
1 
 

Viktor Strohm 

vfstrohm@yahoo.de 

 

Movement of the ellipsograph ruler with different speeds 

Annotation 

On the ruler of the ellipsograph, we set point C. We set the movement of the ruler: uniform, 

uniformly accelerated, elliptical. We calculate the angle of rotation of point C relative to the 

center of the ellipse, the sectoral velocity and the velocity and acceleration vectors. We compare 

the sectoral velocity with Kepler's second law. 

 

Introduction 

In the scientific literature, the differential equation of an ellipse is derived through dynamic 

quantities and laws. Then Kepler's laws are derived. However, Kepler's laws are kinematic. This 

article uses the kinematic equation of an ellipse. The equation is derived through oscillations of a 

parametric pendulum. 

Any point on the ellipsograph ruler moves along an elliptical path. 

In order not to refer the reader to the sources, we present the derivation of the formulas necessary 

for calculating velocities, accelerations, and rotation angles. 

Ruler AB moves from horizontal to vertical position, figure 1. Point C describes ¼ of the ellipse. 

The direction of the instantaneous rotation of the ruler AB around РАВ  is clockwise in accordance 

with the direction of the known velocity vector of point A. 

Speeds of points B and C: 

𝜔𝐴𝐵 =
𝑣𝐴

𝐴𝑃𝐴𝐵
            (1) 

𝑣𝐵 = 𝜔𝐴𝐵 ∗ 𝐵𝑃𝐴𝐵 = 𝑣𝐴
𝐵𝑃𝐴𝐵

𝐴𝑃𝐴𝐵
          (2) 

Vector 𝑣𝐶  is directed perpendicular to СР. 

𝑣𝐶 = 𝜔𝐴𝐵 ∗ 𝐶𝑃𝐴𝐵 = 𝑣𝐴
𝐶𝑃𝐴𝐵

𝐴𝑃𝐴𝐵
          (3) 

The directions of the velocities of the points 𝑣𝐵⃗⃗ ⃗⃗  and 𝑣𝐶⃗⃗⃗⃗  are determined by the instantaneous 

rotation of the ruler AB around the instantaneous center of velocities РАВ. 
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Figure 1 

Determination of accelerations of points B and C 

Let's use the theorem - acceleration of points of a flat figure. Point A will be a pole, since the 

acceleration of point A is known. 

The vector equation for the acceleration of point B has the form: 

𝑎𝐵⃗⃗ ⃗⃗ = 𝑎𝐴⃗⃗⃗⃗ + 𝑎𝐵𝐴
𝑟⃗⃗⃗⃗⃗⃗  ⃗ + 𝑎𝐵𝐴

𝑐⃗⃗⃗⃗⃗⃗  ⃗         (4) 

where 𝑎𝐴⃗⃗⃗⃗   is the acceleration of the pole A (given); 

𝑎𝐵𝐴
𝑟⃗⃗⃗⃗⃗⃗  ⃗  and  𝑎𝐵𝐴

𝑐⃗⃗⃗⃗⃗⃗  ⃗ are the rotational and centripetal accelerations of the point B in the rotation of the 

ruler around the pole A. In this case: 

𝒂𝑩𝑨
𝒄 = 𝝎𝑨𝑩

𝟐 ∗ 𝐵𝐴            (5) 

The vector 𝑎𝐵𝐴
𝑐⃗⃗⃗⃗⃗⃗  ⃗ is located on BA and is directed from point B to pole A. 

𝒂𝑩𝑨
𝒓 = 𝜺𝑨𝑩 ∗ 𝐵𝐴          (6) 

The vector 𝑎𝐵𝐴
𝑟⃗⃗⃗⃗⃗⃗  ⃗ is located perpendicular to the ruler AB, its direction is unknown, since the 

direction of the angular acceleration 𝜺𝐴𝐵 is unknown. 

