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Algebraic mistakes of using a non-relativistic functions betrayed Dirac’s elegant deriva-
tion of the relativistic equation of quantum mechanics and exposed a short coming of
special relativity. It was a serious mistake because that famous paper became a model
for theorist to follow who produced an unending stream nonsense. The mistake was
compounded because it hid the fact that special relativity was still incomplete. Multiple
independent spaces are required to generate both dynamics as well as produce particle
properties. The concept of statistical independence of spaces that encapsulated quan-
tum objects, fields and particles, was necessary for physics to have a relativistic basis
for both massive particles and massless fields. The example that will be developed is
the origin of the solar neutrino survival data that requires the electron neutrino, νe to
be massless as originally proposed by Pauli. The analysis renders a proof of the original
quantum conjecture by Planck and Einstein that radiation is quantized and how inertia
for massive particles is generated. 20 March 2023
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I. INTRODUCTION

The foundation of quantum mechanics suffers a num-
ber of defects. Two defects in the subject are the missing
mechanism that quantizes the massless fields and gener-
ation of inertia or the self-energy of massive particles. A
third problem that has not been resolved is the genera-
tion of static potentials and that is key to understand-
ing material properties. Einstein introduced special rel-
ativity in 1905 and went on to produce general relativ-
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ity, however, special relativity had not been completed
as was guessed by J.S Bell (Davies and Brown, 1986).
When in 1928 Dirac introduced his relativistic equation
for quantum dynamics, both Einstein and Dirac ignored
the physical implications of the quadratic form of the
relativistic energy conservation relation and their work
after that point ceased to be significant.

Physical statistical independence is a quantum con-
cept. Our introduction to the concept came through
Mark Kac, who continued a very productive line of re-
search after studying diffusion and Brownian motion
(Kac, 1947) (Kac, 1949). In the late 1940s his work
was subsequently used in a quantum description of non-
relativistic path integral analysis that looked much like
diffusion. Kac’s work was a help in understanding the
quantum diffusion of hydrogen and its isotopes in met-
als, particularly iron. The question arose: What is mini-
mum potential well depth supporting a bound state? The
answer in three dimensions yields a very curious result.
This minimum bound state for a vanishingly small po-
tential well for a particle produces the Compton relation
independent of the potential wells depth and only de-
pendent on the potential well’s radius (Wallace and Wal-
lace, 2011). This is a limiting case application of the
Schrödinger equation begins to expose the source of a
inertial mass.

In the middle of the 1960s, Kac posed another interest-
ing problem relevant to those trying to understand high
energy scattering data to work out the structure of nu-
cleons (Kac, 1966): Can one hear the shape of a drum
with holes? If you beat on an arbitrary drum will its
audible spectrum contain enough data to accurately re-
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construct the drum? The symbolism of an excited drum
head might strike his physics colleagues as something fa-
miliar. In the 1950s Kac’s mathematical interests were
applied to discrete random processes and the concept of
statistical independence of random variables (Kac, 1959).

The random walk generated by Brownian motion was a
nice analogy but not physically realistic for fleshing out
the statistical basis of quantum mechanics. The non-
relativistic path integral approach that Kac was explor-
ing with Feynman was an attack on the dynamic prob-
lem of quantum objects; unfortunately, their elementary
particles entered in as Newtonian point masses and point
charges. The fields entered in as plane or spherical waves.
These assumptions removed consideration of the parti-
cle/field structure as relativity did not make it into the
analysis. Kac’s consideration of a defective drum made
the particle a real structure. The scale of the drum head
removes the point particle assumption as a barrier to hav-
ing a particle with a defined scale. The complex spectra
of the drum was a start at producing a basis for a scat-
tering particle’s properties and immediately brought into
question the completeness of the information content of
the spectra.

Kac, with his drum analogy, was able to take the prob-
lem to a lower level and in a different direction by showing
that the inversion techniques operating on the measured
spectral output fails to determine the true structure of
the drum because that requires more data than can ever
be collected. Kac’s failed inversion analysis highlights
the high energy potential scattering problem, that of de-
termining an unknown potential’s structure by scattering
experiments such as done with accelerators.

