Kinematics of point motion along curves of the second order
Viktor Strohm
Abstract

The motion of a material point along curves of the second order is represented by a kinematic
equation. Formulas for the dependence of acceleration and radius, speed and radius are derived.
The direction of the velocity and acceleration vectors is determined. The conditions for the
conservation of Kepler's laws when a material point moves along second-order curves are
shown.
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IV.  Kepler's laws as properties of kinematic equations of motion of a point along curves
of the second order

If simple equations of speed and acceleration are sufficient to describe rectilinear motion: V =
S/it,a= S/tz, then differential equations of motion are needed to solve problems on the curvilinear

motion of material points and their systems. "The way we derive these equations doesn’t
matter”: [1,§11,m.3].

L. Formulas for the dependence of acceleration and radius, speed and radius

Point C moves in an ellipse relative to the focus, Figure 1.



Figure 1
There is a system of equations for a parametric pendulum (1)

The parameter is time (%).

{x = r(p(t))cos(p(t))
y =r(@®)sin(e(1))

Let us substitute into system (1) the radius of the ellipse with respect to the focus:

b2

r(p®) = m
‘= m'cos(q)(ﬂ)
y = m'sin(q)(ﬂ)

Let's differentiate twice. We get the coordinates of speed and acceleration:

= %(T((p(t))cos(q)(t))) - — bz*(p*Sin(‘P(t)) = Tz*(b*sin((p(t))

a(excos(p(t))-1) excos(p(t))-1

. d b *(p*( e+cos(<p(t))) r *(p*(—e+cbs(<p(t)))
y= dt <1 e*cos((p(t))szn(qo(t))> a(e*cos((p(t)) 1) 1_9*C05(‘P(t))

b2 ((—e*cos ((p (t))*sin((p (t))+sin(<p (t)))<b+<'p2(e*cos ((p(t))z—Ze +cos(<p (t))))
X =

a(e*cos((p(t))—l)3

—b2 ((—cos((p(t))(e*cos((p ®)-1)+e)p +2('p2(e2 —e*cos(zw)sin(w (t)))

a(e*cos((p (t))— 1)3

j}:
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a(—1+excos @(t))?2 (1—ex*cos @(t))

. 5 5 2x@px 2_2ex *(* 2_2epx
VGIOCIty v = \/m — bex@x/1+e?—2e*+cos@(t) _ r+p*1+e?—2excos @(t) (1.8)

Acceleration v = /X2 + 2 =

J(eZ—Ze*cos(w(t))+ 1)(e*cos(<p(t))—1)2*(p2
a(e*cos ((p(t))—1)3
b2 J4(ez—w)(pz(e*cos(<p(ﬂ) sin(p())-1)¢ B
a(e*cos ((p(t))—1)3
J4<’p4(—cos(<p(t))3e3+(e‘*—%)cos((p(t))z+(e3+§)cos(<p(t))—e4—%)

a(e*cos ((p(t))— 1)3

(1.9)

We form a system of equations from (1.6), (1.7) and solve for ¢ We obtain the kinematic
equation of motion of a point relative to the focus along second-order curves:

*@*Si *@2
L zle_:lrcl((zz(p? (1.10)
At different values of eccentricity, the shape of the curve will change.
We substitute (1.10) into (1.9), and simplify:
v= a(l—el)*zc(f)Z(w))z - 1—:ci(<p) (1.11)
The sector speed is constant:
k=12%@, =1%*¢; =1} %@, = const, (1.12)
@ = iz (1.13)
where 1, is the perifocal distance, 7, is the apofocal distance
We substitute (1.13) into (1.11):
k2
(1.14)

- r3(1—excos(¢))

The acceleration v "is recalculated using formula (14). Results (9) and (14) are compared, Figure
2.



acceleration and radius

at given semi-axes:a = 0.5, b =0.45
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Figure 2

We substitute (1.13) into (1.8):

__ rxkx/1+e2-2excos @(t) _ kx/1+e?—2excos ¢(t) 1.15
- r2(1-excos @(t)) T rx(1—excos @ (b)) (1.15)
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Figure 3

Formulas (1.14, 1.15) do not give any advantage for calculating the modulus of speed and
acceleration. First, to calculate the sector constant k, you need to calculate the angular velocity
once. Secondly, in order for the motion of a point to comply with Kepler's laws, the angle must
change according to elliptic equations. The value of these formulas is in the logical definition of
the dependence of speed and acceleration on the radius.