In equation (4) there are two unknowns: accelerations  𝑎𝐴⃗⃗ ⃗⃗   and 𝑎𝐵𝐴
𝑟⃗⃗⃗⃗⃗⃗  ⃗, which can be determined 

from the projection equations of vector equality (3) onto the directions of axes AX and AY: 

{
𝒂𝐵𝑥 = 𝒂𝐴𝑥 + 𝒂𝐵𝐴𝑥

𝑟 + 𝒂𝐵𝐴𝑥
𝑐

𝒂𝐵𝑦 = 𝒂𝐴𝑦 + 𝒂𝐵𝐴𝑦
𝑟 + 𝒂𝐵𝐴𝑦

𝑐           (7) 
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The direction of the vectors 𝑎𝐵⃗⃗ ⃗⃗  and 𝑎𝐵𝐴
𝑟⃗⃗⃗⃗⃗⃗  ⃗ is chosen arbitrarily. System solution (7) allows you to 

find the numerical value of  𝑎𝐵⃗⃗ ⃗⃗  and 𝑎𝐵𝐴
𝑟⃗⃗⃗⃗⃗⃗  ⃗r with a plus or minus sign. A positive value indicates the 

correctness of the chosen direction of the vectors 𝑎𝐵⃗⃗ ⃗⃗   and 𝑎𝐵𝐴
𝑟⃗⃗⃗⃗⃗⃗  ⃗, a negative value indicates the 

need to change their direction. 

System (7) allows us to determine unknown modules: 

𝑎𝐴 = √(𝑎𝐴𝑥)2 + (𝑎𝐴𝑦)
2
, 𝑎𝐴𝐵

𝑟 = √(𝑎𝐴𝐵𝑥
𝑟 )2 + (𝑎𝐴𝐵𝑦

𝑟 )
2
       (8) 

Ruler angular acceleration: 

𝜺𝐴𝐵 =
𝒂𝐵𝐴

𝑟

𝐵𝐴
            (9) 

The acceleration of point C is determined by the equation: 

𝑎𝐶⃗⃗⃗⃗ = 𝑎𝐴⃗⃗⃗⃗ + 𝑎𝐶𝐴
𝑟⃗⃗ ⃗⃗ ⃗⃗  + 𝑎𝐶𝐴

𝑐⃗⃗ ⃗⃗ ⃗⃗            (10) 

 

Figure 2 

where 𝑎𝐶𝐴
𝑟⃗⃗ ⃗⃗ ⃗⃗   and 𝑎𝐶𝐴

𝑐⃗⃗ ⃗⃗ ⃗⃗    are, respectively, the rotational and centripetal accelerations of the point C 

relative to the pole A:  

𝒂𝐶𝐴
𝑐 = 𝝎𝐴𝐵

2 ∗ 𝐴𝐶           (11) 

𝒂𝐶𝐵
𝑟 = 𝜺𝐴𝐵 ∗ 𝐴𝐶           (12) 
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Vector 𝑎𝐶𝐴
𝑐⃗⃗ ⃗⃗ ⃗⃗   is located on CA and directed from point C to pole A. Vector 𝑎𝐶𝐴

𝑟⃗⃗ ⃗⃗ ⃗⃗   is perpendicular to 

CA and directed in the same direction as 𝑎𝐵𝐴
𝑟⃗⃗⃗⃗⃗⃗  ⃗, Fig. 2. 

Equation (8) can be represented in projections on the axes Ax and Ay: 

{
𝒂𝐶𝑥 = 𝒂𝐴𝑥 + 𝒂𝐶𝐴𝑥

𝑐 + 𝒂𝐶𝐴𝑥
𝑟

𝒂𝐶𝑦 = 𝒂𝐴𝑦 + 𝒂𝐶𝐴𝑦
𝑐 + 𝒂𝐶𝐴𝑦

𝑟           (13) 

The acceleration projections of point C are determined from (11). The direction of the vector 𝑎𝐶⃗⃗⃗⃗  

is determined by the signs of the projections 𝒂𝐶𝑥 and 𝒂𝐶𝑦. 

Vector modulus: 

𝒂𝐶 = √(𝑎𝐶𝑥)2 + (𝑎𝐶𝑦)
2
         (14) 

Let's take a look at the different travel options 

T is the period specified by arbitrary units of time. AB = a+b, A(0, 𝑦𝐴) B(𝑥𝐵,0). Initial 

coordinates of points: A(0,0), B(a+b,0), C(a,0). Initial speed 𝒗𝐴0 = 0. 

Uniform movement 

Given: point C divides AB into segments a and b, A(0,𝑦𝐴), В(𝑥𝐵,0), initial A(0,0), B(AB,0).         

