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The quantization of energy proposed by Planck to account for the observed spectrum of 
black body radiation has associated with it a quantization of entropy. This in turn implies 
a quantization of observable information, directly implying observational uncertainty on 
the order of Planck’s constant. The effect of that uncertainty is analyzed. In order to adhere 
strictly to the use of observable quantities, a probability measure is employed based on the 
distinguishability of statistical samples. This leads directly to the description of probability 
in terms of the absolute square of a complex amplitude. The Feynman rules may then be 
applied naturally for indistinguishable events without contradiction to the conventional 
rules for distinguishable events. This enables the straightforward calculation of the 
probability that a particle moves from one arbitrary point to another. The Feynman 
formulation of quantum phenomena and the principle of stationary action results when it 
is assumed that the classical action represents the measure of distinguishability. Parallel 
analysis on a Lorentz manifold yields the geodesic principle. 

 
Introduction 
Early efforts to understand black body radiation within the confines of classical physics focused on the 
entropy of electromagnetic radiation. In 1884 Boltzmann studied black body radiation in a perfectly 
reflecting enclosure. Treating the radiation pressure as that of a continuum gas he was able to define its 
entropy [1]. From that followed a theoretical basis for Stefan’s empirically determined dependence of total 
radiated power on the fourth power of temperature.  
 
Several years earlier Boltzmann had shown a correspondence between classical entropy and the discrete 
quantity that was later called the "statistical multiplicity"[2] of a molecular gas, though he made no use of 
this in his black body work. It was not until the mid-twentieth century introduction of information theory 
[3] that entropy could be understood as information lost due to the statistical treatment of trajectories in lieu 
of a more complete microscopic model of molecular states [4]. 
 
By 1900, Planck had developed a classical model of the entropy of a black body at temperature 𝑇 in which 
electromagnetic dipole resonators operated in equilibrium with the radiant energy in Boltzmann's reflective 
enclosure. Comparing the latest empirical data to his model, he found it necessary to introduce the constant 
ℎ limiting radiation energy to discrete multiples of ℎ𝜈 [5]. This quantization of energy has the effect of 
limiting the entropy to increments of ℎ𝜈/𝑇 when expressed in the prevailing units, those of Boltzmann's 
constant 𝑘.  
 
The appearance of entropy in discrete increments is consistent with the situation in statistical mechanics. In 
that case discrete values replace the continuum model since entropy is now based on the discrete statistical 
multiplicity of macro-states. As in the case of the continuum gas model, the entropy in the black body 
model will be interpreted as a paucity of accurate information, in this case due to some inherent natural 
limit. 
 
Consider an ideal gas consisting of a single molecule. The Planck entropy implies an inability of the 
classical model to describe its trajectory in phase space with uncertainty less than ℎ. It may be that a more 
accurate description of the trajectory is not possible. Alternately, the trajectory may be fully deterministic 
but some inherent limit in observational accuracy produces the uncertainty, even with perfectly accurate 
measuring equipment.  
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In either case the description of observable quantities in the classical model, like that of a continuum gas is 
only approximate, with the action of observed natural phenomena differing from the classical description. 
The result is an observed stochastic component of order ℎ in the molecular trajectory. In this situation, 
Planck's constant ℎ is a more convenient unit of entropy. 
 
Let 𝜂 be a system dependent parameter, then let 

 𝐼! = 𝜂ℎ (1) 

represent the information in a hypothetical, more accurate and possibly fully deterministic model that 
supersedes the inaccurate part of the information in the classical description. Let 𝐻! represent the entropy 
of the more accurate model and 𝐻" the entropy of the classical model. Then [6] 

 𝐻! = 𝐻" − 𝐼! (2) 

If the more accurate model is both fully deterministic and completely accurate 
 𝐻! = 0 (3) 

Then 
 𝐻" = 𝐼! = 𝜂ℎ (4) 

The analysis that follows explicitly acknowledges statistical uncertainties in observations of physical 
systems. Following classical practice, we assume no explicit limit on the accuracy of measuring 
instruments. Also, as in the classical model, the explicit effect of a measurement is not assumed in advance 
to significantly affect its own result, nor the results of future measurements. 
 