II. Velocity and acceleration vectors

Let's consider two variants of point movement, Figure 4: 1) - movement relative to the center 2) -
movement relative to the focus.
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Figure 4

Note the property of collinear vectors on the plane - rectangles built on vectors, Figure 5, should

be similar:

BD _ BiD;

AD ~ A4D,
A

4]

A1 D1

Figure 5

1. movement relative to focus

Let's compare the ratio of the coordinates of the radius and acceleration:

X __ cos@

y sin ¢

2.1)

(2.2)



X _ (—Zezcoszzp+3ez—1)cos((p)

5 sin(@)(e2-1)(2e2cos2p+1) (23)
If e = 0 we get a circle and 5 = E, 2.4)
a special case of an ellipse, figure 5.

In Figures 5 — 7 they are marked with red lines for speed, green for acceleration.

dZ

Fq)(t) = 0, prCyHOK 6 (2.5)

Coordinates of the beginning of the velocity and acceleration vectors, points of the initial ellipse
(x, ¥). The coordinates of the end of the velocity vector (dx+x, dy+y). Acceleration vector end
coordinates (ddx+x, ddy+y).

Velocity, Acceleration, 2 = 0.5000, b = 0.5000, days = 80.00

If e # 0, then § + 5 Figure 7 (2.6)



Velocity, Acceleration, a = 0.5000, b = 0.4500, days = 80.00 o 8

Figure 7

2. movement relative to the center, figure 4.1)

r(e®) = ﬁ (2.7)

To derive the kinematic equation of motion of a point relative to the center, we will replace the
radius formula (2) with (13) in the system of equations (1.1).

Let's differentiate twice. We get the coordinates of speed and acceleration:

= d bxcos(p(t)) _ ___ bxsin(e) (2.8)

, —e2 2)3/2
dt 1—ez*cos(<p(t))2 (1—e4xcos=@)

b*sm((p(t)) _ b(l—ez)cos(tp) (2 9)
e *cos((p(t) (1—e2xcos2¢)3/2
_ d_ becos(p()) _ b*cos((p)(Zezcoszw—3ez+1) (2.10)
ae? e’zvﬁcos(qp(t))2 (1_92*0052(17)5/2

( bsin(o()) | _ brsin(p)(e?~1)(2e*cosp+1) (2.11)

—e2 2 )5/2
1-e *cos((p(t))z (1-excos®9)



(1—ezcos((p(t))2)3

. 2 2
b= \/m _ \/bztpz(l—Zezcos((p(t)) +e4cos((p(t)) )

(2.12)

We solve for ¢). We obtain the kinematic equation of motion of a point relative to the center

along second-order curves:

.o 2+e2xcos(@)*sin(@)*p>
- 1—e2xcos(p)?

Let's compare the ratio of the coordinates of the radius and acceleration:

x cos @

y sin ¢

* (—Zezcoszzp+3e2—1)cos((p)
v sin(p)(e?2—1)(2e%cos?p+1)

Ife=0wegetacircleand§:§,

a special case of an ellipse, Figure 5.

Eccentricity e = 0. Substitute in equation (2.15)
d? .
Eq)(t) = 0, Figure 6

Ife#0, theng + 5 Figure 8

Velocity, Acceleration, 2 = 0.8000, b = 0.7000, days = 80.00 o 9

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)



V. Trammel of Archimedes
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Any point on the ellipsograph ruler moves along an elliptical path around the center.

In order not to refer the reader to the sources, we present the derivation of the formulas necessary
for calculating velocities, accelerations, and rotation angles.

Ruler 4B moves from horizontal to vertical position, Figure 9. Point C describes "4 of the ellipse.
The direction of the instantaneous rotation of the ruler AB around P,z is clockwise in
accordance with the direction of the known velocity vector of point 4.

Speeds of points B and C:

Wap = A}% (3.1)
Vg = wyp * BPyp = v, jijz (3.2)
Vector v is directed perpendicular to CP.

