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The quantization of energy proposed by Planck to account for the observed spectrum of 
black body radiation has associated with it a quantization of entropy. This in turn implies 
a quantization of observable information, directly implying observational uncertainty on 
the order of Planck’s constant. The effect of that uncertainty is analyzed. In order to adhere 
strictly to the use of observable quantities, a probability measure is employed based on the 
distinguishability of statistical samples. This leads directly to the description of probability 
in terms of the absolute square of a complex amplitude. The Feynman rules may then be 
applied naturally for indistinguishable events without contradiction to the conventional 
rules for distinguishable events. This enables the straightforward calculation of the 
probability that a particle moves from one arbitrary point to another. The Feynman 
formulation of quantum phenomena and the principle of stationary action results when it 
is assumed that the classical action represents the measure of distinguishability. Parallel 
analysis on a Lorentz manifold yields the geodesic principle. 

 
Introduction 
Early efforts to understand black body radiation within the confines of classical physics focused on the 
entropy of electromagnetic radiation. In 1884 Boltzmann studied black body radiation in a perfectly 
reflecting enclosure. Treating the radiation pressure as that of a continuum gas he was able to define its 
entropy [1]. From that followed a theoretical basis for Stefan’s empirically determined dependence of total 
radiated power on the fourth power of temperature.  
 
Several years earlier Boltzmann had shown a correspondence between classical entropy and the discrete 
quantity that was later termed the statistical multiplicity [2] of a molecular gas, though he made no use of 
this in his black body work. It was not until the mid-twentieth century introduction of information theory 
[3] that entropy could be understood as information lost due to the statistical treatment of trajectories in lieu 
of a more complete microscopic model of molecular states [4]. 
 
By 1900, Planck had developed a classical model of the entropy of a black body at temperature 𝑇 in which 
electromagnetic dipole resonators operated in equilibrium with the radiant energy in Boltzmann's reflective 
enclosure. Comparing the latest empirical data to his model, he found it necessary to introduce the constant 
ℎ limiting radiation energy to discrete multiples of ℎ𝜈 [5]. This quantization of energy has the effect of 
limiting the entropy to increments of ℎ𝜈/𝑇 when expressed in the prevailing units, those of Boltzmann's 
constant 𝑘.  
 
The appearance of entropy in discrete increments is consistent with the situation in statistical mechanics. In 
that case discrete values replace the continuum model since entropy is now based on the discrete statistical 
multiplicity of macro-states. As in the case of the continuum gas model, the entropy in the black body 
model will be interpreted as a paucity of accurate information, in this case due to some inherent natural 
limit. 
 
Consider an ideal gas consisting of a single molecule. The Planck entropy implies an inability of the 
classical model to describe its trajectory in phase space with uncertainty less than ℎ. It may be that a more 
accurate description of the trajectory is not possible. Alternately, the trajectory may be fully deterministic 
but some inherent limit on observational accuracy produces the uncertainty, even with perfectly accurate 
measuring equipment.  
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In either case the description of observable quantities in the classical model, like that of a continuum gas is 
only approximate, with the action of observed natural phenomena differing from the classical description. 
The result is an observed stochastic component of order ℎ in the molecular trajectory. In this situation, 
Planck's constant ℎ is a more convenient unit of entropy. 
 
Let 𝜂 be a system dependent parameter, then let 

 𝐼! = 𝜂ℎ (1) 

represent the information in a hypothetical, more accurate and possibly fully deterministic model that 
supersedes the inaccurate part of the information in the classical description. Let 𝐻! represent the entropy 
of the more accurate model and 𝐻" the entropy of the classical model. Then [6] 

 𝐻! = 𝐻" − 𝐼! (2) 

If the more accurate model is both fully deterministic and completely accurate 
 𝐻! = 0 (3) 

Then 
 𝐻" = 𝐼! = 𝜂ℎ (4) 

The analysis that follows explicitly acknowledges statistical uncertainties in observations of physical 
systems. Following classical practice, we assume no explicit limit on the accuracy of measuring 
instruments. Also, as in the classical model, the explicit effect of a measurement is assumed in advance to 
significantly affect neither its own result, nor the results of future measurements. 
 
The existence of uncertainty requires that the inherently stochastic nature of the result of observation be 
incorporated in the analysis. The choice of probability measure can be of profound importance [7]. 
Following modern practice, careful attention is paid to ensuring our analysis is based strictly on what can 
be observed. To that end we employ a probability measure based on stochastic outcomes that are equal in 
statistical distinguishability from one another.  
 
