Some remarks concerning the factorization of mirror composite numbers and its relationship with Goldbag conjecture.

Óscar E. Chamizo Sáncher. Redonda Kingdom University, Faculty of Sciences, Department of Mathematics.

Abstract

: In this paper we present the concept of mirror composite numbers. Mirror composite numbers are composite with the form $2 \mathrm{n}-\mathrm{p}$ for some n positive natural number and p prime. This numbers have interesting properties in order to face the Goldbach conjecture by the divide et impera method.

Definitions:

From now on, m and n are positive natural numbers, p and q are prime numbers.

All prime numbers $\mathrm{p}>=5$ are of the form $6 \mathrm{~m}+1$ or $6 \mathrm{~m}-1$. A prime of the form $6 \mathrm{~m}+1$ is a right prime; a prime of the form $6 \mathrm{~m}-1$ is a left prime.

A mirror composite number is a composite number of the form $2 n-p$ for some n and some prime $\mathrm{p}>=5$.

Given a mirror composite $2 \mathrm{n}-\mathrm{p}$, if $\mathrm{p}=6 \mathrm{~m}+1$, i.e., if p is a right prime, $2 \mathrm{n}-\mathrm{p}$ is a right mirror composite (r.m.c.).

Given a mirror composite $2 \mathrm{n}-\mathrm{p}$, If $\mathrm{p}=6 \mathrm{~m}-1$, i.e., if p is a left prime, $2 \mathrm{n}-$ p is a left mirror composite (l.m.c.).

Lemma 1.

Fixed n, if 3 is a factor of some l.m.c (respectively r.m.c.), 3 is a factor of every l.m.c. (r.m.c.) and 3 is not a factor of any r.m.c. (1.m.c)

Proof:
The difference between two l.m.c. (r.m.c.) is 6 n . If $3|\mathrm{~m}, 3| \mathrm{m} \pm 6 \mathrm{n}$. On the other hand, if $3 \mid 2 n-(6 m-1)$, then $3 \nmid 2 n-(6 m+1)$ and viceversa.

Lemma 2.

Fixed n, if $\mathrm{q} \neq 3$ is a prime factor of two different l.m.c. (respectively r.m.c.), the difference between them is a multiple of 6 q so the minimum gap between two consecutive occurrences of factor q is 6 q for all l.m.c. (r.m.c.).

Proof:
If $\mathrm{q} \mid 2 \mathrm{n}-(6 \mathrm{x}-1)$ and $\mathrm{q} \mid 2 \mathrm{n}-(6 \mathrm{y}-1)$ exists z such that $\mathrm{zq}=6(\mathrm{x}-\mathrm{y})$, so z is multiple of 6 , given that q is a prime and $\mathrm{q} \neq 2,3$.

If $\mathrm{q} \mid 2 \mathrm{n}-(6 \mathrm{x}+1)$ and $\mathrm{q} \mid 2 \mathrm{n}-(6 \mathrm{y}+1)$ exists z such that $\mathrm{zq}=6(\mathrm{x}-\mathrm{y})$, so z is multiple of 6 , given that q is a prime and $\mathrm{q} \neq 2,3$.

Goldbach conjecture states that for all n and all p such that $3 \leq p \leq 2 n-$ 3 , some $2 \mathrm{n}-\mathrm{p}$ is a prime, i.e., not every $2 \mathrm{n}-\mathrm{p}$ is composite.

Let's suppose for the sake of contradiction that exists n such that every $2 \mathrm{n}-\mathrm{p}$ is composite. Then, 3 consecutive odd numbers, $2 \mathrm{n}-3,2 \mathrm{n}-5$ and $2 \mathrm{n}-7$ are composite, so one and only one of them must be multiple of 3 .