A moves uniformly from O → Y. Accelerations 𝒂𝐴 = 0, 𝒂𝐵 = 0, velocity 𝒗𝐴 =
𝐴𝐵∗4

𝑇
   (15) 

Find: 𝑦𝐴𝑖 
, 𝑥𝐶𝑖

, 𝑦𝐶𝑖
, 𝑣𝐶𝑖

,  𝒂𝐶𝑖
, φ𝑖 

Solution 

Coordinates A(0 , 𝑦𝐴𝑖 
): 

𝑦𝐴𝑖 
= 𝒗𝐴 ∗ 𝑖           (16) 

Further, according to equations (4) - (14) 

Coordinates B(𝑥𝐵𝑖 
, 0): 

sin 𝛼 =
𝑦𝐴𝑖 

𝐴𝐵
, 𝛼 = asin

𝑦𝐴𝑖 

𝐴𝐵
         (17) 

𝑥𝐵𝑖 
= cos𝛼 ∗ AB, 𝑦𝐵𝑖 

= 0         (18) 

𝝎𝐴𝐵 =
𝑣𝐴

𝐴𝑃𝐴𝐵
=

𝑣𝐴

𝑥𝐵𝑖 

           (19) 

𝒗𝐵 = 𝝎𝐴𝐵 ∗ 𝐵𝑃𝐴𝐵 = 𝝎𝐴𝐵 ∗ 𝑦𝐴𝑖 
         (20) 

From equation (5) 𝒂𝐵𝐴
𝑐 = 𝝎𝐴𝐵

2 ∗ 𝐵𝐴 

{
𝒂𝐵𝑥 = 𝒂𝐵𝐴

𝑐 ∗ cos 𝛼 + 𝒂𝐵𝐴
𝑟 ∗ sin 𝛼

0 = 𝒂𝐴𝑦 + 𝒂𝐵𝐴
𝑐 ∗ sin 𝛼 + 𝒂𝐵𝐴

𝑟 ∗ cos 𝛼
        (21) 
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Solving the resulting equations, we find 𝒂𝐵, 

𝒂𝐵𝐴
𝑟 =

−𝒂𝐴𝑦−𝒂𝐵𝐴
𝑐 ∗sin𝛼

cos𝛼
=

−𝒂𝐵𝐴
𝑐 ∗sin𝛼

cos𝛼
         (22) 

𝜺𝐴𝐵 =
𝒂𝐵𝐴

𝑟

𝐴𝐵
            (23) 

Coordinates 𝑃𝐴𝐵(𝑥𝐵𝑖
, 𝑦𝐴𝑖 

). 

Coordinates 𝐶(𝑥𝐶𝑖
, 𝑦𝐶𝑖 

) 

𝑎

𝐴𝐵
=

𝑥𝐶𝑖

𝑥𝐵𝑖

 , 
𝑏

𝐴𝐵
=

𝑦𝐶𝑖

𝑦𝐴𝑖

          (24)  

𝑥𝐶𝑖
=

𝑎

𝐴𝐵
∗ 𝑥𝐵𝑖

, 𝑦𝐶𝑖
=

𝑏

𝐴𝐵
∗ 𝑦𝐴𝑖

        (25) 

𝐶𝑃𝐴𝐵 = √𝑥𝐵𝑖 
2 + 𝑎2 − 2(𝑎 ∗ 𝑥𝐵𝑖 

) cos 𝛼        (26) 

𝒗𝐶 = 𝝎𝐴𝐵 ∗ 𝐶𝑃𝐴𝐵 = 𝝎𝐴𝐵 ∗ √𝑥𝐵𝑖 
2 + 𝑎2 − 2 ∗ (𝑎 ∗ 𝑥𝐵𝑖 

) ∗ cos 𝛼     (27) 

𝜑 = atan
𝑦𝐶𝑖 

𝑥𝐶𝑖 

            (28) 

Point C acceleration is determined by equation (10): ):  𝑎𝐶⃗⃗⃗⃗ = 𝑎𝐴⃗⃗⃗⃗ + 𝑎𝐶𝐴
𝑟⃗⃗ ⃗⃗ ⃗⃗  + 𝑎𝐶𝐴

𝑐⃗⃗ ⃗⃗ ⃗⃗   

𝒂𝐶𝐴
𝑐 = 𝝎𝐴𝐵

2 ∗ 𝐴𝐶 = 𝝎𝐴𝐵
2 ∗ 𝑎          (29) 

𝒂𝐶𝐴
𝑟 = 𝜺𝐴𝐵 ∗ 𝐴𝐶 = 𝜺𝐴𝐵 ∗ 𝑎          (30) 