A. The Lowly Potential

The Schrödinger equation, matrix mechanics, Klein-
Gordon equation, and the Dirac equation were impedi-
ments to discovering the structure of particles and fields.
The legacy opposition to exploring the structure of ele-
mentary particles and fields was strengthened by theo-
rists developing quantum electrodynamics and the effec-
tive field theories for high energy. The reason for this was
simple, they embraced a method to rid themselves of hav-
ing to explain the electrostatic potential and other force
potentials. This was accomplished by assuming there was
an exchange boson, a gauge field, to explain each and ev-
ery force: electromagnetic, gravity, strong and the weak
force. This was a terrible mistake and its origin was in the
failed attempts at explaining the origin of inertia. The
point mass and point charge of the 18th, 19th, and 20th
century were useful tools and to abandon them meant
also abandoning the conveniences of the mathematical
continuum.

To have a potential independent of an exchange boson
it was necessary for the particle to have a structure, be-

yond that of point mass. Kac’s drum head with holes
illustrates the failure of high energy experiments to yield
the structure of an elementary particle. The myth that
high energy accelerator experiments function as a high
resolution microscope of structure was exposed and ig-
nored. In order to experimentally crack the problem,
quantum mechanics itself provides the assistance. Quan-
tum structures scale from elementary particle to collec-
tions of particles behaving with simple quantum proper-
ties such as superconducting currents and magnetic ex-
citation. These larger structure are more easily explored
by experiment.

B. Exposing the Self-Reference Frame

Instead of the acoustical problem that Kac posed,
the problem was recast into one of a near-field electro-
magnetic scattering problem using multiple simultane-
ous frequencies to examine an unknown object’s: range,
scale, conductivity, and magnetic permeability (Siegfried,
1983). Maxwell’s equations can be solved explicitly for
the forward problem, and checked against known mate-
rials (Dodd and Deeds, 1968). It was found that when
unknown materials are used their conductivity and per-
meability properties can be accurately extracted if they
behave with the following two material constitutive re-
strictions.

B = µH

J = σE
(1)

From the solutions of the forward problem the domain
of allowed solutions can be determined and the allowed
reflection responses are defined by the restrictions found
in Eq. 1 (Wallace, 2011). This is no different than a pho-
ton mediated high energy scattering problem. As long
as these conditions are in place a rough inverse problem
can be solved to the precision of the measurements and
produce useful information. However, the inverse anal-
ysis, analogous to Kac’s drum problem, fails spectacu-
larly if the material is capable of absorbing the incoming
energy and processing it into an excited quantum state
on the scale of the object being examined. The object
then becomes Kac’s drum head, where the holes in the
drum form a spectrum of their own not described by the
Faraday-Maxwell equations .

For the transvese electromagnetic problem the
Faraday-Maxwell description now needs to be extended,
but there is not much in the scattering data to tell one
how to accomplish this task when done in well annealed
iron or a low carbon steel. To measure the fields prop-
erties an experiment must be done to capture the dis-
persion relations of the newly observed fields. The new
data acquired resolved a longitudinal field with an effec-
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tive mass very different from the original massless trans-
verse fields (Wallace, 2009a) (Wallace, 2009b). The dis-
persion relation for a well annealed iron or a low carbon
steel is actually more complex producing three fields with
the most interesting, a propagating field, with a mass of
10−9 of an electron’s mass. This very light spin wave
has a correspondingly large scale ∼ .14 meters. A low
frequency magnetic field drives the creation of an exci-
ton that is an oscillating longitudinal magnetization wave
with mass and large scale structure. This solved a major
experimental problem because now a quantum particle
structure can be examined in detail on a lab bench. It
turns out the structure of this particle at relativistic en-
ergies matches the behavior of a spin zero boson and
not a fermion. A Bose-Einstein condensate can form at
temperatures that exceed the Curie point of the metal
making it even easier to study. This light exciton must
be treated from the beginning as a relativistic particle
because of its small mass (Wallace and Wallace, 2014).

II. ENERGY CONSERVATION

To discover how inertia is produced for this magnetic
excitation energy conservation relation must be exam-
ined. Quantum mechanics and relativity were discovered
almost together in 1900-1905. They were treated as sep-
arate subjects, because the connections between the two
was unknown. Both fields were forced into a mold that
mirrored classical mechanics and this further separated
the fields making both subjects even more opaque. Start-
ing with the tested conservation of energy expressions for
a massless field and a massive particle where mo is the
rest energy.

