
1 

 

 

Kinematics of point motion along curves of the second order 

Viktor Strohm 

Abstract 

The motion of a material point along curves of the second order is represented by a kinematic 

equation. Formulas for the dependence of acceleration and radius, speed and radius are derived. 

The direction of the velocity and acceleration vectors is determined. The conditions for the 

conservation of Kepler's laws when a material point moves along second-order curves are 

shown. 
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If simple equations of speed and acceleration are sufficient to describe rectilinear motion: V = 

S/t, a = S/t
2
, then differential equations of motion are needed to solve problems on the curvilinear 

motion of material points and their systems. "The way we derive these equations doesn’t 

matter”: [1,§11,п.3]. 

 

I. Formulas for the dependence of acceleration and radius, speed and radius 

Point C moves in an ellipse relative to the focus, Figure 1. 



2 

 

 

Figure 1 

There is a system of equations for a parametric pendulum (1) 

The parameter is time (t). 

�� � �������·
�������� � �������·���������          (1.1) 

Let us substitute into system (1) the radius of the ellipse with respect to the focus: 

������� � �������∗����������          (1.2) 

 � � �������∗���������� ·
��������
! � �������∗���������� ·���������         (1.3) 

Let's differentiate twice. We get the coordinates of speed and acceleration: 

�" � ##� ��������
��������� � $ ��∗�" ∗%&'���������∗()%���������� �  +�∗�" ∗%&'�������∗()%��������      (1.4)  

!" � ##� , -���∗��������� ���������. � ��∗�" ∗���/()%����������∗()%���������� � +�∗�∗���/()%�������"���∗()%������    (1.5)  

�0 � ��,���∗���������∗�12������/�12��������0 /�" �3�∗�����������4�/���������5.
���∗������������6     (1.6) 

!0 � ���,�������������∗������������/���0 /4�" �3���7∗89:�;�<��=>� 5�12������.
���∗������������6     (1.7) 
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Velocity ? � @�" 4 + !" 4 � ��∗�" ∗@�/���4�∗()% ��������/�∗()% ������ � +∗�" ∗@�/���4�∗()% ��������∗()% �����     (1.8)  

Acceleration ?" � @�0 4 + !0 4 �  

B4

⎝
⎜⎜⎜
⎜⎛

F����4�∗���������/����∗�������������∗G0 ����∗������������6 +
FH3���6∗7∗89:�;�<��=>� 5�" ���∗��������� %&'���������G0���∗������������6 $

FH�" I3����������6�6/3�I�7�I 5����������/��6/7�������������I�>I5
���∗������������6 ⎠

⎟⎟⎟
⎟⎞

    (1.9) 

We form a system of equations from (1.6), (1.7) and solve for φ ̈. We obtain the kinematic 

equation of motion of a point relative to the focus along second-order curves: 

�0 � 4∗�∗%&'���∗�" ����∗()% ���                (1.10) 

At different values of eccentricity, the shape of the curve will change. 

We substitute (1.10) into (1.9), and simplify: 

?" � ���" ������∗()%����� � +∗�" ����∗()%���         (1.11) 

The sector speed is constant: 

M � �-4 ∗ �"- � �14 ∗ �" 1 � ��4 ∗ �"� � 
����,       (1.12) 

�" � N+�            (1.13) 

where �- is the perifocal distance, �� is the apofocal distance 

We substitute (1.13) into (1.11): 

?" � N�+6����∗()%����           (1.14) 

The acceleration v ̇ is recalculated using formula (14). Results (9) and (14) are compared, Figure 

2. 
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Figure 2 

We substitute (1.13) into (1.8): 

? � +∗N∗@�/���4�∗()% �����2����∗()% ����� � N∗@�/���4�∗()% �����∗����∗()% �����        (1.15) 

 

Figure 3 

Formulas (1.14, 1.15) do not give any advantage for calculating the modulus of speed and 

acceleration. First, to calculate the sector constant k, you need to calculate the angular velocity 

once. Secondly, in order for the motion of a point to comply with Kepler's laws, the angle must 

change according to elliptic equations. The value of these formulas is in the logical definition of 

the dependence of speed and acceleration on the radius. 