Ve = wyp * CPpp = vy “Pap (3.3)

APaB

The directions of the velocities of the points vz and v are determined by the instantaneous
rotation of the ruler 4B around the instantaneous center of velocities Pyp.

Determination of accelerations of points B and C

Let's use the theorem - acceleration of points of a flat figure. Point 4 will be a pole, since the
acceleration of point 4 is known.



The vector equation for the acceleration of point B has the form:
@5 = +ap, +ag, (34)

where @, — is the acceleration of the pole 4 (given);

ap, and ag, — are the rotational and centripetal accelerations of the point B in the rotation of the

ruler around the pole A4. In this case:
ag, = wip * BA (3.5)

The vector ag is located perpendicular to the ruler 4B, its direction is unknown, since the
direction of the angular acceleration €45 is unknown.

In equation (3.4) there are two unknowns: accelerations a, and aj,, which can be determined
from the equations of vector equality projections onto the directions of axes AX and AY:

ag, = Ay, + Ak, + as
{ Bx Ax BAx BAx 3.7)

— T c
Qpy = Ay + Apyy + Apyy

The direction of the vectors ag and aj, is chosen arbitrarily. The solution of system (3.7)
allows one to find the numerical value ag and aj, with a plus or minus sign. A positive value

indicates the correctness of the chosen direction of the vectors ag and ay, a negative value
indicates the need to change their direction.

2 2
a, = \](an)z + (aAy) , Aup = \](a/rwx)z + (aZBy) (3-8)
Ruler angular acceleration:
Eap =22 (3.9)

The acceleration of point C is determined by the equation:

a=a; +al, +ag, (3.10)

10



Figure 10

where (@) and ELZ are, respectively, the rotational and centripetal accelerations of the point C
relative to the pole A:

al, = wip x AC (3.11)
aEB = SAB * AC (312)

Vector Eg: is located on C4 and is directed from point C to pole 4. Vector ELE is perpendicular

to CA and directed in the same direction as a_gA) , Figure 10.
Equation (3.10) can be represented in projections on the axes Ax and Ay:

A, = Ay, + agy, + ag
{ Cx Ax CAx CAx (3.13)

— C T
QAcy = Qyy + Acgy + Acpy

The acceleration projections of point C are determined from (3.10). The direction of the vector
ac is determined by the signs of the projections ac, and ac,,.

Vector modulus:

2
ac = J (ac)? + (acy) (3.14)
Let's take a look at the different travel options

T is the period specified by arbitrary units of time. AB = a + b, A(0,y,) B(xp,0). Initial
coordinates of points: 4(0,0), B(a + b,0), C(a,0).Initial speed v,4, = 0.

11



Uniform movement

Given: point C divides 4B into segments a and b, 4(0,y,), B(xg,0), initial 4(0,0), B(AB,0). A

moves uniformly from O — Y. Accelerations ay, = 0,ag = 0, speed

__ ABx4
Uy =

Find: Ya;>Xcyp Yy Vep Acis Pi
Solution

Coordinates A(0,y,,):

Va; = Vg *l

Further, according to equations (3.4) — (3.14)

Coordinates B(xp,, 0):

. __JYA; _ . YA
sinag ==+, ¢ = asin
AB AB
xp; =cosa*AB,yg, =0
_ va _ va
Wpp =5 =
AP sz XBj

Vg = Wyp * BPyp = wyp * Yy,
From equation (5) a5, = w3z * BA

g, = Agf, * COSA + ap, *sina
0=a,, +ag, *sina + ag, * cosa

Solving the resulting equations, we find ag,

a’. = —agy—agarsina  —af +sina
BA cosa cosa
r
&, = 2BA
AB AB

Coordinates P,p (xg p YA )

Coordinates C(x¢, ¢, )

a _ X¢g b _ Yg;

AB  xp; AB  ya;

a b
= — % = — %k
xCi AB xBia yCi AB yAi

CPyp = \/xBl. 24+a? - Z(a * xBl.)cosa

(3.15)

(3.16)

(3.17)
(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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Ve = Wyp * CPyg = wyp * \/xBl. 24+a%—-2+% (a * Xp; ) * COS @ (3.27)

@ = atan 2L (3.28)

.X'Ci

The acceleration of point C is determined by equation (3.10): @g = a, + ab, + aS,

ag, = wip *AC = wjp*a (3.29)
acy = &4+ AC = ggp xa (3.30)
aCy = aAy + aEAy + aE‘Ay )
{aCx =0+ ag, *sina +ag, * cosa (332)
acy =0+ agy xcosa + ag, *sina ’

a; = /a%x +ag, (3.33)

Uniformly accelerated motion

Given: point C divides 4B into segments a and b, 4 moves uniformly accelerated from O — Y,
A(0,y4) B(xp,0), initial 4(0,0), B(AB,0), a,; = const, v,, = 0.