{
𝒂𝐶𝑥 = 𝒂𝐴𝑥 + 𝒂𝐶𝐴𝑥

𝑟 + 𝒂𝐶𝐴𝑥
𝑐

𝒂𝐶𝑦 = 𝒂𝐴𝑦 + 𝒂𝐶𝐴𝑦
𝑟 + 𝒂𝐶𝐴𝑦

𝑐           (31) 

{
𝒂𝐶𝑥 = 0 + 𝒂𝐶𝐴

𝑟 ∗ sin 𝛼 + 𝒂𝐶𝐴
𝑐 ∗ cos 𝛼

𝒂𝐶𝑦 = 0 + 𝒂𝐶𝐴
𝑟 ∗ cos 𝛼 + 𝒂𝐶𝐴

𝑐 ∗ sin 𝛼
        (32) 

𝒂𝐶 = √𝒂𝐶𝑥
2 + 𝒂𝐶𝑦

2            (33) 

Uniformly accelerated motion 

Given: point C divides AB into segments a and b, A moves with uniform acceleration from O → 

Y, A(0,y_A) В(x_B,0), initial A(0,0), В(AB,0), 〖𝒂𝐴𝑖
= 𝑐𝑜𝑛𝑠𝑡, 𝒗𝐴0 

= 0. 

Find: 𝑦𝐴𝑖 
, (𝑥𝐶𝑖

, 𝑦𝐶𝑖 
), 𝑣𝐶𝑖

, 𝒂𝐶𝑖
, φ𝑖 

Solution 

𝒗𝐴𝑖 
=

𝒂𝐴∗𝑖2

2
;   𝑖 = 1…𝑛 =

𝑇

4
          (34) 
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𝐴𝐵 = 𝒗𝐴𝑛 =
𝒂𝐴∗𝑛2

2
            (35) 

𝒂𝐴𝑖
= 𝒂𝐴 =

2𝐴𝐵

𝑛2
           (36) 

Coordinates A(0, 𝑦𝐴𝑖 
): 

𝑦𝐴𝑖
=

𝒂𝐴∗𝑖2

2
            (37) 

Further on the equations (4) – (14) 

Coordinates B(𝑥𝐵𝑖 
, 0): 

𝑥𝐵𝑖 
= √𝐴𝐵2 − 𝑦𝐴𝑖

2           (38) 

Coordinates 𝐶(𝑥𝐶𝑖
, 𝑦𝐶𝑖 

): 

𝑎

𝐴𝐵
=

𝑥𝐶𝑖

𝑥𝐵𝑖

 , 
𝑏

𝐴𝐵
=

𝑦𝐶𝑖

𝑦𝐴𝑖

          (39)  

𝑥𝐶𝑖
=

𝑎

𝐴𝐵
∗ 𝑥𝐵𝑖

, 𝑦𝐶𝑖
=

𝑏

𝐴𝐵
∗ 𝑦𝐴𝑖

        (40) 

𝝎𝐴𝐵 =
𝒗𝐴𝑖 

𝐴𝑃𝐴𝐵
=

𝒗𝐴𝑖 

𝑥𝐵𝑖 

           (41) 

𝒂𝐵𝐴
𝑐 = 𝝎𝐴𝐵

2 ∗ 𝐴𝐵           (42) 

𝒂𝐵𝐴
𝑟 = 𝜺𝐴𝐵 ∗ 𝐵𝐴           (43)  

The vector 𝑎𝐵𝐴
𝑟⃗⃗⃗⃗⃗⃗  ⃗ is located perpendicular to the ruler AB, its direction is unknown, since the 

direction of the angular acceleration 𝜺𝐴𝐵 is unknown. 

We project the vector equation (4) on the coordinate axis: 

{
𝒂𝐵𝑥 = 𝒂𝐵𝐴

𝑐 ∗ cos 𝛼 + 𝒂𝐵𝐴
𝑟 ∗ sin 𝛼

0 = 𝒂𝐴𝑦 + 𝒂𝐵𝐴
𝑐 ∗ sin 𝛼 + 𝒂𝐵𝐴

𝑟 ∗ cos 𝛼
        (44) 

Solving the resulting equations, we find 𝒂𝐵: 

𝒂𝐵𝐴
𝑟 =

−𝒂𝐴𝑦−𝒂𝐵𝐴
𝑐 ∗sin𝛼

cos𝛼
          (45) 

𝜺𝐴𝐵 =
𝒂𝐵𝐴

𝑟

𝐴𝐵
            (46) 