The existence of uncertainty requires that the inherently stochastic nature of the result of observation be 
incorporated in the analysis. The choice of probability measure can be of profound importance [7]. 
Following modern practice, careful attention is paid to ensuring our analysis is based strictly on what can 
be observed. To that end we employ a probability measure based on stochastic outcomes that are equal in 
statistical distinguishability from one another.  
 
Distinguishing one experimental outcome from another is necessarily a matter of distinguishing between 
their probability distributions. The distinguishability of probability distributions has been studied by 
Wootters [8]. It is measured by the quantity statistical distance on a probability space. 
 
Consider two 𝑁 sided loaded die with different loadings, where the differences in the probabilities of 
corresponding faces are  𝛿𝑝!⋯𝛿𝑝#. The die are said to be distinguishable in 𝑛 trials if  
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Then the statistical distance 𝒮 between these dice on the appropriate probability space is defined by 
 𝒮 =	 lim

'→)

1
√𝑛

× @the	maximum	number	of	intermediate	outcomes	each	ofwhich	is	distinguishable	(in	𝑛	trials)	from	its	neighbors Q (6) 

Along with the stochastic analysis of what can be observed, the question remains: are these stochastic 
processes consistent with more deterministic, or even fully deterministic underlying natural processes, even 
if some of the variables necessary to make use of a more deterministic model are inherently hidden due to 
some natural limitation on their observability. 
 
Analysis 
Let 𝑥 = (𝑥", 𝑥!, 𝑥%, 𝑥*) represent the ordinary space and time of classical physics where 𝑥" represents time 
and 𝑥!, 𝑥% and 𝑥* represent three-dimensional Euclidean space. Let us consider a particle that moves from 
start point 𝐴 to end point 𝐵 by an unknown trajectory through this space and time. Let 𝑥(𝑡) be an arbitrary 
trajectory with the same end points, where 𝑡 is a time like parameter. We stipulate, in view of uncertainty, 
that for any value of the parameter 𝑡 assigning a definite time and location on 𝑥(𝑡) there may be a nonzero 
probability that the particle can be observed at any time and location 𝑥. This defines the probability 
distribution 𝑝(𝑥, 𝑡). The set of all possible probability distributions constitutes a probability space. 
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Let 𝑝(𝑥, 𝑡) be piecewise differentiable with respect to 𝑡. The statistical distance between points on 𝑥(𝑡) in 
the physical space may then be expressed as the statistical distance 𝒮 between corresponding points in the 
associated probability space [8]. 

 

𝑑𝒮(𝑡) =
1
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This expression may be simplified by the substitution 𝜁(𝑥, 𝑡) = 𝑝!/%(𝑥, 𝑡). Then [8] 
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This new expression defines an element of length 𝑑𝒮 in an infinite dimensional Euclidean 𝜁 space.  
 
Since 𝜁%(𝑥, 𝑡) is a probability, it's integral over all of space and time is unity for any value of the parameter 
𝑡. Thus 𝑑𝒮 lies on the surface of an infinite dimensional unit hypersphere. Then statistical distance 𝒮 
between points on 𝑥(𝑡) is measured by the length of the arc traced on the surface of the hypersphere as the 
progress of parameter 𝑡 traces out the trajectory in space and time between them [8]. 
 
Now let us divide the integral on the right-hand-side of (8) in two. Let [𝑑𝑎(𝑡)/𝑑𝑡]% represent the portion of 
the integral for which 𝑥" < 𝑡 and [𝑑𝑏(𝑡)/𝑑𝑡]% the portion for which 𝑥" > 𝑡. 
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Then 𝑎 represents events nominally in the past and 𝑏, the future. Let us form the complex quantity 
𝑎 + 𝑖𝑏 = 𝑒$.  where 𝜃 = tan+! 𝑏/𝑎. The unit hypersphere is collapsed into the unit circle on the Argand 
plane, while the angle 𝜃(𝑡) measures statistical distance. 

 𝑑𝒮(𝑡) = 𝑑𝜃(𝑡) (11) 
Now in order to express the probability 𝑝[𝑥(𝑡)] of the test particle being found at a point on the trajectory 
𝑥(𝑡) as an explicit function of the statistical distance 𝜃(𝑡) we may define the probability amplitude 

 𝜑[𝑥(𝑡)] ≡ 	𝜁[𝑥(𝑡)]𝑒$.(-) (12) 

Then 
 𝑝[𝑥(𝑡)] = |𝜑[𝑥(𝑡)]|% (13) 

Representation of the probability in terms of a Hilbert space has the effect of including the real valued 
measure 𝜃 along with the real valued magnitude |𝜑|% in the statement of the probability [7]. 
 