Distinguishing one experimental outcome from another is necessarily a matter of distinguishing between 
their probability distributions. The distinguishability of probability distributions has been quantified by 
Fisher [8]. Wootters has employed the term statistical distance for that quantity and studied its properties 
along contiguous paths. He has found an association between statistical distance and quantum phase [9]. 
  
Consider two 𝑁 sided loaded dice with different loadings, where the differences in the probabilities of 
corresponding faces are  𝛿𝑝!⋯𝛿𝑝#. The dice are said to be distinguishable in 𝑛 trials if  
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Then the statistical distance 𝒮 between these dice on the appropriate probability space is defined by [9] 
 𝒮 =	 lim

'→)

1
√𝑛

× @the	maximum	number	of	intermediate	outcomes	each	ofwhich	is	distinguishable	(in	𝑛	trials)	from	its	neighbors Q (6) 

Along with the stochastic analysis of what can be observed, the question remains: are these stochastic 
processes consistent with more deterministic, or even fully deterministic underlying natural processes, even 
if some of the variables necessary to make use of a more deterministic model are inherently hidden due to 
some natural limitation on their observability. 
 
Analysis 
Let 𝑥 = (𝑥", 𝑥!, 𝑥%, 𝑥*) represent the ordinary space and time of classical physics where 𝑥" represents time 
and 𝑥!, 𝑥% and 𝑥* represent three-dimensional Euclidean space. Let us consider a particle that moves from 
start point 𝐴 to end point 𝐵 by an unknown trajectory through this space and time. Let 𝑥(𝑡) be an arbitrary 
trajectory with the same end points, where 𝑡 is a time like parameter. We stipulate, in view of uncertainty, 
that for any value of the parameter 𝑡 assigning a definite time and place on 𝑥(𝑡) there may be a nonzero 
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probability that the particle can be observed at any time and place 𝑥. This defines the probability 
distribution 𝑝(𝑥, 𝑡). The set of all possible probability distributions constitutes a probability space. 
Let 𝑝(𝑥, 𝑡) be piecewise differentiable with respect to 𝑡. The statistical distance between points on 𝑥(𝑡) in 
the physical space may then be expressed as the statistical distance 𝒮 between corresponding points in the 
associated probability space [9]. 

 

𝑑𝒮(𝑡) =
1
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This expression may be simplified by the substitution 𝜁(𝑥, 𝑡) = 𝑝!/%(𝑥, 𝑡). Then [9] 
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This new expression defines an element of length 𝑑𝒮 in an infinite dimensional Euclidean 𝜁 space 
described in rectilinear coordinates [9].  
 
Since 𝜁%(𝑥, 𝑡) is a probability, it's integral over all of space and time is unity for any value of the parameter 
𝑡. Thus 𝑑𝒮 lies on the surface of an infinite dimensional unit hypersphere. This surface constitutes the 
probability space, with each point in this space representing a probability distribution. Then statistical 
distance 𝒮 between points on 𝑥(𝑡) is measured by the length of the arc traced on the surface of the 
hypersphere as the progress of parameter 𝑡 traces out the trajectory in space and time between them [9]. 
 
Now let us divide the integral on the right-hand-side of (8) in two. Let [𝑑𝑎(𝑡)/𝑑𝑡]% represent the portion of 
the integral for which 𝑥" < 𝑡 and [𝑑𝑏(𝑡)/𝑑𝑡]% the portion for which 𝑥" > 𝑡. 
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Then 
 

𝑑𝒮(𝑡) = X[
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(11) 

 
Since the probabilities must still sum to unity, 𝑎% + 𝑏% = 1. Analogous to (8) the unit hypersphere is 
collapsed into the unit circle, its two dimensions representing past and future. Now the statistical distance 𝒮 
between points on 𝑥(𝑡) is measured by the length of the arc traced on the new circular probability space as 
the progress of parameter 𝑡 traces out the trajectory in space and time. Since an element of that arc length 
𝑑𝜃(𝑡) on the unit circle is described by the right-hand side of (11) we now have 

 𝑑𝒮(𝑡) = 𝑑𝜃(𝑡) (12) 
 
