
THE REINTERPRETATION OF THE ELECTROMAGNETIC

WAVE EQUATION

 

Andreas Martin,1 

1 Private, Westerstede 26655, Germany

andmartin326@gmail.com

ABSTRACT

This publication contains a mathematical approach for a reinterpretation of the electromagne-

tic wave equation given a magnetic and electric field density. The basis for this is the essay

"The Reinterpretation of the 'Maxwell Equations'" (Martin, 2021). In this paper it is shown

that there is a magnetic field density due to the fact that div B⃗  is equal to (Sp)grad B⃗ .

The same approach applies to the electric field density. The consequence of this is that both

the magnetic field density and the electric field density not only play an important role in the

"Maxwell equations", but also in the calculation of the electromagnetic wave equation.

In this publication, the electromagnetic wave equation is calculated with the help of vector

calculus.  First,  the individual components of the magnetic wave and the individual  com-

ponents of the electric wave are derived.

Furthermore, it is shown that the individual components of the two types of waves result in

three different directions of movement, which the respective field can theoretically achieve in

the direction of propagation. In addition, the Poynting vector shows a longitudinal energy

wave in the direction of propagation of the electromagnetic wave, which is suitable for ener-

gy transport.

As already mentioned, the calculations made in this elaboration are based on the principles of

vector calculation and show a transverse wave component, a longitudinal and a combined

wave component of the electromagnetic wave.
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1. INTRODUCTION

The German physicist Heinrich Rudolf Hertz (1857 - 1894) succeeded in proving the exis-

tence of electromagnetic waves in 1887. The term for electromagnetic waves at the time was

radio waves. Hertz experiments suggested that the electromagnetic wave is a transverse wave.

Previously, the English mathematician James Clerk Maxwell assumed that electromagnetism

must propagate through space in the form of waves.

The Croatian experimenter Nikola Tesla also dealt with the phenomenon of electromagnetic

waves. According to Tesla, however, the electromagnetic wave propagates in the longitudinal

direction, i.e. as a longitudinal wave in space.

In this paper, the electromagnetic wave equation is analyzed with the help of vector calculati-

on and reinterpreted under the assumption of a magnetic and electric field density. The as-

sumption of these two field densities are based on the paper "The Reinterpretation of the

'Maxwell Equations'" (Martin, 2021).

2. IDEAS AND METHODS

2.1 IDEA FOR REINTERPRETING THE ELECTROMAGNETIC WAVE
EQUATION

The basic idea for the reinterpretation of the electromagnetic wave equation is based on the

elaboration  "The Reinterpretation of the 'Maxwell  Equations'"  (Martin,  2021).  There it  is

shown that the previous law of induction rot E⃗  =  
δ B⃗
δ t

 only works if there is a magnetic

field density  div B⃗  = ρm . This connection is established via the mathematical principle

(Sp)grad B⃗  =  div B⃗ , since the terms of   (Sp)grad B⃗  are the same terms required for

δ B⃗
δ t

. On the one hand, this means that the law of induction in the undeformed space medi-

um  and  in  the  undistorted  magnetic  field  must  be  expanded  to  the  following  form

rot E⃗  =  
δ B⃗
δ t

 +  ρm  and, on the other hand, that a magnetic and an electric field density

must also be taken into account in the electromagnetic wave equation.

The notations of the physical symbols used in this elaboration are shown below. Also here are

the basic sets of equations that are needed to reinterpret the wave equation. These come from

the elaboration "The Reinterpretation of the 'Maxwell Equations'" (Martin, 2021).
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E⃗ =  electric field strength 

v⃗  =  velocity

B⃗  =  magnetic flux density

H⃗ =  magnetic field strength

D⃗ =  electric flux density

× =  cross product

s⃗  =  route

f⃗  = deflection

t   =  time 

c  =  speed of light

ρel = electrical space charge density

ρm = magnetic space charge density

δ   = delta

rot = rotation

div = divergence

grad = gradient 

Unipolar induction according to Farady:

E⃗  = v⃗  × B⃗                                                                                                                (2.1.1)

Rotation of the electric field:

rot E⃗  =  rot( v⃗  ×  B⃗)                                                                                                   (2.1.2)

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                        (2.1.3)

Basic rule of vector calculation (magnetic field):

(Sp)(grad B⃗)  = div ⃗( B)                                                                                                (2.1.4)

Unipolar induction for magnetic fields:

H⃗  =  −( v⃗  ×  D⃗)                                                                                                          (2.1.5)

Rotation of the magnetic field:

rot H⃗  =  −rot ( v⃗  × D⃗)                                                                                               (2.1.6)
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rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗)  v⃗  − v⃗  div D⃗  +  D⃗  div v⃗                                (2.1.7)

Basic rule of vector calculation (electric field):

(Sp)(grad D⃗)  = div ⃗( D)                                                                                               (2.1.8)

Wave equation from classical mechanics:

δ
2

δt 2  ⋅ f⃗  =  c2  ⋅ δ
2

δ s2  ⋅ f⃗                                                                                                (2.1.9)

2.2 VECTOR CALCULA BASICS

In order to be able to derive the electromagnetic wave equation from vector calculation, the

basics used for this are described in this chapter.

First, three meta-vectors  a⃗ ,  b⃗  and  c⃗  are introduced at this point. The three me-

ta-vectors will be used in the following mathematical basic descriptions. In Equation 2.2.1,

these three meta-vectors are used to map the cross product.

c⃗  = a⃗  × b⃗                               (2.2.1)

The rot - operator is applied to Equation 2.2.1 on both sides of the equation. This creates

Equation 2.2.2.

rot c⃗  =  rot (a⃗  × b⃗ )                                           (2.2.2)

Now the right-hand side of Equation 2.2.2 is rewritten according to the rules of vector calcu-

lation. Equation 2.2.3 results from this.

rot c⃗  =  rot (a⃗×b⃗)  = (grad a⃗)  b⃗  −  (grad b⃗)  a⃗  +  a⃗  div b⃗  − b⃗  div a⃗                       (2.2.3)

On the right-hand side of Equation 2.2.3, two vector gradients (grad) are created, each of

which forms a matrix and two vector divergences (div).

If a minus sign is now applied to all sides of Equation 2.2.3, Equation 2.2.3 changes to Equa-

tion 2.2.4.
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-rot c⃗  = - rot (a⃗× b⃗)  = -(grad a⃗ )  b⃗  +  (grad b⃗ )  a⃗  − a⃗  div b⃗  + b⃗  div a⃗                (2.2.4)

In the following, the two Equations 2.2.3 and 2.2.4 are calculated a second time with the rota-

tion operator (rot). The two Equations 2.2.5 and 2.2.6 arise.

rot rot c⃗  = rot rot ( a⃗×b⃗)  = grad div c⃗  − div grad c⃗  =  grad div (a⃗×b⃗)  − div grad (a⃗×b⃗ )        (2.2.5)

-rot rot c⃗  = -rot rot (a⃗×b⃗)  =  -grad div c⃗  +  div grad c⃗  = -grad div (a⃗× b⃗)  + div grad ( a⃗× b⃗)   (2.2.6)

If the last term of each of the two Equations 2.2.5 and 2.2.6 is rewritten with the help of the

La-Place-operator, Equations 2.2.7 and 2.2.8 result.

rot rot c⃗  =  grad div c⃗  −  div grad c⃗  =  grad div c⃗  − Δ c⃗                                      (2.2.7)

-rot rot c⃗  =  -grad div c⃗  +  div grad c⃗  =  -grad div c⃗  +  Δ c⃗                                  (2.2.8)

If Equations 2.2.7 and 2.2.8 are now rearranged, Equation 2.2.9 results.

Δ c⃗  =  grad div c⃗  −  rot rot c⃗                                                                                     (2.2.9)

2.3 DERIVATION OF THE ELECTROMAGNETIC WAVE EQUATION

The rot - operator is applied to Equation 2.1.2 and Equation 2.1.6 according to the calculation

rules from Equation 2.2.5 and 2.2.6. Taking Equations 2.2.7 and 2.2.8 into account, the ex-

pressions from Equations 2.3.3, 2.3.4, 2.3.5 and 2.3.6 arise.