The Feynman Rules 
The identification of a probability with the absolute square of a complex quantity constitutes the Feynman 
amplitude-probability rule [9, 10]. 
 
While the Feynman rules are explicitly for the purpose of quantum mechanical calculation, the conditions 
assumed here in developing the probability amplitude consist of no more than a random variable with 
probability described by a function piecewise differentiable with respect to some parameter. This allows the 
Feynman rules to be treated as a feature of probability theory under these circumstances, when a measure 
based on statistical distinguishability is employed. Indeed, the peculiarities of quantum theory, depending 
upon what can and cannot be measured, may be regarded as depending upon distinguishability. 
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The conventional Laplace rule for the probability 𝑝1 of an event that may occur by any of 𝑚 alternative 
means is 

 
𝑝1 =4𝑝$

2

$&!

=4|𝜑$|%
2

$&!

 (14) 

where 𝑝$ represents the probability of each of the alternatives. The Laplace rules are empirical in nature, 
verified by counting occurrences of the various alternatives [11].  We know from a century of experience 
with quantum phenomena that when the alternatives are indistinguishable the probability 𝑝3 is [9]. 

 
𝑝3 = |𝜑3|% = l4𝜑$
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This constitutes the Feynman amplitude sum rule [10, 12]. 
 
The conventional Laplace rule for the probability 𝑝1 that 𝑚 events all occur is 

 
𝑝1 =m𝑝$

2
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2
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 (16) 

where the values of 𝑝$ represent the probability of each event. Our experience with quantum phenomena 
informs us that when the 𝑚 events are indistinguishable the probability 𝑝3 is [9]. 

 
𝑝3 = |𝜑3|% = lm𝜑$

2

$&!

l
%

 (17) 

 
This constitutes the Feynman amplitude product rule [10 ,12]. While the two formulae yield identical 
probabilities, the latter establishes the phase 𝜃3 = ∑𝜃$ of the probability amplitude for the combined event. 
 
Goyal, Knuth and Skilling have shown that the Feynman rules are a necessary result of any probability 
represented by a pair of real numbers [13]. Goyal and Knuth have further shown that the Feynman rules can 
coexist free of conflict with conventional probability [10]. Earlier Sykora reminded that while probabilities 
are routinely described in terms of a single number, a measure is also necessary. Though it is frequently not 
explicitly stated, the need for this second real number is never-the-less implied. He noted that clear 
statement of the measure has the salutary effect of eliminating ambiguities in statistical evaluation of 
observed result. [7]. In this case magnitude |𝜑|% and phase 𝜃 respectively describe the probability and a 
measure based on the distinguishability of alternatives. The complex probability amplitude allows the 
former to be conveniently formulated in terms a function of the latter. 
 
Given that two real numbers are the minimum necessary to fully express a probability; given also that the 
Feynman rules are universally observed in nature when dealing with indistinguishable events; and given as 
well that the Feynman rules are the only two component alternative to the Laplace rules that are compatible 
with them, we elect to treat them as a natural part of probability theory. 
 
Feynman [12,14] citing von Neumann [15] has shown that the introduction of a means of observation 
produces an arbitrary unknown phase shift in the probability amplitudes of previously unobservable events. 
Let 𝑝3 = |𝜑!	 + 𝜑%	|% be the probability of an event with two indistinguishable alternative ways of 
occurring, signified by the two subscripts. Suppose now that a means of observing the alternatives is 
provided. The presence of the measuring equipment perturbs the phase of the probability amplitudes by 
arbitrary unknown amounts 𝜃! and 𝜃%. Now 𝑝3 = o𝜑!	𝑒$.! + 𝜑%	𝑒$."o

%
. The multiple observations required 

to observe the statistical frequency of these alternatives require that their phases be averaged over all 
angles. This results in reversion to the Laplace rule 𝑝1 = |𝜑!	|% + |𝜑%	|% as the sample size approaches 
infinity. 
 