Let us form the complex quantity 𝑎(𝑡) + 𝑏(𝑡)𝑖 = 𝑒$.(-) representing the same unit circle on the Argand 
plane. Now in order to express the probability 𝑝[𝑥(𝑡)] of our particle being found at a point on the 
trajectory 𝑥(𝑡) as an explicit function of the statistical distance 𝜃(𝑡) we may define the probability 
amplitude 

 𝜑[𝑥(𝑡)] ≡ 	𝜁[𝑥(𝑡)]𝑒$.(-) (13) 

Then 
 𝑝[𝑥(𝑡)] = |𝜑[𝑥(𝑡)]|% = ⟨𝜑∗|𝜑⟩ (14) 
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Representation of the probability in terms of a Hilbert space has the effect of including the real valued 
measure 𝜃 along with the real valued magnitude |𝜑| in the statement of the probability expressed by the 
single complex variable 𝜑 [7]. 
 
The Feynman Rules 
The identification of a probability with the absolute square of a complex quantity constitutes the Feynman 
amplitude-probability rule [10, 11]. 
 
While the Feynman rules are explicitly intended for the purpose of quantum mechanical calculation, the 
conditions assumed here in developing the probability amplitude consist of no more than a random variable 
with probability described by a function piecewise differentiable with respect to some parameter. This 
allows the Feynman rules to be treated as a feature of probability theory under this circumstance, when a 
measure based on statistical distinguishability is employed. Indeed, the peculiarities of quantum theory, 
depending upon what can and cannot be measured, may be regarded as depending upon distinguishability. 
 
The conventional Laplace rule for the probability 𝑝2 of an event that may occur by any of multiple 
alternative means is 

 𝑝2 =4𝑝$ =4|𝜑$|% (15) 

where 𝑝$ represents the probability of each of the alternatives. The Laplace rules are empirical in nature, 
verified by counting occurrences of the various constituent events [12].  We know from a century of 
experience with quantum phenomena that when the alternatives are indistinguishable the probability 𝑝3 is 
[10]. 

 𝑝3 = |𝜑3|% = n4𝜑$n
%
 (16) 

This constitutes the Feynman amplitude sum rule [11, 13]. 
 
The conventional Laplace rule for the probability 𝑝2 that multiple events all occur is 

 𝑝2 =o𝑝$ =o|𝜑$|% (17) 

where 𝑝$ represents the probability of each of the multiple event. Experience with quantum phenomena 
informs us that when the multiple events are indistinguishable the probability 𝑝3 is [10]. 

 𝑝3 = |𝜑3|% = no𝜑$n
%
 (18) 

 
This constitutes the Feynman amplitude product rule [11,13]. While the two formulae yield identical 
probabilities, the latter establishes the phase 𝜃3 = ∑𝜃$ of the probability amplitude for the composite 
event. 
 
Goyal, Knuth and Skilling have shown that the Feynman rules are a necessary result of any probability 
represented by a pair of real numbers [14]. Goyal and Knuth have further shown that the Feynman rules can 
coexist free of conflict with conventional probability [11]. Earlier Sykora emphasized that while 
probabilities are routinely described in terms of a single number, a measure is also necessary. Though 
frequently it is not explicitly stated, the need for this second real number is never-the-less implied. He 
further noted that clear statement of the measure has the salutary effect of eliminating ambiguities in 
statistical evaluation of observed result. [7]. 
 
Given that two real numbers are the minimum necessary to fully express a probability; given also that the 
Feynman rules are universally observed in nature when dealing with indistinguishable events; and given as 
well that the Feynman rules are the only two-component alternative to the Laplace rules that are compatible 
with them, we elect to treat Feynman's rules as a natural part of probability theory. 
 
In view of the definition of the probability amplitude (13), 𝜃(𝑡) = tan+! 𝑏(𝑡)/𝑎 (𝑡). This implies the 
relationships 𝑎(𝑡) = cos 𝜃(𝑡)	, 𝑏(𝑡) = sin 𝜃(𝑡). Because (8) through (12) are formulated entirely in terms 
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of time derivatives of 𝑝(𝑡), 𝜁(𝑡), 𝑎(𝑡) and 𝑏(𝑡) we know that 𝜃(𝑡) must include an arbitrary additive 
constant 𝜃4. This indicates that the initial assignment of past and future contributions to the probability is 
arbitrary, while as time progresses these contributions vary sinusoidally between the two. 
 
With the origin of quantum phase apparently tied to the use of statistical distance as a natural probability 
measure, the presence of an arbitrary additive constant may be understood by noting that the notion of an 
absolute statistical position has no apparent meaning. 
 