E = ~ω = pc (2)

E = mc2 = γmoc
2

E =
1√

1− v2

c2

moc
2

E2(1− v2

c2
) = (moc

2)2

E2 =
m2c4v2

c2
+ (moc

2)2

E2 = (pc)2 + (moc
2)2

(3)

Einstein use mc2 form of mass energy relation in his
publications Relativity (Einstein and et. al., 1952) but
Dirac used the form as a model containing momentum
to derive his relativistic equation (Dirac, 1928). In Ein-
stein’s book the expression containing momentum does

not appear and first appears in Dirac’s paper. The
quadratic expression was a problem for both Einstein
and Dirac. For Einstein the problem was that the two
energies were not simply additive as in thermodynam-
ics. For Dirac the problem was also the quadratic as he
also wanted a linear relation in energy for his relativis-
tic model. This prejudice against a second order energy
relation was unwarranted and help stall the development
of quantum mechanics and physics as a whole.

Classical non-relativistic quantum mechanics approx-
imates two problem well: the hydrogen atom and the
harmonic oscillator. It does not accurately handle the
free particle, along with diffraction, refraction, pair-
production, nor generate the general description of quan-
tum particles: boson and fermion. This collection of de-
fects reflect a poor understanding the two energy conser-
vation relations.

There is a myth that quantum electrodynamics, a
method of calculation, has made quantum mechanics
the most accurate theory ever. Quantum electrodynam-
ics non-unique set of corrections are considered even
by R. Feynman, one of the originators, not a descrip-
tion of physics, but a method of calculation. The non-
uniqueness allows result to use non-physical properties
(potentials with singularities) to generate any desired
number. Whereas, the two empirical conservation of en-
ergy relations allows one to derive a description of the
space where particle and field properties are generated,
the self-reference frame, and their subsequent behavior in
the laboratory frame. This requires a two part derivation
to generate both structure and dynamics in two separate
spaces. These spaces are not in hierarchy, but compli-
mentary where each space’s existence is dependent on
the other.

1. Self-Reference Frame

Starting with the massless field conservation of energy
and randomizing motion for that field begins the deriva-
tion to produce structure and inertia. This randomizing
process is generated independently when the dynamics
equation is derived in the next section. The particle’s
structural form in the space referenced on the particle
itself can be generated by Taylor expanding the momen-
tum and energy operators around r and τ of the field with
the random spatial parameter, ε and time parameter c/ε
resulting in two differential equation, one for the spatial
structure, u(r), and one for the time dependence, g(τ),
which are derived in detail (Wallace and Wallace, 2014)
(Wallace and Wallace, 2015). The derivation begins with
the expansions:
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E = pc → E = p(r + δr)c → E = p(r + ε)c

E = ~ω → E(τ + δτ) = ~ω → E(τ +
ε

c
) = ~ω

(4)

The entire concept of a point mass and point charge with
their associated infinite energies vanish in this picture
along with the cut offs necessary in quantum electrody-
namics. What also vanishes is the single virtual photon,
which cannot be supported because it will change the
information content of the laboratory frame.

Starting with the dispersion relation for a massless field
in laboratory frame (Wallace and Wallace, 2015):

p c = E (5)

The spatial dependent equation will be derived first
where u(x) is the spatial dependent function by applying
the momentum operator.

i~c∇u(x) = Eu(x) (6)

The scale of uncertainty in space, ε, enters the spatial
equation as a random offset that is greater than zero. In
the spatial differential equation becomes a second order
differential equation.

u(x)→ u(x + ε)

u(x + ε) = u(x) + εu′(x)

∇u(x + ε) = ∇u(x) + ε∆u(x)

(7)

{∇u(x)}r →
∂u(r)

∂r
= u′(r) (8)

{∆u(x)}r =
∂2u(r)

∂r2
+
n− 1

r

∂u(r)

∂r
= u′′(r) +

n− 1

r
u′(r)

(9)

The result of expanding the differential forms of the
dispersion relation with the disorder parameters is a pair
of differential equation for the spatial variable, r, the ra-
dial coordinate and the time coordinate, τ . Access to
the angular coordinates in spherical geometry are lost in
the random behavior introduced to generate a particle
description located on the instantaneous center of sym-
metry of the particle.