II. Velocity and acceleration vectors 

Let's consider two variants of point movement, Figure 4: 1) - movement relative to the center 2) - 

movement relative to the focus. 
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v - speed, a - acceleration, dx, dy, ddx, ddy - first and second derivatives along the coordinate axes. 

Figure 4 

Note the property of collinear vectors on the plane - rectangles built on vectors, Figure 5, should 

be similar: 

PQRQ � P>Q>R>Q>            (2.1) 

 

Figure 5 

1. movement relative to focus 

Let's compare the ratio of the coordinates of the radius and acceleration: 

ST � ()% �%&' �             (2.2) 
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S0T0 � ��4�������/U������������12����������4�������/��           (2.3) 

 

If e = 0 we get a circle and  
S0T0 � ST,          (2.4) 

a special case of an ellipse, figure 5. 

 

In Figures 5 – 7 they are marked with red lines for speed, green for acceleration. 

#�#�� ���� � 0, рисунок 6          (2.5) 

 

Coordinates of the beginning of the velocity and acceleration vectors, points of the initial ellipse 

(x, y). The coordinates of the end of the velocity vector (dx+x, dy+y). Acceleration vector end 

coordinates (ddx+x, ddy+y). 

 

Figure 6 

If e ≠ 0, then 
S0T0 W ST, Figure 7          (2.6) 
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Figure 7 

2. movement relative to the center, figure 4.1) 

������� � �@������������          (2.7) 

 

To derive the kinematic equation of motion of a point relative to the center, we will replace the 

radius formula (2) with (13) in the system of equations (1.1). 

Let's differentiate twice. We get the coordinates of speed and acceleration: 

�" � ##� X �∗���������F����∗����������Y � $ �∗�12��������∗������6/�         (2.8) 

!" � ##� X �∗�12������F����∗����������Y � ������������������∗������6/�        (2.9) 

�0 � #�#�� X �∗���������
F����∗����������Y � $ B∗
������2[2
��2�$3[2+1��1$[2∗
��2��5/2        (2.10) 

!0 � _2
_�2 X B∗�12������F1$[2∗
��������2Y � �∗�12����������4�������/�������∗������`/�        (2.11) 
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? � @�" 4 + !" 4 � a���" 2�1$2[2
��������2+[4
��������2�
�1$[2
��������2�3        (2.12) 

We solve for �0 . We obtain the kinematic equation of motion of a point relative to the center 

along second-order curves: 

�0 � 4∗��∗������∗�12���∗�" �����∗�������           (2.13) 

 

Let's compare the ratio of the coordinates of the radius and acceleration: 

ST � ()% �%&' �            (2.14) 

 �0T0 � ��4�������/U������������12����������4�������/��          (2.15) 

 

If e = 0 we get a circle and 
S0T0 � ST ,         (2.16)  

a special case of an ellipse, Figure 5. 

Eccentricity e = 0. Substitute in equation (2.15) 

#�#�� ���� � 0, Figure 6    

If e ≠ 0, then 
S0T0 W ST, Figure 8          (2.17) 

 

Figure 8 
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V. Trammel of Archimedes                                                                                                  

 

Figure 9 

Any point on the ellipsograph ruler moves along an elliptical path around the center. 

In order not to refer the reader to the sources, we present the derivation of the formulas necessary 

for calculating velocities, accelerations, and rotation angles. 

Ruler AB moves from horizontal to vertical position, Figure 9. Point C describes ¼ of the ellipse. 

The direction of the instantaneous rotation of the ruler AB around РАВ  is clockwise in 

accordance with the direction of the known velocity vector of point A. 

Speeds of points B and C: 

cRP � deRfeg            (3.1) 

hP � cRP ∗ ijRP � ?R PfegRfeg          (3.2) 

Vector ?k  is directed perpendicular to СР. 

hk � cRP ∗ ljRP � ?R kfegRfeg          (3.3) 

The directions of the velocities of the points ?Pmmmm⃗  and ?kmmmm⃗  are determined by the instantaneous 

rotation of the ruler AB around the instantaneous center of velocities РАВ. 