In view of this one may argue that the Feynman rules be treated as the more fundamental empirical rule of 
probability applying to any inherently indistinguishable alternatives lying on space and time continua, that 
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are piecewise differentiable with respect to time, while the conventional Laplace rules becomes derivative 
of them. Until the possibility of an observation is present, only an amplitude exists without a corresponding 
frequentist probability. Where observation is possible, a frequency may be observed and a frequentist 
probability emerges.  The real valued probability is independent of phase, and the phase of the probability 
amplitude is lost with the emergence of a probability. It appears then that the Feynman rules are not 
supplemental to the Laplace rules but rather a natural replacement for them. 
 
Von Neumann's arbitrary phase shift was determined based on the properties of the Dirac-von Neumann 
model of quantum phenomena. Given the undeniable long-term success of that model, the von Neumann 
phase shift has been treated here as an empirical result. 
 
To make proper use of the Feynman rules it becomes necessary to define all cases when events are 
inherently indistinguishable. Clearly that is the case when no means of measurement is present. In addition, 
in the more general case measurement results are indistinguishable when the statistical distance between 
them is less than unity. Kok [16] has shown this to be a consequence of the Kramer-Rao bound.  
 
Based on experience with quantum phenomena, for events to be indistinguishable uncertainty must be 
inherent [17].  For that to be the case there must be some mechanism, discussed below, whereby any 
variables describing underlying physical processes are either inherently random, or are inherently hidden 
from direct observation. 
 
The Path Integral  
Let ∆𝜃 = ∫ [𝑑𝜃(𝑡) 𝑑𝑡⁄ ]	

5(-) 𝑑𝑡. This is the statistical distance traced by a particle as it traverses the path 𝑥(𝑡). 
Let 𝑚 be an arbitrary integer and let 𝛿𝜃 = ∆𝜃/𝑚 so that 𝑥[𝜃(𝑡)] is divided into 𝑚 equally distinguishable 
segments. Then the probability amplitude for the 𝑗th segment is 𝜑6 = 𝒜6

(2)𝑒$7. where 𝒜6
(2) = u𝑝6

(2)v
!/%

 
while 𝑝6

(2), dependent on the value of 𝑚, is the probability for the 𝑗th segment were a measurement 
possible. 
 
The probability amplitude 𝜑𝒫[𝑥(𝑡)] for a test particle following an arbitrary path 𝒫 =𝑥(𝑡), when the 
individual points cannot be observed, is the product of the probability amplitudes that the particle is found 
at each of the 𝑚 intervals on 𝑥[𝜃(𝑡)]. 

 
𝜑𝒫[𝑥(𝑡)]= lim

2→)
mu𝒜6

(2)𝑒$7.v
2

6&!

= 𝒜𝑒$∆. (18) 

where 𝒜% = x lim
2→)

∏ 𝒜6
(2)2

6&! z
%
 is the probability that the path 𝑥(𝑡) is followed when observation of the 

path is possible. 
 
We, know based on many decades of empirical experience verifying the Feynman formulation of quantum 
mechanics, that the proper expression for 𝜑𝒫[𝑥(𝑡)] is [9] 

 𝜑𝒫[𝑥(𝑡)] = Const	𝑒$:/ℏ (19) 
where 𝑆 is the classical action. Then the substitution 

 𝑆/ℏ = ∆𝜃 (20) 
yields the Feynman result. The classical action 𝑆 corresponds to the statistical distance 𝒮 traced by a 
particle as it traverses 𝑥(𝑡) while the classical Lagrangian corresponds to the rate of change of statistical 
distance with time. 
 
The probability that a test particle goes from start point 𝐴 to end point 𝐵 by any path is then computed 
according to the Feynman amplitude sum rule with the path integral replacing the summation in (15). 
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𝑝(𝐵𝐴) = }Y 𝜑(𝐵𝐴)	𝒟𝑥(𝑡)
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Quantum Gravity 
The derivation of the Feynman formalism for ordinary quantum mechanics developed here does not rely on 
the Euclidean nature of the physical space to which those rules are applied. A parallel derivation can be 
applied to a particle trajectory on a Lorentz manifold provided an uncertainty is postulated in the observed 
four-space location of a particle on the manifold. This leads directly to the geodesic principle of general 
relativity in lieu of Hamilton's principle. The equivalence of these two principles in the flat space limit [18] 
establishes a correspondence between the two forms of uncertainty. 
 