 

rot E⃗  = rot( v⃗× B⃗)                                                                                                      (2.1.2)

rot rot E⃗  = grad div E⃗  − div grad E⃗  =  grad div ( v⃗×B⃗) − div grad ( v⃗× B⃗)                 (2.3.3)

rot rot E⃗  =  grad div E⃗  −  div grad E⃗                                                                            (2.3.4)

rot H⃗  =  −rot ( v⃗× D⃗)                                                                                                  (2.1.6)

rot rot H⃗  = -grad div H⃗  + div grad H⃗  =  -grad div ( v⃗× B⃗) +  div grad ( v⃗× B⃗)            (2.3.5)
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rot rot H⃗  = -grad div H⃗  + div grad H⃗                                                                         (2.3.6)

Die Gleichung 2.3.4 bildet die elektrische Wellengleichung ab. Demnach zeigt die Gleichung

2.3.6 die magnetische Wellengleichung.

In einem nächsten Schritt werden nun die einzelnen Terme aus den Gleichungen 2.3.4 und

2.3.6, im Detail berechnet und analysiert.

2.4 THE ELECTRICAL WAVE EQUATION

In order to be able to understand the calculations for the electric and later also for the magne-

tic wave equation, the following descriptions first deal with the basics of electromagnetic wa-

ves. Then the mathematical derivation of the electric wave is discussed and finally the indivi-

dual types of electric waves are derived.

2.4.1 FUNDAMENTALS OF THE ELECTROMAGNETIC WAVE EQUATION

First,  the electromagnetic wave equation is mapped, this is referred to below as Equation

2.4.3 and 2.4.4 and calculated taking into account Equations 2.4.1 and 2.4.2.

Gaussian law:

div D⃗  = ρel                                                                                                                  (2.4.1)

Dirac's law:

div B⃗  =  ρm                                                                                                                  (2.4.2)

Simplified electric wave equation:

Δ E⃗  =  
1
c2   ⋅ 

δ
2 E⃗
δ t2

                                                                                                       (2.4.3)

Simplified magnetic wave equation:

Δ H⃗  = 
1
c2   ⋅ 

δ
2 H⃗
δ t 2                                                                                                      (2.4.4)
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2.4.2  MATHEMATICAL DERIVATION OF THE ELECTRICAL WAVE EQUATION

In this chapter, Equation 2.4.3 is derived mathematically from Equation 2.3.4. The derivation

is based on the physical assumption that there is an electric field density. Equations 2.4.1 is

the mathematical-physical expression for this. The result of this is that both the gradients oc-

curring in the equations and divergences have an influence on the overall result.

First, at this point, the first term from Equation 2.3.4 is examined. This is shown in Equation

2.4.2.1. In Equation 2.4.2.1, the vector E⃗  is rewritten into its component notation.

rot rot E⃗  =  rot rot (
E x

E y

E z
)                                                                                           (2.4.2.1)

Next, the first rot - arithmetic-operation is also written in its component notation in Equation

2.4.2.2. This shows that the individual components of vector E⃗ , namely E x , E y  and

E z , are offset against the individual components of vector ∇⃗ , namely δ
δ x

, δ
δ y

and δ
δ z

 in the cross product.

rot rot E⃗  =  rot ((
δ
δ x
δ
δ y
δ
δ z

)  ×  (
E x

E y

E z
))                                                                               (2.4.2.2)

The cross product from Equation 2.4.2.2 has been rewritten into summation form in Equation

2.4.2.3.

rot rot E⃗  =  rot ((
δ E z

δ y
 −  

δ E y

δ z
δ E x

δ z
 − 

δ E z

δ x
δ E y

δ x
 − 

δ E x

δ y
))                                                                            (2.4.2.3)
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In the next step, the above rot - operator is rewritten in component notation so that the indivi-

dual components of the second  ∇⃗ - operator, namely  δ
δ x

,  δ
δ y

 and  δ
δ z

 in the

cross product, can be calculated with the rest of the right-hand side of Equation 2.4.2.3. This

is how Equation 2.4.2.4 is created.

rot rot E⃗  =  ((
δ

δ x
δ

δ y
δ
δ z

)  × (
δ E z

δ y
 −  

δ E y

δ z
δ E x

δ z
 −  

δ E z

δ x
δE y

δ x
 −  

δ Ex

δ y
))                                                                  (2.4.2.4)

After the individual components of the ∇⃗ - operator, namely δ
δ x

,  δ
δ y

 and δ
δ z

in the cross product, have been calculated with the remainder of the right-hand side of Equati-

on 2.4.2.4, Equation 2.4.2.5 follows.

rot rot E⃗  =  (
δ

(
δE y

δ x
 −  

δ E x

δ y
)

δ y
 − δ

(
δ E x

δ z
 − 

δ E z

δ x
)

δ z

δ

(
δ E z

δ y
 − 

δ E y

δ z
)

δ z
 − δ

(
δ E y

δ x
 − 

δ E x

δ y
)

δ x

δ

(
δ E x

δ z
 − 

δ E z

δ x
)

δ x
 − δ

(
δ E z

δ y
 − 

δE y

δ z
)

δ y

)                                            (2.4.2.5)

Equation 2.4.2.5 is now simplified to Equation 2.4.2.6. In Equation 2.4.2.6, a notation was

chosen for the double directional derivative that is clear and therefore easy to understand.

This is useful because in the case of field sizes that do not change over time, but change in

space, it doesn't matter which direction is derived first.

rot rot E⃗  =  (
δ

2 E y

δ xδ y
 − 

δ
2 E x

δ yδ y
 − 

δ
2 E x

δ z δ z
 + 

δ
2 E z

δ x δ z
δ

2 E z

δ y δ z
 −  

δ
2 E y

δ z δ z
 − 

δ
2 E y

δ xδ x
 +  

δ
2 E x

δ yδ x
δ

2 Ex

δ z δ x
 − 

δ
2 E z

δ xδ x
 − 

δ
2 E z

δ yδ y
 + 

δ
2 E y

δ zδ y
)                                            (2.4.2.6)
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Equation 2.4.2.6 shows that each term of the matrix represents a double directional derivati-

ve. If Equation 2.4.2.6 is now simplified in the form that two different directional derivations

are shown separately and two directional derivations in the same direction are combined,

Equation 2.4.2.7 results.

rot rot E⃗  =  (
δ

2 E y

δ x δ y
 −  

δ
2 E x

δ y2  −  
δ

2 E x

δ z2  +  
δ

2 E z

δ x δ z

δ
2 E z

δ y δ z
 − 

δ
2 E y

δ z 2
 − 

δ
2 E y

δ x2
 +  

δ
2 E x

δ y δ x

δ
2 E x

δ z δ x
 − 

δ
2 E z

δ x 2  −  
δ

2 E z

δ y2  +  
δ

2 E y

δ z δ y
)                                               (2.4.2.7)

Equation 2.4.2.7 was used to mathematically derive the first term from Equation 2.3.4.

In the next step, the second term from Equation 2.3.4 is examined. This is shown in Equation

2.4.2.8. On the right side of Equation 2.4.2.8 the vector E⃗  is shown in component notati-

on.

grad div E⃗  =  grad div (
Ex

E y

E z
)                                                                                    (2.4.2.8)

First of all, it can be seen that the divergence of the electric field vector div ⃗(E )  must be

determined  in  Equation  2.4.2.8.  In  the  paper  "The  Reinterpretation  of  the  'Maxwell

Equations'" (Martin, 2021) it was already shown why these must have a value from a mathe-

matical  point  of  view.  This  is  in  a  direct  connection  via  the  mathematical  expression

(Sp)(grad E⃗)  = div ⃗(E ) .  The  trace  from  the  matrix  of  the  electric  field  gradient

(Sp)(grad E⃗)  is composed of the values  
δE x

δ x
,  

δE y

δ y
 and  

δE z

δ z
. These become

δ E⃗
δ t

 when offset against the velocity vector 
δ s⃗
δ t

. This means that if div ⃗(E )  has no

value, 
δ E⃗
δ t

 would have no value either.
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The electric wave is therefore a wave which, according to this interpretation, is also based on

density states. The different density states result in potential differences in the electric field,

from which the direction and length of the electric field pointer follow. 

