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Movement of the ellipsograph ruler with different speeds

Annotation

On the ruler of the ellipsograph, we set point C. We set the movement of the ruler: uniform,
uniformly accelerated, elliptical. We calculate the angle of rotation of point C relative to the
center of the ellipse, the sectoral velocity and the velocity and acceleration vectors. We compare
the sectoral velocity with Kepler's second law.

Introduction

In the scientific literature, the differential equation of an ellipse is derived through dynamic
quantities and laws. Then Kepler's laws are derived. However, Kepler's laws are kinematic. This
article uses the kinematic equation of an ellipse. The equation is derived through oscillations of a
parametric pendulum.

Any point on the ellipsograph ruler moves along an elliptical path.

In order not to refer the reader to the sources, we present the derivation of the formulas necessary
for calculating velocities, accelerations, and rotation angles.

Ruler AB moves from horizontal to vertical position, figure 1. Point C describes % of the ellipse.
The direction of the instantaneous rotation of the ruler AB around P.s is clockwise in accordance
with the direction of the known velocity vector of point A.

Speeds of points B and C:

_ _va
Wpp = APap (1)
BP
Vg = Wyp * BPyp = vy Apjg (2)

Vector v is directed perpendicular to CP.

_ _ CPap
Ve = Wap * CPyp = vy APap (3)

The directions of the velocities of the points vz and v, are determined by the instantaneous
rotation of the ruler AB around the instantaneous center of velocities P4s.
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Figure 1
Determination of accelerations of points B and C

Let's use the theorem - acceleration of points of a flat figure. Point A will be a pole, since the
acceleration of point A is known.

The vector equation for the acceleration of point B has the form:
@5 = @)+ ap, +af, (4)
where @, is the acceleration of the pole A (given);

aTBA) and aTBA are the rotational and centripetal accelerations of the point B in the rotation of the
ruler around the pole A. In this case:

a$, = wig * BA (5)
The vector FBA is located on BA and is directed from point B to pole A.
aps = €48 * BA (6)

The vector aTBA is located perpendicular to the ruler AB, its direction is unknown, since the
direction of the angular acceleration 45 is unknown.

In equation (4) there are two unknowns: accelerations a, and @: which can be determined
from the projection equations of vector equality (3) onto the directions of axes AX and AY:

(7)

— T C

{an = Ay t Apyy t Apay
— T C

Apy = Quy + Apyy + Apgyy



The direction of the vectors az and aTBA) is chosen arbitrarily. System solution (7) allows you to
find the numerical value of ag and @r with a plus or minus sign. A positive value indicates the

correctness of the chosen direction of the vectors az and @Z, a negative value indicates the
need to change their direction.

System (7) allows us to determine unknown modules:

2 2
ay = \/(an)z + (aAy) ,Appg = \/(afmx)z + (afmy) (8)
Ruler angular acceleration:
€ = ‘;L: 9)

The acceleration of point C is determined by the equation:

ac =a; +ap, +ag, (10)
Y
1y

Figure 2

where aTCA) and a—gf{ are, respectively, the rotational and centripetal accelerations of the point C
relative to the pole A:

at, = wip * AC (11)

acp = €45 * AC (12)



Vector a_gA) is located on CA and directed from point C to pole A. Vector @ is perpendicular to
CA and directed in the same direction as a7, Fig. 2.

Equation (8) can be represented in projections on the axes Ax and Ay:

—_ c T
{aCx = Qux T Acpx t Acay

13
aCy = aAy + agAy + aZ‘Ay ( )

The acceleration projections of point C are determined from (11). The direction of the vector a;
is determined by the signs of the projections a, and a,,.

Vector modulus:

ac = J(ac)? + (acy) (14)

Let's take a look at the different travel options

T is the period specified by arbitrary units of time. AB = a+b, A(0, y,) B(xg,0). Initial
coordinates of points: A(0,0), B(a+b,0), C(a,0). Initial speed v,4, = 0.

Uniform movement

Given: point C divides AB into segments a and b, A(0,y,), B(xg,0), initial A(0,0), B(AB,0).

