THE RIEMANN HYPOTHESIS IS TRUE: THE END OF THE MYSTERY.

ABDELMAJID BEN HADJ SALEM, DIPL.-ENG.
To my wife Wahida, my daughter Sinda and my son Mohamed Mazen
To the memory of my friend and colleague Jalel Zid (1959-2023)

Abstract

In 1859, Georg Friedrich Bernhard Riemann had announced the following conjecture, called Riemann Hypothesis : The nontrivial roots (zeros) $s=\sigma+i t$ of the zeta function, defined by:

$$
\zeta(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \text { for } \quad \Re(s)>1
$$

have real part $\sigma=\frac{1}{2}$.
We give the proof that $\sigma=\frac{1}{2}$ using an equivalent statement of the Riemann Hypothesis concerning the Dirichlet η function.
keywords: zeta function, non trivial zeros of eta function, equivalence statements, definition of limits of real sequences.

1. Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [1]:
Conjecture 1.1. Let $\zeta(s)$ be the complex function of the complex variable $s=$ $\sigma+i t$ defined by the analytic continuation of the function:

$$
\zeta_{1}(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \text { for } \Re(s)=\sigma>1
$$

over the whole complex plane, with the exception of $s=1$. Then the nontrivial zeros of $\zeta(s)=0$ are written as:

$$
s=\frac{1}{2}+i t
$$

In this paper, our idea is to start from an equivalent statement of the Riemann Hypothesis, namely the one concerning the Dirichlet η function. The latter is related to Riemann's ζ function where we do not need to manipulate any expression of $\zeta(s)$ in the critical band $0<\Re(s)<1$. In our calculations, we will use the definition of the limit of real sequences. We arrive to give the proof that $\sigma=\frac{1}{2}$.

[^0]1.1. The function ζ. We denote $s=\sigma+i t$ the complex variable of \mathbb{C}. For $\Re(s)=\sigma>1$, let ζ_{1} be the function defined by :
$$
\zeta_{1}(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \text { for } \Re(s)=\sigma>1
$$

We know that with the previous definition, the function ζ_{1} is an analytical function of s. Denote by $\zeta(s)$ the function obtained by the analytic continuation of $\zeta_{1}(s)$ to the whole complex plane, minus the point $s=1$, then we recall the following theorem [2]:

Theorem 1.2. The function $\zeta(s)$ satisfies the following :

1. $\zeta(s)$ has no zero for $\Re(s)>1$;
2. the only pole of $\zeta(s)$ is at $s=1$; it has residue 1 and is simple;
3. $\zeta(s)$ has trivial zeros at $s=-2,-4, \ldots$;
4. the nontrivial zeros lie inside the region $0 \leq \Re(s) \leq 1$ (called the critical strip) and are symmetric about both the vertical line $\Re(s)=\frac{1}{2}$ and the real axis $\Im(s)=0$.

The vertical line $\Re(s)=\frac{1}{2}$ is called the critical line.
The Riemann Hypothesis is formulated as:
Conjecture 1.3. (The Riemann Hypothesis,[2]) All nontrivial zeros of $\zeta(s)$ lie on the critical line $\Re(s)=\frac{1}{2}$.

In addition to the properties cited by the theorem 1.2 above, the function $\zeta(s)$ satisfies the functional relation [2] called also the reflection functional equation for $s \in \mathbb{C} \backslash\{0,1\}:$

$$
\begin{equation*}
\zeta(1-s)=2^{1-s} \pi^{-s} \cos \frac{s \pi}{2} \Gamma(s) \zeta(s) \tag{1.1}
\end{equation*}
$$

where $\Gamma(s)$ is the gamma function defined only for $\Re(s)>0$, given by the formula :

$$
\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d t, \quad \Re(s)>0
$$

So, instead of using the functional given by (1.1), we will use the one presented by G.H. Hardy [3] namely Dirichlet's eta function [2]:

$$
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s)
$$

The function eta is convergent for all $s \in \mathbb{C}$ with $\Re(s)>0[2]$.
We have also the theorem (see page 16, [3]):
Theorem 1.4. For all $t \in \mathbb{R}, \zeta(1+i t) \neq 0$.
So, we take the critical strip as the region defined as $0<\Re(s)<1$.
1.2. A Equivalent statement to the Riemann Hypothesis. Among the equivalent statements to the Riemann Hypothesis is that of the Dirichlet function eta which is stated as follows [2]:
Equivalence 1.5. The Riemann Hypothesis is equivalent to the statement that all zeros of the Dirichlet eta function :

$$
\begin{equation*}
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s), \quad \sigma>1 \tag{1.2}
\end{equation*}
$$

that fall in the critical strip $0<\Re(s)<1$ lie on the critical line $\Re(s)=\frac{1}{2}$.
The series 1.2 is convergent, and represents $\left(1-2^{1-s}\right) \zeta(s)$ for $\Re(s)=\sigma>0$ ([3), pages $20-21$). We can rewrite:

$$
\begin{equation*}
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s), \quad \Re(s)=\sigma>0 \tag{1.3}
\end{equation*}
$$

$\eta(s)$ is a complex number, it can be written as:

$$
\begin{equation*}
\eta(s)=\rho \cdot e^{i \alpha} \Longrightarrow \rho^{2}=\eta(s) \cdot \overline{\eta(s)} \tag{1.4}
\end{equation*}
$$

and $\eta(s)=0 \Longleftrightarrow \rho=0$.
2. Preliminaries of the proof that the zeros of the function $\eta(s)$ are

$$
\text { ON THE CRITICAL LINE } \Re(s)=\frac{1}{2} .
$$

Proof. . We denote $s=\sigma+i t$ with $0<\sigma<1$. We consider one zero of $\eta(s)$ that falls in critical strip and we write it as $s=\sigma+i t$, then we obtain $0<\sigma<1$ and $\eta(s)=0 \Longleftrightarrow\left(1-2^{1-s}\right) \zeta(s)=0$. We verifies easily the two propositions:
(2.1)
s, is one zero of $\eta(s)$ that falls in the critical strip, is also one zero of $\zeta(s)$
Conversely, if s is a zero of $\zeta(s)$ in the critical strip, let $\zeta(s)=0 \Longrightarrow \eta(s)=$ $\left(1-2^{1-s}\right) \zeta(s)=0$, then s is also one zero of $\eta(s)$ in the critical strip. We can write: (2.2)
s, is one zero of $\zeta(s)$ that falls in the critical strip, is also one zero of $\eta(s)$
Let us write the function η :

$$
\begin{aligned}
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}} & =\sum_{n=1}^{+\infty}(-1)^{n-1} e^{-s \log n}=\sum_{n=1}^{+\infty}(-1)^{n-1} e^{-(\sigma+i t) \log n}= \\
& =\sum_{n=1}^{+\infty}(-1)^{n-1} e^{-\sigma \log n} \cdot e^{-i t \log n} \\
= & \sum_{n=1}^{+\infty}(-1)^{n-1} e^{-\sigma \log n}(\cos (t \log n)-i \sin (t \log n))
\end{aligned}
$$

The function η is convergent for all $s \in \mathbb{C}$ with $\Re(s)>0$, but not absolutely convergent. Let s be one zero of the function eta, then :

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=0
$$

or:

$$
\forall \epsilon^{\prime}>0 \quad \exists n_{0}, \forall N>n_{0},\left|\sum_{n=1}^{N} \frac{(-1)^{n-1}}{n^{s}}\right|<\epsilon^{\prime}
$$

We definite the sequence of functions $\left(\left(\eta_{n}\right)_{n \in \mathbb{N}^{*}}(s)\right)$ as:

$$
\eta_{n}(s)=\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k^{s}}=\sum_{k=1}^{n}(-1)^{k-1} \frac{\cos (t \log k)}{k^{\sigma}}-i \sum_{k=1}^{n}(-1)^{k-1} \frac{\sin (t \log k)}{k^{\sigma}}
$$

with $s=\sigma+i t$ and $t \neq 0$.
Let s be one zero of η that lies in the critical strip, then $\eta(s)=0$, with $0<\sigma<1$. It follows that we can write $\lim _{n \rightarrow+\infty} \eta_{n}(s)=0=\eta(s)$. We obtain:

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \sum_{k=1}^{n}(-1)^{k-1} \frac{\cos (t \log k)}{k^{\sigma}}=0 \\
& \lim _{n \rightarrow+\infty} \sum_{k=1}^{n}(-1)^{k-1} \frac{\sin (t \log k)}{k^{\sigma}}=0
\end{aligned}
$$

Using the definition of the limit of a sequence, we can write:

$$
\begin{align*}
& \forall \epsilon_{1}>0 \exists n_{r}, \forall N>n_{r},\left|\Re\left(\eta(s)_{N}\right)\right|<\epsilon_{1} \Longrightarrow \Re\left(\eta(s)_{N}\right)^{2}<\epsilon_{1}^{2} \tag{2.3}\\
& \forall \epsilon_{2}>0 \exists n_{i}, \forall N>n_{i},\left|\Im\left(\eta(s)_{N}\right)\right|<\epsilon_{2} \Longrightarrow \Im\left(\eta(s)_{N}\right)^{2}<\epsilon_{2}^{2} \tag{2.4}
\end{align*}
$$

Then:

$$
\begin{aligned}
& 0<\sum_{k=1}^{N} \frac{\cos ^{2}(t \log k)}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N} \frac{(-1)^{k+k^{\prime}} \cos (t \log k) \cdot \cos \left(t \log k^{\prime}\right)}{k^{\sigma} k^{\prime \sigma}}<\epsilon_{1}^{2} \\
& 0<\sum_{k=1}^{N} \frac{\sin ^{2}(t \log k)}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N} \frac{(-1)^{k+k^{\prime}} \sin (t \log k) \cdot \sin \left(t \log k^{\prime}\right)}{k^{\sigma} k^{\prime \sigma}}<\epsilon_{2}^{2}
\end{aligned}
$$

Taking $\epsilon=\epsilon_{1}=\epsilon_{2}$ and $N>\max \left(n_{r}, n_{i}\right)$, we get by making the sum member to member of the last two inequalities:

$$
\begin{equation*}
0<\sum_{k=1}^{N} \frac{1}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}<2 \epsilon^{2} \tag{2.5}
\end{equation*}
$$

We can write the above equation as :

$$
\begin{equation*}
0<\rho_{N}^{2}<2 \epsilon^{2} \tag{2.6}
\end{equation*}
$$

or $\rho(s)=0$.

$$
\text { 3. CASE } \sigma=\frac{1}{2} \text {. }
$$

We suppose that $\sigma=\frac{1}{2}$. Let's start by recalling Hardy's theorem (1914) ([2], page 24):
Theorem 3.1. There are infinitely many zeros of $\zeta(s)$ on the critical line.
From the propositions $2.1+2.2$, it follows the proposition :
Proposition 3.2. There are infinitely many zeros of $\eta(s)$ on the critical line.

Let $s_{j}=\frac{1}{2}+i t_{j}$ one of the zeros of the function $\eta(s)$ on the critical line, so $\eta\left(s_{j}\right)=0$. The equation 2.5 is written for s_{j} :

$$
0<\sum_{k=1}^{N} \frac{1}{k}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}<2 \epsilon^{2}
$$

or:

$$
\sum_{k=1}^{N} \frac{1}{k}<2 \epsilon^{2}-2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}
$$

If $N \longrightarrow+\infty$, the series $\sum_{k=1}^{N} \frac{1}{k}$ is divergent and becomes infinite. then:

$$
\sum_{k=1}^{+\infty} \frac{1}{k} \leq 2 \epsilon^{2}-2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}
$$

Hence, we obtain the following result:

$$
\begin{equation*}
\lim _{N \longrightarrow+\infty} \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t_{j} \log \left(k / k^{\prime}\right)\right)}{\sqrt{k} \sqrt{k^{\prime}}}=-\infty \tag{3.1}
\end{equation*}
$$

if not, we will have a contradiction with the fact that :

$$
\lim _{N \longrightarrow+\infty} \sum_{k=1}^{N}(-1)^{k-1} \frac{1}{k^{s_{j}}}=0 \Longleftrightarrow \eta(s) \text { is convergent for } s_{j}=\frac{1}{2}+i t_{j}
$$