Next, from Equation 2.4.2.8, the div arithmetic operation is applied to the individual com-

ponents of the vector E⃗ , namely E x , E y  and E z . To do this, the individual com-

ponents of the ∇⃗ - operator, namely δ
δ x

, δ
δ y

 and δ
δ z

, are calculated in the form

shown in Equation 2.4.2.9.

grad div E⃗  =  grad (δ E x

δ x
 +  

δE y

δ y
 + 

δ E z

δ z )                                                           (2.4.2.9)

In the next step, the grad arithmetic operation is performed on the right-hand side of Equation

2.4.2.9. To do this, the individual components of the ∇⃗ - operator, namely δ
δ x

, δ
δ y

and  δ
δ z

,  are  calculated  with  the  expression  (δE x

δ x
 +  

δ E y

δ y
 +  

δ E z

δ z )  as  shown in

Equation 2.4.2.10.

grad div E⃗  =  (
δ

(
δ E x

δ x
 +  

δ E y

δ y
 +  

δ E z

δ z
)

δ x

δ

(
δ E x

δ x
 +  

δ E y

δ y
 +  

δ E z

δ z
)

δ y

δ

(
δ E x

δ x
 +  

δ E y

δ y
 +  

δ E z

δ z
)

δ z

)                                                           (2.4.2.10)

Now the right-hand side of Equation 2.4.2.10 is  simplified for the first  time to the form

shown in Equation 2.4.2.11. For the purpose of standardization, the same notation was chosen

for this as was used to derive the first term from Equation 2.3.4.
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grad div E⃗  =  (
δ

2 E x

δ x δ x
 +  

δ
2 E y

δ y δ x
 +  

δ
2 E z

δ z δ x
δ

2 E x

δ x δ y
 +  

δ
2 E y

δ y δ y
 + 

δ
2 E z

δ z δ y
δ

2 E x

δ xδ z
 + 

δ
2 E y

δ yδ z
 +  

δ
2 E z

δ z δ z
)                                                       (2.4.2.11)

Finally, Equation 2.4.2.11 is simplified once more. Equation 2.4.2.12 results from this.

grad div E⃗  =  (
δ

2 E x

δ x2  + 
δ

2 E y

δ yδ x
 +  

δ
2 E z

δ zδ x

δ
2 E x

δ x δ y
 +  

δ
2 E y

δ y2
 +  

δ
2 E z

δ z δ y

δ
2 E x

δ xδ z
 + 

δ
2 E y

δ yδ z
 + 

δ
2 E z

δ z 2
)                                                         (2.4.2.12)

Equation 2.4.2.12 was used to derive the second term from Equation 2.3.4. At this point,

finally, the third term from Equation 2.3.4 is examined. This is shown in Equation 2.4.2.13.

Here, too, the component notation for the vector E⃗  was chosen on the right-hand side of

the equation.

div grad E⃗  =  div grad (
Ex

E y

E z
)                                                                                  (2.4.2.13)

First the grad - operation is applied to the vector E⃗ . To do this, the individual elements of

the ∇⃗ - operator are calculated in the form with the individual elements of the vector E⃗

, which is shown in Equation 2.4.2.14.

div grad E⃗  =  div (
δ E x

δ x
δ E x

δ y
δ Ex

δ z
δ E y

δ x
δ E y

δ y
δ E y

δ z
δ E z

δ x

δ E z

δ y

δ E z

δ z
)                                                                (2.4.2.14)
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Now the div - operation is calculated in the right part of Equation 2.4.2.14. To do this, the in-

dividual components of the ∇⃗ - operator are calculated using the matrix in the right-hand

part of Equation 2.4.2.14. This results in the Equation 2.4.2.15.

div grad E⃗  =  (
δ(

δ E x

δ x
)

δ x
 + 

δ(
δ E x

δ y
)

δ y
 + 

δ(
δ E x

δ z
)

δ z

δ(
δ E y

δ x
)

δ x
 +  

δ(
δ E y

δ y
)

δ y
 +  

δ(
δ E y

δ z
)

δ z

δ(
δ E z

δ x
)

δ x
 +  

δ(
δ E z

δ y
)

δ y
 +  

δ (
δE z

δ z
)

δ z

)                                              (2.4.2.15)

Equation 2.4.2.15 can be simplified to Equation 2.4.2.16. Both equations consist of terms that

represent a double directional derivative in the same direction.

div grad E⃗  =  (
δ

2 E x

δ x2  + 
δ

2 Ex

δ y2  +  
δ

2 E x

δ z 2

δ
2 E y

δ x2  +  
δ

2 E y

δ y2  + 
δ

2 E y

δ z2

δ
2 E z

δ x2  +  
δ

2 E z

δ y2  +  
δ

2 E z

δ z2
)                                                            (2.4.2.16)

Equation 2.4.2.16 was used to derive the third term from Equation 2.3.4. 

In a final step,  the results  from Equations 2.4.2.7, 2.4.2.12 and 2.4.2.16 are inserted into

Equation 2.3.4. Equation 2.4.2.17 arises.

                  rot rot E⃗                     =            grad div E⃗              −          div grad E⃗             (2.3.4)

(
δ2 E y

δ x δ y
 −

δ2 E x

δ y2  −
δ2 E x

δ z2 +
δ2 E z

δ x δ z

δ
2 E z

δ y δ z
 −

δ
2 E y

δ z 2  −
δ

2 E y

δ x2 +
δ

2 E x

δ y δ x

δ
2 E x

δ z δ x
 −

δ
2 E z

δ x2
 −

δ
2 E z

δ y2
+

δ
2 E y

δ zδ y
)=(

δ2 E x

δ x2 +
δ 2 E y

δ y δ x
+

δ2 E z

δ zδ x

δ
2 Ex

δ x δ y
+

δ
2 E y

δ y2 +
δ

2 E z

δ zδ y

δ
2 E x

δ x δ z
+

δ
2 E y

δ y δ z
+

δ
2 E z

δ z2
) −(

δ
2 E x

δ x2
+

δ
2 E x

δ y2
+

δ
2 E x

δ z2

δ
2 E y

δ x2 +
δ

2 E y

δ y2 +
δ

2 E y

δ z2

δ2 Ez

δ x2 +
δ2 E z

δ y2 +
δ2 Ez

δ z2
)      (2.4.2.17)

Equations 2.3.4 and 2.4.2.17 are the basis for all further calculations in this paper.
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2.4.3 THE DERIVATION OF THE HERTZ WAVE 

(ELECTRICAL TRANSVERSAL WAVE)

  

With Equation 2.4.2.17, a statement about the nature of the electromagnetic wave can now be

made. Equation 2.4.2.17 shows that there are three different elements that play a role in the

interpretation of an electric wave.  There are the transverse elements (  
δ

2 E x

δ y2 ,  
δ

2 Ex

δ z2 ,

δ
2 E y

δ x2 ,  
δ

2 E y

δ z 2 ,  
δ

2 E z

δ x2 ,  
δ

2 E z

δ y2  ), the longitudinal elements (  
δ

2 Ex

δ x2 ,  
δ

2 E y

δ y2 ,

δ
2 E z

δ z2  )  and a  combination  of  these two elements  (  
δ

2 E y

δ xδ y
,  

δ
2 E z

δ xδ z
,  

δ
2 E z

δ y δ z
,

δ
2 Ex

δ xδ y
, 

δ
2 E x

δ xδ z
, 

δ
2 E y

δ y δ z
 ).  

In order to do justice to the current interpretation of the electromagnetic wave, in relation to

Equation 2.4.2.17, the following two assumptions must be made. On the one hand there must

be no longitudinal parts and on the other hand there must be no combination of longitudinal

wave part and transversal wave part. From this it follows that only the transverse components

from Equation 2.4.2.17 can be considered as a basis for an interpretation of the electromagne-

tic wave in order to ultimately derive a Hertzian wave. This fact is shown in Equation 2.4.3.1.

