

We have to notice, though, that at those historical moments the interpretative 

ensemble was, as a rule, thermodynamically decided, so it had to be thought of as a 
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physical object: an ideal gas in evolution by successive equilibrium states, so that the 

evolution per se had to be adiabatic, in concordance with the character of mechanical 

theoretical explanation of the adiabatic invariants. Here, on the other hand, the 

interpretation procedure is not quite so handy. One thing still has to be noticed, in 

agreement with what seems to be one of the points of Sir Michael Berry’s general natural 

philosophy, and this is the fact that the problem of coordinate space should be free from 

the adiabatic condition [79]. One can say that this is a fundamental physical problem, 

which, in fact, only incidentally flared up as adiabatic invariance in the thermodynamics 

of light. This fact can be explained by the preexistence of a Thomson realm for the case 

of light, in the form of a Wien-Lummer hohlraum ever-present by the physical necessity 

of experiments on light [76]. 

It is at this juncture, that we have to notice that the problem of interpretation takes a 

significant turn, marked, as it were, by an outstanding solution of an equally outstanding 

gauging procedure. Namely, notice that the equation (4.1.2) offers the radial equation of 

motion for an ensemble of classical free material points, which is the undisputable 

counterpart of the classical ideal gas, staying at the foundation of thermodynamics. Indeed, 

if we are considering the classical dynamical vector equation of motion of a free particle 

in a Euclidean reference frame, and assume that this free particle is bound never to reach 

the origin of the reference frame, we have the equations of motion: 
  

proving the fact. One can say the length gauging the radial motion of a Thomson 

particle can be considered the free path of a classical material point in an ensemble of 

classical material points, constrained to never reach the origin of the reference frame. This 

may constitute, after all, the very definition of the reference frame, but we do not insist 

on this topic here. Suffice to say that the gauging length in a Thomson dynamics is the 

radial coordinate of that motion, which, in fact, is the analogous of a mean free path in 

the case of ideal gas. This statement may seem occasionally confusing but, in fact, it sets 

our thinking on the right track, at least historically speaking. 

Whatever has been said up to this point in the present section, regarding the idea of 

interpretation, is based only on the equation (4.1.2) and can be limited to the interpretation 

in terms of ensembles of free particles in the classical sense. What then, is the physical 
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interpretation of the very equation (4.1.2)? In order to answer to this question, let us 

discuss in more detail the equation (4.1.1), which also describes the time evolution of the 

gauge length in a Berry-Klein gauging theory. That equation is form-invariant with 

respect to the transformation of time and gauge length given by equations 

 (4.1.4) 

that is, invariant in the following sense: 

 (4.1.5) 

where D º ad - bg is the determinant of the time transformation in (4.1.4), and the 

accent mark means derivative on T. The equation of motion (4.1.1) is, indeed, not quite 

invariant with respect to the transformation (4.1.4), but only form-invariant as we said. It 

is plainly invariant only with respect to time transformations of unit determinant, but the 

quasi-invariance (4.1.5) may prove occasionally salutary, in view of our observation that, 

at some point of the theory, it may become necessary to take the gauge length as a linear 

form in the coordinates. 

The two equations (4.1.4) give a closed-form sl(2,R)-type realization of an action 

represented at the infinitesimal level by three differential vectors forming a linear base of 

the algebra in question, which we take as follows: 

 (4.1.6) 

These operators are vectors of the binary domain (t, r) and satisfy the algebraical 

structural relations, characteristic for a sl(2,R) algebra: 
 (4.1.7) 

which we take as the standard commutation relations for this algebraic structure. Then 

the equation (4.1.2) can be viewed as a result of invariance with respect to the general 

action of the realization (4.1.6) of this algebra. Indeed, the most general vector of this 

binary domain is a linear combination of the base vectors (4.1.6). By definition, the 

invariant functions with respect to such an action, is a solution of the partial differential 

equation: 

 (4.1.8) 
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which turns out to be an arbitrary continuous function of the ratio 

 (4.1.9) 

Therefore, the solution (4.1.2) of the fundamental dynamical equation of motion is 

actually an invariant function under the action (4.1.6) of the sl(2,R) algebra. Revealing a 

few more properties of this kind of action can be in order on this occasion. 

To this end, let us start by noticing the fact that the equation (4.1.1) can be produced 

by making stationary the physical action corresponding the following Lagrangian [1]: 

 (4.1.10) 

where the time t of the classical dynamics is used as independent variable. Here is the 

point where statistics creeps into the classical dynamics without even being noticed: the 

physical action from equation (4.1.10) can be simply viewed as the time average of the 

difference of the two terms involved in the definition of Lagrangian. The action from 

equation (4.1.10) represents, indeed, just such an average, with an important specification 

though, regarding the manner in which this statistic is estimated: it is the time average of 

the Lagrangian over a sequence of equally probable moments of time, arranged in a given 

order by the free particles used in the interpretation. Such time sequences can be, in fact, 

decided by arbitrary clocks, but – and this is of an overwhelming importance for what we 

have to say here – the ‘equal probability’ in question is statistically conceived in terms of 

a uniform distribution of the time moments, having a constant probability density and 

described by the elementary measure dt. Reformulating, therefore, this conclusion in 

specific theoretical statistical terms, it sounds like this: the equation (4.1.1) can be 

mathematically produced by the physical condition of stationarity of the time average of 

the difference between the two energies involved in the definition of Lagrangian, over a 

sequence of equally probable moments. The equal probability in question is decided 

according to a probability distribution of the time moments, described by a constant 

probability density. 