4. CASE $0<\Re(s)<\frac{1}{2}$.
4.1. Case where there are zeros of $\eta(s)$ with $s=\sigma+$ it and $0<\sigma<\frac{1}{2}$. Suppose that there exists $s=\sigma+i t$ one zero of $\eta(s)$ or $\eta(s)=0 \Longrightarrow \rho^{2}(s)=0$ with $0<\sigma<\frac{1}{2} \Longrightarrow s$ lies inside the critical band. We write the equation 2.5 :

$$
0<\sum_{k=1}^{N} \frac{1}{k^{2 \sigma}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}<2 \epsilon^{2}
$$

or:

$$
\sum_{k=1}^{N} \frac{1}{k^{2 \sigma}}<2 \epsilon^{2}-2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}
$$

But $2 \sigma<1$, it follows that $\lim _{N \longrightarrow+\infty} \sum_{k=1}^{N} \frac{1}{k^{2 \sigma}} \longrightarrow+\infty$ and then, we obtain :

$$
\begin{equation*}
\sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t \log \left(k / k^{\prime}\right)\right)}{k^{\sigma} k^{\prime \sigma}}=-\infty \tag{4.1}
\end{equation*}
$$

$$
\text { 5. } \mathrm{CASE} \frac{1}{2}<\Re(s)<1
$$

Let $s=\sigma+$ it be the zero of $\eta(s)$ in $0<\Re(s)<\frac{1}{2}$, object of the previous paragraph. From the proposition $2.1, \zeta(s)=0$. According to point 4 of theorem 1.2, the complex number $s^{\prime}=1-\sigma+i t=\sigma^{\prime}+i t^{\prime}$ with $\sigma^{\prime}=1-\sigma, t^{\prime}=t$ and $\frac{1}{2}<\sigma^{\prime}<1$ verifies $\zeta\left(s^{\prime}\right)=0$, so s^{\prime} is also a zero of the function $\zeta(s)$ in the band $\frac{1}{2}<\Re(s)<1$, it follows from the proposition 2.2 that $\eta\left(s^{\prime}\right)=0 \Longrightarrow \rho\left(s^{\prime}\right)=0$. By applying 2.5, we get:

$$
\begin{equation*}
0<\sum_{k=1}^{N} \frac{1}{k^{2 \sigma^{\prime}}}+2 \sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{N}(-1)^{k+k^{\prime}} \frac{\cos \left(t^{\prime} \log \left(k / k^{\prime}\right)\right)}{k^{\sigma^{\prime}} k^{\prime \sigma^{\prime}}}<2 \epsilon^{2} \tag{5.1}
\end{equation*}
$$

As $0<\sigma<\frac{1}{2} \Longrightarrow 2>2 \sigma^{\prime}=2(1-\sigma)>1$, then the series $\sum_{k=1}^{N} \frac{1}{k^{2 \sigma^{\prime}}}$ is convergent to a positive constant not null $C\left(\sigma^{\prime}\right)$. As $1 / k^{2}<1 / k^{2 \sigma^{\prime}}$ for all $k>0$, then :

$$
0<\zeta(2)=\frac{\pi^{2}}{6}=\sum_{k=1}^{+\infty} \frac{1}{k^{2}}<\sum_{k=1}^{+\infty} \frac{1}{k^{2 \sigma^{\prime}}}=C\left(\sigma^{\prime}\right)=\zeta_{1}\left(2 \sigma^{\prime}\right)=\zeta\left(2 \sigma^{\prime}\right)
$$

From the equation (5.1), it follows that :

$$
\begin{equation*}
\sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t^{\prime} \log \left(k / k^{\prime}\right)\right)}{k^{\sigma^{\prime}} k^{\prime \sigma^{\prime}}}=-\frac{C\left(\sigma^{\prime}\right)}{2}=-\frac{\zeta\left(2 \sigma^{\prime}\right)}{2}>-\infty \tag{5.2}
\end{equation*}
$$

5.0.1. Case $t=0$. We suppose that $t=0 \Longrightarrow t^{\prime}=0$. The equation 5.2 becomes:

$$
\begin{equation*}
\sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{1}{k^{\sigma^{\prime}} k^{\prime \sigma^{\prime}}}=-\frac{C\left(\sigma^{\prime}\right)}{2}=-\frac{\zeta\left(2 \sigma^{\prime}\right)}{2}>-\infty \tag{5.3}
\end{equation*}
$$