Using the Compton scattering particle scale parameter
for ε gives it a value of ε = ~/moc. The field equation
are written in terms of the dimension of space, n, with
the parameters γ = E/moc

2, ωc = moc
2/~, and κ = 1/ε.

The resulting spatial differential equation from expand-

ing the conservation of energy relation and referenced to
the particles instantaneous center of symmetry.

∂2u(r)

∂r2
+(

n− 1

r
+κ{1− iγ})∂u(r)

∂r
− iκ2γu(r) = 0 (10)

The time dependent equation can also be expanded
from the the dispersion relation E = ~ω with the use of
the energy operator for a massless field.

∂2g(τ)

∂τ2
+ (ωc + iω)

∂g(τ)

∂τ
+ iωcωg(τ) = 0 (11)

The second order spatial equation has two solutions
include the confluent hypergeometric functions 1F1 and
U where A and B are constants (Slater, 1968):

u(r)fermion = Ae−κr1F1[
n− 1

1 + iγ
, n− 1, (1 + iγ)κr] (12)

u(r)boson = Be−κrU [
n− 1

1 + iγ
, n− 1, (1 + iγ)κr] (13)

What was discovered on inspecting these two solu-
tions were properties consistent with the two families of
particles with mass: boson and fermion (Wallace and
Wallace, 2014). The first solution represents a fermion
and the second solution represents a boson both with
a real mass. All densities determined from the solu-
tions retain spherical group symmetry, U(1), so that
charge can be extracted. In three dimensions the func-
tion u∗(r)u(r) is used to define the particle’s static elec-
tric field if it can support a charge (Wallace and Wallace,
2015). Charge properties can be determined by an analy-
sis of the derivative ∂γ/∂θ. For the massive fermion this
will produce a quantized charge, mass independence of
charge, and the dimensional dependence of charge where
θ is the argument of the complex solution written as:
ArcTan{Im[u(r)]/Re[u(r)]}. If there is no θ dependence
in u(r) the particle has a zero charge and cannot support
an electromagnetic transition.

The self-reference frame also allow the anti-particles to
be described as γ can take on a negative value (Wallace
and Wallace, 2014). The anti-particle function have the
opposite rotational symmetry, right and left handed spi-
rals on the complex plane as expressed by the behavior of
u(r). In addition it was found that γ can take on values
less than one when the particle is in a bound state (Wal-
lace and Wallace, 2021). These are extensions to special
relativity that are essential in developing material prop-
erties.

The massive boson solution in three dimension, n =
3, shows a relative energy dependence through γ of the
value of the u(r) at the origin that is not fixed as it
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is for the fermion. That is the source of CP violation
expected for the massive 3D boson. The massive fermion
solution in three dimensions has fixed value of u(r) at the
origin with no CP problems. This has been extended to
the analysis for baryons, proton and neutron, for which
no CP problem were found and no need for the Axion
(Wallace and Wallace, 2020).

This space, the self-reference frame, is a primitive do-
main where no form of momentum is defined and the dy-
namics only refer to the relative stability of the particles.
The equations are compatible with relativity through γ,
which describes their behavior with different relative ob-
servers. Linear momentum, angular momentum, spin,
and the magnetic moments are dynamic properties of the
laboratory frame and are not part of the particle’s infor-
mation developed in the self-reference frame. These prop-
erties are easily developed in the laboratory frame from
the particle’s structure (Wallace and Wallace, 2020).

The importance of the self-reference frame is that as a
statistically independent space it can generate the parti-
cle’s self-energy. Independence means there is no map-
ping between the two frames, either in space or time.
This independence is reflected in the Pythagorean sum
required for the two components in the conservation of
energy relation, Eq. 3, which adds the square of the ki-
netic energy to the square of the self-energy. Rather than
add physical dimensions to the 3+1 space of the labora-
tory frame for additional particles it is possible for any
particle or collection of related particles to establish an
embedded private space statistically independent from
the laboratory frame and from other particles and fields.
This forms the basis of true superposition with no extra
assumptions.

Dirac in 1932 tried to reverse his course (Dirac, 1932)
with an introduced private time and ran into severe op-
position from Pauli and Wessikopf (Pauli and Weisskopf,
1934) who used a counter argument that involved the
Klein-Gordon equation that does not conserve energy.
At this time Dirac may have realized he had borrowed
too heavily from classical mechanics using both a clas-
sical expression of the energy operator and the classical
canonical momentum that embedded two non-relativistic
approximations into his analysis.