Once adopting this statistical meaning of time average for the physical action – the 

necessity of which shall be clear soon – we can cite an important result of Morton Lutzky, 

that settles the position of the equation (4.1.1), usually called the Ermakov-Pinney 

equation in physics (for its origination see [27] and also [53]), which is the name we also 
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adopt here. As we see it, this is one of the most important equations of mathematical 

physics, and for this statement we have firm reasons soon to become completely obvious. 

The result of Lutzky we just mentioned [44], can be summarized with reference to the 

following observation on the previous development. 

As we have shown in §3.1, equations (3.1.16) to (3.1.18), the quantization in matter, 

if conducted along the Planck’s idea for light, depends on the equilibrium between the 

universal force (4.1.1) and the Newtonian force. This last force may not be a field force 

in this case: it can be a field force in matter only pending on the materiality of vacuum, 

and on its presence within matter. We then take the presence of the Newtonian force in 

the equation (3.1.16) as meaning only a description around equilibrium. To wit: it is a 

sum (algebraically speaking) between the universal force and the elastic force. Then we 

need to modify the Lagrangian from equation (4.1.10) to the following form, which we 

call Lutzky’s Lagrangian, describing the radial motion in the conditions of quantization 

in matter: 

 (4.1.11) 

This definition of the Lagrangian preserves the definition of physical action as given 

in equation (4.1.10). The resultant differential equation is the complete Ermakov-Pinney 

equation of motion, which, in view of Thomson’s observations, proves to be essential in 

the realm of matter. 

The problem is now if the harmonic oscillator is indeed the universal structure that 

can serve to ‘interpretation’ of a field. In hindsight, such a question may be taken as only 

rhetorical, for the harmonic oscillator is the conspicuous structure in all kinds of 

quantization today. However, in view of the role that it played for the light quantization 

to Planck – in describing the light structure, as well as a resonator, in which case the role 

of frequency is played by different physical quantities, as we have seen in the case of 

regularization procedure – it is legitimate to ask if the equation of motion (4.1.11) is, 

indeed, universal for this dynamics in the classical way of the dynamical description of 

the Kepler motion. The answer is affirmative and will be detailed in this very chapter. 

However, to make the case, we need first to concentrate upon some general properties 
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connected to the Ermakov-Pinney equation, without which we cannot go further along 

the way. 

4.2. PROPERTIES OF THE ERMAKOV-PINNEY EQUATION 

Mathematically speaking, the Ermakov-Pinney equation has a few distinctive 

properties on which we need to insist at some length. Assume indeed, that we have to 

consider two possibilities of fundamental particles moving according to equation (4.1.11), 

in the Thomson realm, for the same time t. One particle is assumed to have the radial 

distance r, the other is assumed to have the radial distance q. Both of them are supposed 

to satisfy a corresponding Ermakov-Pinney equation but for the same w, meaning the 

same elastic forces, if it is to use a here a classical dynamical view, which turns out to be 

particularly suggestive. The two equations of motion are then: 

 (4.2.1) 

where R and Q are two real constants. What is the relevance of these equations for 

what we have to say here, based on dynamics!? First of all, our notations r and q are 

intended to suggest a phase plane of the two symbols: one of them can be taken, for 

instance, as a generalized coordinate, the other can be taken as generalized momentum. 

Now, in case w = 0, for either r or q, its Lagrangian reduces to the de Alfaro-Fubini-

Furlan Lagrangian (4.1.10), and the corresponding equation of ‘motion’ for this gauge 

length reduces to that of a proper Thomson material particle (4.1.1). Therefore the (r, q) 

phase plane includes the radial motion of a free particle, and so this phase plane is bound 

to represent – and describe also – those transitions correlated with the properties that led 

to the very classical quantization of Max Planck. This is, indeed, the case, and we shall 

describe it here in some detail, but in connection with what we find as quite significant 

from a physical point of view: the Ermakov-Pinney equation (4.1.11), in order to reveal 

its meaning in full. 

First of all, by extending an observation of Colin Rogers and Usha Ramgulam, we 

can give the following theorem [63]: the ratio of solutions of two Ermakov-Pinney 

equations, like the ones from (4.2.1), is also, formally speaking, a solution of an Ermakov-

Pinney equation. In order to properly understand such a result, we have to prove it in 
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detail. To start with, by successive direct differentiations on t, and choosing the transform 

of time as dictated by the gauge length r, according to equation (4.1.3), we get the result: 

  

Now, by using here the equations from (4.2.1), specifically the second of those 

equations, we get indeed an Ermakov-Pinney equation for the ratio of q and r, which does 

not involve the pulsation w anymore, and therefore the elastic forces and inertia properties 

that come with them: 

 (4.2.2) 

Here an accent means differentiation with respect to gauged time t. Had we have used 

q instead of r, for the definition of the new time, we would have gotten a similar equation 

but for the reciprocal ratio of the two radial coordinates, with the constants R and Q 

switching their places. By direct integration of this equation or, if one likes better, by 

constructing the Hamiltonian of the corresponding Lagrangian (4.1.11), we get that 

important result of Morton Lutzky already acknowledged above. It is referring to the 

expression of a constant integral of the motion of Thomson’s particle in the matter: 

 (4.2.3) 

where the prime means differentiation with respect to a newly defined time. Indeed, 

this result presents the two radial coordinates in their interdependence. Given them as two 

solutions of Ermakov-Pinney equations for the same time variable, either one can be used 

to ‘define the time’, as it were, by a transformation of the form (4.1.3): 

 (4.2.4) 

This allows passing to the time t, in which case we have: 