Then $s^{\prime}=\sigma^{\prime}>1 / 2$ is a zero of $\eta(s)$, we obtain :

$$
\begin{equation*}
\eta\left(s^{\prime}\right)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s^{\prime}}}=0 \tag{5.4}
\end{equation*}
$$

Let us define the sequence S_{m} as:

$$
\begin{equation*}
S_{m}\left(s^{\prime}\right)=\sum_{n=1}^{m} \frac{(-1)^{n-1}}{n^{s^{\prime}}}=\sum_{n=1}^{m} \frac{(-1)^{n-1}}{n^{\sigma^{\prime}}}=S_{m}\left(\sigma^{\prime}\right) \tag{5.5}
\end{equation*}
$$

From the definition of S_{m}, we obtain :

$$
\begin{equation*}
\lim _{m \longrightarrow+\infty} S_{m}\left(s^{\prime}\right)=\eta\left(s^{\prime}\right)=\eta\left(\sigma^{\prime}\right) \tag{5.6}
\end{equation*}
$$

We have also:

$$
\begin{array}{r}
S_{1}\left(\sigma^{\prime}\right)=1>0 \\
S_{2}\left(\sigma^{\prime}\right)=1-\frac{1}{2^{\sigma^{\prime}}}>0 \quad \text { because } 2^{\sigma^{\prime}}>1 \\
S_{3}\left(\sigma^{\prime}\right)=S_{2}\left(\sigma^{\prime}\right)+\frac{1}{3^{\sigma^{\prime}}}>0 \tag{5.9}
\end{array}
$$

We proceed by recurrence, we suppose that $S_{m}\left(\sigma^{\prime}\right)>0$.

1. $m=2 q \Longrightarrow S_{m+1}\left(\sigma^{\prime}\right)=\sum_{n=1}^{m+1} \frac{(-1)^{n-1}}{n^{s^{\prime}}}=S_{m}\left(\sigma^{\prime}\right)+\frac{(-1)^{m+1-1}}{(m+1)^{\sigma^{\prime}}}$, it gives:

$$
S_{m+1}\left(\sigma^{\prime}\right)=S_{m}\left(\sigma^{\prime}\right)+\frac{(-1)^{2 q}}{(m+1)^{\sigma^{\prime}}}=S_{m}\left(\sigma^{\prime}\right)+\frac{1}{(m+1)^{\sigma^{\prime}}}>0 \Rightarrow S_{m+1}\left(\sigma^{\prime}\right)>0
$$

2. $m=2 q+1$, we can write $S_{m+1}\left(\sigma^{\prime}\right)$ as:

$$
S_{m+1}\left(\sigma^{\prime}\right)=S_{m-1}\left(\sigma^{\prime}\right)+\frac{(-1)^{m-1}}{m^{\sigma^{\prime}}}+\frac{(-1)^{m+1-1}}{(m+1)^{\sigma^{\prime}}}
$$

We have $S_{m-1}\left(\sigma^{\prime}\right)>0$, let $T=\frac{(-1)^{m-1}}{m^{\sigma^{\prime}}}+\frac{(-1)^{m}}{(m+1)^{\sigma^{\prime}}}$, we obtain:

$$
\begin{equation*}
T=\frac{(-1)^{2 q}}{(2 q+1)^{\sigma^{\prime}}}+\frac{(-1)^{2 q+1}}{(2 q+2)^{\sigma^{\prime}}}=\frac{1}{(2 q+1)^{\sigma^{\prime}}}-\frac{1}{(2 q+2)^{\sigma^{\prime}}}>0 \tag{5.10}
\end{equation*}
$$

and $S_{m+1}\left(\sigma^{\prime}\right)>0$.
Then all the terms $S_{m}\left(\sigma^{\prime}\right)$ of the sequence S_{m} are great then 0 , it follows that $\lim _{m \longrightarrow+\infty} S_{m}\left(s^{\prime}\right)=\eta\left(s^{\prime}\right)=\eta\left(\sigma^{\prime}\right)>0$ and $\eta\left(\sigma^{\prime}\right)<+\infty$ because $\Re\left(s^{\prime}\right)=\sigma^{\prime}>0$ and $\eta\left(s^{\prime}\right)$ is convergent. We deduce the contradiction with the hypothesis s^{\prime} is a zero of $\eta(s)$ and:

$$
\begin{equation*}
\text { The equation (5.3) is false for the case } t^{\prime}=t=0 \tag{5.11}
\end{equation*}
$$