Feynman [13,15], citing von Neumann [16] has shown that the introduction of a means of observation 
within a trajectory resets the arbitrary additive phase constant yielding a random shift in phase for future 
unobservable events. Let 𝑝3 = |𝜑!	 + 𝜑%	|% be the probability of an event with two indistinguishable 
alternative ways of occurring, signified by the two subscripts. Suppose now that a means of observing the 
alternatives is provided. The presence of the measuring equipment introduces arbitrary additive constants 
𝛿𝜃! and 𝛿𝜃% to the phases of the probability amplitudes. Now 𝑝3 = q𝜑!	𝑒$6.! + 𝜑%	𝑒$6."q

%
. The multiple 

observations required to establish a frequentist probability 𝑝3 require that the phases of the alternatives be 
averaged over all angles. This results in reversion to the Laplace rule 𝑝2 = |𝜑!	|% + |𝜑%	|% as the sample 
size approaches infinity. Multiple observations have the simultaneous effect of averaging over all initial 
assignments of past and future contributions to the probability. 
 
Von Neumann's phase reset was determined based on the properties of the Dirac-von Neumann model of 
quantum mechanics. Given the undeniable long-term success of that model, reset of phase upon the 
possibility of measurement is treated here as an empirically based supplement to the Feynman rules. 
 
In view of this one may argue that these supplemented Feynman rules be treated as the more fundamental 
empirical rule of probability applying to any inherently indistinguishable alternatives lying on 
differentiable probability continua. The conventional Laplace rules then become derivative of them.  
 
Until the possibility of an observation is present, an amplitude exists without a corresponding frequentist 
probability. Where observation is possible, a frequency may be observed and a frequentist probability 
emerges.  The real valued probability is independent of phase, and the phase of the probability amplitude is 
lost with the emergence of a frequentist probability. It appears then that the supplemented Feynman rules 
are a natural replacement for the Laplace rules which follow from Feynman's when observation is possible. 
 
To make proper use of the Feynman rules it becomes necessary to define all cases where events are 
inherently indistinguishable [17]. Clearly that is the case when no means of measurement is present. In 
addition, from (5), measurement results are indistinguishable when the statistical distance between them is 
less than or equal to unity. Kok [18] notes that this is a consequence of the Kramer-Rao bound. 
 
For indistinguishability to be inherent there must be some mechanism, discussed further on, whereby any 
variables describing underlying physical processes are either inherently random, or inherently hidden from 
direct observation. 
 
The Path Integral 
Let ∆𝜃 = ∫ [𝑑𝜃(𝑡) 𝑑𝑡⁄ ]	

7(-) 𝑑𝑡. This is the statistical distance traced by a particle as it traverses the path 𝑥(𝑡). 
Let 𝑚 be an arbitrary integer and let 𝛿𝜃 = ∆𝜃/𝑚 so that 𝑥[𝜃(𝑡)] is divided into 𝑚 equally distinguishable 
segments.  
 
Let 𝑝8

(9), dependent on the value of 𝑚, be the probability that the particle is found in the 𝑗th segment when 

𝑥(𝑡) calls for it to be there and measurement is possible. Let 𝜁8
(9) ≡ w𝑝8

(9)x
!/%

. Then the probability 
amplitude for the 𝑗th segment is 𝜑8 = ζ8

(9)𝑒$6.. 
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From the amplitude product rule, the probability amplitude 𝜑7(-)(𝐵𝐴) for a test particle following an 
arbitrary path 𝑥(𝑡)	between 𝐴 and 𝐵 when the individual points cannot be observed, is the product of the 
probability amplitudes that the particle traverses every point on 𝑥[𝜃(𝑡)] 

 
𝜑7(-)(𝐵𝐴) = lim

9→)
owζ8

(9)𝑒$6.x
9

8&!

= exp{Y
𝑑	ln	ζ[x(𝜃)]

𝑑𝜃 𝑑𝜃
:

4

+ 𝑖∆𝜃| = ζ7(-)𝑒$∆. (19) 

where ζ7(-)% = }exp ∫ <	ln	?[A(.)]
<.

𝑑𝜃:
4 ~

%
= exp∫ <	ln	ζ"[A(.)]

<.
𝑑𝜃:

4  is the probability that the path 𝑥(𝑡) is 
followed when observation of the path is possible. 
 