 (4.2.5) 

Either for R = 0, or for Q = 0, – i.e., for the cases where the Ermakov-Pinney equation 

reduces to the equation of motion of the harmonic oscillator – the invariant (4.2.5) is the 

original Lewis invariant, used in the plasma physics, which can be regarded as a direct 

generalization of the classical Planck’s constant [41]. This can be made intuitively 

obvious as a simple fact: for both R = 0 and Q = 0, therefore for harmonic oscillators in 



Nicolae Mazilu, PhD 
 
 
 
 

 
 
 
 
 

62 

both cases, the invariant I is the square of the elementary area rate of the phase plane of 

the variables (r, q), which can therefore be connected with the Planck’s constant. But the 

things are by far more intricate, and we need to insist further on this important subject, 

inasmuch as the Planck’s constant is considered today one of cornerstones of the physics. 

According to our experience, the harmonic oscillator – which is the main physical 

structure involved in the dynamics of a Thomson particle – has apparently some sound 

natural philosophy ingrained in it. To wit, it is a self-contained structure transcending the 

space scales just about like the light does it: the far universe acts locally to arrange the 

inertial mass of the particle involved in this physical structure, while the close universe 

acts locally to arrange the elastic strength necessary to the dynamics embodied in the 

description of the motion. If the oscillator does not work forever – in practical cases, its 

motion, like any other motion within matter in fact, is always damped – then the equation 

of motion changes. In the simplest of the cases, which is the case of the so-called linear 

damping, we have the reputed equation of motion of the damped harmonic oscillator: 
 (4.2.6) 

where b is the damping coefficient, describing here a ‘fading’ of the motion due to a 

resistance proportional to the instantaneous speed; the factor 2 was chosen here just for 

convenience. As to the other two parameters involved in (4.2.6), m is the inertial mass, 

controlled, in current views in physics, by the distant matter, while k is the elastic strength 

accordingly controlled by the close environment. The equation (4.2.6) too, admits a 

constant of motion [20], but this time we can hardly identify it with the energy, for it does 

not reduce itself to that quantity in obvious instances like the usual Hamiltonian of the 

undamped harmonic oscillator. As the equation (4.2.6) stands, though, the result of 

integration is [20]: 

 (4.2.7) 

where the following notations are used, over the ones already introduced previously: 

  

Now, there is a problem: as well known, the equation of an undamped harmonic 

oscillator can be obtained from a principle of stationary action connected to a Lagrangian 

whose action has a statistical interpretation: 
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 (4.2.8) 

Indeed, the action in this case is the time average of the difference between the kinetic 

and the potential energy, just like in the previous case from the equation (4.1.10): this 

quantity needs to remain stationary along the motion, and the equation of motion warrants 

the case. There is no such simple algebraic expression for a Lagrangian in the case of a 

damped harmonic oscillator, and our point is that we need to have such an expression 

describing the case of a Thomson particle. In fact, Denman’s calculations [20] can be 

associated with more general group methods of the kind presented in §4.1., having the 

structure given in equation (4.1.7), for which the Lagrangian is only a particular approach 

[64]. Here we choose to follow these group methods, however only selectively, just 

revealing the pure connection with the physical reason already noticed before, that applies 

here too, with outstanding results. 

Namely, as Harry Bateman once noticed [4], the equation of motion (4.2.6) can be 

obtained from a variational principle, exactly like the one formulated based on equation 

(4.2.8), only with reference to the Lagrangian 

 (4.2.9) 

This Lagrangian differs from the one leading to the equation of motion of the 

undamped harmonic oscillator just by an exponential time factor. However, the 

corresponding action, can be physically explained just as in the case of the undamped 

oscillator, by making use of the statistical properties of time sequences. Indeed, the 

physical action corresponding to the Lagrangian (4.2.9) can still be seen as the time 

average of the difference between the kinetic energy and the potential energy. For, if we 

construct the action integral with this Lagrangian exactly as in equation (4.2.8), we have: 

 (4.2.10) 

where the Lagrangian is given in equation (4.2.8). This physical action is, indeed, a 

time average of the difference between the very same kinetic and potential energies of an 

undamped harmonic oscillator, over a time sequence beginning with t1 and ending with 

t2. The only real difference of the action (4.2.10) – which leads to equation of motion 
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(4.2.6) – from the classical case (4.2.8) – which leads to the equation of an undamped 

harmonic oscillator – stays in the fact that the distribution of the time moments is not 

uniform anymore. This distribution is governed by an elementary measure of the time 

range having the exponential form 

 (4.2.11) 

In other words, it represents a time statistics described by a distribution of an 

exponential type – the type almost exclusively used in physics for statistical purposes [40]. 

And thus, even though the relationship between energy and motion may be ‘lost’, as it 

were, the statistical argument still stands and, moreover, this statistics turns out to be of a 

Planck nature, that led to the idea of quantum, even though applied now to time [48]. 

And now, for the true point of these conclusions, which turns out to be, in fact, a 

kinematical reading of the Ermakov-Pinney equation. This procedure reveals the fact that 

the harmonic oscillator can be taken as playing the role of a free particle in the radial 

motion governed by the equation (4.1.1). The discussion to follow spins around this idea, 

in order to show a connection between kinematics and dynamics in the case of matter. 

Indeed, as we have seen above, there is equal room, so to speak, for kinematics as well as 

for dynamics in this theory and, therefore, there does not seem to exist a place where their 

domains are delimited with respect to each other. And yet, if one adopts the physical 

interpretation of the action integral by a time statistics, as discussed above, there seem to 

be a place neatly described by a gauging theory, where the dynamics goes into kinematics 

and vice versa, allowing us to distinguish the time we call classical, which is the time of 

dynamics. 