Equation 2.3.4 is used here for better orientation with Equation 2.4.3.1.

                  rot rot E⃗                =      grad div E⃗       −           div grad E⃗                              (2.3.4)

(
0  − 

δ
2 Ex

δ y2
 − 

δ
2 E x

δ z2
 +  0

0  −  
δ

2 E y

δ z2  − 
δ

2 E y

δ x2  +  0

0  −  
δ

2 E z

δ x2
 − 

δ
2 E z

δ y2
 +  0)  = (

0  +  0  +  0
0  +  0  +  0
0  +  0  +  0)  − (

0  +  
δ

2 E x

δ y2  +  
δ

2 E x

δ z2

δ
2 E y

δ x2  + 0  +  
δ

2 E y

δ z 2

δ
2 E z

δ x2  + 
δ

2 E z

δ y2  +  0)             (2.4.3.1)

In a three-dimensional coordinate system with the coordinates x, y and z, Equation 2.4.3.1

fulfills the physical assumption that there is no wave component in the direction of propagati-
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on of the electric wave (longitudinal wave). This raises the question of how the wave actually

moves in the direction of propagation, since there is only a laterally oscillating part of the

wave? There is also no physically plausible explanation for the case in which the electric

wave propagates in a vacuum. In order to be able to derive Equation 2.4.3 from Equation

2.4.3.1, the meta-vector c⃗  in Equation 2.2.7 is first replaced by the E-field vector E⃗  at

this point. This creates Equation 2.4.3.2. In Equation 2.4.3, c2  is the square of the speed of

light.

Δ E⃗  =  
1
c2   ⋅ 

δ
2 E⃗
δ t2

                                                                                                       (2.4.3)

rot rot c⃗  =  grad div c⃗  −  div grad c⃗  =  grad div c⃗  − Δ c⃗                                      (2.2.7)

rot rot E⃗  =  grad div E⃗  − div grad E⃗  = grad div E⃗  − Δ E⃗                               (2.4.3.2)

Starting from Equation 2.4.3.2, Equation 2.4.3.3 can be described under the conditions from

Equation 2.4.3.1, since term grad div E⃗  was set to zero there.

rot rot E⃗  =  div grad E⃗  = Δ E⃗                                                                               (2.4.3.3)

If the mathematical-physical expressions from Equation 2.4.3.1 are now inserted into Equati-

on 2.4.3.3, Equation 2.4.3.4 results.

Δ E⃗  =  (
0  +  

δ
2 E x

δ y2  +  
δ

2 E x

δ z2

δ
2 E y

δ x2  +  0  +  
δ

2 E y

δ z2

δ
2 E z

δ x2  +  
δ

2 E z

δ y2  + 0)                                                                                 (2.4.3.4)

If the individual transversal parts of the vectorial components from Equation 2.4.3.4 are ad-

ded and combined to 
δ

2 Ex

δ sx
2 , 

δ
2 E y

δ s y
2  and 

δ
2 E z

δ sz
2 , Equation 2.4.3.5 results.
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Δ E⃗  =  (
δ2 E x

δ sx
2

δ
2 E y

δ sy
2

δ
2 E z

δ sz
2
)  =  (

0  + 
δ

2 E x

δ y 2  +  
δ

2 E x

δ z 2

δ
2 E y

δ x2  +  0  +  
δ

2 E y

δ z 2

δ
2 E z

δ x2
 +  

δ
2 E z

δ y 2
 +  0)                                                              (2.4.3.5)

In order to derive Equation 2.4.3 from Equation 2.4.3.5, the speed of light c  must first be

defined. Since the speed of light is a velocity, we can write it as a velocity vector, in Equation

2.4.3.6.

c⃗  = (
δ s x

δ t
δ s y

δ t
δ sz

δ t
)                                                                                                                (2.4.3.6)

The speed of light c  is currently defined in physics independently of the moving starting

point and is therefore the same in all three spatial directions within a medium. This assumpti-

on becomes problematic when the electromagnetic wave propagates through a transition bet-

ween two substances. At this point, however, a mathematical derivation of this problem is

dispensed with, since this exceeds the objective of the scope of this elaboration. Here refe-

rence is only made to the substance in the vacuum.

The assumption that the speed of light is the same in all three spatial directions means that it

can also be equated in all three spatial directions. Equation 2.4.3.7 follows from this.

c⃗  =  (
δ s x

δ t
δ s y

δ t
δ sz

δ t
) =  (

δ s
δt
δ s
δt
δ s
δt

)                                                                                                (2.4.3.7)

If  the  speed of  light  c⃗  is  the  same in  all  spatial  directions,  as  described in  Equation

2.4.3.7, it can also be assumed to be a constant. Equation 2.4.3.8 follows from this.
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c  =  
δ s
δt

                                                                                                                    (2.4.3.8)

If the speed of light is now squared, the expression from Equation 2.4.3.9 results.

c2  = (
δ s
δ t

)  ⋅(
δ s
δ t

)  = 
(δ s)2

(δ t)2  = 
δ s2

δ t 2                                                                          (2.4.3.9)

The notation from Equation 2.4.3.9 was chosen to prevent misunderstandings regarding a

double derivation. Only the square of a derivative is described here.

If c2

c2
 is now inserted into Equation 2.4.3.5, Equation 2.4.3.10 results. Since the speed of

light c  was defined as a constant, this can also be used in Equation 2.4.3.10 by offsetting

the individual components there with c2

c2
.

Δ E⃗  =  
c2

c2  ⋅(
δ

2 E x

δ sx
2

δ
2 E y

δ s y
2

δ
2 E z

δ sz
2
)  = 

δ s2

δ t2

δ s2

δ t2

 ⋅(
δ

2 E x

δ s x
2

δ
2 E y

δ s y
2

δ
2 E z

δ s z
2
)  =  (

δ s2

δ t 2

δ s2

δ t 2

 ⋅ 
δ2 E x

δ sx
2

δ s2

δ t2

δ s2

δ t2

 ⋅ 
δ

2 E y

δ sy
2

δ s2

δ t 2

δ s2

δ t 2

 ⋅ 
δ

2 E z

δ sz
2
)                                    (2.4.3.10) 

If the expressions  δ sx
2 ,  δ s y

2  and  δ sz
2  are now equated with  δ s2 ,  they can be

shortened against each other. However, setting these terms equal requires an adjustment of

δ s  in the numerator and denominator of the individual components of Δ E⃗ . When this

is done, Equation 2.4.3.11 results.
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Δ E⃗  =  (
δ s2

δ t 2

δ s2

δ t 2

 ⋅ 
δ2 E x

δ sx
2

δ s2

δt 2

δ s2

δt 2

 ⋅ 
δ

2 E y

δ s y
2

δ s2

δ t 2

δ s2

δ t 2

 ⋅ 
δ

2 E z

δ sz
2
) = (

1

δ t 2

δ s2

δ t 2

 ⋅ 
δ2 E x

1

1
δ t 2

δ s2

δ t 2

 ⋅ 
δ

2 E y

1

1
δt 2

δ s2

δt 2

 ⋅ 
δ

2 E z

1
) = (

1

δ s2

δ t2

 ⋅ 
δ

2 E x

δ t 2

1
δ s2

δt 2

 ⋅ 
δ

2 E y

δ t 2

1

δ s2

δ t 2

 ⋅ 
δ

2 E z

δ t 2 )                               (2.4.3.11)

If Equation 2.4.3.11 is simplified further, based on Equation 2.4.3.9, and the speed of light is

again factored out as a constant from the individual components, Equation 2.4.3.12 arises.

Δ E⃗  =  
1

δ s2

δ t
2

 ⋅ (
δ

2 E x

δ t 2

δ
2 E y

δ t 2

δ
2 E z

δ t 2
)  =  

1
c2  ⋅ 

δ
2 E⃗

δ t 2                                                                     (2.4.3.12)

Equation 2.4.3.12 corresponds to Equation 2.4.3 and is thus an expression for the electric

wave equation.

Δ E⃗  =  
1
c2  ⋅ 

δ
2 E⃗
δ t2

                                                                                                       (2.4.3)

 

A Hertzian transverse electric wave is thus derived from Equation 2.4.2.17.

