Paradox in General Relativity for a Charged Sphere

Karl De Paepe*

Abstract

For a static charged sphere with small mass and charge we make gauge and coordinate transformations so that the electromagnetic vector potential has a time component of one and zero space components at all points. We consider Einstein field equations with this potential. There is a solution that has no electromagnetic field. This is a contradiction since we began, before the transformations, with a nonzero electromagnetic field.

1 Gauge transformation and Einstein field equations

Let $A_{\mu}(x), g_{\mu \nu}(x)$, and $A^{\mu}(x)$ be the electromagnetic potential, metric tensor, and electromagnetic vector potential, respectively where $x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ is a point of \mathbb{R}^{4}. The electromagnetic field is

$$
\begin{equation*}
F_{\mu \nu}(x)=A_{\nu, \mu}(x)-A_{\mu, \nu}(x) \tag{1}
\end{equation*}
$$

A gauge transformation

$$
\begin{equation*}
A_{\mu}(x) \rightarrow A_{\mu}(x)+\phi_{, \mu}(x) \tag{2}
\end{equation*}
$$

where $\phi(x)$ is a function on \mathbb{R}^{4} leaves $F_{\mu \nu}(x)$ unchanged. Let $g_{\mu \nu}(x)$ satisfy the Einstein field equations with electromagnetic and matter energy-momentum tensor

$$
\begin{equation*}
G_{\mu \nu}=8 \pi\left(g^{\sigma \tau} F_{\mu \sigma} F_{\nu \tau}-\frac{1}{4} g_{\mu \nu} g^{\sigma \alpha} g^{\tau \beta} F_{\sigma \tau} F_{\alpha \beta}\right)+8 \pi T_{\mu \nu} \tag{3}
\end{equation*}
$$

where $T^{\mu \nu}(x)$ is the energy-momentum tensor of matter. After making a gauge transformation (2) we have $g_{\mu \nu}(x)$ will still be a solution of (3). Define

$$
\begin{equation*}
\hat{A}^{\mu}(x)=A^{\mu}(x)+g^{\mu \alpha}(x) \phi_{, \alpha}(x) \tag{4}
\end{equation*}
$$

By (1) and (4)

$$
\begin{align*}
F_{\mu \nu} & =A_{\nu, \mu}-A_{\mu, \nu}=A_{\nu, \mu}-A_{\mu, \nu}+\phi_{, \nu \mu}-\phi_{, \mu \nu}=\left(A_{\nu}+\phi_{, \nu}\right)_{, \mu}-\left(A_{\mu}+\phi_{, \mu}\right)_{, \nu} \\
& =\left(g_{\nu \alpha}\left[A^{\alpha}+g^{\alpha \beta} \phi_{, \beta}\right]\right)_{, \mu}-\left(g_{\mu \alpha}\left[A^{\alpha}+g^{\alpha \beta} \phi_{, \beta}\right]\right)_{, \nu}=\left(g_{\nu \alpha} \hat{A}^{\alpha}\right)_{, \mu}-\left(g_{\mu \alpha} \hat{A}^{\alpha}\right)_{, \nu} \tag{5}
\end{align*}
$$

For the static sphere where $r=\sqrt{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}}$

$$
\begin{equation*}
A_{\mu}(r) \quad T_{\mu \nu}(r) \quad g_{\mu \nu}(r) \quad A_{k}(r)=g_{0 k}(r)=g^{0 k}(r)=0 \quad k=1,2,3 \tag{6}
\end{equation*}
$$

[^0]
2 Coordinate transformation

Let

$$
\begin{equation*}
\phi(x)=-t \tag{7}
\end{equation*}
$$

hence by (4), (6), and (7)

$$
\begin{equation*}
\hat{A}^{0}(r)=A^{0}(r)-g^{00}(r) \quad \hat{A}^{k}(r)=0 \quad k=1,2,3 \tag{8}
\end{equation*}
$$