Indeed, the physical action (4.2.8) for the undamped harmonic oscillator is not 

invariant with respect to groupal action (4.1.6). As we have seen above, even the genuine 

sl(2,R) action, only results in a relative invariance, whereby the Lagrangian needs a 

gauging in order to be properly used. What would be, in these conditions, the place of 

harmonic oscillator, so clearly delineated in a Hamiltonian dynamics? The answer can be 

found, in our opinion, in an incidental result due to Heinz-Jürgen Wagner, in the form of 

following theorem [74]: there is a Lagrangian – Wagner’s Lagrangian – of the form 

 (4.2.12) 
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producing the Euler-Lagrange equation of radial motion 

 (4.2.13) 

According to Wagner, this would simply mean that in a world where the equation 

(4.1.11) is the fundamental equation of motion, the coordinate q entering the Lagrangian 

describes a harmonic oscillator, which thus is bound to play the part of the free particle 

of the Thomson realm. Thus, the connection between the Thomson force and the elastic 

force is just as universal in matter as the Thomson force entering the dynamics (4.1.1): 

no need for Thomson’s approximation in order to get the harmonic oscillator, for it is 

everywhere! 

In order to assess the situation, it is best to provide a demonstration for the Wagner’s 

theorem. An observation based on the theorem of Morton Lutzky from equation (4.2.5), 

provides the key to proof: applying his theorem above for the particular case Q = 0, we 

get the Lewis invariant: 

 (4.2.14) 

where we chose the constant R as unity, which is, in fact, Wagner’s original choice. 

Now, switching to a new time, t say, defined by equation (4.1.3): dt = dt/r2, the Lewis 

invariant becomes: (q/r)2+[(q/r)¢]2 where the prime means derivative on t. This is the 

energy of an undamped harmonic oscillator working in the new time according to an 

equation of motion produced by the Lagrangian [(q/p)¢]2 - (q/p)2, a well-known fact. 

Switching back to the original time t in this new Lagrangian, gives the Wagner’s 

Lagrangian (4.2.12) that produces the equation of motion (4.2.13). The action 

corresponding to this equation of motion is, physically speaking, the time average of the 

difference between the area rate in the phase plane of the coordinates (p, q) and their ratio 

adjusted by an appropriate constant for dimensional reasons. The average is to be 

calculated with respect to a time statistical measure given by dt = dt/r2, which is, in fact, 

the invariant function (4.1.9) of a Thomson realm. 

However, the true meaning of the Wagner’s result concerns the idea of Planck’s 

resonator: in a Thomson realm the harmonic oscillator (a virtual resonator) is connected 

with the particle obeying the equation (4.1.11) of the fundamental dynamics. In this case, 
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we can assign a precise physical meaning to this resonator: namely, it is a fundamental 

physical particle carrying a charge q. In order to see this, we just need to notice that the 

Lewis invariant of the fundamental motion in this realm is actually an amended 

Newtonian force. One can even state the following theorem of the Thomson natural 

philosophy: in a Thomson realm, the Newtonian forces are Lewis-Lutzky invariants of the 

fundamental motion. To wit: such a particular invariant can be written in the form 

 (4.2.15) 

where K is a constant, and t is the time of the fundamental motion. Obviously the first 

term of this invariant is the static Coulomb force between two identical charges of 

magnitude q, located at the distance r with respect to each other. As to the second term of 

the invariant (4.2.15), it can be considered as an addition to this force due to the 

electrodynamical effects. In fact, one can say that the electrodynamical force in a 

Thomson realm is a complete Lutzky invariant of the form 

 (4.2.16) 

where K1 and K2 are two constants. So, it seems that the quantization was with us ever 

since the foundation of the modern science by Newton! 

However, this is not the whole story: if this invariant is a generalization of the Planck 

constant for the case of matter, then the Procopiu quantum established in equation (2.4.6) 

by analogy with the Planck’s quantization procedure, is a legitimate quantum in the case 

of matter. Consequently, the Procopiu’s quantization is a legitimate procedure, and then 

we have to search for the analogous of the frequency on the algebraic structure of that 

very quantum. Obviously, the same goes for the Thomson’s general quantization 

procedure leading to equation (3.1.18), except for the presence of the Planck’s constant 

in that equation. 

The formula (4.2.16) suggests a certain symmetry between the radial coordinate and 

the charge: there should be a continuum of charge, having the same fundamental 

dynamics as the Thomson realm. With due consideration on the structure of a charge 

continuum, this is, indeed, the case, as we show presently. 
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4.3. GAUGING BY THE AMPLITUDE OF CHARGE 

In the problem of charge, we are compelled to adopt E. Katz’s natural philosophical 

ideas [36]. According to these ideas there are isolated magnetic charges, existing in the 

Thomson realm just like the isolated electric charges. The analogy is then even reciprocal, 

for the charge dipoles are to be seen as pieces of vacuum having electric charges as ends, 

just as the magnets, which are pieces of matter having magnetic poles, i.e., magnetic 

charges, at their ends (see [50], Chapter 1, for more details). Pending a necessary further 

analogy between a piece of matter and a piece of vacuum, in need to be properly 

circumstantiated, we are at liberty to assume that the charge of any kind – electric or 

magnetic – is actually a binary domain: the charge, no matter of its nature, has always 

two components, so that its range can be coordinated by a complex number. In fact, this 

is the main trait of the physics after Augustin Fresnel’s physical theory of light [83]: the 

possibility of replacing of the physical structure with the (complex) time signal offered 

by the measurements. The Katz’s natural philosophy of charge replicates that theory of 

light to details, which is the mathematical reason that made possible the electromagnetic 

theory of light. 