Determination of accelerations of points B and C 

Let's use the theorem - acceleration of points of a flat figure. Point A will be a pole, since the 

acceleration of point A is known. 
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The vector equation for the acceleration of point B has the form:     

oPmmmm⃗ � oRmmmm⃗ + oPR+mmmmmmm⃗ + oPR�mmmmmmm⃗          (3.4) 

where oRmmmm⃗  – is the acceleration of the pole A (given); 

oPR+mmmmmmm⃗   and oPR�mmmmmmm⃗  – are the rotational and centripetal accelerations of the point B in the rotation of the 

ruler around the pole A. In this case: 

pqrs � trqu ∗ iv            (3.5) 

The vector oPmmmm⃗   is located perpendicular to the ruler AB, its direction is unknown, since the 

direction of the angular acceleration wRP is unknown. 

In equation (3.4) there are two unknowns: accelerations oRmmmm⃗  and oPR+mmmmmmm⃗ , which can be determined 

from the equations of vector equality projections onto the directions of axes AX and AY: 

�pPS � pRS + pPRS+ + pPRS�pPT � pRT + pPRT+ + pPRT�           (3.7) 

The direction of the vectors oPmmmm⃗   and oPR+mmmmmmm⃗  is chosen arbitrarily. The solution of system (3.7) 

allows one to find the numerical value oPmmmm⃗  and oPR+mmmmmmm⃗  with a plus or minus sign. A positive value 

indicates the correctness of the chosen direction of the vectors oPmmmm⃗  and oPR+mmmmmmm⃗   a negative value 

indicates the need to change their direction. 

oR � F�oRS�4 + �oRT�4, oRP+ � F�oRPS+ �4 + �oRPT+ �4
       (3.8) 

Ruler angular acceleration: 

wRP � pgeyPR             (3.9) 

The acceleration of point C is determined by the equation: 

okmmmm⃗ � oRmmmm⃗ + okR+mmmmmm⃗ + okR�mmmmmm⃗           (3.10) 
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Figure 10 

where (okR+mmmmmm⃗  and okR�mmmmmm⃗  are, respectively, the rotational and centripetal accelerations of the point C 

relative to the pole A: 

pkR� � tRP4 ∗ vl           (3.11) 

pkP+ � wRP ∗ vl           (3.12) 

Vector okR�mmmmmm⃗  is located on СA and is directed from point C to pole A. Vector okR+mmmmmm⃗  is perpendicular 

to СA and directed in the same direction as oPR+mmmmmmm⃗  , Figure 10. 

Equation (3.10) can be represented in projections on the axes Ax and Ay: 

�pkS � pRS + pkRS� + pkRS+pkT � pRT + pkRT� + pkRT+           (3.13) 

The acceleration projections of point C are determined from (3.10). The direction of the vector okmmmm⃗  is determined by the signs of the projections pkS  and pkT. 

Vector modulus: 

pk � F�okS�4 + �okT�4
         (3.14) 

Let's take a look at the different travel options 

T is the period specified by arbitrary units of time. vi � o + B, A(0,!R) В(�P,0). Initial 

coordinates of points: A(0,0), В(o + B,0),  C(o,0).Initial speed hRz � 0. 
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Uniform movement 

Given: point C divides AB into segments a and b, A(0,!R), В(�P,0), initial A(0,0), B(AB,0). A 

moves uniformly from O → Y. Accelerations pR � 0, pP � 0, speed 

  hR � RP∗H{             (3.15) 

Find: !R1 , �k1 , !k 1 , ?k 1 ,  pk 1, φ1 
Solution 

Coordinates A(0 , !R1 ): 
 !R1 � hR ∗ �           (3.16) 

Further, according to equations (3.4) – (3.14) 

Coordinates B��P1 , 0): 

sin � � Te� RP , � � asin Te� RP          (3.17) 

�P1 � cos � ∗ AB, !P 1 � 0         (3.18) 

tRP � deRfeg � deSg�            (3.19) 

hP � tRP ∗ ijRP � tRP ∗ !R1          (3.20) 