ABx*4

A moves uniformly from O — Y. Accelerations a, = 0,az = 0, velocity v, = (15)
Find: ya,, Xc; Yep Vep Qcyr @
Solution
Coordinates A(0, yy; ):
Ya; = Va*li (16)
Further, according to equations (4) - (14)
Coordinates B(xg,, 0):
sina = ):;, a= asin% a7)
Xg; =cosa xAB,yg, =0 (18)
Wyp = AZﬁ = :ﬁ (19)
Vp = Wyp * BPyp = Wyp * Yy, (20)
From equation (5) a5, = w3z * BA

ap, = ag, *cosa + ap, *sina
{O=aAy+a§A*sina+a§A*cosa (21)



Solving the resulting equations, we find a;,

c . c .
—Qpy—a *SIn a —-a *SIn a
roo_ Y "BA — BA
Apy = = (22)

cosa cosa

€ap = % (23)

Coordinates Pag (x5, ¥a, ).

Coordinates C (x¢,, yc; )

a4 _ X b _ Y (24)
AB xp; AB Ya;
a b
xCi:E*xBi!yCi:E*yAi (25)
CP,g =\/xBi2+a2—2(a*xBi)cosa (26)
Ve = Wap * CPyp = wyp *JxBiZ +a? -2 (ax*xp,)* cosa (27)
Q= atan 2L (28)
xci

Point C acceleration is determined by equation (10): ): a; = a; + @ + @

al, = wip * AC = wig *a (29)
aEA = &y * AC = Epp ¥ A (30)
J— r C

Aoy = Ayy + aCAx + aCAx 31

Ay, = Ay + A4, + ab (31)
Cy — My CAy CAy

ac, =0+ ag, xsina + ag, * cosa

a-, =0+al, *xcosa+a, *sina (32)
cy = CA CA

ac = /a%x +ag, (33)

Uniformly accelerated motion

Given: point C divides AB into segments a and b, A moves with uniform acceleration from O —
Y, A(0,y_4) B(x_B,0), initial 4(0,0), B(4B,0), [a,, = const, v,, = 0.

Find: YAi ’ (xCl'lyCi )1 vci; aCl" ©;

Solution

3
apxl .
Vg =5 pi=1.n=

(34)
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AB = vy = (35)
2AB
Ay = Ay = —5 (36)
Coordinates A(0, yy, ):
_agxi?
yAi - (37)
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Further on the equations (4) — (14)

Coordinates B(xg,;, 0):

Xp; = fABZ _yAiZ (38)

Coordinates C(x¢,, yc; ):

a4 _ X b _Ya (39)
AB xp; AB Ya;
a b

xCi:E*xBi!yCi:E*yAi (40)

_ Yai _ vai
Wypp = APz X (41)
a5, = wip *x AB (42)
aEA = &yp * BA (43)

The vector @ is located perpendicular to the ruler AB, its direction is unknown, since the
direction of the angular acceleration 45 is unknown.

We project the vector equation (4) on the coordinate axis:

g, = Apu *COSa + ap, *sina

{OzaAy+a§A*sina+a§A*cosa (44)
Solving the resulting equations, we find ag:

@y = 2y aring (45)
4B = % (46)
The acceleration of point C is determined by equation (10): a; = a, + aT~A + @

at, = wip * AC = wjip *a (47)
aj, = &5 *AC = g45 % a (48)

Equation (10) can be represented in projections on the axes Ax and Ay:



— T C
Acx = Qux T Aogy T Acypy
— + T + c (49)
Acy = Quy T Acpy T Acyy,
— T 3 c
{aCx—0+aCA*sma+aCA*cosa (50)
acy, = a, +ag, *cosa +ag, *sina

ac = fagx + agy (51)

Elliptical movement

There is a system of equations for a parametric pendulum (52):

{x =r(p(t))cos(p(®)) 52
y = r(@®)sin(@(1))
Substitute the radius of the ellipse about the center r(¢(t)) = —W (53)

We solve the system with respect to the rotation angle ¢. We obtain the kinematic equation of
curves of the second order with respect to the center:

xe2x% *S1 xp?
_ 2xe cos(@)*sin(@)*@ (54)

1—-e2xcos(p)?

P

Given: point C divides AB into segments a and b, A moves elliptically according to formula (54),
from O — Y, A A0,y,), B(xg,0), initial A(0,0,) B( AB,0), v,, = 0 is calculated by formula (54).
Here, the calculations are carried out by the program [1] from the application.