Find: yAi 5 (xCl'!yCl' )7 UCi’aCi’ @i

Solution

vy =40 i=1.n=T (3.34)
AB = vy, =44 (3.35)
Ay =ay="7 (3.36)
Coordinates 4(0, ;)

Vo, = 22 (3.37)

2

Further, according to equations (3.4) — (3.14)

Coordinates B(xg,, 0):

XBl. = ABZ _yAiZ (338)

Coordinates C(xcl., Ye; ):

a Xc; b Yci
L (3.39)
AB xp;  AB YA



b
Xep = =% Xp Yo, = oo * Vay (3.40)

AB AB

_ YA __Yap
Wap =45 - = Py (3.41)
a5, = wiz * AB (3.42)
agA = &yp * BA (343)

The vector ay, is located perpendicular to the ruler 4B, its direction is unknown, since the
direction of the angular acceleration €, is unknown.

We project the vector equation (3.4) on the coordinate axis:

ag, = ag, *cosa + ap, *sina
{ Bx BA_ ' BA (3.44)
0 =ay, +ap, *sina+ag, *x cosa
Solving the resulting equations, we find ag:
—agy-agy*sina
apy = —>—2—— (3.45)
_ ABa

Equation (10) can be represented in projections on the axes Ax and Ay:

Acxy = Ay + aE‘Ax + aE‘Ax

— r c (3.49)

aCy - aAy + aCAy + aCAy

ac, =0+ap, *sina + ag, * cosa 150
{acy:aA+aEA*cosa+a2A*sina (3.50)

ac = /agx +aZ, (3.51)

Elliptical
The movement of the points of the ruler along the ellipse relative to the center,

Z*ez*cos(w)*sin(w)*qbz

¢ = (2.13)

1—e2xcos(p)?

Given: point C divides 4B into segments a and b, A moves elliptically according to the formula
(2.13), from O — Y, A(0,y4), B(xp,0), initial 4(0,0), B(AB,0), v,, = 0.

Find: y4;, x¢; Yep Ve Qcy-
Solution
Equation (2.13) calculates ¢;, x¢;, y¢;

a= arcsinj;—c (3.52)

14



B = %_ ®; (3.53)

y = arcsin (@) (3.54)
Yy=mn—y-p (3.55)
Yo, = LUrERE (3.60)
Va; = Va; — Va4 (3.61)
Aa; = Va; — Va4 (3.62)

Further, according to equations (3.4) — (3.14)

Coordinates B(xg;, 0):

xBi = ‘ABZ _YAiZ (363)

Find the coordinates C (xci. Ye; ) again:

2 -ta b _JYa (3.64)
AB xp;  AB YA
b

Xy = 4m * Xpp Yoy = 7o * Vay (3.65)

_ YA __Ya;
Wap = o= (3.66)
a5, = wig * AB (3.67)
as, = €45 * BA (3.68)

The vector ay, is located perpendicular to the ruler 4B, its direction is unknown, since the
direction of the angular acceleration €45 is unknown.

We project the vector equation (3.4) on the coordinate axis:

{ ag, = ag, *cosa + ag, *sina 3.60
0 =ay, +ag, *sina + ap, *cosa (3.69)
Solving the resulting equations, we find ag,
—asy—ag,*sina
ag, = # (3.70)
_ ABa

Esp = AB (371)
The acceleration of point C is determined by equation (3.10): @¢ = @, + ak, + ag,

ag, = wjip * AC = wjip*a (3.72)

15



aEAZSAB*ACZSAB*a

Equation (3.10) can be represented in projections on the axes Ax and Ay:

— T (5
{aCx = Ayt Qegx T Acpx

— T (5
Acy = Qyy + Acpy + Acpy

j— T 1 C
{aCx =0+ag, *sina + ag, * cosa
— T [ i
Acy = Ay +Qcy ¥COSA + Apy *SINA

_ / 2 2
ac = aCx+aCy

The obtained motion parameters allow checking the fulfillment of Kepler's laws.