5.0.2. Case $t \neq 0$. We suppose that $t \neq 0$. For each $s^{\prime}=\sigma^{\prime}+i t^{\prime}=1-\sigma+i t$ a zero of $\eta(s)$, we have:

$$
\begin{equation*}
\sum_{k, k^{\prime}=1 ; k<k^{\prime}}^{+\infty}(-1)^{k+k^{\prime}} \frac{\cos \left(t^{\prime} \log \left(k / k^{\prime}\right)\right)}{k^{\sigma^{\prime}} k^{\prime \sigma^{\prime}}}=-\frac{C\left(\sigma^{\prime}\right)}{2}=-\frac{\zeta\left(2 \sigma^{\prime}\right)}{2}>-\infty \tag{5.12}
\end{equation*}
$$

the left member of the equation (5.12) above is finite and depends of σ^{\prime} and t^{\prime}, but the right member is a function only of σ^{\prime} equal to $-\zeta\left(2 \sigma^{\prime}\right) / 2$. But for all $\sigma^{\prime \prime}$ so that $2 \sigma^{\prime \prime}>1$, we have $\zeta\left(2 \sigma^{\prime \prime}\right)$:

$$
\zeta\left(2 \sigma^{\prime \prime}\right)=\zeta_{1}\left(2 \sigma^{\prime \prime}\right)=\sum_{k=1}^{+\infty} \frac{1}{k^{2 \sigma^{\prime \prime}}}<+\infty
$$

It depends only of $\sigma "$, then in particular for all $\sigma "$ with $2>2 \sigma ">1, \zeta\left(2 \sigma^{\prime \prime}\right)$ depends only of σ ". Let $\lambda>0$ be an arbitrary real number very infinitesimal so that $\left.\sigma^{\prime}+\lambda \in\right] 1 / 2,1[$ is not the real part of a zero of $\eta(s)$, that we write $\forall \tau>0, v=$ $\sigma^{\prime}+\lambda+i \tau$ verifies $\eta(v) \neq 0$. Let $g\left(\sigma^{\prime \prime}\right)$ be the function $\zeta\left(2 \sigma^{\prime \prime}\right)$, the first derivative of g is given by:

$$
\begin{equation*}
g^{\prime}\left(\sigma^{\prime \prime}\right)=-2 \sum_{k=2}^{+\infty} \frac{\log k}{k^{2 \sigma^{\prime \prime}}}>-\infty \tag{5.13}
\end{equation*}
$$

because we will choose $\alpha>0$ so that $\sigma^{\prime \prime}>1 / 2+\alpha \Longrightarrow 2\left(\sigma^{\prime \prime}-\alpha\right)>1$ and we obtain:

$$
\begin{gather*}
g^{\prime}\left(\sigma^{\prime \prime}\right)=-2 \sum_{k=2}^{+\infty} \frac{\log k}{k^{2 \sigma^{\prime \prime}}}=-\frac{1}{\alpha} \sum_{k=2}^{+\infty} \frac{\log k^{2 \alpha}}{k^{2 \alpha}} \frac{1}{k^{2\left(\sigma^{\prime \prime}-\alpha\right)}} \Longrightarrow \\
\left|g^{\prime}\left(\sigma^{\prime \prime}\right)\right| \leq \frac{1}{\alpha} \sum_{k=2}^{+\infty} \frac{\log k^{2 \alpha}}{k^{2 \alpha}} \frac{1}{k^{2\left(\sigma^{\prime \prime}-\alpha\right)}} \leq \frac{1}{\alpha} \sum_{k=2}^{+\infty} \frac{1}{k^{2\left(\sigma^{\prime \prime}-\alpha\right)}}<+\infty \tag{5.14}
\end{gather*}
$$