Let the sphere have small mass and charge. Define $h_{\mu \nu}(r)=g_{\mu \nu}(r)-\eta_{\mu \nu}$. We then have $h_{\mu \nu}(r)$ and $A_{\mu}(r)$ are small hence $\hat{A}^{0}(r)$ is approximately one for all r. Consider the coordinate transformation

$$
\begin{equation*}
x^{\prime 0}=\frac{x^{0}}{\hat{A}^{0}(r)} \quad x^{\prime 1}=x^{1} \quad x^{\prime 2}=x^{2} \quad x^{\prime 3}=x^{3} \tag{9}
\end{equation*}
$$

We have by (8) and (9) that

$$
\begin{equation*}
\hat{A}^{\prime 0}\left(t^{\prime}, r^{\prime}\right)=1 \quad \hat{A}^{\prime k}\left(t^{\prime}, r^{\prime}\right)=0 \quad k=1,2,3 \tag{10}
\end{equation*}
$$

By (5) and (10) then

$$
\begin{equation*}
F_{\mu \nu}^{\prime}=A_{\nu, \mu}^{\prime}-A_{\mu, \nu}^{\prime}=\left(g_{\nu \alpha}^{\prime} \hat{A}^{\prime \alpha}\right)_{, \mu}-\left(g_{\mu \alpha}^{\prime} \hat{A}^{\prime \alpha}\right)_{, \nu}=g_{\nu 0, \mu}^{\prime}-g_{\mu 0, \nu}^{\prime} \tag{11}
\end{equation*}
$$

Require $A_{\mu}(r) \rightarrow 0$ and $h_{\mu \nu}(r) \rightarrow 0$ as $r \rightarrow \infty$. We then have $h_{\mu \nu}^{\prime}\left(t^{\prime}, r^{\prime}\right) \rightarrow 0$ as $r^{\prime} \rightarrow \infty$.

3 Contradiction

We can use (11) and transform (3) to x^{\prime} coordinates and write

$$
\begin{equation*}
G_{\mu \nu}^{\prime}=8 \pi g^{\prime \sigma \tau}\left[h_{\sigma 0, \mu}^{\prime}-h_{\mu 0, \sigma}^{\prime}\right]\left[h_{\tau 0, \nu}^{\prime}-h_{\nu 0, \tau}^{\prime}\right]-2 \pi g_{\mu \nu}^{\prime} g^{\prime \alpha \sigma} g^{\prime \beta \tau}\left[h_{\tau 0, \sigma}^{\prime}-h_{\sigma 0, \tau}^{\prime}\right]\left[h_{\beta 0, \alpha}^{\prime}-h_{\alpha 0, \beta}^{\prime}\right]+8 \pi T_{\mu \nu}^{\prime} \tag{12}
\end{equation*}
$$

Now instead begin with an equation of form (12) having $h_{\mu \nu}^{\prime}\left(t^{\prime}, r^{\prime}\right) \rightarrow 0$ as $r^{\prime} \rightarrow \infty$. Linear theory gives

$$
\begin{equation*}
G_{\mu \nu}^{\prime(1)}\left(t^{\prime}, r^{\prime}\right)=8 \pi T_{\mu \nu}^{\prime}\left(t^{\prime}, r^{\prime}\right) \tag{13}
\end{equation*}
$$

where $G_{\mu \nu}^{\prime(1)}\left(t^{\prime}, r^{\prime}\right)$ is the first order in $h^{\prime}\left(t^{\prime}, r^{\prime}\right)$ Einstein tensor. From (13) we can conclude the Einstein tensor is zero outside the mass. Consequently the energy-momentum tensor and hence the electric field are zero outside the mass. However a charged sphere has nonzero electric field outside the sphere. We have a contradiction.

References

[1] K. De Paepe, Physics Essays, September 2007

[^0]: *k.depaepe@alumni.utoronto.ca