From equation (5) pPR� � tRP4 ∗ iv  

� pPS � pPR� ∗ cos � + pPR+ ∗ sin �0 � pRT + pPR� ∗ sin � + pPR+ ∗ cos �        (3.21) 

Solving the resulting equations, we find pP , 

pPR+ � �pe��pge8 ∗%&' �()% � � �pge8 ∗%&' �()% �          (3.22) 

wRP � pgeyRP             (3.23) 

Coordinates jRP��P1 , !R1 � 

Coordinates l��k1, !k 1 � 

�RP � S��Sg� , 
�RP � T��Te�          (3.24)  

�k 1 � �RP ∗ �P1, !k1 � �RP ∗ !R1        (3.25) 

ljRP � F�P1 4 + o4 $ 2�o ∗ �P1 � cos �        (3.26) 
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hk � tRP ∗ ljRP � tRP ∗ F�P1 4 + o4 $ 2 ∗ �o ∗ �P1 � ∗ cos �     (3.27) 

� � atan T�� S��             (3.28) 

The acceleration of point C is determined by equation (3.10): okmmmm⃗ � oRmmmm⃗ + okR+mmmmmm⃗ + okR�mmmmmm⃗  

pkR� � tRP4 ∗ vl � tRP4 ∗ o          (3.29) 

pkR+ � wRP ∗ vl � wRP ∗ o          (3.30) 

�pkS � pRS + pkRS+ + pkRS�pkT � pRT + pkRT+ + pkRT�           (3.31) 

�pkS � 0 + pkR+ ∗ sin � + pkR� ∗ cos �pkT � 0 + pkR+ ∗ cos � + pkR� ∗ sin �        (3.32) 

pk � FpkS4 + pkT4            (3.33) 

Uniformly accelerated motion 

Given: point C divides AB into segments a and b, A moves uniformly accelerated from O → Y, 

A(0,!R) В(�P,0), initial A(0,0), В(AB,0), pR1 � 
����, hRz � 0. 

Find: !R1 , ��k 1 , !k 1 �, ?k1 , pk 1, φ1 
Solution 

hR1 � pe∗1�4 ;   � � 1 … � � {H          (3.34) 

vi � hR2 � pe∗2�4             (3.35) 

pR1 � pR � 4RP2�            (3.36) 

Coordinates A(0, !R1 ) 
!R� � pe∗1 �4             (3.37) 

Further, according to equations (3.4) – (3.14) 

Coordinates B(�P1 , 0): 

�P1 � Fvi4 $ !R� 4           (3.38) 

Coordinates l��k1, !k 1 �: 

�RP � S��Sg� , 
�RP � T��Te�          (3.39)  
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�k 1 � �RP ∗ �P1, !k1 � �RP ∗ !R1        (3.40) 

tRP � he� Rfeg � he� Sg�            (3.41) 

pPR� � tRP4 ∗ vi           (3.42) 

pPR+ � wRP ∗ iv           (3.43)  

The vector oPR+mmmmmmm⃗   is located perpendicular to the ruler AB, its direction is unknown, since the 

direction of the angular acceleration wRP is unknown. 

We project the vector equation (3.4) on the coordinate axis: 

� pPS � pPR� ∗ cos � + pPR+ ∗ sin �0 � pRT + pPR� ∗ sin � + pPR+ ∗ cos �        (3.44) 

Solving the resulting equations, we find pP: 

pPR+ � �pe��pge8 ∗%&' �()% �           (3.45) 

wRP � pgeyRP             (3.46) 

Equation (10) can be represented in projections on the axes Ax and Ay: 

�pkS � pRS + pkRS+ + pkRS�pkT � pRT + pkRT+ + pkRT�           (3.49) 

� pkS � 0 + pkR+ ∗ sin � + pkR� ∗ cos �pkT � pR + pkR+ ∗ cos � + pkR� ∗ sin �        (3.50) 

ok � FokS4 + okT4            (3.51) 

Elliptical 

The movement of the points of the ruler along the ellipse relative to the center, 

�0 � 4∗��∗������∗�12���∗�" �����∗�������            (2.13) 

Given: point C divides AB into segments a and b, A moves elliptically according to the formula 

(2.13), from O → Y, A(0,!R), В(�P,0), initial A(0,0), В(vi,0),  hRz � 0.  