We, know based on many decades of empirical experience verifying the Feynman formulation of quantum 
mechanics, that the proper expression for 𝜑7(-)(𝐵𝐴) is [10] 

 𝜑7(-)(𝐵𝐴) = Const	𝑒$D/ℏ (20) 
where 𝑆 is the classical action. In parallel with Feynman let us assume that the magnitude of the probability 
amplitude varies much more slowly than the phase. Then for trajectories of stationary phase ζ7(-) will be 
stationary as well and the substitution 

 𝑆/ℏ = ∆𝜃 (21) 
yields the Feynman result. The classical action 𝑆 corresponds to the statistical distance 𝒮 traced by a 
particle as it traverses 𝑥(𝑡) while the classical Lagrangian corresponds to the rate of change of statistical 
distance with time. 
  
The probability that a test particle goes from start point 𝐴 to end point 𝐵 by any path is then computed 
according to the Feynman amplitude sum rule with the path integral replacing the summation in (16). 

 
𝑝(𝐵𝐴) = �Y𝜑7(-)(𝐵𝐴)	𝒟𝑥(𝑡)�

%
 (22) 

 
Quantum Gravity 
Our derivation of the Feynman formalism for ordinary quantum mechanics does not rely on the Euclidean 
nature of the physical space to which it is applied. A parallel derivation can be applied to a particle 
trajectory on a Lorentz manifold when uncertainty is postulated in the observed four-space location of a 
particle on the manifold. This leads directly to the geodesic principle in lieu of Hamilton's principle. The 
equivalence of these two principles in the flat space limit [19] highlights a correspondence between the two 
forms of uncertainty previously established in gravitational theory [20]. 
 
Let 𝑥∗ = (𝑥"∗, 𝑥!∗, 𝑥%∗, 𝑥*∗) represent the four-dimensional Lorentz manifold of general relativity, where 𝑥"∗ 
represents time and 𝑥!∗, 𝑥%∗ and 𝑥*∗ represent the three spatial dimensions. Substituting 𝑥∗ for 𝑥 in (7) through 
(12) and more carefully specifying 𝑡 as an affine parameter, we find the equivalent definition of statistical 
distance. Continuing in the same vein through (19), we find the equivalent expression for the probability 
amplitude of an arbitrary path in terms of the statistical length of the path ∆𝜃∗.  
 
The Einstein Hilbert action for empty space is [21] 

 
𝑆F = 𝜅Y�−𝑔	𝑅 𝑑G𝑥 (23) 

Where 𝜅 is the Einstein gravitational constant, 𝑅 is the Ricci scalar and 𝑔 is the negative valued 
determinant of the metric tensor.  
 
The scalar invariant integral carries the units of length squared. This allows us to define a scalar invariant 
quantum unit of gravitational action proportional to 𝑠H% where 𝑠H is a small interval on the Lorentz manifold 
characterizing uncertainty in spacetime location. In the flat space limit 𝑠H = √32	𝜋	𝑙I ≈ 17.77	𝑙I where 𝑙I 
is the Planck length [20]. 
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We may now omit (21) which identifies statistical distance with the classical action, and substitute 𝑠/𝑠H for 
∆𝜃 where 𝑠 = ∫ [𝑑𝑥∗(𝑡) 𝑑𝑡⁄ ]	

7∗(-) 𝑑𝑡 is the length of 𝑥∗(𝑡). Then the probability amplitude for a particle to 
follow an arbitrary path 𝑥∗(𝑡) from 𝐴 to 𝐵 is 

 𝜑7∗(-)
∗ [𝐵𝐴] = ζ7∗(-)

∗ 𝑒$J/J$ (24) 

As the path integral (22) yields Hamilton's principle, the new path integral 
 

𝑝∗(𝐵𝐴) = �Y𝜑7∗(-)
∗ (𝐵𝐴)	𝒟𝑥∗(𝑡)�

%
 (25) 

yields the geodesic principle. The foundational principle of general relativity is recovered directly. The 
principle of stationary action follows in the flat space limit [19]. The result is the relativistic equivalent to 
the Feynman space time formulation of non-relativistic quantum mechanics [15] providing a plausible and 
equally general model of quantum gravity subject to empirical trial. 
 
The association of uncertainty with the geometric quantity spacetime-location provides some additional 
clarity. The yet to be defined source of uncertainty in spacetime location provides a manifest source of the 
limitations of classical physics. 
 