Kepler's second law

Uniform movement

Enter char =
o o

if char = “"y" then the source

Y
a = 0.500; b = 0.450; T = 360

Second law of Kepler

Point bypasses 1/4 ellipse cou
Input 0 - uniform motion OR
Input 1-uniformly accelerate
Input 2- elliptical motion):

UNIFORM MOTION

Set the start of the first se

Set the end of the first sect

Set the start of the second s
first sector: angled(startd=
second secto: angle(start):-
intervals of time ti= 145 ¢t

data is specified:

nterclockwise in 89 time units

d motion OR,

ctor {1,..., 89):

3

or ( 3¢ end < 89>:17

ector (1,..., 89):
0.03; angled(end)=
0.61; angledend)

2= 14

Area of the first sector: 0.1767757E-01

0]
second sector:

Figure 11

Uniformly accelerated motion

0.2445188E-01

55
0.17
0.82

(3.73)

(3.74)

(3.75)

(3.76)
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Enter char =

if char = "y" then the source data is specified:
Y
a = 0.500; b = 0.450; T = 360

Second law of Kepler

Point bhypasses 1/4 ellipse counterclockwise in 89 time units
Input 0 - uniform motion OR
Input 1-uniformly accelerated motion OR,
Input 2- elliptical motion):

1
UNIFORMLY ACCELERATEM MOTION

Set the start of the first sector (1,..., 89>: 3

Set the end of the first sector ( 3¢ end < 89>:17

Set the start of the second sector {(1,..., 89)>: 55
first sector: angled(startd)= 0.00; angle(end>= 0.03
second secto: angled(start)= 0.35; angledend> = 0.59
intervals of time ti1 14; t2 14

Area of the first sector: 0.3933465E-02

IERR: 0]

Area of the second sector: 0.2803914E-01

IERR: 0]

Figure 12
Elliptical movement
Enter char =

if char = "y

Y
a 0.500; b 0.450; T K190

then the source data is specified:

Second law of Kepler
Point bypasses 1/4 ellipse counterclockwise in 89 time units
Input 0 - uniform motion OR
Input 1-uniformly accelerated motion OR.
Input 2- elliptical motion):
2
ELLEPTICAL MOTION
Set the start of the first sector {1,..., 89>: 3
Set the end of the first sector ( 3¢ end < 89>:17
Set the start of the second sector {(1,..., 89)>: 55
first sector: angled(start) 0.03; angledend) 0.25
second secto: angle(startd)= 0.89; angledend> = 1.15
intervals of time ti= 14; t2= 14
Area of the first sector: 0.2748870E-01
IERR: 0}
Area of the second sector: 0.2748918E-01
IERR: 0}

Figure 13
Equality of the areas of sectors is carried out only with elliptical motion.
Graphical results of moving a point along an ellipse at different speeds.

Uniform movement, Figure 14
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Uniform motion: velocity and acceleration vectors, a = 0.50, b = 0.45, T = 80.00

Figure 14

Uniformly accelerated motion, Figure 15.

Uniformly motion: velocity and acceleration vectors, a = 0.50, b = 0.45, T = 80.00

Figure 15

18



Elliptical movement, Figure 16

Elliptical motion: velocity and acceleration vectors, a = 0.50, b = 0.45, T = 80.00

N \\
/4

Figure 16

VL Kepler's laws as properties of kinematic equations of motion of a point along
curves of the second order

The equations are solved by computer programs. The calculation results are compared with

Kepler's laws. The uniqueness of the orbital velocity for the given parameters of the curve is
noted. The orbital velocity is calculated from the kinematic equation and compared with the
values of astronomical tables

The sector velocity modulus is a constant for a given ellipse.
|vs] :%Irl * |v| * sin(r"v) = const 4.1)

If a point moves along a flat curve and its position is determined by the polar coordinates » and
@, then

E Z—‘f = const (4.2)
To illustrate the constancy of the sectoral velocity, a program was written to calculate the sector
area in a given time interval. The program, TygeBraheKepler2 focal [A.1], calculates the
parameters of the point movement according to equation (8) and shows the equality of the areas
of the sectors at equal time intervals, fig. 17 — 19.