Let 𝑥∗ = (𝑥"∗, 𝑥!∗, 𝑥%∗, 𝑥*∗) represent the four-dimensional Lorentzian manifold of general relativity, where 𝑥"∗ 
represents time and 𝑥!∗, 𝑥%∗ and 𝑥*∗ represent the three spatial dimensions. Substituting 𝑥∗ for 𝑥 in (7) through 
(11) and more carefully specifying 𝑡 as an affine parameter, we find the equivalent definition of statistical 
distance. Continuing in the same vein through (18), we find the equivalent expression for the probability 
amplitude of an arbitrary path in terms of the statistical length of the path ∆𝜃.  
 
The Einstein Hilbert action for empty space is [19] 

 
𝑆? = 𝜅Y�−𝑔	𝑅 𝑑@𝑥 (22) 

Where 𝜅 is the Einstein gravitational constant, 𝑅 is the Ricci scalar and 𝑔 is the determinant of the metric 
tensor.  
 
The scalar invariant integral carries the units of length squared. This allows us to define a quantum unit of 
gravitational action proportional to 𝑠A% where 𝑠A is a small fixed interval on the Lorentzian manifold 
characterizing uncertainty in spacetime location. The connection between a Planck scale increment of 
length and Planck's constant is firmly established in gravitational theory [20]. In the flat space limit       
𝑠A = √32	𝜋	𝑙B ≈ 17.77	𝑙B where 𝑙B is the Planck length. 
 
We may now omit (20) which identifies statistical distance with the classical action, and substitute 𝑠/𝑠A for 
∆𝜃 where 𝑠 = ∫ [𝑑𝑥∗(𝑡) 𝑑𝑡⁄ ]	

5∗(-) 𝑑𝑡 is the length of 𝑥∗(𝑡). Then the probability amplitude 𝜑𝒫∗ [𝑥∗(𝑡)] for a 
particle to follow an arbitrary path 𝑥∗(𝑡) from 𝐴 to 𝐵 is 

 𝜑𝒫∗ [𝑥∗(𝑡)] = 𝒜∗𝑒$C/C$ (23) 

As the path integral (21) yields Hamilton's principle, the new path integral 
 

𝑝∗(𝐵𝐴) = }Y 𝜑𝒫∗ (𝐵𝐴)	𝒟𝑥∗(𝑡)
<

=
}
%

 (24) 

yields the geodesic principle. The foundation of general relativity is recovered directly. The principle of 
stationary action follows in the flat space limit [18]. The result is the relativistic equivalent to the Feynman 
space time formulation of non-relativistic quantum mechanics [14] providing a plausible and equally 
general model of quantum gravity subject to empirical validation. 
 
The association of uncertainty with the geometric quantity spacetime-location provides some additional 
clarity. The presence of a yet to be defined source of uncertainty in the geometry of spacetime provides a 
manifest source of the limitations of classical physics. It remains unclear whether randomness in spacetime 
location is inherent to spacetime, or is due to some inherent limit on observational accuracy. Both cases are 
discussed below.  
 
In either case inherent uncertainty in the four-space location of the measuring devices can account for some 
or all of observed uncertainty. It also provides a plausible explanation for the von Neumann phase shift. 
The measurement provides a change in available information limiting the location of the measured particle 
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to a volume of spacetime ≈ 𝑠A@. The phase of the incoming particle vanishes while a new arbitrary phase 
characterizes the ongoing particle after measurement. 
 
The Black Body Spectrum Revisited 
When viewed in the laboratory frame, the uncertainty of location in spacetime must appear as a small 
apparently random motion. This in turn results in a small zero-point energy. As early as 1913 employing 
purely classical analysis, Einstein and Stern showed that the assumption of zero-point energy ℎ𝜐 in 
Planck’s dipole oscillators led to the Planck spectrum without the independent assumption of energy 
quantization [21]. 
 
Milonni has extended that analysis [21] noting each Planck oscillator is in equilibrium with an associated 
field mode of Planck's cavity. Employing the same zero-point energy, the equipartition theorem requires 
the oscillator and field each have energy ℎ𝜐/2.  
 
Let us now momentarily assume that deterministic physical laws resembling the laws of classical physics 
continue to govern even at the microscopic level, subject to some undefined source of uncertainty in 
observed spacetime location. Since the apparently, or actually random motion of the electron and the field 
at the same location are identical, we would expect no coupling between the zero-point motion of the 
dipole oscillator and the zero-point component of the field under this assumption. 
 