The Black Body Spectrum Revisited 
When viewed in the laboratory frame, uncertainty of location in spacetime must appear as a small 
apparently random motion. This in turn results in a small zero-point energy. As early as 1913 employing 
purely classical analysis, Einstein and Stern showed that the assumption of zero-point energy ℎ𝜐 in 
Planck’s dipole oscillators led to the Planck spectrum without the independent assumption of energy 
quantization [22]. 
 
Milonni has extended that analysis [22] noting each Planck oscillator is in equilibrium with an associated 
field mode of Planck's cavity. Employing the same zero-point energy ℎ𝜐, the equipartition theorem requires 
the oscillator and field each have energy ℎ𝜐/2.  
 
Let us now momentarily assume that deterministic physical laws resembling those of classical physics 
continue to govern even at the microscopic level, subject to some undefined source of uncertainty in 
observed spacetime location. Since the apparently, or actually random motion of the electron and the field 
at the same location are identical, we would expect no coupling between the zero-point motion of the 
dipole oscillator and the zero-point component of the field under this assumption. 
 
Returning to Milonni, still employing purely classical analysis he demonstrates that when there is no 
interaction between the random components of the oscillator and the field, black body spectral density is 

 
𝜌(𝜐) =

8𝜋ℎ𝜐* 𝑐*⁄
𝑒KL MN⁄ − 1

+ 4𝜋ℎ𝜐* 𝑐*⁄  (26) 

in agreement with quantum electrodynamic theory. Though short of proof, this suggests that even at the 
unobservable level the concept of spacetime location remains valid and fully deterministic laws resembling 
the classical ones may prevail. Milonni's result further indicates that in the unobservable domain treatment 
of the electromagnetic field in the classical way can be a valid approach. It allows for uncertainty to be 
induced either by random fluctuations of the spacetime metric, or by random fluctuations in the locations of 
material particles. Both possibilities are discussed below. 
 
Discussion 
The present analysis leads naturally to the Feynman formulation of quantum mechanics under the 
assumption that our ability to know the state of physical phenomena is inherently imperfect. It relies on a 
revised form of probability theory that employs the Feynman rules as the empirically determined rules of 
probability for indistinguishable events, reducing to the Laplace rules when events can be distinguished.  
 
A similar point of view can be applied to the Dirac-von Neumann formalism. Consistent with the "𝜓-
epistemic" view [23], the probability amplitude does not represent the state of the system. Instead, it 
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represents the state of information available about the system. When the amplitude is understood in this 
way, its collapse no longer represents a change in the physical system. Instead, it indicates the state of 
available information about the system has changed as the result of the possibility of measurement. A 
frequentist probability has emerged, while simultaneously the phase of the probability amplitude has 
vanished. 
 
The probability amplitude may be regarded as representing a conditional probability [11] based on the state 
of information prior to measurement. The amplitude after measurement represents a new conditional 
probability based on the new state of information generated by the measurement. 
 
Goyal's analysis has shown [24] that the logic of the Feynman formalism is equivalent to that of Dirac-von 
Neumann when it is supplemented with a no-disturbance postulate. This posits that there exists a class of 
trivial measurements which have no effect on the probability amplitude. Trivial measurements are defined 
by the property that they yield no new information about the system being measured. This principle is a 
natural consequence of the epistemic interpretation of the probability amplitude. With no change in 
information the conditional probabilities of subsequent outcomes are unchanged. 
 
The no-disturbance postulate resides uncomfortably alongside the notion that uncertainty is caused by the 
process of measurement. The apparent conflict is eliminated with the adoption of the 𝜓-epistemic 
viewpoint coupled with the proposed entropic origin of uncertainty. The fact that the no disturbance 
principle requires a change in available information to change the probability amplitude is a strong 
indicator of the amplitude's epistemic nature. 
 
The entropy and information considerations that motivate the present analysis allow for, but do not require 
fully deterministic underlying spacetime locations of both particles and waves that are beyond our ability to 
accurately observe. The 𝜓-epistemic viewpoint allows for the same latitude in [23]. 
 
The Wave Particle Duality 
The historically empirical Laplace rules of probability among distinguishable alternatives have been shown 
here to lead naturally to the description of particle probabilities in terms of a complex probability amplitude 
with wavelike characteristics. With the adoption of the more general Feynman rules, empirically derived 
more recently, these probability amplitudes add as do the amplitudes of physical wave phenomena when 
observations of alternative events are not possible. This imparts wavelike properties to classical particles 
resulting strictly from the novel rules of probability. 
 
