Relation of anomalous magnetic dipole moments of leptons

Branko Zivlak, bzivlak@gmail.com

Abstract

The relation of anomalous magnetic dipole moments of three charged leptons is assumed.

Key words: Bošković, moment, lepton

Moments

Let's apply the known dimensionless value: $\boldsymbol{a}=\mathbf{1}(\mathbf{(2 \pi \alpha})=0,00116140973$
Where $\dot{\boldsymbol{\alpha}}=137.035999084$ is the inverse fine structure constant.
Let us perform the following transformation on the anomalous magnetic dipole moment of the charged leptons to obtain the values, \boldsymbol{x}_{i} :

$$
\begin{equation*}
x_{i}=1 /\left(a / a_{i}-1\right), \quad i=(1,2,3) \tag{1}
\end{equation*}
$$

Where: $\boldsymbol{a}_{\mathbf{i}}$ is the anomalous magnetic dipole moment for the first, second and third generations, i.e.: Electron, Muon and Tau particle, [2]

With intuition and more with understanding [1] we get:

$$
\begin{equation*}
2^{*}\left(x_{2}+x_{3}\right) \approx 1-x_{1} \tag{2}
\end{equation*}
$$

Shown in:

$i /$ á	Table		
	$a=1 /\left(2 \pi^{*} \dot{\alpha}\right)=$	0,001161409733	moment
	137,035999084	a_{i}	$x_{i}=1 /\left(a / a_{i}-1\right)$
1	El. 0,00115965218076(27)	0,00115965218076	-660,81097442149
2	Muon 0,00116592091 (63)	0,00116592091	257,451592677528
3	Tau 0,00117721 (5)	0,00117722	73,4538945332408
		$2 *\left(x_{2}+x_{3}\right)-1=$	660,81097442154

Assuming the accuracy of (2), the least known input data is for Tau, so let's calculate:

$$
\begin{equation*}
x_{3}=\left(1-x_{1}\right) / 2-x_{2} \tag{3}
\end{equation*}
$$

That is, by applying (1) and arranging, we get:

$$
\begin{equation*}
a_{3}=a *\left(1+1 /\left(\left(1-1 /\left(a_{1} / a-1\right)\right) / 2-1 /\left(a_{2} / a-1\right)\right)\right)=0,00117722114 \tag{4}
\end{equation*}
$$

This is probably approximate because we didn't take into account other influences that are most likely from Proton and W boson with a small correction in (2), for example for a proton it is, $\boldsymbol{x}_{\boldsymbol{4}}$:

i		a_{i}	$\mathrm{x}_{4}=1 /\left(a / a_{\mathrm{i}}-1\right)$
4		1,79284735650	0,000648222

So, when that term is also included in (3), the correction for \boldsymbol{x}_{3} is obtained and then the difference for the value of \boldsymbol{a}_{3} to the tenth decimal place compared to the calculation without proton.

A special symmetry can be seen from the previous formulas, so in (4) we can replace the places with indices 2 and 3 and get:

$$
\begin{equation*}
a_{2}=a *\left(1+1 /\left(\left(1-1 /\left(a_{1} / a-1\right)\right) / 2-1 /\left(a_{3} / a-1\right)\right)\right)=0,00116592091 \tag{5}
\end{equation*}
$$

From this symmetry, we can classify particles differently and say that: we have one member of the primary and two members of the secondary generation.

The transformation, (1) only made the calculation easier: then everything was returned to anomalous magnetic dipole moments.

It is to be expected that a similar transformation can be used for $\boldsymbol{u} \boldsymbol{p}$ types and for down types of quarks for which no measured data are available to me.

Conclusion

- The ratio of anomalous magnetic dipole moments of three charged leptons was determined, using Ruđer Bošković's Theory.
- Of course, it would be best to use [1] to determine the value for the electron, which I did not do, and which is considered: "the magnetic moment of the electron the most accurately verified prediction in the history of physics", [2], with which I'm not familiar with it.

References:

[1] Boscovich J. R.: (a) "Theoria philosophia naturalis redacta ad unicam legem virium in natura existentium", first (Wien, 1758) and second (Venetiis, 1763) edition in Latin language; (b) "A Theory of Natural Philosophy", in English, The M.I.T. Press, Massachusetts Institute of Technology, Cambridge, Massachusetts and London, England, first edition 1922, second edition 1966.
[2] https://en.wikipedia.org/wiki/Anomalous_magnetic_dipole_moment