Assume, therefore, that the charge can be perceived as a signal, continuous in a 

convenient time, but still involving the phase of charge in the sense of Katz: 

 (4.3.1) 

If the amplitude q of such a signal would be a constant, then no doubt, this signal 

would be a solution of the second-order differential equation, assimilable to a harmonic 

oscillator as it is, no matter of t; but if only a time dependent amplitude is necessary, for 

the description of the charge, the things become a little more complicate. Assuming that 

Q(t) gets physical meaning as a periodic signal associated to a harmonic oscillator, we 

will have the following conditions by identifications: 

 (4.3.2) 

Thus, from the second of these conditions we have right away a connection between 

the amplitude and the phase of such a representation: 

 (4.3.3) 
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This equation is a first incentive of the analogy between charge and the radial 

coordinate in the fundamental dynamics of a Thomson realm: the constant from the right 

hand side is entirely analogous to the area law of that Newtonian dynamics. Consequently, 

we suspect a dynamics of the charge itself. Inserting (4.3.3) into the first of the conditions 

(4.3.2), results into an equation for the amplitude of the complex charge representation: 

 (4.3.4) 

where  is the constant from the right hand side of equation (4.3.3). Obviously, we 

used this notation here in view of the resemblance of the equation (4.3.3) with the second 

of Kepler’s laws, where  denotes the area rate, like in the §4.1. Thus, the amplitude of 

this representation of the charge must be a solution of the Ermakov-Pinney equation with 

respect to the time of representation, just like the radial coordinate in the Thomson realm. 

Before going any further, let us treat the case of physical representation of the charge 

by a damped harmonic oscillator, just for completeness, if nothing else. In fact, if we want 

to assign a physics to a signal like (4.3.1) recorded somehow within matter, this would be 

the natural way to do it: find the equivalent damped harmonic oscillator, for, within matter, 

there cannot be but only damped oscillators. In this case, for the representation (4.3.1), 

we shall have instead of (4.3.2) the conditions 

 (4.3.5) 

leading to the following equation for the phase as a function of time: 

 (4.3.6) 

Here {·,·} means Schwarzian derivative of the first symbol in curly brackets with 

respect to the second. However, the notation is not unique in the mathematical literature, 

even though the definition of the symbol is always the same. To wit, we sometimes may 

see: 

 (4.3.7) 

The notation S(·) is used mostly for geometrical purposes, as for instance in the case 

of Lorentz surfaces of constant curvature [21]. The geometrical theory is guided by the 

notion that the Schwarzian derivative is a second order differential having the meaning 
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of a curvature [28], so that the geometrical notation mimics the structure of a curvature 

tensor. 

These things aside, when coming back to our line here, the connection between 

amplitude and phase for the case of a damped harmonic oscillator, is not as simple as 

before, for it involves the time explicitly in the connection between amplitude and the 

phase of the signal representing the charge. Thus, instead of (4.3.3), we have here: 

 (4.3.8) 

However, this fact does not change the previous conclusions on q(t), but just ‘rephrase’ 

them in a way, because the equation (4.3.6) is actually an Ermakov-Pinney equation ‘in 

disguise’, as it were. Indeed, we have the identity: 

 (4.3.9) 

so that (4.3.6) becomes an Ermakov-Pinney equation for x: 

 (4.3.10) 

Using then equation (4.3.8) we can find the amplitude of this representation in the 

form 

 (4.3.11) 

where x(t) is a solution of the Ermakov-Pinney equation (4.3.10). 

Let us discuss, up to a point, the physics involved here: essential in the previous 

mathematics is the first time derivative of the phase, which can be taken as an 

instantaneous frequency, like in optics for instance [46]. The basic equation on which we 

choose to discuss here in the statistical spirit of time-frequency analysis [18], is the 

equation (4.3.6): it is the only equation that can offer the instantaneous frequency in some 

physical terms connected to the structure of a damped harmonic oscillator. Notice that the 

instantaneous frequency would be a well-defined mechanical frequency: 

 (4.3.12) 

only in the special cases where the phase is a linear fractional function of time: 

 (4.3.13) 
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Here we have used the result (4.3.9) in order to integrate the homogeneous 

Schwarzian differential equation. Such a physical definition of the instantaneous 

frequency is impossible in general terms: the frequency  given by (4.3.13) as a function 

of time cannot be a constant identically, as the condition (4.3.12) asks. The things get in 

order, as, in fact, they did historically speaking, either if we assume the phase a linear 

function of time or else assume that the time can be taken as a period. However, in this 

last case is not simply  but the square root of this expression, and therefore the period in 

question is , which is a solution of the Ermakov-Pinney equation. This 

observation allows one to construct a probability density based upon the idea of period 

[30] as we shall do it here right away. But before presenting this construction, the 

necessity of interpretation reveals another side of the issue, on which we need to insist at 

some length. The equation (4.3.10) allows us to associate an instantaneous frequency to 

a particle in the charge realm, based on physical reasons, provided 

 (4.3.14) 

according to equation (4.3.6), where µ is a new damping coefficient entering the 

‘updated’ definition of frequency of the damped harmonic oscillator which serves for the 

physical definition of parameters. This would be an instantaneous frequency depending 

on time, of course. In terms of harmonic oscillator, this represents a new state of transfer 

between the far and close environments of the particle carrying charge. In view of (4.3.9) 

and (4.3.10) the equation (4.3.14) can be written as a second order differential equation 

for the function x: 