2.4.4 DERIVATION OF THE ELECTRICAL WAVE EQUATION AS A PURE
LONGITUTINAL WAVE

In order to derive a pure longitudinal wave from the electrical wave equation, the transversal

and combined wave components in Equation 2.4.2.17 must now be set to zero. Equation 2.3.4
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is also written here and serves for better orientation with regard to Equation 2.4.2.17. Here,

too, expression div grad E⃗  from Equation 2.3.4 is equivalent to Δ E⃗ .

                  rot rot E⃗                     =            grad div E⃗              −          div grad E⃗              (2.3.4)

(
δ2 E y

δ x δ y
 −

δ2 E x

δ y2  −
δ2 E x

δ z2 +
δ2 E z

δ x δ z

δ
2 E z

δ y δ z
 −

δ
2 E y

δ z 2  −
δ

2 E y

δ x2 +
δ

2 E x

δ y δ x

δ
2 E x

δ z δ x
 −

δ
2 E z

δ x2
 −

δ
2 E z

δ y2
+

δ
2 E y

δ zδ y
)=(

δ2 E x

δ x2 +
δ 2 E y

δ y δ x
+

δ2 E z

δ zδ x

δ
2 Ex

δ x δ y
+

δ
2 E y

δ y2 +
δ

2 E z

δ zδ y

δ
2 E x

δ x δ z
+

δ
2 E y

δ y δ z
+

δ
2 E z

δ z2
) −(

δ
2 E x

δ x2
+

δ
2 E x

δ y2
+

δ
2 E x

δ z2

δ
2 E y

δ x2 +
δ

2 E y

δ y2 +
δ

2 E y

δ z2

δ2 Ez

δ x2 +
δ2 E z

δ y2 +
δ2 Ez

δ z2
)      (2.4.2.17)

As already mentioned, in Equation 2.4.2.17, the transversal and combined wave components

are initially set to zero. It also follows from this that the div E⃗  cannot be assumed to be

zero and therefore that there is an electric field density. Equation 2.4.4.1 describes these cir-

cumstances.

(
0  −  0  −  0  +  0
0  −  0  −  0  +  0
0  −  0  −  0  +  0) =  (

δ
2 E x

δ x2
 + 0  + 0

0  +  
δ2 E y

δ y2  + 0

0  + 0  +  
δ

2 E z

δ z2
)  −  (

δ2 E x

δ x2  +  0  + 0

0  +  
δ

2 E y

δ y2  + 0

0  +  0  +  
δ

2 E z

δ z2
)                           (2.4.4.1)

If the expression div grad E⃗  from Equation 2.3.4 is now equated with the last term from

Equation 2.4.4.1, Equation 2.4.4.2 results.

div grad E⃗  =  Δ E⃗  =  (
δ

2 E x

δx
2  +  0  + 0

0  +  
δ

2 E y

δy
2  + 0

0  + 0  +  
δ

2 E z

δz
2
)                                                                (2.4.4.2)
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The right-hand side of Equation 2.4.4.2 can now be simplified again to Equation 2.4.4.3 ba-

sed on Equation 2.4.3.5. In contrast to Equation 2.4.3.5, Equation 2.4.4.3 does not describe

transversal but only longitudinal wave components.

Δ E⃗  =  (
δ2 E x

δ sx
2

δ
2 E y

δ sy
2

δ
2 E z

δ sz
2
) =  (

δ
2 E x

δ x2  + 0  +  0

0  +  
δ

2 E y

δ y2  +  0

0  + 0  +  
δ

2 E z

δ z2
)                                                                     (2.4.4.3)

If the constant speed of light, as described in Equation 2.3.4.9, is now factored out of Equati-

on 2.4.4.3 in the form c2

c2
, Equation 2.3.4.12 arises.

c2  = (
δ s
δ t

)  ⋅(
δ s
δ t

)  = 
(δ s)2

(δ t)2  = 
δ s2

δ t 2                                                                          (2.3.4.9)

Δ E⃗  =  
1

δ s2

δ t
2

 ⋅ (
δ

2 E x

δ t 2

δ
2 E y

δ t 2

δ
2 E z

δ t 2
)  =  

1
c2  ⋅ 

δ
2 E⃗

δ t 2                                                                     (2.3.4.12)

The detailed derivation of the Equations 2.3.4.9 and 2.3.4.12 can be found in the Equations

2.3.4.5 to 2.3.4.12. Since the derivation from Equation 2.4.4.3 is the same as from Equation

2.3.4.5, a new derivation will not be carried out at this point.

Equation  2.3.4.12 corresponds  to  Equation  2.4.3 and is  thus  again  an  expression  for  the

electric wave equation.

Δ E⃗  =  
1
c2  ⋅ 

δ
2 E⃗
δ t2                                                                                                        (2.4.3)

 

A longitudinal electric wave is thus derived from Equation 2.4.2.17.
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 2.4.5 DERIVATION OF THE ELECTRIC WAVE EQUATION AS A
COMBINATION OF LONGITUTINAL WAVE AND TRANSVERSAL WAVE

Equations 2.3.4 and 2.4.2.17 are used again here as a starting point for the interpretation of

the electric wave equation as a combination of longitudinal and transverse wave components.

                  rot rot E⃗                     =            grad div E⃗              −          div grad E⃗              (2.3.4)

(
δ2 E y

δ x δ y
 −

δ2 E x

δ y2  −
δ2 E x

δ z2 +
δ2 E z

δ x δ z

δ
2 E z

δ y δ z
 −

δ
2 E y

δ z 2  −
δ

2 E y

δ x2 +
δ

2 E x

δ y δ x

δ
2 E x

δ z δ x
 −

δ
2 E z

δ x2
 −

δ
2 E z

δ y2
+

δ
2 E y

δ zδ y
)=(

δ2 E x

δ x2 +
δ 2 E y

δ y δ x
+

δ2 E z

δ zδ x

δ
2 Ex

δ x δ y
+

δ
2 E y

δ y2 +
δ

2 E z

δ zδ y

δ
2 E x

δ x δ z
+

δ
2 E y

δ y δ z
+

δ
2 E z

δ z2
) −(

δ
2 E x

δ x2
+

δ
2 E x

δ y2
+

δ
2 E x

δ z2

δ
2 E y

δ x2 +
δ

2 E y

δ y2 +
δ

2 E y

δ z2

δ2 Ez

δ x2 +
δ2 E z

δ y2 +
δ2 Ez

δ z2
)     (2.4.2.17)

Starting from Equation 2.4.2.17, only the combined wave components that are irrelevant to

the expression  div grad E⃗  are now eliminated from the equation, resulting in Equation

2.4.5.1.

However, these terms are interesting because they each have a longitudinal part and a trans-

versal part. However, what role these play in the interpretation of an electromagnetic wave is

not dealt with in this paper.

(
0  − 

δ2 Ex

δ y2  − 
δ2 E x

δ z2  + 0

0  − 
δ

2 E y

δ z2  − 
δ

2 E y

δ x2  +  0

0  −  
δ

2 E z

δ x2
 − 

δ
2 E z

δ y2
 +  0) = (

δ2 E x

δ x2  +  0  + 0

0 +  
δ

2 E y

δ y2  + 0

0  +  0  +  
δ

2 E z

δ z2
)  − (

δ
2 Ex

δ x2
 +  

δ
2 E x

δ y2
 + 

δ
2 E x

δ z 2

δ
2 E y

δ x2  +  
δ

2 E y

δ y2  + 
δ

2 E y

δ z2

δ2 E z

δ x2  +  
δ2 E z

δ y2  + 
δ2 Ez

δ z2
)                     (2.4.5.1)

 

If the last term of Equation 2.3.4 is now equated with the last term of Equation 2.4.5.1, Equa-

tion 2.4.5.2 results.
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Δ E⃗  =  div grad E⃗  =  (
δ

2 E x

δ x2  +  
δ

2 Ex

δ y2  +  
δ

2 E x

δ z2

δ
2 E y

δ x2  +  
δ

2 E y

δ y2  +  
δ

2 E y

δ z 2

δ
2 E z

δ x2  + 
δ

2 E z

δ y2  +  
δ

2 E z

δ z2
)                                                  (2.4.5.2)

If the electric wave is interpreted as a combined wave with a transverse and longitudinal

wave component, Equation 2.4.5.2 shows that the change in the electric field E⃗  also has

three components in all three spatial directions for all three vector components.

Here, too, the right-hand side of Equation 2.4.5.2 can be summarized again. Equation 2.4.5.3

arises.

Δ E⃗  =  (
δ

2 E x

δ sx
2

δ
2 E y

δ sy
2

δ
2 E z

δ sz
2
)  =  (

(
δ

2 E x

δ x2 )  + (
δ

2 E x

δ y 2 )  +  (
δ

2 Ex

δ z 2 )

(
δ

2 E y

δ x2 )  + (
δ

2 E y

δ y 2 )  +  (
δ

2 E y

δ z2 )

(
δ

2 E z

δ x2
)  + (

δ
2 E z

δ y 2
)  +  (

δ
2 E z

δ z2
))                                               (2.4.5.3)

Equation 2.4.5.3 states that the E-field can also change at an angle to the direction of propa-

gation of the wave. This means that the electromagnetic wave, under the conditions from

Equation 2.4.5.3, also has density states that propagate intermittently in the direction of pro-

pagation. The impact movement can therefore be accompanied by a transverse movement.