2. Relativistic Laboratory Frame Equation

Because of these errors the original Dirac equation was
only partially relativistic and this showed up in the singu-
larity at the origin of the 1S state of hydrogen at the ori-
gin (Bethe and Salpeter, 1957). The problem also show
up in the ground state energy of high Z one electron ions
whoes values closely tract those of the Schrödinger equa-
tions (Wallace and Wallace, 2021). A relativistic energy
operator when applied in the laboratory frame not only
has to deal with dynamics it also must include the parti-

cles self-energy. The relativistic energy operator, which
is a first order time derivative plus the particle’s rest self-
energy.

non− relativistic E → i~
∂

∂t

relativistic E → i~
∂

∂t
+moc

2

(14)

The second half of the derivation to compliment the
self-reference frame properties requires generating the
compatible dynamics in the laboratory frame. This auto-
matically produces the mechanism that generates the ba-
sic statistical properties of quantum mechanics required
by the self-reference frame. To do this the concept of a
potential is necessary and now it is based on the struc-
ture of the particle itself as derived in the self-reference
frame. Within the relativistic conservation relation the
potential is derived from the mass of the particle. The
variation m −mo = δm represents the energy source of
the potential.

E2 = p2c2 + (mo + δm)2c4 (15)

E2 − (moc
2)2 = p2c2 + (2δmmo + δm2)c4 (16)

δm2 is small relative to 2δmmo and is not dropped. The
potential is taken to be V = δmc2 producing an exact
relativistic expression containing the potential.

E2 − (moc
2)2 = p2c2 + 2V moc

2 + V 2 (17)

E2 − (moc
2)2

2moc2
=

p2

2mo
+ V (1 +

V

2moc2
)

(E −moc
2)(E +moc

2)

2moc2
=

p2

2mo
+ V (1 +

V

2moc2
)

i~ ∂
∂t (i~

∂
∂t + 2moc

2)

2moc2
=

p2

2mo
+ V (1 +

V

2moc2
)

(18)

Using the momentum operator and the correct energy
operator equation 3 is converted into the resulting differ-
ential equation, which has two additional terms absent
from the Schrödinger equation. The second order time
dependent term embedded the propagating field equa-
tion more commonly found from electromagnetic theory
of Maxwell. The second addition is a quadratic term in
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the potential, whose presence brings in the mechanics of
pair-production naturally (Wallace and Wallace, 2017).

~2

2m
{∇2φ− 1

c2
∂2φ

∂t2
}+ i~

∂φ

∂t
= (V +

V 2

2mc2
)φ (19)

The above equation can be reduced to the standard
Schrödinger equation for some bound state and free prop-
agation problems. This comes at a cost of losing its com-
patibility with relativity and the loss of the free field
embedded wave equation. That reduction introduces a
number of errors commonly attacked by perturbation
techniques.

A. V + V 2

2mc2
= 0

The laboratory frame description of a massive parti-
cle yields the mechanisms of random behavior necessary
to produce inertia, in the quadratic term of the poten-
tial. When the potential contribution in free space with
no external potentials there remain two solutions to the
above equation V = 0 and V = −2mc2 where both solu-
tions are equally weighted. The second solution represent
a pair production allowed by the Heisenberg relation of
particle and anti-particle the same as the original being
described. The annihilation with either the original or
the generated particle produces the statistical basis of
quantum mechanics.

In the late 1920s matrix mechanics, Schrödinger equa-
tion and the Dirac equation were all essentially written
down. They were not derived from any understanding of
the quantum processes or in the case of the Dirac equa-
tion forced to be a linear approximation. The problem
they all suffered from was they did not include the cor-
rect relativistic basis. There is no such thing as a correct
non-relativistic quantum description, at best it is an ap-
proximation that bars any understanding of structure of
particles and fields. This combination of events essential
stalled theoretical physics for the next 90+ years yield-
ing a number of complex work arounds that have been
consistently rejected.