 (4.3.15) 

having solutions of the general form 

 (4.3.16) 

where B and b are integration constants, and the condition µ2 > l2 was assumed. The 

last identity here leads by integration to a phase of the form 

 (4.3.17) 

The equation (4.3.15), and therefore its solution (4.3.17), can be replicated if l2 > µ2, 

in which case 



The Procopiu Quantum 

 
 
 
 

 
 
 
 
 

71 

 (4.3.18) 

for w real. Therefore, the instantaneous frequency can be defined by a time sequence, 

according to equation 

 (4.3.19) 

with the phase q connected to the time sequence by equation 

 (4.3.20) 

The equation (4.3.18) has relevance in physics as the equation of an inverted 

harmonic oscillator [2], a physical structure appropriate in closed spaces occupied by 

matter, for instance in tunneling problems [3]. This whole theory only means definition 

of the frequency through a time sequence, as one does routinely in the practice of 

measurements of this quantity. Only, in this special case, the practice is simply relying 

upon equation (4.3.19), so that equation (4.3.20) gives a succession of phases 

corresponding to the time sequence in question. However, the tunneling phenomenon 

cannot be described but by statistical methods, and the occasion has come to approach 

here one of the most important problems in physics: the definition of the probability 

density, mentioned above. 

According to Emil Julius Gumbel, the definition of a probability density of an event, 

stays in its repetition [30]. This definition seems to fit the case in point here, for the 

tunneling should be successful only after many ‘trials’, as it were. In the case of the 

complex form of a signal, as given in equation (4.3.1), the variable q(t) is bound to 

describe recurring events, so that it may serve, indeed, to define a probability density 

according to Gumbel. Using the equation (4.3.16), for instance, the phase q(t) can define 

a period T(t) of recurrence by the relation 

 (4.3.21) 

where C and D are two constants. Then, according to Gumbel’s prescription, the 

corresponding probability density should be given by 

 (4.3.22) 
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with E, M and N are new, properly chosen constant. This is the probability density 

function, indeed, for a skew-symmetric logistic distribution [69], known to belong to the 

class of exponential distributions having of quadratic variance functions [51]. And this 

is the class of distribution functions which also comprises the Planck’s Negative Binomial 

Distribution, and Procopiu’s Z(b) from equation (2.4.7). It would appear that this whole 

class of distributions, and not just a specific one of them – like the Negative Binomial 

Distribution from the case of light [15] – should be characteristic to the physics of 

quantization in general. 

As to the case of a harmonic oscillator described by the equation of motion (4.3.15), 

which leads to the solution (4.3.17), one cannot give the same statistical interpretation 

right away. In fact, we judge it here from the point of view of a resonator, and it is quite 

doubtful that a resonator can be simply represented by just a harmonic oscillator. That 

such a simple structure should enter somehow the more complicated physical structure of 

the resonator seems, nevertheless, out of question. But the manner it does has to be 

realized starting from some other viewpoints. Let us try one such idea. 

4.4. THE STRUCTURE OF A RESONATOR 

In the spirit of the Procopiu’s analysis [61], it seems that the general physical structure 

of a resonator, which is a material structure, needs itself a special quantization, proper to 

matter. Such a material structure should be capable of emitting or absorbing light, and our 

experience tells us nothing about these two phenomena. That is, nothing but an indication 

of instantaneity, in the case of the production of light, for instance in a storm thunderbolt. 

It is based on this observation, and on further inference that the reciprocal phenomenon 

of absorption of light is just as instantaneous as its production, that Niels Bohr has built 

his model of quantization in matter [9]. In hindsight, this model appears to be so 

successful just because the Newtonian forces laying at its foundation is not 

unconditionally a field force: it does not act locally everywhere in the manner described 

by Maxwell stresses (see §3.2). Rather, as Paul Langevin once has shown [37], the 

Newtonian forces are tied up with the orbit defining them, just as Newton defined them 

initially. Remarkably, they can be gauge forces though: as Berry and Klein showed [79], 

they are invariant to a special gauging involving the Thomson fundamental dynamics 

expressed by Ermakov-Pinney equation (4.4.1). According to this view, the radial 
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Thomson coordinate appears as a gauge length in a Berry-Klein gauging, whose 

fundamental group is given by the action (4.1.4). 

This state of the case should allow us to define a resonator in the most general way, 

based on the common idea of instantaneity. First, notice that the case from equation 

(4.3.13) is a reference one, undoubtedly: for once, we can always find a physical meaning 

for the instantaneous frequency, which can be defined under that condition in terms of 

the parameters of a harmonic oscillator. On the other hand, though, the corresponding 

function x defined in the equation (4.3.9) is practically the original time, up to a linear 

transformation, for we have: 

 (4.4.1) 

However, the most important incidentals come here with the idea of a locked phase, 

that may be used to represent instantaneity, and then to define, based on it, the appropriate 

physical structure of a resonator. Thus, a resonator turns out to be a sl(2,R) Riemannian 

manifold of constant curvature, of the kind describing the physical structure of the nucleus 

of the planetary atom, or of the planetary model in general [49]. In order to show this, we 

simply need to write the condition of a locked phase, in terms of the variations of the 

parameters a, b, g, d. We then have: 

 (4.4.2) 

where w1,2,3 are the differential forms: 

 (4.4.3) 

The equation in differentials (4.4.2) is integrable in the sense of Cartan, if it is 

conditionally exact as a differential 1-form [16]: 