The question that arises from this is what form the electromagnetic wave has in reality?

If density states within the electric field are assumed, then the electric wave must be interpre-

ted as an interval-like change of density states. The result of this interval-like change in den-

sity states are alternating field lines that could be interpreted as vortices. It also shows that the

changing density states are not limited to the periphery of an antenna,  but move through

space. This is an indication that there is a substance or medium in which this occurs.

Again the constant speed of light, as it is described in the Equation 2.3.4.9, is factored out in

the form c2

c2  from the Equation 2.4.5.3, the Equation 2.3.4.12 arises again.
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c2  = (
δ s
δ t

)  ⋅(
δ s
δ t

)  = 
(δ s)2

(δ t)2  = 
δ s2

δ t 2                                                                          (2.3.4.9)

Δ E⃗  =  
1

δ s2

δ t
2

 ⋅ (
δ

2 E x

δ t 2

δ
2 E y

δ t 2

δ
2 E z

δ t 2
)  =  

1
c2  ⋅ 

δ
2 E⃗

δ t 2                                                                     (2.3.4.12)

At this point there is again the note that the detailed derivation of Equations 2.3.4.9 and

2.3.4.12 can be found in Equations 2.3.4.5 to 2.4.3.12. Since the derivation from Equation

2.4.5.3 is the same as from Equation 2.3.4.5, a new derivation is not used at this point either.

Equation 2.3.4.12 corresponds to Equation 2.4.3 and is thus again an expression for the elec-

tric wave equation.

Δ E⃗  =  
1
c2  ⋅ 

δ
2 E⃗
δ t2

                                                                                                        (2.4.3)

 

An electrical wave is thus derived from Equation 2.4.2.17, which has both transverse and lon-

gitudinal components.

2.5 THE MAGNETIC WAVE EQUATION

At this point, the three possible magnetic wave types are not mathematically derived in detail,

since the same mathematical framework conditions apply to the magnetic field as to the elec-

tric field. Accordingly, only the most important equations for the derivation of the magnetic

wave are used here and vector E⃗  is replaced by vector H⃗ . Equations 2.3.4 and 2.4.2.17

are the starting point for the description of the magnetic wave.

                  rot rot E⃗                     =            grad div E⃗              −          div grad E⃗              (2.3.4)
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(
δ2 E y

δ x δ y
 −

δ2 E x

δ y2  −
δ2 E x

δ z2 +
δ2 E z

δ x δ z

δ
2 E z

δ y δ z
 −

δ
2 E y

δ z 2  −
δ

2 E y

δ x2 +
δ

2 E x

δ y δ x

δ
2 E x

δ z δ x
 −

δ
2 E z

δ x2
 −

δ
2 E z

δ y2
+

δ
2 E y

δ zδ y
)=(

δ2 E x

δ x2 +
δ 2 E y

δ y δ x
+

δ2 E z

δ zδ x

δ
2 Ex

δ x δ y
+

δ
2 E y

δ y2 +
δ

2 E z

δ zδ y

δ
2 E x

δ x δ z
+

δ
2 E y

δ y δ z
+

δ
2 E z

δ z2
) −(

δ
2 E x

δ x2
+

δ
2 E x

δ y2
+

δ
2 E x

δ z2

δ
2 E y

δ x2 +
δ

2 E y

δ y2 +
δ

2 E y

δ z2

δ2 Ez

δ x2 +
δ2 E z

δ y2 +
δ2 Ez

δ z2
)      (2.4.2.17)

If, in Equations 2.3.4 and 2.4.2.17, as already mentioned, the vector of the electric field E⃗

is replaced by the vector of the magnetic field H⃗ , the two Equations 2.5.1 and 2.5.2 arise.

                  rot rot H⃗                     =             grad div H⃗              −          div grad H⃗            (2.5.1)

(
δ2 H y

δ x δ y
 −

δ2 H x

δ y2  −
δ2 H x

δ z2 +
δ2 H z

δ x δ z

δ
2 H z

δ y δ z
 −

δ
2 H y

δ z2  −
δ

2 H y

δ x2 +
δ

2 H x

δ y δ x

δ
2 H x

δ zδ x
 −

δ
2 H z

δ x2
 − 

δ
2 H z

δ y2
+

δ
2 H y

δ z δ y
)=(

δ2 H x

δ x2 +
δ2 H y

δ y δ x
+

δ2 H z

δ zδ x

δ
2 H x

δ x δ y
+

δ
2 H y

δ y2 +
δ

2 H z

δ zδ y

δ
2 H x

δ x δ z
+

δ
2 H y

δ y δ z
+

δ
2 H z

δ z2
) −(

δ
2 H x

δ x2
+

δ
2 H x

δ y2
+

δ
2 H x

δ z 2

δ
2 H y

δ x2 +
δ

2 H y

δ y2 +
δ

2 H y

δ z2

δ2 H z

δ x2 +
δ2 H z

δ y2 +
δ2 H z

δ z2
)         (2.5.2)

The two Equations 2.5.1 and 2.5.2 will serve as the basis for the derivation of the three possi-

ble magnetic waves in the following calculations.

2.5.1 THE TRANSVERSAL MAGNETIC WAVE

Starting from Equation 2.5.2, all terms with longitudinal components are first deleted. Equati-

on 2.5.1.1 results from this. Equation 2.5.1 is also used here for a better understanding of the

individual components from Equation 2.5.1.1.

                  rot rot H⃗                   =    grad div H⃗     −          div grad H⃗                              (2.5.1)

(
0  − 

δ
2 H x

δ y2
 − 

δ
2 H x

δ z2
 +  0

0  −  
δ2 H y

δ z 2  − 
δ2 H y

δ x2  +  0

0  −  
δ

2 H z

δ x2
 − 

δ
2 H z

δ y2
 + 0)=(

0  +  0  +  0
0  +  0  +  0
0  +  0  +  0)−(

0  +  
δ2 H x

δ y2  +  
δ2 H x

δ z 2

δ
2 H y

δ x2  +  0  +  
δ

2 H y

δ z 2

δ
2 H z

δ x2  +  
δ

2 H z

δ y 2  + 0)              (2.5.1.1)
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Analogous to the derivation of Equation 2.4.3.5, Equation 2.5.1.2 can now be derived from

Equation 2.5.1.1.

div grad H⃗  =  Δ H⃗  =  (
δ2 H x

δ sx
2

δ
2 H y

δ sy
2

δ
2 H z

δ sz
2
)  =  (

0  +  (
δ

2 H x

δ y2 )  +  (
δ

2 H x

δ z2 )

(
δ

2 H y

δ x2 )  +  0  +  (
δ

2 H y

δ z2 )

(
δ

2 H z

δ x2
)  +  (

δ
2 H z

δ y2
)  + 0)                             (2.5.1.2)

If now, as in Equation 2.4.3.10, the constant speed of light as described in Equation 2.3.4.9 is

factored out of Equation 2.5.1.2 in the form c2

c2
, Equation 2.5.1.3 arises.

c2  = (
δ s
δ t

)  ⋅(
δ s
δ t

)  = 
(δ s)2

(δ t)2  = 
δ s2

δ t 2                                                                          (2.3.4.9)

Δ H⃗  = (
1

(
δ s2

δ t
2 )

)  ⋅ (
(
δ

2 H x

δ t 2 )

(
δ

2 H y

δ t 2 )

(
δ

2 H z

δ t 2 )
) =  

1
c2  ⋅ 

δ
2 H⃗
δ t 2                                                             (2.5.1.3)

Equation 2.5.1.3 thus corresponds to Equation 2.4.4, which maps the magnetic wave equati-

on.