Returning to Milonni, still employing purely classical analysis he demonstrates that when there is no 
interaction between the random components of the oscillator and the field, black body spectral density is 

 
𝜌(𝜐) =

8𝜋ℎ𝜐* 𝑐*⁄
𝑒DE FG⁄ − 1

+ 4𝜋ℎ𝜐* 𝑐*⁄  (25) 

in agreement with quantum electrodynamic theory. Though short of proof, this hints that even at the 
unobservable level the concept of spacetime location remains valid and fully deterministic laws resembling 
the classical ones may prevail. These restrictions further appear to limit the observed randomness to 
variations in the spacetime metric. 
 
Discussion 
The present analysis leads naturally to the Feynman formulation of quantum phenomena under the 
assumption that our ability to know the state of physical phenomena is inherently imperfect. It relies on a 
revised form of probability theory that employs the Feynman rules as the empirically determined rules of 
probability for indistinguishable events, reducing to the Laplace rules when events can be distinguished.  
 
A similar point of view can be applied to the Dirac-von Neumann formalism. Consistent with the "𝜓-
epistemic" view [22], the probability amplitude represents the state of information available about the 
system. When the amplitude is defined this way, its collapse does not represent a change in the physical 
system. Instead, it indicates the state of available information about the system has changed as the result of 
a measurement. A frequentist probability has emerged, while simultaneously the phase of the probability 
amplitude has vanished. 
 
The probability amplitude may be regarded as representing the available information about a conditional 
probability [10] based on the state of information prior to measurement. The amplitude after measurement 
represents a new conditional probability based on the new state of information generated by the 
measurement. 
 
Goyal's analysis has shown [23]  that the logic of the Feynman formalism is equivalent to that of Dirac-von 
Neumann when it is supplemented with a no-disturbance postulate. This posits that there exists a class of 
trivial measurements which have no effect on the probability amplitude. Trivial measurements are defined 
by the property that they yield no new information about the system being measured. This principle is a 
natural consequence of the epistemic interpretation of the probability amplitude. With no change in 
information the conditional probabilities of subsequent outcomes are unchanged. 
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The no-disturbance postulate resides uncomfortably alongside the notion that uncertainty is caused by the 
process of measurement. The apparent conflict is eliminated with the adoption of the 𝜓-epistemic 
viewpoint coupled with the proposed entropic origin of uncertainty. The fact that the no disturbance 
principle requires a change in available information to change the probability amplitude is a strong 
indicator of the latter's epistemic nature. 
 
A defining feature of the 𝜓-epistemic view is that a change in 𝜓 does not necessarily imply a change in 
reality as in the generally prevailing 𝜓-ontic view [22]. 
 
The entropy and information considerations that motivate the present analysis allow for fully deterministic 
underlying spacetime locations of both particles and waves that are beyond our ability to accurately 
observe, hence appearing stochastic in nature. Alternatively, they also allow for a spacetime location 
inherently stochastic in nature, not just appearance. Similarly, nothing in the 𝜓-epistemic viewpoint 
prevents the existence of fully deterministic, nor of inherently stochastic spacetime [22]. 
 
Wave Particle Duality 
The empirically derived Laplace rules of probability among distinguishable alternatives have been shown 
here to lead naturally to the description of particle probabilities in terms of a complex probability amplitude 
with wavelike characteristics. With the adoption of the more general Feynman rules, also empirically 
derived, these probability amplitudes add as do the amplitudes of physical wave phenomena when 
observations of intermediate events are not possible. This imparts wavelike properties to classical particles 
resulting strictly from the novel rules of probability. 
 
Planck's derivation of the black body spectrum was based almost entirely on a combination of classical 
mechanics and electromagnetic theory. It deviated only with an unexplained quantization of 
electromagnetic radiation. Planck demonstrated that the observed black body spectrum was consistent with 
the effect of energy quantization on the entropy of radiation.  
 
Particle like behavior of classical electromagnetic waves with entropy empirically imposed by the observed 
black body spectrum were famously explored as early as 1905 [24, 25]. Einstein's classical analysis of the 
empirically determined high frequency portion of the black body spectrum found its entropy matched that 
of an ideal molecular gas with particle energy concentrated in a narrow band around the value ℎ𝜈. Particle 
like behavior in classical wave phenomena thus explained the photoelectric effect twenty years before the 
advent of modern quantum theory.  
 