  

Here the symbol ‘Ù’, which usually means exterior multiplication, gives to 

differential symbol ‘d’ the meaning of exterior differentiation, which we symbolize by 

‘dÙ’. Performing the differentiation according to the rules of exterior calculus, results in 
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which shows that the differential 1-forms (4.4.3) must satisfy the Maurer-Cartan 

structure equations 

 (4.4.4) 

These are characteristic to a sl(2,R) type algebraic structure. One can verify by a 

direct calculation that the differential 1-forms (4.4.3) satisfy indeed these structural 

relations, and therefore they can be taken as a coframe for the space of parameters. Adding 

to this a quadratic metric that we choose in the form: 

 (4.4.5) 

defined up to an arbitrary constant factor, this manifold can be organized as a 

Riemannian space, as we said: a physical structure defined for an instant – an instanton 

proper. The metric form (4.4.5) was chosen by us in view of the fact that it represents the 

discriminant of the quadratic form (4.4.2), so that it comes in handy in case we seek for a 

physical interpretation of that equation. Such a physical interpretation can be brought 

about as follows immediately. It is based on the idea that, inasmuch as the whole physical 

definition of such a resonator is pending on the definition of phase by equation (4.4.1) 

some general properties of this phase can, no doubt, come in handy. 

Thus, if the homography (4.4.1) will be written in the form used by Élie Cartan as a 

suggestive example, using three essential parameters ([16], see examples to §§102, 108, 

112, 161, and 214 in that reference): 

 (4.4.6) 

Here f is a phase that makes physical sense in the problem at hand, like the parameter 

q from equation (4.3.3), for instance, in the case of charge, or the central angle of the 

second of the Kepler laws. In the interest of an incidental further analysis of this relation, 

notice the ‘full closed homography’, from equation (4.4.1) would be here: 

 (4.4.7) 

This reduces to an identity in the cases where t = 0. Therefore, for this acceptance of 

the time parameter, we have unconditionally an identity between phase of a recorded 

signal and a physically meaningful phase, as in in the Kepler motion or the harmonic 

oscillator cases: 
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 (4.4.8) 

On the other hand, if the time t goes to infinity, we have, again, a physically accepted 

interpretation of the situation, whereby the physical phase is increased by a constant 

period, as in the case envisioned in the Bertrand’s classical theorem: 

 (4.4.9) 

The parameter a is therefore itself a period. If this period is zero, we have a linear 

relationship between the phase and the time: 

 (4.4.10) 

Therefore b itself must be a period, for its inverse should be a frequency. This period 

is distinguished though: only in the cases where it goes to infinity, and therefore the 

corresponding frequency goes to zero, can the phase q be constant at any finite time, as 

required, for instance, in the case of a harmonic oscillator, be it damped, or not. 

Expressing now the previous condition (4.4.2) of a locked phase, constructed based 

on a physically meaningful phase, we get the equation in differentials 

 (4.4.11) 

Here the differential 1-forms ω1,2,3, can be obtained either by using directly the 

equation (4.4.7), or by identifying from it the parameters from (4.4.1) and then calculating 

the differential forms according to the formulas from the equation (4.4.3). Either way, we 

get the obvious result, to be read on (4.4.11): 

 (4.4.12) 

Therefore, the circumstances in which the phase is locked are given by times that are 

solutions of equation in differentials given by (4.4.11). These solutions are referring to a 

three-dimensional ensemble of times, each one of them located by a set of three values of 

the parameters (f, α, β). 

We can say something about this ensemble if we can describe the time moments as 

the values of some continuous function, which needs to be even differentially continuous, 

in view of the equation (4.4.11). According to a classical definition of such a function, 

this description comes down to associating a continuous parameter to time moments, in 

order to transform the equation (4.4.11) into a system of ordinary differential equations. 
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The simplest case of such a parameter, can be exhibited if the differential forms (4.4.12) 

are exact differentials proportional to the differential of the same parameter, i.e., if we 

can write 

 (4.4.13) 

where a1,2,3 are constants, and s is the parameter in question. This can happen along 

the geodesics of the Riemannian sl(2,R) manifold having the metric (4.4.5). Our notation 

is intended to suggest that the parameter s has to be taken as the arclength of the 

Riemannian metric of this Thomson realm, which in turn would mean that the time 

sequences are ordered by the geodesic motions of that metric, just as in the classical case, 

where the time sequences are given by the free particle motions. Here too, such an 

interpretation is possible, provided we use classical free particles in a Euclidean reference 

frame with ‘inaccessible origin’, as have shown before. But let us continue with our case, 

to see what all is about. The equation in differentials (4.4.11) becomes an ordinary 

differential equation of Riccati type, offering, by its solutions, the moments t as the values 

of a function of the continuous parameter s: 

 (4.4.14) 

As we have shown in this work, this equation has a fundamental bearing on the 

physical description of the Thomson realm: it represents the interpretable case of the 

motion of a Thomson particle in the field of fundamental forces of magnitude going 

inversely with the cubic distance. That distance is provided by the square root of the 

quadratic polynomial from the right hand side of (4.4.14), which is, indeed, classically 

interpretable. We proceed to finding the solution of this equation in the most general terms. 