1
o] =317
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4-angu1af>uelocitg. S-polar radius, 6-linear velocity

Enter char =
if char = "y" then the source data is specified:
Yy
= 9.00 b= 7.00
dpi = 0.0000000 H = 1.00000005E-03

Second law of Kepler H= 1.00000005E-03
The point bypasses the ellipse in 1/H time units (0 < H < 1), counterclockuwise.
1/H = 999

Set the start of the first sector (i0=1,..., 999 ) 1i0 =
1

Set the end of the first sector (10<i1<1/H) i1 =
999

Set the start of the second sector (0<i02<1/H-i1+i@) 102 =
1

angle(i®) ©0.00; angle(il) 6.28
angle(i02)= ©0.00; angle(i12) 6.28
Area of the first sector: 0.1975210E+03
IERR: 0
Area of the second sector: 0.1975210E+03
IERR: 0

Figure 17
Figure 17 shows the program test. The area of the ellipse is ab. 3.14159*9*7 = 197.92017

Figure 18 shows equal time intervals at different points in the period.

4-angular velocity, S-polar radius, 6-linear velocity

Enter char =
if char = "y" then the source data is specified:
Yy
= 9.00 b= T7.00
dpi = 0.0000000 H = 1.00000005E-03

Second law of Kepler H= 1.00000005E-03
The point bypasses the ellipse in 1/H time units (0 < H < 1), counterclockuwise.
1/H = 999

Set the start of the first sector (i0=1 999 ) 10 =
22
Set the end of the first sector (10<i1<1/H) i1 =
333
Set the start of the second sector (0<i02<1/H-11+i0) 102 =
555
angle(i0) ©0.04; angle(il) ©0.81
angle(i02)= 4.57; angle(i12) 6.03
Area of the first sector: 0.6155315E+02
IERR: 0
Area of the second sector: 0.6155347E+02
IERR: 0

Figure 18
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On fig. 19 added precession (dpi = 0.1) to the parameters of fig. eighteen.

a:=z 9.00 b= 7.00

(precession 0<=dpi<=pi/10) dpi=
0.1

0.10000000

(period = 1, @ < H< 1 ) H:=
0.001

Second law of Kepler H= 1.0000000SE-03
The point bypasses the ellipse in 1/H time units (0 < H < 1), counterclockuwise.
1/H = 999

Set the start of the first sector (i0=1 999 ) 1i0 =
22

Set the end of the first sector (10<i1<1/H) i1 =
333

Set the start of the second sector (0<i02<1/H-i1+i0) 102 =
555
angle(i0) ©0.04; angle(il) ©0.89
angle(i02)= 4.94; angle(i12) 6.12
Area of the first sector: 0.6487T499E+02
IERR: 0
Area of the second sector: 0.6487521E+02
IERR: 0

Figure 19

Kepler's third law

At perihelion and aphelion, sin(p) = 0, so the acceleration at these points is zero, and the modulo
velocity difference is a constant:

p — Vg =0 (4.3)
Sector velocity according to the law of conservation of momentum is a constant value:

v =1/2vr (4.4)
Let us express the sector velocity modulo the linear velocity.

Since sin(vp/\rp) = sin(v,'r,) 1, then

vs=1/2v,1, = 1/27,(v, + 5) 4.5)

ve =1/2v,7, (4.6)

1/27r,(v, +6) =1/21,v, 4.7)
_ rp(S

v =2 (4.8)

We substitute (4.8) into (4.6):
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Vs = ) (4.9)
Calculate the area of the ellipse. One side:
Selipse = mab (4.10)

where a is the length of the major semiaxis, b is the length of the minor semiaxis of the orbit.