Planck's derivation of the black body spectrum was based almost entirely on a combination of classical 
mechanics and electromagnetic theory. It deviated only with an unexplained quantization of 
electromagnetic field energy. Planck demonstrated that the observed black body spectrum was consistent 
with the effect of this energy quantization on the entropy of radiation.  
 
Particle like behavior of classical electromagnetic waves with entropy empirically imposed by the observed 
black body spectrum was famously explored as early as 1905 [25, 26]. Einstein's classical analysis of the 
empirically determined high frequency portion of the black body spectrum found that the entropy of any 
narrow band about frequency 𝜈 matched that of an ideal molecular gas with particle energy concentrated in 
a narrow band around the value ℎ𝜈. Heuristic particle like behavior in classical wave phenomena thus 
explained the photoelectric effect twenty years before the advent of modern quantum theory.  
 
With the benefit of information theoretic insights not available for another half century [6], we have 
adopted a 𝜓-epistemic interpretation of that result. In this view the quantization of entropy leads to the 
quantization of information about the energy rather than the energy proper. The present analysis allows us 
to associate the entropy of the black body spectrum with our inability to account for the apparently, or 
actually random common spacetime location of the resonator and field. Due to the resulting uncertainty, the 
quantization of the field entropy of inherently wavelike phenomena mimics the entropy of a particulate gas. 
This accounts for the appearance of photons. 
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While the present analysis takes no exception to the notion that light consists of photons in all observable 
phenomena, it also allows for the existence of unobservable fully deterministic underlying behavior in 
which electromagnetic effects are not quantized, as in the Einstein-Stern-Milonni black body analysis. 
Though this is an isolated result, it suggests that deterministic physical processes may continue to operate 
in the quantum regime even though available information about the location of events in spacetime may 
suffer inherent limitations. In this underlying model there need be no intrinsic particle like properties in the 
nature of waves. 
 
In this view, we see photons as physical particles imperfectly substituting for quanta of information about 
the properties of electromagnetic fields in the face of uncertainty in observable spacetime location of order 
𝑠H. At locations separated by spacetime distances greater than 𝑠H.the individual regions of uncertainty have 
minimal overlap. At these same scales the Feynman QED model has demonstrated remarkable fidelity to 
nature. For locations separated by less than 𝑠H regions of uncertainty are highly overlapped. Substitution of 
separate energetic particles for these overlapped regions becomes questionable since much of the uncertain 
region each of these separate point particles represents may be common to multiple overlapped regions of 
uncertainty. 
 
In fact, attempts to compute probabilities with the Feynman QED model that include events at separations 
much finer than 𝑠H yield total probabilities greater than unity [27, 28]. This provides clear motivation for 
limiting the inclusion of events in that model to those separated by more than 𝑠H or whatever other interval 
is the lower limit yielding unit total probability. 
 
Fixing a minimum scale in the Feynman QED model has the salutary effect of eliminating the need for 
renormalization, while simultaneously fixing values for the mass and charge of the naked electron [27]. 
Ultimately though, a more inclusive theory is required to properly model the situation [28]. The present 
analysis in which more deterministic behavior underlies what can be observed in the presence of 
observational uncertainty may provide a useful framework.  
 
Emergence of the Geodesic Principle and Stationary Action 
Regardless of the source of uncertainty, we have shown that the principle of stationary action as well as the 
more general geodesic principle follow naturally from a small set of assumptions: 
 

1. Natural phenomena are described in a Lorentz four-space model. 
2. Observers of these phenomena experience some level of inherent uncertainty in their knowledge 

of location in this four-space. 
3. The Feynman rules, supplemented with random phase shift upon the possibility of observation, 

apply to the probability of physical phenomena that are inherently indistinguishable. 
4. The probability amplitudes for particles being found at any location in four-space are piecewise 

differentiable with respect to the time coordinate. 
 
We have argued that the Feynman rules constitute a more plausible empirically justified axiomatic basis for 
probability theory than the Laplace rules in that, at least when the probability is piecewise differentiable 
with respect to a time like parameter, they cover a broader range of phenomena including both 
indistinguishable and distinguishable events. In the face of uncertainty at the observable level, these rules 
provide a mechanism for the deterministic laws of mechanics to emerge. 
 