Find: !R1 , �k1 , !k 1 , ?k 1 ,  pk 1. 
Solution 

Equation (2.13) calculates �1  , �k 1 , !k 1  � � arcsin T��             (3.52) 
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� � �4 $ �1            (3.53) 

� � arcsin �+�∗%&' �� �           (3.54) 

� � � $ � $ �           (3.55) 

!R1 � T�� /�∗%&' ��            (3.60) 

?R1 � !R1 $ !R1��           (3.61) 

oR1 � ?R1 $ ?R1��           (3.62) 

Further, according to equations (3.4) – (3.14) 

Coordinates B(�P1 , 0): 

�P1 � Fvi4 $ !R� 4           (3.63) 

Find the coordinates l��k1 , !k1 � again: 

�RP � S��Sg� , 
�RP � T��Te�          (3.64)  

�k 1 � �RP ∗ �P1, !k1 � �RP ∗ !R1        (3.65) 

tRP � he� Rfeg � he� Sg�            (3.66) 

pPR� � tRP4 ∗ vi           (3.67) 

pPR+ � wRP ∗ iv           (3.68)  

The vector oPR+mmmmmmm⃗  is located perpendicular to the ruler AB, its direction is unknown, since the 

direction of the angular acceleration wRP is unknown. 

We project the vector equation (3.4) on the coordinate axis: 

� pPS � pPR� ∗ cos � + pPR+ ∗ sin �0 � pRT + pPR� ∗ sin � + pPR+ ∗ cos �        (3.69) 

Solving the resulting equations, we find pP , 

pPR+ � �pe��pge8 ∗%&' �()% �           (3.70) 

wRP � pgeyRP             (3.71) 

The acceleration of point C is determined by equation (3.10): okmmmm⃗ � oRmmmm⃗ + okR+mmmmmm⃗ + okR�mmmmmm⃗  

pkR� � tRP4 ∗ vl � tRP4 ∗ o          (3.72) 
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pkR+ � wRP ∗ vl � wRP ∗ o          (3.73) 

Equation (3.10) can be represented in projections on the axes Ax and Ay: 

�pkS � pRS + pkRS+ + pkRS�pkT � pRT + pkRT+ + pkRT�           (3.74) 

� pkS � 0 + pkR+ ∗ sin � + pkR� ∗ cos �pkT � pR + pkR+ ∗ cos � + pkR� ∗ sin �        (3.75) 

ok � FokS4 + okT4            (3.76) 

The obtained motion parameters allow checking the fulfillment of Kepler's laws. 

Kepler's second law 

Uniform movement 

 

Figure 11 

Uniformly accelerated motion 
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Figure 12 

Elliptical movement 

 

Figure 13 

Equality of the areas of sectors is carried out only with elliptical motion. 

Graphical results of moving a point along an ellipse at different speeds. 

Uniform movement, Figure 14 
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Figure 14 

Uniformly accelerated motion, Figure 15. 

 

Figure 15 
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Elliptical movement, Figure 16 

 

Figure 16 

 

VI. Kepler's laws as properties of kinematic equations of motion of a point along 

curves of the second order 

The equations are solved by computer programs. The calculation results are compared with 

Kepler's laws. The uniqueness of the orbital velocity for the given parameters of the curve is 

noted. The orbital velocity is calculated from the kinematic equation and compared with the 

values of astronomical tables 

The sector velocity modulus is a constant for a given ellipse. 

|?�| � �4 |�| ∗ |?| ∗ sin��^?� � 
����        (4.1) 

If a point moves along a flat curve and its position is determined by the polar coordinates r and 

φ, then 

|?�| � �4 |�|4 #�#� � 
����          (4.2) 

To illustrate the constancy of the sectoral velocity, a program was written to calculate the sector 

area in a given time interval. The program, TygeBraheKepler2_focal [A.1], calculates the 

parameters of the point movement according to equation (8) and shows the equality of the areas 

of the sectors at equal time intervals, fig. 17 –  19. 
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Figure 17 

Figure 17 shows the program test. The area of the ellipse is �ab. 3.14159*9*7 = 197.92017 

Figure 18 shows equal time intervals at different points in the period. 