B. Inertia

What is required to generate a mass from a primitive
field are obstacles to aid in localizing a field moving at
the speed of light. A set of obstacles that conserve energy
in the laboratory frame are composed of field-anti-field
pairs. Sometime the original field makes it through and
other times it annihilates and its opposite number takes
over being the propagating field. This results in a random
displacement. If this process is truly random then the
original field will be localized under some very specific
conditions. Our original field’s a self-energy is taken as

~ω as well as for our final field as energy is conserved.
To compute the rate of pair production the self-energy of
the new pair becomes 2~ω with a mass equivalent equal
to 2moc

2. The localization is initiated in the laboratory
frame so that the rate, R, of the pair-production can be
computed from the Heisenberg uncertainty relation for
energy.

R =
1

δt
≤ 4moc

2

~
(20)

At any time our field has a 50% chance of encountering
a pair and compounding that a 50% chance of annihilat-
ing and passing the baton to the newly minted field. This
equal weighting can be explicitly derived, see chapter 3
in (Wallace and Wallace, 2017). So in total it has a 25%
chance of being replaced. This rate turns into an equality
since the only virtual field pairs that can interact with
original field must have the identical energy as these are
conservative processes. This rate of replacement is 1/4
the rate of pair production.

R

4
=
moc

2

~
(21)

The inverses of the rate R/4 is a mean interval any
particular field lives and the distance light can travel in
that interval is ε which now can be computed from Eq. 21.

ε =
~
moc

(22)

This is the Compton relation produced from a real dis-
order parameter, ε. The net effect on our field is set by
the mean rate of exchanging fields and generating a lo-
cality for a particle with inertia as its local position is
unknown to a mean random value ε. The angular co-
ordinate description is lost in the self-reference frame as
it is reset to the present position of the particle’s center
of symmetry. By randomizing the local location of the
fields center of symmetry a particle is created with a fi-
nite scale along with local isotropy. The origin of the field
always has to keep shifting after each annihilation to the
replacement field’s partner. This random-annihilation-
walk generates a location, a fuzzy location, but a location
that can be described. The coordinates in time and space
are now statistically independent of the original labora-
tory frame from where they were created. So from the
laboratory frame with the physical property that allows
pair-production for short intervals a localized entity can
be created from something very rare an absolutely fair
game of chance. This game of chance generates a statis-
tically isolated space independent of the laboratory frame
with the particle’s instantaneous frame of reference tied
to the current field.
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III. MASSLESS FIELDS IN SELF-REFERENCE FRAME

To generate a massless field in the self-reference frame
there are two choices, either set the mass to zero or make
it complex. There is no choice in the laboratory frame
where the mass is zero for a massless field. In the self-
reference frame setting the mass to zero will not yield a
state equation for the field. However, making the mass
complex in the self-reference frame will generate physi-
cal field solutions and quantize the fields. This question
has a long history that has produced a number of theo-
ries (Feinberg, 1967), however, not until the self-reference
frame was found did this transformation make sense.

Mass is inversely related to the random variable ε to
make mass complex ε must be made complex. By making
ε complex it is equivalent to introducing a phase shift and
this should be retarded so the transformation that will
be used is found in Eq. 23 because ε > 0 for generating a
real mass. This random displacement is always positive
in a spherical coordinate system as it is referenced from
the instantaneous center of symmetry that is changing.
Therefore for the complex displacement the relation in
Eq. 23 is used.

ε→ −iε (23)

To transform the remaining parameters into field equa-
tions to test the conjecture about a complex mass, it is
first necessary to understand how γ in the self-reference
frame transforms.

ε→ −iε then γ =
E

moc2
=

~ωc
~
−iεcc

2
= −i ε

ε
= −i

(24)

ε→ −iε then ωc → iωc (25)

For the case in the self-reference frame when the Comp-
ton wave length is set equal to the random displacement
parameter, −iε, then γ → −i. This is one of the more
important relationships derived, because it essentially en-
forces the quantized condition on the resultant field. In
particular this is also the quantum condition for the pho-
ton energy.

A particle in the self-reference frame to participate in
an electromagnetic transition or the exchange of energy
with an electrostatic field must be able to change γ. For a
massless field either boson or fermion it is necessary that
γ is a fixed complex constant that cannot vary. There-
fore, the field either exists or doesn’t exist with no decay
mechanism. The constraint that γ = −i confirms the
original conjectures by Planck and Einstein that radia-
tion is quantized. This is not the mechanism of energy
exchange for an electrostatic interaction only for a radia-

tive transition for a real photon.