The acceleration of point С is determined by equation (10): 𝑎𝐶⃗⃗⃗⃗ = 𝑎𝐴⃗⃗⃗⃗ + 𝑎𝐶𝐴
𝑟⃗⃗ ⃗⃗ ⃗⃗  + 𝑎𝐶𝐴

𝑐⃗⃗ ⃗⃗ ⃗⃗   

𝒂𝐶𝐴
𝑐 = 𝝎𝐴𝐵

2 ∗ 𝐴𝐶 = 𝝎𝐴𝐵
2 ∗ 𝑎          (47) 

𝒂𝐶𝐴
𝑟 = 𝜺𝐴𝐵 ∗ 𝐴𝐶 = 𝜺𝐴𝐵 ∗ 𝑎          (48) 

Equation (10) can be represented in projections on the axes Ax and Ay: 
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{
𝒂𝐶𝑥 = 𝒂𝐴𝑥 + 𝒂𝐶𝐴𝑥

𝑟 + 𝒂𝐶𝐴𝑥
𝑐

𝒂𝐶𝑦 = 𝒂𝐴𝑦 + 𝒂𝐶𝐴𝑦
𝑟 + 𝒂𝐶𝐴𝑦

𝑐           (49) 

{
𝒂𝐶𝑥 = 0 + 𝒂𝐶𝐴

𝑟 ∗ sin 𝛼 + 𝒂𝐶𝐴
𝑐 ∗ cos 𝛼

𝒂𝐶𝑦 = 𝒂𝐴 + 𝒂𝐶𝐴
𝑟 ∗ cos 𝛼 + 𝒂𝐶𝐴

𝑐 ∗ sin 𝛼
        (50) 

𝑎𝐶 = √𝑎𝐶𝑥
2 + 𝑎𝐶𝑦

2            (51) 

Elliptical movement 

There is a system of equations for a parametric pendulum (52): 

{
𝑥 = 𝑟(𝜑(𝑡))·𝑐𝑜𝑠(𝜑(𝑡))

𝒚 = 𝑟(𝜑(𝑡))·𝑠𝑖𝑛(𝜑(𝑡))
          (52) 

Substitute the radius of the ellipse about the center 𝑟(𝜑(𝑡)) =
𝑏

√1−𝑒2𝑐𝑜𝑠2𝜑(𝑡)
   (53) 

We solve the system with respect to the rotation angle φ. We obtain the kinematic equation of 

curves of the second order with respect to the center: 

�̈� =
2∗𝑒2∗𝑐𝑜𝑠(𝜑)∗𝑠𝑖𝑛(𝜑)∗�̇�2

1−𝑒2∗𝑐𝑜𝑠(𝜑)2
           (54) 

Given: point C divides AB into segments a and b, A moves elliptically according to formula (54), 

from O → Y, A A(0,𝑦𝐴), В(𝑥𝐵,0), initial A(0,0,) B( AB,0), 𝒗𝐴0 
= 0 is calculated by formula (54). 

Here, the calculations are carried out by the program [1] from the application. 

Find: 𝑦𝐴𝑖 
, 𝑥𝐶𝑖

, 𝑦𝐶𝑖
, 𝑣𝐶𝑖

,  𝒂𝐶𝑖
. 

Solution 

Formula (54) calculates 𝜑𝑖 , 𝑥𝐶𝑖 
, 𝑦𝐶𝑖 

: 

𝛼 = arcsin
𝑦𝐶

𝑏
            (56) 

𝛽 =
𝜋

2
− 𝜑𝑖            (57) 

𝛾 = arcsin (
𝑟𝑖∗sin𝛽

𝑎
)           (58) 

𝜓 = 𝜋 − 𝛾 − 𝛽           (59) 

𝑦𝐴𝑖
=

𝑦𝐶𝑖 +𝑎∗sin𝛼

𝑏
           (59) 

𝑣𝐴𝑖
= 𝑦𝐴𝑖

− 𝑦𝐴𝑖−1
           (60) 

𝑎𝐴𝑖
= 𝑣𝐴𝑖

− 𝑣𝐴𝑖−1
           (61) 

Further, according to equations (4) - (14) 

Coordinates B(𝑥𝐵𝑖 
, 0): 
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𝑥𝐵𝑖 
= √𝐴𝐵2 − 𝑦𝐴𝑖

2           (62) 

Re-find the coordinates 𝐶(𝑥𝐶𝑖
, 𝑦𝐶𝑖 

): 