Our analysis has placed no restrictions on the probability distribution underlying uncertainty. We continue 
to assume that the magnitude of the probability amplitude varies in spacetime much more slowly than the 
phase. Then the path integral assures that the probability amplitude of indistinguishable particles that just 
happen to follow paths of near stationary length will be coherently enhanced, while all others will be 
coherently suppressed. Thus, both the principle of stationary action, and the geodesic principle emerge in 
the observable universe on the strength of the Feynman rules. 
 
The Origin of Uncertainty 
We have characterized uncertainty as either "apparently random" or "actually random". The former refers 
to a model of nature in which indistinguishable physical phenomena are fully deterministic but appear to 
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the observer to contain a random component due to inherent limitations on observability from an 
unspecified source of error in the detection of spacetime location. The latter refers to a model in which the 
source of the randomness is the presence of actually random physical phenomena at scales ≤ 𝑠H. The 
following examples range from highly deterministic to highly random. 
 
The general relativistic model contains within it a mechanism whereby an observer with only local 
information will observe a small apparently random zero-point energy. Correspondence between 
Newtonian mechanics and general relativity occurs when energies of objects under observation are suitably 
small, and there are no variations in the spacetime metric due to events outside the range of observation 
[29]. The latter of these conditions precludes from consideration a background level of broadband 
gravitational radiation.  
 
If such background exists then, it can be expected to impose on the classical picture a small apparently 
random source of zero-point energy. Even in the full general relativistic model, background gravitational 
radiation that appears stochastic to an observer with only local knowledge must add an apparently random 
component to the predictable trajectories of ponderable masses.  
 
The full nature of such a stochastic background of gravitational radiation is an open question [30]. Its 
spectrum is unknown. That this is the source of uncertainty is of course speculation. If this is the case, the 
general relativistic model is the fully deterministic but not-fully-predictable model underlying observable 
phenomena. The lack of predictability stems from our inability to know the background gravitational 
radiation in anything but stochastic terms. This model is characterized by fully deterministic location in 
fully deterministic spacetime with fully deterministic laws of physics impaired by an inherent limit on 
observability of deterministic spacetime locations. The observer, with inherently incomplete information, 
experiences uncertainty where none exists in the underlying behavior. 
 
The logic of this model is that the empirical realities of uncertainty and the supplemented Feynman rules 
lead directly to the geodesic principle. Despite arising from uncertainty in observation, the geodesic 
principle is fully deterministic. The deterministic relativistic model then exhibits the source of the 
uncertainty in the form of the apparent randomness that gravitational radiation imparts to the observer 
within the system. 
 
We have also proposed the possibility of inherent randomness in the behavior that underlies observation. 
The source of uncertainty may be a truly random component of the spacetime metric outside of the 
deterministic confines of relativity theory, not just apparent randomness as determined by a local observer. 
Alternatively, the source may be a random component in the motion of material particles outside the 
confines of the Einstein equation.  
 
In the first alternative, distinguishing between apparent and actual randomness in the already unobservable 
spacetime metric entails distinguishing between two alternative unobservable conditions that produce the 
same observable outcome. Given that there is no apparent way for an observer to make this distinction, it is 
not clear that there is a meaningful difference between random and apparently random in this situation. The 
two alternatives may indeed be one and the same. 
 
In the second alternative, involving random motion of particles against a deterministic spacetime metric, 
we note the unconstrained probability distribution underlying uncertainty. Our assumption that the 
probability distribution for a particle at a given location in spacetime be piecewise differentiable is satisfied 
by a uniform distribution that makes any location as likely as any other. This posits a maximally random 
universe.  
 
Even under this most extreme assumption, the path integral still assures that indistinguishable particles with 
piecewise differentiable probability amplitudes that just happen to follow paths of near stationary length 
will be coherently enhanced, while all others will be coherently suppressed. The principle of stationary 
action, and the geodesic principle still emerge in the observable universe on the strength of the Feynman 
rules, even in the face of extreme underlying randomness in the underlying universe. Remnants of the 
imperfectly coherently suppressed random background may be the source of observed uncertainty. 
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The logic of this model is that natural particle behavior is maximally random. The supplemented Feynman 
rules produce the fully deterministic geodesic principle out of this chaos. Some residual uncertainty is 
imposed on this determinism by the necessary imperfection of the coherent cancellation of the underlying 
random behavior. 
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