The self-reference frame places a strict conditions on
the material parameters that are defined in this inde-
pendent space. If the equivalent complex random dis-
placement is applied to the particle description ε→ −iε,
κ → iκ and γ → −i. The massless field’s differential
equations become:

∂2u(r)

∂r2
+ (

n− 1

r
)
∂u(r)

∂r
+ κ2γu(r) = 0 (26)

∂2g(τ)

∂τ2
+ ω2g(τ) = 0 (27)

The solutions in three dimensions are:

uboson = A e−iκr U [1, 2, 2iκr] (28)

ufermion(r) = B e−iκr 1F1[1, 2, 2iκr] (29)

g(τ) = Ae−iωτ (30)

The complete solutions are then:

φ(r, τ)boson = A e−i(κr−ωτ) U [1, 2, 2iκr] (31)

φ(r, τ)fermion(r) = B e−i(κr−ωτ) 1F1[1, 2, 2iκr] (32)

Now that both elementary particle and field structures
have been derived their density functions in three dimen-
sions are plotted in Figure 1. The total wave function in
the self-reference frame φ(r, τ) = u(r)g(τ) the time de-
pendence being of the form e−iωτ becomes a constant
factor in the probability density function. The particle
density in the self-reference frame in three dimensions is
given by the expression u∗(r)u(r)r2. The core of density
u∗(r)u(r) in the case of a massive fermion is proportional
to the static electric field and removes the 1/r2 singular-
ity of the point electron at its center of symmetry (Wal-
lace and Wallace, 2015). In the case of the massive boson
the properties of weak charge result and the description
is found in (Wallace and Wallace, 2014). For the massless
fields the boson density is a constant as it is for the pho-
ton field. However, for the fermion field it has a spatial
oscillatory behavior, that will affect a number of prop-
erties. It is the energy dependent oscillatory character
of the density function that is of primary interest as it
reduces the particles interaction cross section.
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< u∗photonuphotonr
2 > = 1

< u∗neutrino(r)uneutrino(r)r
2 > = < Sin2κr > =

1

2
(33)

The mean value of the Sin2 term is exactly one half.
This behavior in the spatial portion of the wave function
is unique among particles and will lead to a reduction
in detected sensitivity by exactly 50% in measured data
whether from solar or reactor generated electron neutri-
nos.

The extensive literature on the neutrino-cross section
as a function of energy that result are dynamic calcu-
lations at a level above of the density calculation for
the neutrino in the self-reference frame (Formaggio and
Zeller, 2012). The kinematic models do not involve the
structure of the particles themselves, only their bulk
properties and allowed interactions. It is not necessary
to involve the specific mechanisms for the energy depen-
dent calculation of cross-sections, because the correction
being introduced will affect the neutrino across its entire
energy range uniformly.

The complex mass generates two massless fields that
appear to have real physical counter parts: photon and
the electron neutrino. First is a boson with a unit den-
sity characteristic of a basic photon and then a massless
elementary fermion representing a neutrino. These are
solutions in the self-reference frame and not in the labo-
ratory frame where their complete structure is developed.
Both solutions are of massless fields showing no perfered
local structure, see Figure 1. This was forced by γ = −i
being fixed complex constant. Any other values of γ pro-
duced divergent solutions that are not valid. Divergence
here means that the density functions grow larger with
increasing r, which is neither the property of a physical
realizable particle or field. Fixing γ for massless field
also insures the independence of the speed of light in
any reference frame. This restriction on γ is a require-
ment for the quantization of the field for both the photon
and neutrino. The detailed behavior as a function of γ
are also found for their associated anti-particles (Wallace
and Wallace, 2014).

In the self-reference frame the harmonic time depen-
dence of a stable entity that starts with a private time
dependence when the frame is created with no previous
history. All entities whether a particle or a field come
with their own clocks, via their time dependence, and
are essentially isolated by the statistical independence of
the space in which they were generated. The only excep-
tion is when two or more particles share the same clock
either from being created at the same instance or inter-
acting with one of two fields or particles that were created
as a pair. This behavior is important for understanding
entanglement.

The original requirement for special relativity as laid
out by Einstein 1905 are the existence of a measurement
scale and a time base. Both conditions are satisfied for
each individual particle and quantized field by their prop-
erties in their self-reference frame. No external observer
is required to fulfill these needs.