Let $\left.\sigma_{0} \in\right] 1 / 2,1\left[\right.$ so that $\sigma^{\prime \prime}>\sigma_{0}>\frac{1}{2}+\alpha$, it follows:

$$
\left|g^{\prime}\left(\sigma^{\prime \prime}\right)\right| \leq \frac{1}{\alpha} \sum_{k=2}^{+\infty} \frac{1}{k^{2\left(\sigma^{\prime \prime}-\alpha\right)}} \leq \frac{1}{\alpha}\left(\zeta\left(2\left(\sigma_{0}-\alpha\right)\right)-1\right)<+\infty
$$

that justifies the operation $\left(\sum g_{n}\left(\sigma^{\prime \prime}\right)\right)^{\prime}=\sum\left(g_{k}\left(\sigma^{\prime \prime}\right)\right)^{\prime}$. We will use it for the calculation of $g "(\sigma ")$. Now, Let us calculate the second derivative of the function $g(\sigma ")$. We obtain:

$$
g^{\prime \prime}\left(\sigma^{\prime \prime}\right)=2 \sum_{k=2}^{+\infty} \frac{(\log k)^{2}}{k^{2 \sigma^{\prime \prime}}}>0
$$

then:

$$
\begin{equation*}
g^{\prime \prime}\left(\sigma^{\prime \prime}\right)=2 \sum_{k=2}^{+\infty} \frac{(\log k)^{2}}{k^{2 \sigma^{\prime \prime}}}=\frac{2}{\alpha^{2}} \sum_{k=2}^{+\infty}\left(\frac{\log k^{\alpha}}{k^{\alpha}}\right)^{2} \frac{1}{k^{2\left(\sigma^{\prime \prime}-\alpha\right)}} \leq \frac{2}{\alpha^{2}} \sum_{k=2}^{+\infty} \frac{1}{k^{2\left(\sigma^{\prime \prime}-\alpha\right)}}<+\infty \tag{5.15}
\end{equation*}
$$

Finally, $\left|g^{\prime}\left(\sigma^{\prime \prime}\right)\right|$ and $g "(\sigma ")$ are bounded, then $g\left(\sigma^{\prime \prime}\right)$ is a function of C^{3} on $] 1 / 2+$ $\alpha, 1\left[\right.$. We take $\sigma^{\prime \prime}=\sigma^{\prime}$ and we can write:
(5.16) $g\left(\sigma^{\prime}+\lambda\right)=g\left(\sigma^{\prime}\right)+\lambda g^{\prime}\left(\sigma^{\prime}\right)+\frac{g^{\prime \prime}(\theta)}{2!} \lambda^{2} \quad$ with some suitable $\left.\theta \in\right] \sigma^{\prime}, \sigma^{\prime}+\lambda[$

We can re-write the above equation as:

$$
\begin{equation*}
\left.\zeta\left(2 \sigma^{\prime}+2 \lambda\right)=\zeta\left(2 \sigma^{\prime}\right)+2 \lambda \zeta^{\prime}\left(2 \sigma^{\prime}\right)+\frac{g^{\prime \prime}(\theta)}{2!} \lambda^{2} \quad \text { with some suitable } \theta \in\right] \sigma^{\prime}, \sigma^{\prime}+\lambda[\tag{5.17}
\end{equation*}
$$

we have two cases to study:
case a): the term $\zeta^{\prime}\left(2 \sigma^{\prime}\right)$ is independent of t^{\prime}, the equation 5.17) can we written as:

$$
\begin{equation*}
\left.\zeta\left(2 \sigma^{\prime}+2 \lambda\right)-2 \lambda \zeta^{\prime}\left(2 \sigma^{\prime}\right)=\zeta\left(2 \sigma^{\prime}\right)+\frac{g^{\prime \prime}(\theta)}{2!} \lambda^{2} \quad \text { with some suitable } \theta \in\right] \sigma^{\prime}, \sigma^{\prime}+\lambda[\tag{5.18}
\end{equation*}
$$