With the benefit of modern information theoretic insights not available in 1905, the present analysis allows 
us to associate the entropy of the black body spectrum with our inability to account for the apparently, or 
actually random spacetime locations of both resonator and field. As a result, information about the energy 
of the radiation field as well as the corresponding entropy at the location of the particles are quantized, 
rather than the field energy itself. The quantization of field entropy due to the resulting uncertainty mimics 
that of a particulate gas. This accounts for the appearance of photons. 
 
While the present analysis takes no exception to the notion that light consists of photons in all observable 
phenomena, it also allows for the existence of unobservable fully deterministic underlying behavior in 
which electromagnetic effects are not quantized, as in the Einstein-Stern-Milonni black body analysis. 
Though this is an isolated result, it suggests that deterministic physical processes may continue to operate 
in the quantum regime even though the location of events in spacetime may suffer inherent limitations in 
observability. Alternately, there may be a random component in spacetime itself. Further investigation is 
called for before generalizations can be made with confidence, as was the case with Planck's isolated black 
body result. Let us examine both cases.  
 
Fully Deterministic Spacetime 
The general relativistic model contains within itself a mechanism whereby an observer with only local 
information will observe a small zero-point energy. Correspondence between Newtonian mechanics and 
general relativity occurs when energies of objects under observation are suitably small, and there are no 
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variations in the spacetime metric due to events outside the range of observation [26]. The latter of these 
conditions precludes from consideration a background level of broadband gravitational radiation.  
 
If such background exists then, it can be expected to impose on the classical picture a small apparently 
random source of zero-point energy. Even in the full general relativistic model, background gravitational 
radiation that appears stochastic to an observer with only local knowledge must add an apparently random 
component to the predictable trajectories of ponderable masses.  
 
The full nature of such a stochastic background of gravitational radiation is an open question [27]. Neither 
a spectrum nor a characteristic time for the gravitational background is known. That this is the source of 
uncertainty is of course speculation. If this is the case, the general relativistic model is the not-fully-
predictable but fully deterministic model. The lack of predictability stems from our inability to know the 
background gravitational radiation in anything but stochastic terms. 
 
In the fully deterministic spacetime model, the preexisting laws of general relativity, including classical 
mechanics, are assumed to be in place while quantum phenomena are caused by an additional small 
stochastic component in the knowledge of the observer. This model is characterized by fully deterministic 
location in fully deterministic spacetime with fully deterministic laws of physics, impaired by an inherent 
limit on observability of deterministic spacetime locations.  
 
Spacetime With a Random Component 
In the alternative to the deterministic case, the preexisting laws of mechanics are not assumed. Let us call 
this the bootstrap model in recognition of how these laws may come into being. In this model uncertainty is 
assumed due to fully random variations in the spacetime metric not tied to any underlying deterministic 
process. This possibility introduces an intriguing problem in our understanding of the laws of physics. 
 
The macroscopically deterministic laws of mechanics are generally described by differential equations. It is 
in the nature of these equations that macroscopic behavior follows directly from behavior at the 
microscopic level, yet we are assuming randomness at the microscopic level. How then could it come to be 
that differential equations provide a near perfect description of a highly ordered universe at the 
macroscopic level?  
 
We have argued that the Feynman rules constitute a more plausible empirically justified axiomatic basis for 
probability theory than the Laplace rules in that, at least when working on a time differentiable manifold, 
they cover a broader range of phenomena including both indistinguishable and distinguishable events. In 
the face of randomness at the microscopic level, these rules provide a mechanism for the laws of mechanics 
to emerge from randomness. The path integral assures that the observability of particles that just happen to 
follow paths of near stationary length in spacetime will be coherently enhanced, while the observability of 
those that do not will be coherently suppressed. Thus, both the principle of stationary action, and the 
geodesic principle are bootstrapped into existence on the strength of the Feynman rules.  
 
Despite randomness at the microscopic level, a system at least macroscopically described by deterministic 
differential equations may be observed. In this way the general relativistic model, indicative of what can be 
observed in a universe highly random at the microscopic level, may arise out of that randomness.  
 