The theory of solution of a Riccati equation of the type (4.4.14) shows that the general 

solution is completely determined if we know three particular solutions [78]. We do not 

have, though, but only two such particular solutions: the roots of quadratic polynomial 

from the right hand side of the (4.4.14). A third one can be taken as an arbitrary constant 

value of t, according to the following procedure: notice that the equation (4.4.14) is 

equivalent to the equation in exact differentials: 

 (4.4.15) 
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Now use the following expression for the denominator here: 

  

so that, assuming the case of real roots, D > 0, and the general solution of (4.4.14) can 

be written as 

 (4.4.16) 

where s0 is an arbitrary constant. There are two possible solutions here, according to 

the values of x that make the expression from the right hand side positive: 

 (4.4.17) 

according to the position of the values of x with respect to the interval (–1,1): outside 

or inside. 

On the other hand, if the two roots t1 and t2 are complex, we have the identity 

  

and this expression is always positive, regardless of the values of the parameters 

entering its algebraic structure. Then the general solution of the equation (4.4.15) can be 

written in the form: 

 (4.4.18) 

where s0 is an arbitrary constant.  

The integration of the system (4.4.13) replicates any of these cases of solution for the 

equation (4.4.14). In order to see this, notice first that the differential df can be eliminated 

from (4.4.13) in favor of ds. Then, once this elimination done, we seek for expressions 

for da and db in order to construct the differential of the ratio a/b. The final result of this 

construction is the Riccati equation: 

 (4.4.20) 

having a solution of the form (4.4.17) or (4.4.18), only with the places of a1 and a3 

interchanged, and the sign of a2 simply changed. Obviously, D remains the same under 
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these operations. Therefore, we can have either the correspondent of (4.4.17) i.e., a 

general solution of the form: 

 (4.4.21) 

where t denotes the ratio between a and b, or else the correspondent of (4.4.18): 

 (4.4.22) 

where s0 is an arbitrary real value in both cases. 

Once we got the solution (4.4.21) or (4.4.22), we can concentrate upon finding 

solutions of (4.4.13) for the other two dependent variables: b and f. For once, using the 

third equation (4.4.13) in order eliminate df from the second, we get the following 

differential equation for b: 

 (4.4.23) 

which can be solved by using for the binomial expression entering as the coefficient 

of the differential of independent variable, one of the two different expressions provided 

by equations (4.4.21) and (4.4.22), in turn. According to this procedure, corresponding to 

(4.4.21) we have: 

 (4.4.24) 

while corresponding to (4.4.22), we have: 

 (4.4.25) 

where b0 is an integration constant in both cases, and D from (4.4.25) is the negative 

of that from equation of (4.4.24). 

Now, we can concentrate on finding a, whose expression is only a matter of algebra. 

Thus, using (4.4.21) and the corresponding (4.4.24) we have: 

 (4.4.26) 
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while using (4.4.22) and the corresponding (4.4.25) we have 

 (4.4.27) 

We cannot close the case of the parameters a and b without noticing one of the most 

important issues concerning their possible physical connection: taken as a virtual position, 

the pair (a, b) is located on a conic, which can be, in particular, a closed cycle. In order 

to show this, we consider the three cases of parametrization in turn. Thus, for the case of 

the first of equations (4.4.21) and the first of (4.4.24) we have the hyperbola: 

 (4.4.28) 

and for the case of the second ones of those equations we have a hyperbola of 

symmetric center with respect to the a-axis: 

 (4.4.29) 

In both cases here, we must observe the definition: 

  

It is only for the parameterization (4.4.22) and (4.4.25) that we get a cycle proper, for 

in that case we have the ellipse 

 (4.4.30) 

where we have to observe the condition of definition: 

  

Now, we got the gist of the method, so that for the case of the parameter f would be 

no need to transcribe all three cases, that would only lengthen the discourse. Suffice to 

notice that, by its parameterization, this dependent variable is of the same algebraic nature 

as the time variable. For instance, in the last case of equation (4.4.30) we have, by 

integrating the last of the equations (4.4.13), the parameterization: 

 (4.4.31) 

where f0 is an arbitrary constant. Obviously, this parameterization is of the same 

algebraical nature as the time given by (4.4.18): the initial time must be of the same nature 

as the time t itself. It also can possess periods serving in a definition of the probability 

densities of Gumbel type, necessary in description of the tunneling processes. But we 

defer the continuation of this theory to a future work. 
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5. CONCLUSIONS 

The results thus far allow us some conclusions defining a future strategy in describing 

the structure of matter based on the fundamental idea of quantization. By comparing the 

Procopiu quantization procedure with the prototypical Planck’s quantization procedure, 

and extracting the due theoretical conclusions, we can report that: 

1) The quantization in matter should be different from the quantization in light, even 

though they are based on the same principles and use the same statistics, supported by the 

exponential distributions having quadratic variance functions. The main difference is that 

in the case of light the statistics is of discrete type, while in the case of matter it is of 

continuous type, staying at the base of the modern magnetism physical theory: the 

Generalized Hyperbolic Secant distribution. 

2) The quantization in matter asks for quanta of Procopiu type, that generalize the 

classical Newtonian central forces with magnitude going inversely with the square of 

distance. In this sense the classical Newtonian dynamics can count, implicitly, as a 

quantum theory. 

3) A classical dynamics can be constructed in order to describe the motion under 

forces in matter, and thus support the statistics involved in the definition of the quanta of 

any kind. The fundamental dynamical equation in matter appears to be the Ermakov-

Pinney equation. 

4) The concept of resonator is connected to the concept of the phase of charges: it 

represents an instanton, i.e., a lump of matter for whose interpretation we need to use 

particles having the same phase of charges. The Procopiu quantization is based on such a 

statistics that can be constructed as a convolution of two such instantons structures. One 

can see in this model of resonator the generalization of the classical Ampère element of 

electrodynamics. 
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