Δ H⃗  = 
1
c2  ⋅ 

δ
2 H⃗
δ t 2                                                                                                       (2.4.4)

A transverse magnetic wave would then be derived from Equation 2.5.2.
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2.5.2 THE LONGITUTINAL MAGNETIC WAVE

Starting again from Equation 2.5.2, the following calculations are used to derive a longitudi-

nal wave as a magnetic wave. Equation 2.5.1 is again used for better orientation for the indi-

vidual components of Equation 2.5.2.

                  rot rot H⃗                     =             grad div H⃗              −          div grad H⃗            (2.5.1)

(
δ2 H y

δ x δ y
 −

δ2 H x

δ y2  −
δ2 H x

δ z
+

δ2 H z

δ x δ z

δ
2 H z

δ y δ z
 −

δ
2 H y

δ z2  −
δ

2 H y

δ x2 +
δ

2 H x

δ y δ x

δ
2 H x

δ z δ x
 −

δ
2 H z

δ x2
 −

δ
2 H z

δ y2
+

δ
2 H y

δ zδ y
)=(

δ2 H x

δ x2 +
δ2 H y

δ yδ x
+

δ2 H z

δ z δ x

δ
2 H x

δ xδ y
+

δ
2 H y

δ y2 +
δ

2 H z

δ zδ y

δ
2 H x

δ x δ z
+

δ
2 H y

δ yδ z
+

δ
2 H z

δ z2
)  −(

δ
2 H x

δ x2
+

δ
2 H x

δ y2
+

δ
2 H x

δ z2

δ
2 H y

δ x2 +
δ

2 H y

δ y2 +
δ

2 H y

δ z2

δ2 H z

δ x2 +
δ2 H z

δ y2 +
δ2 H z

δ z 2
)         (2.5.2)

If in Equation 2.5.2 all terms with transversal parts are deleted, Equation 2.5.2.1 results, ana-

logous to Equation 2.4.4.1.

 

(
0  −  0  −  0  +  0
0  −  0  −  0  +  0
0  −  0  −  0  +  0) =  (

δ
2 H x

δ x2
 + 0  +  0

0  +  
δ

2 H y

δ y2  +  0

0  + 0  +  
δ

2 H z

δ z2
)  − (

δ
2 H x

δ x2  + 0  +  0

0  +  
δ

2 H y

δ y2  +  0

0  + 0  + 
δ

2 H z

δ z 2
)                         (2.5.2.1)

Similar to Equation 2.4.4.2, Equation 2.5.2.2 can be derived from Equation 2.5.2.1.

div grad H⃗  =  Δ H⃗  =  (
δ2 H x

δ sx
2

δ
2 H y

δ sy
2

δ
2 H z

δ sz
2
)  =  (

δ
2 H x

δ x2  +  0  +  0

0  +  
δ

2 H y

δ y2  +  0

0  +  0  +  
δ

2 H z

δ z2
)                                          (2.5.2.2)
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If the constant speed of light, as described in Equation 2.3.4.9, is now factored out of Equati-

on 2.5.2.2 in the form c2

c2
, Equation 2.5.1.3 arises.

c2  = (
δ s
δ t

)  ⋅(
δ s
δ t

)  = 
(δ s)2

(δ t)2  = 
δ s2

δ t 2                                                                          (2.3.4.9)

Δ H⃗  = (
1

(
δ s2

δ t
2 )

)  ⋅ (
(
δ2 H x

δ t 2 )

(
δ

2 H y

δ t 2 )

(
δ

2 H z

δ t 2 )
) =  

1
c2  ⋅ 

δ2 H⃗
δ t 2                                                             (2.5.1.3)

Equation 2.5.1.3 corresponds to Equation 2.4.4, which maps the magnetic wave equation.

Δ H⃗  =  
1
c2  ⋅ 

δ
2 H⃗
δ t 2

                                                                                                      (2.4.4)

A magnetic longitudinal wave would then be derived from Equation 2.5.2.

2.5.3 THE MAGNETIC WAVE AS A COMBINATION OF A LONGITUTINAL WAVE
AND A TRANSVERSAL WAVE

Here, too, the derivation begins with the two Equations 2.5.1 and 2.5.2.

                  rot rot H⃗                     =             grad div H⃗              −          div grad H⃗            (2.5.1)

(
δ2 H y

δ x δ y
 −

δ2 H x

δ y2  −
δ2 H x

δ z
+

δ2 H z

δ x δ z

δ
2 H z

δ y δ z
 −

δ
2 H y

δ z2  −
δ

2 H y

δ x2 +
δ

2 H x

δ y δ x

δ
2 H x

δ z δ x
 −

δ
2 H z

δ x2
 −

δ
2 H z

δ y2
+

δ
2 H y

δ zδ y
)=(

δ2 H x

δ x2 +
δ2 H y

δ yδ x
+

δ2 H z

δ z δ x

δ
2 H x

δ xδ y
+

δ
2 H y

δ y2 +
δ

2 H z

δ zδ y

δ
2 H x

δ x δ z
+

δ
2 H y

δ yδ z
+

δ
2 H z

δ z2
)  −(

δ
2 H x

δ x2
+

δ
2 H x

δ y2
+

δ
2 H x

δ z2

δ
2 H y

δ x2 +
δ

2 H y

δ y2 +
δ

2 H y

δ z2

δ2 H z

δ x2 +
δ2 H z

δ y2 +
δ2 H z

δ z 2
)         (2.5.2)
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Starting from Equation 2.5.2, all parts that do not correspond to term  div grad H⃗  from

Equation 2.5.1 are first deleted there. This results in Equation 2.5.3.1.

(
0  −

δ
2 H x

δ y2
 −

δ
2 H x

δ z2
+ 0

0  −
δ2 H y

δ z 2  −
δ2 H y

δ x2 + 0

0  −
δ

2 H z

δ x2
 −

δ
2 H z

δ y2
+0)=(

δ
2 H x

δ x2
+0 + 0

0 +
δ2 H y

δ y2 + 0

0 +0 +
δ

2 H z

δ z 2
)  −(

δ2 H x

δ x2 +
δ2 H x

δ y2 +
δ2 H x

δ z2

δ
2 H y

δ x2 +
δ

2 H y

δ y2 +
δ

2 H y

δ z2

δ
2 H z

δ x2 +
δ

2 H z

δ y2 +
δ

2 H z

δ z2
)          (2.5.3.1)

Equation 2.5.3.2 can now be derived from Equation 2.5.3.1 in analogy to Equation 2.4.5.3.

div grad H⃗  =  Δ H⃗  =  (
δ2 H x

δ sx
2

δ
2 H y

δ sy
2

δ
2 H z

δ sz
2
)  =  (

δ
2 H x

δ x2  + 
δ

2 H x

δ y2  + 
δ

2 H x

δ z2

δ
2 H y

δ x2  +  
δ

2 H y

δ y2  + 
δ

2 H y

δ z2

δ
2 H z

δ x2
 + 

δ
2 H z

δ y2
 + 

δ
2 H z

δ z2
)                           (2.5.3.2)

If the constant speed of light, as described in Equation 2.3.4.9, is now factored out of Equati-

on 2.5.3.2 in the form c2

c2
, Equation 2.5.1.3 arises.

c2  = (
δ s
δ t

)  ⋅(
δ s
δ t

)  = 
(δ s)2

(δ t)2  = 
δ s2

δ t 2                                                                          (2.3.4.9)

Δ H⃗  = (
1

(
δ s2

δ t
2 )

)  ⋅ (
(
δ2 H x

δ t 2 )

(
δ

2 H y

δ t 2 )

(
δ

2 H z

δ t 2 )
) =  

1
c2  ⋅ 

δ
2 H⃗
δ t 2                                                             (2.5.1.3)

Equation 2.5.1.3 corresponds to Equation 2.4.4, which maps the magnetic wave equation.
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Δ H⃗  =  
1
c2  ⋅ 

δ
2 H⃗
δ t 2

                                                                                                      (2.4.4)

A magnetic wave would then be derived as a combination of longitudinal wave and transver-

se wave from Equation 2.5.2.

2.5.4 COMBINATION OF THE ELECTRICAL AND MAGNETIC WAVE EQUATION

2.5.5 THE POYNTING WAVE

First, the Poynting vector S⃗  is explained here. This is formed from the cross product bet-

ween the electric and magnetic fields and is shown in Equation 2.5.5.1.

S⃗=  E⃗  ×  H⃗                                                                                                              (2.5.5.1)

If it is now assumed that the electric field E⃗  and the magnetic field H⃗  are at a nine-

ty-degree angle to each other, as is the case with the Hertzian electromagnetic wave, it fol-

lows that in this case the Poynting vector in the direction of propagation of this wave, i.e. at a

ninety-degree angle to the field lines of both fields.