 

Figure 18 
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On fig. 19 added precession (dpi = 0.1) to the parameters of fig. eighteen. 

 

Figure 19 

Kepler's third law 

At perihelion and aphelion, sin(φ) = 0, so the acceleration at these points is zero, and the modulo 

velocity difference is a constant: 

?- $ ?� � �            (4.3) 

Sector velocity according to the law of conservation of momentum is a constant value: 

h� � 1 2⁄ h�            (4.4) 

Let us express the sector velocity modulo the linear velocity. 

Since sin(vp
/\
rp) = sin(va

/\
ra) 1, then 

?� � 1 2⁄ ?-�- � 1 2⁄ �-�?� + ��        (4.5) 

?� � 1 2⁄ ?���           (4.6) 

1 2⁄ �-�?� + �� � 1 2⁄ ��?�         (4.7) 

?� � +��+��+�           (4.8) 

We substitute (4.8) into (4.6): 



22 

 

?� � �+�+�4�+��+� �           (4.9) 

Calculate the area of the ellipse. One side: 

��  1-�� � �oB           (4.10) 

where a is the length of the major semiaxis, b is the length of the minor semiaxis of the orbit. 

On the other hand 

��  1-�� � ?�¡ � ¡ �+�+�4�+��+��         (4.11) 

Consequently, 

¡ �+�+�4�+��+�� � �oB          (4.12)  

For further transformations, we use the geometric properties of the ellipse. We have ratios: �� $ �- � 2
, 
 � o[, �-�� � o4 $ 
4 � B4. 

Substitute into (4.12): 

¡ ���H�� � �oB           (4.13) 

¡ ����� � 4� ;  где ¡ � 1;         (4.14) 

��H���� � 1            (4.15) 

Kepler's third law:  
{��6 � 1         (4.16) 

��H���� � {��6; 
��H�� � {�� ; ¡ � �4 F����� � �4 F�d��d������             (4.17) 

The program Movement of a mat point along an ellipse [A.2], using formulas (4.16) and (4.17), 

calculates the periods. δ = vp – va [au/planet year] 
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Figure 20 

 

Figure 21 

2. Differential equation of motion of a point along an ellipse with respect to the center 

Let's move the origin of coordinates to the center of the ellipse, Fig. 22. The radius function (2.7) 

will change. 
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M - material point. Q is a generalized force acting on a point. O - center. v - linear speed of the point. φ(t) is the 

angle between the X-axis and the point, counterclockwise. 

Figure 22 

Kepler's second law 

The TygeBraheKepler2_center [A.1] program calculates the parameters of the point movement 

according to equations (2.7 –2.13), and shows the equality of the areas of the sectors at equal 

time intervals. Figures 23–25. 

 

Figure 23 

Figure 23 shows the program test. The area of the ellipse is �ab. 2*3.14159*9*7 = 197.92017 
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Figure 24 

On fig. 24 equal time intervals are given at different moments of the period. 

 

Figure 25 

On fig. 25 added precession (dpi = 0.1) to the parameters of fig. 23. 
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Kepler's third law 

The program Movement of a mat point along an ellipse center [A.2], using formulas (4.16 – 

4.17), calculates the periods. δ = v1 – v2 [au/planet year]. 

In Figures 25 - 27 we see that with an increase in the eccentricity, the difference between the 

periods increases. 

 

Figure 26 

 

Figure 27 
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Figure 28 

Conclusion 

The kinematic equation (1.10) accurately describes the motion along ideal second-order curves. 

The real orbits of cosmic bodies have deviations from the ideal curve: precession, periodic 

asymmetry of the lengths of the radii, and other types of deviation. 

Equation (1.10) and the center of mass theorem make it possible to simulate the motion of three 

or more bodies along second-order curves. Example [A.5], fig. 29, 30. 

 

Figure 29 
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Figure 30 

The kinematic equation (2.13) is applicable for modeling streamlines of liquid and gas particles. 

The article used materials from textbooks on mechanics. 
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