A. Massless Fields in the Laboratory Frame

Taking equation 34 and setting mass to zero yields the
wave equation for massless fields with an interaction term
that generates the refractive index when the fields en-
counter matter.

∇2φ− 1

c2
∂2φ

∂t2
=

V 2

~2c2
φ (34)

This makes a more general coupling between quantum
mechanics and electromagnetic theory as quantum me-
chanics generates the propagating field behavior that is
found in the Faraday-Maxwell theory. This equation is
equally valid for any massless propagating field such as
the neutrino.

FIG. 1 Density functions of fields and particles in the
self-reference frame. The individual density scales
are arbitrary so the functions separate. The parity
problem of the massive bosons can be seen at r = 0
as the density function in its dependence on γ and is
independent of γ for fermions.
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IV. BOREXINO DATA

The νe detection method is to monitor the scattering
process (νe, e

−) in a large liquid scintillator (Derbin and
group, 2016). The Borexino analysis assumes the stan-
dard solar model chain of coupled fusion reaction and
decays generates a distribution of isotopes that is accu-
rate from an end point analysis of star surface chemistry.
To do this analysis one has to assume that knowledge
of all possible reactions are included and accurately ac-
counted for including the dependence on the distribution
of material through out the sun as a function of depth
and temperature. The second assumption is that the
calculated kinetic neutrino cross section is assumed to
be correct, because there is a good understanding of the
weak processes. The strength of the analysis and exper-
iment is that most of the activity with the νe occurs for
processes that can be individually isolated. The data of
interested is presented in Table I.

TABLE I Probability of solar neutrino survival data
from Borexino (Derbin and group, 2016). The pp
and the 7Be have continuous neutrino spectra down
to zero energy. The pp process is the dominant pro-
cess but with a small detection cross-section making
it more difficult to resolve at low energy. The mean
on the unweighted sum of the survival probability is
.49 ± .11

Energy Process Mean Low High

.3 - .4 MeV 1H + 1H → 2H + e+ + νe .64 .52 .76

.89 MeV 1H + 1H + e− → 2H + νe .62 .47 .79

1.5 MeV 7Be+ e− → 7Li+ νe .52 .46 .58

3 - 18 MeV 8B + e− → 8Li+ νe .38 .27 .51

5 - 18 MeV 8B → 8Li+ e+ + νe .31 .22 .43

.3 - 18 MeV Means (theory .5) .494 .388 .614

If the neutrino density function from Eq. 33 is correct
there will be a factor multiplying the flux measurements
which is .5 and the average of the unweighted five process
is .49± .11. This unweighed result is very close to the ex-
pected decrease computed for the reduction produced by
the neutrino density function. Because of the manner of
experimentally isolating individual components the best
comparison that can be made is an unweighted mean.
Tying the deficit of neutrinos to a reduction in neu-
trino flux rather than a reduction in detector sensitivity
across a significant energy range leads to a false conclu-
sion about νe mass. The data indicates the solar νe is a
stable massless field.

V. DISCUSSION

The influence of energy handling in thermodynamics,
classical mechanics, and Hamilton’s principle on Ein-
stein, Dirac, and those that followed their approach to
special relativity and quantum mechanics essential froze
quantum mechanics into form that had developed by the
late 1920s (Halpern, 2015). The people that followed
Dirac spawned numerous models for physics and cosmol-
ogy using the methods he introduced. His delta function
was used to tame the singularity of the point particle.
Spinors being generated from a linearlized form of quan-
tum mechanics satisfied his stated need in 1927 of a linear
basis for quantum mechanics. This had change by 1932
when he realized that the issue had been forced (Dirac,
1932). By then it was too late as a school had been built
up around his work that appealed to the minds of theo-
rist who copied the license Dirac originally claimed they
could create physical models independent of empirical
data.

The measurement problem of quantum mechanics has
now been removed as there are two frames of reference
mutually connected without the the necessity of an exter-
nal observer. The combination of lower dimensional com-
ponents to construct baryons and meson looks promising
(Wallace and Wallace, 2020). While the mathematics of
these spaces not dependent on the mathematical contin-
uum will change the tools used. As quantum mechanics
needed to properly account for relativity, so did special
relativity need to deal with the bound state and anti-
particles.
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