Since the Poynting vector defines the density and the direction of the energy transport, there

is also an energy wave in the transverse Hertzian wave that moves in the direction of propa-

gation of the transverse Hertzian wave and has both density states and transports energy. Ni-

kola Tesla described such a wave during a lecture on May 20, 1891, at Columbia College in

New York and made several demonstrations in which he made Geißler tubes glow in free

space.

If the two field values of the electric field E⃗  and the magnetic field H⃗  change during a

specific time t , this can be described as a time derivative of the two field values. As a re-

sult, the Poynting vector also changes as a function of time. So if Equation 2.5.5.1 is used as

the calculation basis for a Poynting energy wave, Equation 2.5.5.2 arises.

Δ S⃗  =  Δ( E⃗  × H⃗ )  =  
1
c2  ⋅ 

δ S⃗
δt 2  =  

1
c2  ⋅ 

δ( E⃗  ×  H⃗ )

δ t 2                                           (2.5.5.2)

In order to calculate a Poynting wave as an example, some calculation principles must first be

defined. First of all, a Cartesian coordinate system is assumed below. The propagation directi-
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on of the electric and magnetic waves is the x-direction in the following calculation example,

for a better understanding of the situation. Furthermore, a Hertzian wave, i.e. a transverse

wave, is assumed. This means that the field lines of the electric and magnetic waves are at a

ninety-degree angle to the direction of propagation of the two waves in the x-direction. In the

following calculation example, in Equation 2.5.5.5, the electric field lines are in the y-directi-

on and the magnetic field lines are in the z-direction. Both field sizes are dependent on time.

1
c2⋅

δ
2

δ t 2(
S x

0
0 ) =  

1
c2⋅

δ
2

δ t 2 ((
0
E y

0 )  ×  (
0
0
B z
))  = 

1
c2⋅

δ
2

δ t 2(
(E y  ⋅ B z)  −  (0  ⋅ 0)

(0  ⋅ 0)  − (0  ⋅ B z)

(0  ⋅ 0)  − (E y  ⋅ 0) )              (2.5.5.5)

Equation 2.5.5.5 shows that the electromagnetic wave can also be described as a Poyntingian

energy wave, the properties of which correspond to those of a longitudinal wave.

For the sake of completeness, Equation 2.5.5.5 is shown in Equation 2.5.5.6 in its general

form.

1
c2⋅

δ
2

δ t 2(
S x

S y

S z
)  =  

1
c2⋅

δ
2

δ t2 ((
E x

E y

E z
)  ×  (

B x

B y

B z
))  =  

1
c2⋅

δ
2

δ t2(
(E y  ⋅ B z)  − (E z  ⋅ B y )

(E z  ⋅ B x)  − (E x  ⋅ B z)

(E x  ⋅ B y)  − (E y  ⋅ B x)
)         (2.5.5.6)

Assuming that both electric and magnetic waves consist of longitudinal and transverse parts,

this would also apply to Poynting's wave.

2.5.6 THE REINTERPRETATION OF THE ELECTROMAGNETIC WAVE
EQUATION

In order to be able to correctly interpret the electromagnetic wave equation, the process by

which this wave is generated must be understood. First of all, an electric dipole is assumed at

this point. If the poles are designed as a sphere and have different electrical polarization, an

electric field is formed between them. However, the field lines do not form at specific points,

but on the entire surface of the two poles. If it is now assumed that the field lines form at a

ninety-degree angle to the pole surface and connect both poles, semicircular to oval field

lines arise between the poles. If the poles are now polarized alternately, i.e. an alternating

voltage is applied, the field lines also change their flow direction alternately. In addition, the

field polarization reversal is accompanied by an alternating weakening and strengthening of
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the field lines. This means that the total cross-sectional area in space, which is penetrated by

the field lines, also changes alternately. If the measuring point is now parallel to the dipole

and is at some distance, the electric wave and the magnetic wave can be regarded as transver-

se waves. However, if the measuring point is directly between the two poles of the dipole or

in the immediate vicinity of one of the poles, the waves can be interpreted as longitudinal wa-

ves. Since, as was already shown mathematically in the elaboration "The Reinterpretation of

the 'Maxwell Equations'" (Martin, 2021), the electric field as well as the magnetic field have

density states, it can now be assumed that the field lines of both fields are directly coupled to

these density states. This means that the potential difference within the two fields results in

their field lines. From this follows the realization that the electromagnetic wave, by its nature,

is a wave that moves through space with alternating field sources and field sinks. It should be

noted here that for this assumption a location of the measuring point that is parallel to the

field lines of the dipole can lead to the interpretation of a transversal as well as to the inter-

pretation of a longitudinal wave.

If the Poynting vector is considered as a possible basis for the interpretation of the electroma-

gnetic wave, this results in a longitudinal wave for the Hertzian transverse wave, which can

be defined as a directed energy wave. This directed energy wave indicates a change in energy

density over time in the direction of propagation of the Hertzian electromagnetic wave. One

might call this an energy burst. However, the direction of propagation of this Poyntig wave

alternates under the assumption that both the electric and the magnetic wave are not purely

transverse waves. In any case, the Poynting wave can be used to transport energy.

3. DISCUSSION

1.  It remains to be discussed whether the expression,  div( B⃗)  = 0 , is physically feasible

since the mathematical requirement consists of Equation 2.1.4,  (Sp)(grad B⃗)  = div ⃗( B) .

And if div( B⃗)  = 0  is admissible, what does this mean for Equation 3.1 and ultimately for

the law of induction?

(Sp)(grad B⃗)  = div ⃗( B)  = 
δ Bx

δ x
 +  

δ B y

δ y
 + 

δ B z

δ z
 = 0                                                   (3.1)
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2. What is the meaning of the expressions 
δ

2 E y

δ x  δ y
, 

δ
2 E z

δ x  δ z
, 

δ
2 E z

δ y  δ z
, 

δ
2 E x

δ y  δ x
,

δ
2 E x

δ z  δ x
,  

δ
2 E y

δ z  δ y
,  

δ
2 H y

δ x  δ y
,  

δ
2 H z

δ x  δ z
,  

δ
2 H z

δ y  δ z
,  

δ
2 H x

δ y  δ x
,  

δ
2 H x

δ z  δ x
 and

δ
2 H y

δ z  δ y
 from Equations 2.4.2.17 and 2.5.2 for the electromagnetic wave?

3. What impact would Poynting's wave have on the interpretation of Hertzian waves?

4. What does Equation 3.2 describe and under what conditions is it valid? ∣S⃗∣  stands for

the absolute value of the pointing vector from Equation 2.5.5.1.

∣S⃗∣ ⋅ e  (− jω t)  = ∣S⃗∣ ⋅ (cos ( j ω t)−sin ( j ω t ))                                                                  (3.2)

S⃗=  E⃗  ×  H⃗                                                                                                              (2.5.5.1)

5. What effect does Equation 3.3 have on the electromagnetic wave equation?

v⃗  div ⃗(B)  = j⃗m                                                                                                                (3.3)

4. CONCLUSION

First, in this elaboration, a transversal wave was derived from Equations 2.4.2.17 and 2.5.2,

as described by Heinrich Hertz. However, both equations also offered the possibility of a re-

spective longitudinal wave. In the elaboration "The Reinterpretation of the 'Maxwell Equati-

ons'" (Martin, 2021) it was shown mathematically that div( B⃗)  = ρm  is a condition without

which the law of induction cannot work. The expression  (Sp)(grad B⃗)  = div ⃗( B)  makes

this connection since (Sp)(grad B⃗)  is the basis for 
δ B⃗
δ t

. This results in the already des-

cribed longitudinal wave for the wave equation. At this point it is assumed that the electroma-

gnetic wave is not a purely transverse wave, but a combination of transverse and longitudinal

waves. 
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It follows from the fact that the electromagnetic wave is a wave that can be described by al-

ternating sources and sinks moving in space. These sources and sinks are then the cause of

the field lines, both from the electric field and from the magnetic field.

Furthermore, the Poynting vector was used to derive a longitudinal wave based on the elec-

tromagnetic wave, which is suitable for energy transport. On May 20, 1891, Nikola Tesla de-

monstrated some experiments at Columbia College in New York. All in all, this means that

the electromagnetic wave equation should be reinterpreted, since the described longitudinal

waves may result in new possible applications both in technology and in other areas.
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