A central feature of the present discussion is the concept of inherent uncertainty. It posits that there exists a 
class of observational results that are inherently unpredictable by any theory. This holds true even though 
there may be deterministic hidden variables describing some or all the underlying phenomena. In either 
case observational results appear random. In the fully deterministic proposal, the randomness is only 
apparent, resulting from the observer's inability to distinguish deterministic undulation of the spacetime 
metric from motion with respect to the metric. In the alternative the spacetime metric has a truly random 
component. As a result of these alternatives, the precise definition of inherent uncertainty remains for now 
uncertain itself. 
 



 10 

 
[1] P. W. Milonni, The Quantum Vacuum an Introduction to Quantum Electrodynamics, Academic Press 

(1994) p. 2. 
[2] G. H. Wannier, Statistical Physics, Dover (1966) p. 85. 
[3] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, Univ. of Illinois Press 

(1949) 
[4] A. C. Melissinos, F. Lobkowicz, Physics for Scientists and Engineers, Saunders (1975) v.1, p.509 
[5] M. J. Klein, Thermodynamics and Quanta in Planck’s Work, Physics Today, (Nov. 1966) p. 23 
[6] L. Brillouin, The Negentropy Principle of Information, J. Appl. Phys. 24, 1152 (1953) 
[7] S. Sykora, Quantum Theory and the Bayesian Inference Problems, J. Stat. Phys., 11, p. 17 (1974) 
[8] W. K. Wootters, Statistical Distance and Hilbert Space, Phys, Rev. D, 23, 357 (1981). 
[9] R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw Hill (1965), pp. 5-6. 
[10] P. Goyal, K. H. Knuth, Quantum Theory and Probability Theory: Their Relationship and Origin in 

Symmetry, Symmetry, 3, pp. 171-206 (2011) 
[11] R. B. Ash, Basic Probability Theory, Wiley (1970) pp. 13-14 
[12] R.  P Feynman, The concept of Probability in Quantum Mechanics, Second Berkeley Symposium on 

Mathematical Statistics and Probability, U. Cal. Press (1951) 
[13] P. Goyal, K. H. Knuth, J. Skilling, Origin of Complex Amplitudes and Feynman’s Rules, Phys. Rev. A, 

81, (2010), p. 022109 
[14] R. P. Feynman, Space-Time Approach to Non-Relativistic Quantum Mechanics, Review of Modern 

Physics, 20, 2, pp. 367-387 (1948) 
[15] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press (1955), 

translation of Mathematische Grunderlagen der Quantenmechanik, Julius Springer (1932) 
[16] P Kok, Tutorial: Statistical Distance and Fisher information 

https://www.pieter-kok.staff.shef.ac.uk/docs/geometrical_Cramer-Rao.pdf 
[17] R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw Hill (1965), pp. 17-19. 
[18] A. Einstein, Hamilton's Principle and the General Theory of Relativity, The Principle of Relativity, 

Dover, p. 167, reprint of Methuen (1923) 
[19] S.M. Carroll, An Introduction to General Relativity Spacetime and Geometry, Addison Wesley, 

(2004), p. 161. 
[20] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, Freeman (1973) p. 491. 
[21] P. W. Milonni, The Quantum Vacuum an Introduction to Quantum Electrodynamics, pp. 14-17. 
[22] N. Harrigan, R. W. Spekkens, Einstein, Incompleteness, and the Epistemic View of Quantum States, 

Foundations of Physics, 40(2), pp. 125-157, (2010) 
[23] P. Goyal, Derivation of Quantum Theory from Feynman’s Rules, Phys. Rev. A, 89(3), p.032120 (2014) 
[24] A. Einstein, On a Heuristic Point of View Concerning the Production and Transformation of Light, 

translated and reprinted in: J. Stachel, Einstein’s Miraculous Year, Princeton pp. 177-198 (1998) 
[25] T. S. Kuhn, Black-Body Theory and the Quantum Discontinuity 1894-1912, Univ. of Chicago Press, 

pp. 180-183, (1978) 
[26] A. Einstein, The Foundation of the General Theory of relativity, The Principle of Relativity, Dover, p. 

157, reprint of Methuen (1923)  
[27] B. Allen, The Stochastic Gravity-Wave Background: Sources and Detection, Relativistic Gravitation 

and Gravitational Radiation Proceedings, Cambridge Univ. Press, conference C95-09-26, (1997) 