On the other hand

STyt
Sellipse =vuT = Tm (411)
Consequently,
ST _ b 4.12
20rar) Ta (4.12)

For further transformations, we use the geometric properties of the ellipse. We have ratios:
T, — T, = 2¢, ¢ = ae, 1,1, = a® — c* = b2

Substitute into (4.12):

7% — nab (4.13)
4ae
&b, 4

T—,=4m; rtnelT =1, (4.14)
5b

4maZe 1 (4.15)

. T2
Kepler's third law: pri 1 (4.16)

&b T? &b T? 1 [6ba 1 |(vy-vg)ba
T8 _Thop_1fdha 1 |(vp=va)ba 4.17)
4mwaZe a3’ 4me a 2 me 2 me

The program Movement of a mat point along an ellipse [A.2], using formulas (4.16) and (4.17),
calculates the periods. 6 = v, — v, [au/planet year]
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The differential equation of the second order curves
with respect to the focus is calculated.

The data table is displayed in the file ellpi.txt.
Table columns:1-number, 2 - time, 3 - angle,
4-angular speed, S-polar radius, 6-linear speed
7-angular acceleration, 8-linear acceleration

Enter O or 1 or 2 or 3 or 4
0 - enter a, b. Select planet 1 - Mercury, 2 -Uenus, 3 - Earth, 4 - Mars:

a= 9,00 b= 7.00
orbital points (N): 999
period(Kepler3 sqrt(axx3)= 27.000000
period(sqrt(((v1-u2)xbxa)/(pixex))/2) = 26.999981
PAUSE
To resume execution, type go. Other input will terminate the job.

Figure 20

The differential equation of the second order curves
with respect to the focus is calculated.

The data table is displayed in the file ellpi.txt.
Table columns:1-number, 2 - time, 3 - angle,
4-angular speed, S-polar radius, 6-linear speed
7-angular acceleration, 8-linear acceleration

Enter O or 1 or 2 or 3 or 4
O - enter a, b. Select planet 1 - Mercury, 2 -Uenus, 3 - Earth, 4 - Mars:
1

a: 0.33 b= 0.38

orbital points (N): 999
period(Kepler3 sqrt(axx3)= 0.24084271
period(sqrt(((v1-u2)xbxa)/(pixex))/2) = 0.24084280

PAUSE

To resume execution, type go. Other input will terminate the job.

Figure 21
2. Differential equation of motion of a point along an ellipse with respect to the center

Let's move the origin of coordinates to the center of the ellipse, Fig. 22. The radius function (2.7)
will change.
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M - material point. Q is a generalized force acting on a point. O - center. v - linear speed of the point. ¢(?) is the
angle between the X-axis and the point, counterclockwise.

Figure 22
Kepler's second law

The TygeBraheKepler2 center [A.1] program calculates the parameters of the point movement
according to equations (2.7 —2.13), and shows the equality of the areas of the sectors at equal
time intervals. Figures 23-25.

4-angular velocity, S-polar radius, 6-linear velocity

Enter char =
if char = "y" then the source data is specified:

9.00 b = 7.00
0.0000000 H = 1.00000005E-03

Second law of Kepler H= 1.00000005E-03
The point bypasses the ellipse in 1/H time units (0 < H < 1), counterclockuise.
1/H = 999

Set the start of the first sector (i0:=1 999 ) i0 =
1
Set the end of the first sector (i10<i1<1/H) 1i1 =
999
Set the start of the second sector (0<i02<1/H-11+i0) 102 =
1
angle(i0®) ©0.00; angle(il) 6.28
angle(i02)= ©0.00; angle(il12) 6.28
Area of the first sector: 0.1976214E+03
0
the second sector: 0.1976214E+03

Figure 23

Figure 23 shows the program test. The area of the ellipse is mab. 2%3.14159*9*7 = 197.92017
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4-angular velocity, S-polar radius, 6-linear velocity

Enter char =
if char = "y" then the source data is specified:
y
= 9.00 b= T7.00
dpi = 0.0000000 H = 1.00000005E-03

Second law of Kepler H= 1.0000000SE-03
The point bypasses the ellipse in 1/H time units (0 < H < 1), counterclockuwise.
1/H = 999

Set the start of the first sector (i0=1 999 ) i0 =
22
Set the end of the first sector (10<i1<1/H) 11 =
333
Set the start of the second sector (0<i02<1/H-i1+i@) 102 =
555
angle(i®) ©0.10; angle(il) 2.20
angle(102)= 3.41; angle(il12) 5.56
Area of the first sector: 0.6155317E+02
IERR: 0
Area of the second sector: 0.6155319E+02
IERR: 0

Figure 24
On fig. 24 equal time intervals are given at different moments of the period.