𝑎

𝐴𝐵
=

𝑥𝐶𝑖

𝑥𝐵𝑖

 , 
𝑏

𝐴𝐵
=

𝑦𝐶𝑖

𝑦𝐴𝑖

          (63)  

𝑥𝐶𝑖
=

𝑎

𝐴𝐵
∗ 𝑥𝐵𝑖

, 𝑦𝐶𝑖
=

𝑏

𝐴𝐵
∗ 𝑦𝐴𝑖

        (64) 

𝝎𝐴𝐵 =
𝒗𝐴𝑖 

𝐴𝑃𝐴𝐵
=

𝒗𝐴𝑖 

𝑥𝐵𝑖 

           (65) 

𝒂𝐵𝐴
𝑐 = 𝝎𝐴𝐵

2 ∗ 𝐴𝐵           (66) 

𝒂𝐵𝐴
𝑟 = 𝜺𝐴𝐵 ∗ 𝐵𝐴           (67)  

The vector 𝑎𝐵𝐴
𝑟⃗⃗⃗⃗⃗⃗  ⃗ is located perpendicular to the ruler AB, its direction is unknown, since the 

direction of the angular acceleration 𝜺𝐴𝐵 is unknown. 

We project the vector equation (4) on the coordinate axis: 

{
𝒂𝐵𝑥 = 𝒂𝐵𝐴

𝑐 ∗ cos 𝛼 + 𝒂𝐵𝐴
𝑟 ∗ sin 𝛼

0 = 𝒂𝐴𝑦 + 𝒂𝐵𝐴
𝑐 ∗ sin 𝛼 + 𝒂𝐵𝐴

𝑟 ∗ cos 𝛼
        (68) 

Solving the resulting equations, we find 𝒂𝐵, 

𝒂𝐵𝐴
𝑟 =

−𝒂𝐴𝑦−𝒂𝐵𝐴
𝑐 ∗sin𝛼

cos𝛼
          (69) 

𝜺𝐴𝐵 =
𝒂𝐵𝐴

𝑟

𝐴𝐵
            (70) 

Point C acceleration is determined by equation (10): 𝑎𝐶⃗⃗⃗⃗ = 𝑎𝐴⃗⃗⃗⃗ + 𝑎𝐶𝐴
𝑟⃗⃗ ⃗⃗ ⃗⃗  + 𝑎𝐶𝐴

𝑐⃗⃗ ⃗⃗ ⃗⃗   

𝒂𝐶𝐴
𝑐 = 𝝎𝐴𝐵

2 ∗ 𝐴𝐶 = 𝝎𝐴𝐵
2 ∗ 𝑎          (71) 

𝒂𝐶𝐴
𝑟 = 𝜺𝐴𝐵 ∗ 𝐴𝐶 = 𝜺𝐴𝐵 ∗ 𝑎          (72) 

Equation (10) can be represented in projections on the axes Ax and Ay: 

{
𝒂𝐶𝑥 = 𝒂𝐴𝑥 + 𝒂𝐶𝐴𝑥

𝑟 + 𝒂𝐶𝐴𝑥
𝑐

𝒂𝐶𝑦 = 𝒂𝐴𝑦 + 𝒂𝐶𝐴𝑦
𝑟 + 𝒂𝐶𝐴𝑦

𝑐           (73) 

{
𝒂𝐶𝑥 = 0 + 𝒂𝐶𝐴

𝑟 ∗ sin 𝛼 + 𝒂𝐶𝐴
𝑐 ∗ cos 𝛼

𝒂𝐶𝑦 = 𝒂𝐴 + 𝒂𝐶𝐴
𝑟 ∗ cos 𝛼 + 𝒂𝐶𝐴

𝑐 ∗ sin 𝛼
        (74) 

𝑎𝐶 = √𝑎𝐶𝑥
2 + 𝑎𝐶𝑦

2            (75) 

The obtained motion parameters allow checking the fulfillment of Kepler's laws. The check is 

carried out by the program [1] from the application. 

Kepler's second law 
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Uniform movement 

 

Figure 3 

Uniformly accelerated motion 

 

Figure 4 

Elliptical movement 
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Figure 5 

Equality of the areas of sectors is carried out only with elliptical motion. 

Conclusion 

We see that the ellipsograph is a good tool for studying the laws of motion along an ellipse. 

The article used materials from textbooks on mechanics. Perhaps the derivation of formulas (54), 

is rarely given, so the article [1] is proposed 
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