Find: yAi ) XCl., yCi’ vCl-, aci.
Solution

Formula (54) calculates ¢; , x¢;, yc;:

Yc

a= arcsin7 (56)
B=>—o (57)
Yy = arcsin (@) (58)
Yp=m—-y-p (59)
ya, = e (59)
Va; = Ya; — Yaj—1 (60)
Aa; = Va; — Va;_4 (61)

Further, according to equations (4) - (14)

Coordinates B(xg,;, 0):



xBl‘ = ’ABZ _YAL-Z (62)

Re-find the coordinates C (xc,, yc, ):

a4 _ X b _ Y (63)
AB xg; AB Ya;
a b
xCizﬁ*xBivyCizﬁ*yAi (64)
_ YAi _ VA
Wyp = APap  xp, (65)
aEA = &yp * BA (67)

The vector @) is located perpendicular to the ruler AB, its direction is unknown, since the
direction of the angular acceleration 45 is unknown.

We project the vector equation (4) on the coordinate axis:

{ ag, = ag, *xcosa + apy *sina 68
0 =ayy, +ag, *sina +ap, *xcosa (68)
Solving the resulting equations, we find aj,
r _ —@ay—aggssina
Apr =~ Cosa (69)
a‘l"

4B = % (70)
Point C acceleration is determined by equation (10): a; = a, + @ + a—gA)
al, = wip * AC = wig *a (71)
aEA =£AB *AC =£AB*CL (72)
Equation (10) can be represented in projections on the axes Ax and Ay:
Acyx = Qg + aEAx + aE‘Ax

_ r ¢ (73)
a(;y — aAy + aCAy + aCAy
{aCx=0+a£A*sina+a2A*cosa (74)
ac, = ay +ag, *cosa +ag, *sina

ac = /a%x + a%y (75)

The obtained motion parameters allow checking the fulfillment of Kepler's laws. The check is
carried out by the program [1] from the application.

Kepler's second law



Uniform movement

Enter char =
if char = "y" then the source data iz specified:

"

L
a = 0.500; b = 0.450; = 360

Second law of Keplew

oint bypasses 149 ellipse counterclockwise in 8Y time units
Input 0 — wniform motion OR
Input 1-uniformly accelerated motion OR.
Input 2- elliptical motion):

UNIFORM MOTIOM
Set the start of the first sector (1,..... 892z 3
Set the end of the Ffirst sector ( 3¢ end € 89>:17
Set the start of the ond sector <1..... 87>z 55
first sector: angledstart)= 0.03; anglefendd= 0.17
second secto: angledstart)= 0.61; angleend? = 0D.82
intervals of time tl= 14; t2= 14
rea of thﬁ first sector: 0.1767?57E-01
) [0
rea of the second sector: M.2445188E-01

Figure 3
Uniformly accelerated motion

Enter char =
if char = "y then the source data iz specified:
i

L
a = 0.500; b = 0.450; T = 360

Second law of Keplew

Point bypasses 1.4 ellipse counterclochkwise in 89 time units
Input 0 — wniform motion OR
Input 1-uniformly accelerated motion OR.
Input 2= elliptical motion):

UNIFORMLY ACCELERATEM MOTION

Set the start of the first sector <1..... 89> 3

Set the end of the first sector £ 3< end < 89>:17

Set the start of the second sector {1..... 8?>: 55
first sector: angledstart?= 0.00; angledend>= 0O.03
second secto: angledstart)= 0.35; anglelend) = 0D.59
intervals of time tl= 14; t2= 14

rea of the first sector: 0.3933465E-02

I1ERR: m

Area of the second sector: 0.2803914E-01

I1ERR: 0]

Figure 4

Elliptical movement



Enter char = )
if char = “¢" then the source data is specified:

= 0.500; b = 0.450; T = 360

Second law of Keplew

oint bypasses 14 Elllppﬂ counterclockwisze in 89 time units
Input @O uniform motion OR
Input 1-uniformly accelerated motion OR.

iy

Input 2- elliptical motion)>:
.FI]fFiIPﬁL HOTION

Set the start of the first sector <1

Set the end of the first sectopr

Set the ﬂtavt nf thF second sector <1.....

s{start)= 0.03; angledend)s

:.cund ntrru- dnqlakﬂrﬂrt‘— B.87; angle<end>
intervals of time ti= 14; t2= 14

rea of the first sector: L2 748870E-01

0
Area of the second sector: 0.2748918E-01

Figure 5
Equality of the areas of sectors is carried out only with elliptical motion.
Conclusion
We see that the ellipsograph is a good tool for studying the laws of motion along an ellipse.

The article used materials from textbooks on mechanics. Perhaps the derivation of formulas (54),
is rarely given, so the article [1] is proposed
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