9
semiminor axis b =
7
a= 9.00 b= T7.00
(precession 0<=dpi<=pi/10) dpi=
0.1
0.10000000
(period = 1, < H< 1 )H:=
0.001

w Second law of Kepler H= 1.0000000SE-03
The point bypasses the ellipse in 1/H time units (0 < H < 1), counterclockuise.
1/H = 999

Set the start of the first sector (i0=1 999 ) 1i0 =
22

Set the end of the first sector (i0<ii1<1/H) i1 =
333
Set the start of the second sector (0<i02<1/H-i1+i0) 102 =
555
angle(i0) ©0.10; angle(il) 2.25
angle(i02)= 3.47; angle(i12) 5.67
Area of the first sector: 0.6280998E+02
IERR: 0
Area of the second sector: 0.6280998E+02
IERR: 0

Figure 25

On fig. 25 added precession (dpi = 0.1) to the parameters of fig. 23.
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Kepler's third law

The program Movement of a mat point along an ellipse center [A.2], using formulas (4.16 —
4.17), calculates the periods. 6 = vI — v2 [au/planet year].

In Figures 25 - 27 we see that with an increase in the eccentricity, the difference between the
periods increases.

The differential equation of the second order curves
with respect to the focus is calculated.

The data table is displayed in the file ellpi.txt.
Table columns:1-number, 2 - time, 3 - angle,
4-angular speed, S-polar radius, 6-linear speed
7T-angular acceleration, 8-linear acceleration

Enter O or 1 or 2 or 3 or 4
0 - enter a, b. Select planet 1 - Mercury, 2 -Uenus, 3 - Earth, 4 - Mars:

a: 9.00 b= T7.00
orbital points (N): 999
period(Kepler3 sqrt(axx3)= 27.000000
period(sqrt(((vi-u2)xbxa)/(pixex))/2) = 21.000002
PAUSE
To resume execution, type go. Other input will terminate the job.

Figure 26

The differential equation of the second order curves
with respect to the focus is calculated.

The data table is displayed in the file ellpi.txt.
Table columns:1-number, 2 - time, 3 - angle,
4-angular speed, S-polar radius, 6-linear speed
7-angular acceleration, 8-linear acceleration

Enter O or 1 or 2 or 3 or 4
© - enter a, b. Select planet 1 - Mercury, 2 -Uenus, 3 - Earth, 4 - Mar
1

a: 0.39 b= 0.38
orbital points (N): 999
period(Kepler3 sqrt(axx3)= 0.24084271
period(sqrt(((vi-u2)xbxa)/(pixex))/2) = 0.23569536
PAUSE
To resume execution, type go. Other input will terminate the job.

Figure 27
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The differential equation of the second order curves
with respect to the focus is calculated.

The data table is displayed in the file ellpi.txt.
Table columns:1-number, 2 - time, 3 - angle,
4-angular speed, S-polar radius, 6-linear speed
7-angular acceleration, 8-linear acceleration

Enter © or 1 or 2 or 3 or 4
O - enter a, b. Select planet 1 - Mercury, 2 -Uenus, 3 - Earth, 4 - Mars:
2
a:= 0.73 b= 0.73
orbital points (N): 999
period(Kepler3 sqrt(axx3)= ©0.62144679
period(sqrt(((vi1-v2)xbxa)/(pixex))/2) = 0.62116992
PAUSE
To resume execution, type go. Other input will terminate the job.

Figure 28
Conclusion

The kinematic equation (1.10) accurately describes the motion along ideal second-order curves.
The real orbits of cosmic bodies have deviations from the ideal curve: precession, periodic
asymmetry of the lengths of the radii, and other types of deviation.

Equation (1.10) and the center of mass theorem make it possible to simulate the motion of three
or more bodies along second-order curves. Example [A.5], fig. 29, 30.

Figure 29
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Figure 30

The kinematic equation (2.13) is applicable for modeling streamlines of liquid and gas particles.

The article used materials from textbooks on mechanics.
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