As $\sigma^{\prime}+\lambda$ and $\zeta^{\prime}\left(2 \sigma^{\prime}\right)$ are independent of t^{\prime}, numerically, the left member of the above equation is independent of t^{\prime}, but the right member depends of t^{\prime} using the equation (5.12), then the contradiction.
case b): the term $\zeta^{\prime}\left(2 \sigma^{\prime}\right)$ depends of t^{\prime}, we rewrite the equation (5.17):

$$
\left.\zeta\left(2 \sigma^{\prime}+2 \lambda\right)=\zeta\left(2 \sigma^{\prime}\right)+2 \lambda \zeta^{\prime}\left(2 \sigma^{\prime}\right)+\frac{g^{\prime \prime}(\theta)}{2!} \lambda^{2} \quad \text { with some suitable } \theta \in\right] \sigma^{\prime}, \sigma^{\prime}+\lambda[
$$

There too, the left member of the above equation is independent of t^{\prime}, but the right member depends of t^{\prime} using the equation 5.12 , then the contradiction and
we conclude that the result giving by the equation (5.12) is false.

$$
\begin{equation*}
\text { It follows that the equation } 5.12 \text { is false for the case } t^{\prime} \neq 0 \tag{5.19}
\end{equation*}
$$

From 5.11 5.19, we conclude that the function $\eta(s)$ has no zeros for all $s^{\prime}=\sigma^{\prime}+$ $i t^{\prime}$ with $\left.\sigma^{\prime} \in\right] 1 / 2,1[$, it follows that the case of the paragraph (4) above concerning the case $0<\Re(s)<\frac{1}{2}$ is false too. Then, the function $\eta(s)$ has all its zeros on the critical line $\sigma=\frac{1}{2}$. From the equivalent statement $\sqrt{1.5}$, it follows that the Riemann hypothesis is verified.

From the calculations above, we can verify easily the following known proposition:

Proposition 5.1. For all $s=\sigma$ real with $0<\sigma<1, \eta(s)>0$ and $\zeta(s)<0$.

6. Conclusion

In summary: for our proofs, we made use of Dirichlet's $\eta(s)$ function:

$$
\eta(s)=\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s), \quad s=\sigma+i t
$$

on the critical band $0<\Re(s)<1$, in obtaining:

- $\eta(s)$ vanishes for $0<\sigma=\Re(s)=\frac{1}{2}$;
- $\eta(s)$ does not vanish for $0<\sigma=\Re(s)<\frac{1}{2}$ and $\frac{1}{2}<\sigma=\Re(s)<1$.

Consequently, all the zeros of $\eta(s)$ inside the critical band $0<\Re(s)<1$ are on the critical line $\Re(s)=\frac{1}{2}$. Applying the equivalent proposition to the Riemann Hypothesis (1.5), we conclude that the Riemann hypothesis is verified and all the nontrivial zeros of the function $\zeta(s)$ lie on the critical line $\Re(s)=\frac{1}{2}$. The proof of the Riemann Hypothesis is thus completed.

We therefore announce the important theorem as follows:
Theorem 6.1. The Riemann Hypothesis is true:
All nontrivial zeros of the function $\zeta(s)$ with $s=\sigma+$ it lie on the vertical line $\Re(s)=\frac{1}{2}$.

Declarations: The author declares no conflicts of interest.
Author information:

- Affiliations: None.
- Corresponding author: Correspondence to Abdelmajid Ben Hadj Salem.
- ORCID - ID:0000-0002-9633-3330.

References

[1] E. Bombieri, The Riemann Hypothesis. In The millennium prize problems, edited by J. Carlson, A. Jaffe and A. Wiles, pp. 107-124, Clay Math. Institute, Amer. Math. Soc., Providence, RI, 2006.
[2] P. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann hypothesis - a resource for the afficionado and virtuoso alike. 1st Ed. CMS Books in Mathematics, Springer-Verlag, New-York, 2008. https://doi.org/10.1007/978-0-387-72126-2
[3] E.C. Titchmarsh, D.R. Heath-Brown: The theory of the Riemann zeta-function. 2sd Ed. revised by D.R. Heath-Brown. Oxford University Press, New-York, 1986.

Résidence Bousten 8, Mosquée Raoudha, Bloc B, 1181 Soukra Raoudha, Tunisia.
Email address: abenhadjsalem@gmail.com

[^0]: 2020 Mathematics Subject Classification. Primary:11-XX; Secondary:11M26.