Case A: $3 \mid 2 n-7$:
$3|2 n-7 \Rightarrow 3| 2 n-(6 m+1)$ for all m (Lemma 1). So every right mirror composite is a multiple of 3 and no left mirror composite is a multiple of 3 . So all element of the sequence:

$$
2 \mathrm{n}-3,2 \mathrm{n}-5,2 \mathrm{n}-11,2 \mathrm{n}-17,2 \mathrm{n}-23, \ldots 2 \mathrm{n}-\mathrm{q} .
$$

where q is a left prime $5 \leq \mathrm{q} \leq 2 \mathrm{n}-3$, must be factorized. There are i consecutive primes p_{i} from $p_{1}=5$ to p_{k}, where p_{k} is the largest prime less than $\sqrt{2 n}$, available for that factorization.

Now, given the correlative sequence of odd numbers $2 n-3,2 n-5,2 n-7$, $2 \mathrm{n}-9,2 \mathrm{n}-11,2 \mathrm{n}-13,2 \mathrm{n}-15,2 \mathrm{n}-\mathrm{a} . .$. , let be $2 \mathrm{n}-\mathrm{a}_{\mathrm{i}}$ the number containing the first occurrence of prime factor p_{i} in that sequence.
Notice that:
For each p_{i}, a_{i} is unique.
$3 \leq a_{i} \leq 2 p_{i}+1$.
For some $i, a_{i}=3$; for some $i, a_{i}=5$; for some i, $a_{i}=11$ MOD p_{i}; for some $i, a_{i}=17$ MOD p_{i}; for some $i, a_{i}=23$ MOD p_{i} and so on.
$2 \mathrm{n}-\mathrm{q}$, i.e., $2 \mathrm{n}-(6 \mathrm{~m}-1)$, is composite if and only if exists i such that $6 \mathrm{~m}-$ $1 \equiv a_{1} \bmod p_{i}($ Lemma 2).

Now, let's state conditions in order to find some $2 \mathrm{n}-\mathrm{q}$ with $\mathrm{q}=6 \mathrm{~m}-1$ and q inside the interval $-9+\sqrt{2 n}<\mathrm{q} \leq 2 \mathrm{n}-9$ that can not be factorized:

1) q is a prime, i.e., q is not multiple of any p_{i}, so $6 m-1 \not \equiv 0 \bmod p_{i}$ for all i.
2) There is no p_{i} factor available for $2 n-q$, so $6 m-1 \not \equiv \equiv a_{1} \bmod p_{i}$ for all i.

Prime condition No factor available condition
for 6m-1
$6 \mathrm{~m} \not \equiv 1 \bmod 5$
$6 \mathrm{~m} \not \equiv 1 \bmod 7$
for $2 \mathrm{n}-(6 \mathrm{~m}-1)$
$6 \mathrm{~m} \not \equiv \equiv\left(\mathrm{a}_{1}+1\right) \bmod 5$
$6 \mathrm{~m} \not \equiv \mathrm{~F}\left(\mathrm{a}_{2}+1\right) \bmod 7$

$6 \mathrm{~m} \not \equiv 1 \mathrm{1mod} 11$	$6 \mathrm{~m} \not \equiv \equiv\left(\mathrm{a}_{3}+1\right) \bmod 11$
$6 \mathrm{~m} \not \equiv 1 \mathrm{mod} 13$	$6 \mathrm{~m} \not \equiv \mathrm{~F}\left(\mathrm{a}_{4}+1\right) \bmod 13$
$6 \mathrm{~m} \not \equiv 1 \mathrm{mod} \mathrm{pk}$	$\left.6 \mathrm{~m} \not \equiv \mathrm{(} \mathrm{a}_{\mathrm{k}}+1\right) \mathrm{mod} \mathrm{p}_{\mathrm{k}}$

Hence for each p_{i} there are at least $\mathrm{p}_{\mathrm{i}}-2$ remainders moduli p_{i} that fullfill the conditions. That amounts up to a minimum of 3.5.9.11.... $\mathrm{p}_{\mathrm{k}}-2$) different systems of linear congruences whith prime moduli, each one of them has a different and unique solution, not every one outside the aforementioned interval.

For now, it will be enough to notice that at least $\mathrm{p}_{\mathrm{i}}-2$ remainders fullfill the conditions for each p_{i} to conclude (Pigeonhole strong form principle) that at least exists some (in fact, a lot of 6 m that fullfills the conditions for all p_{i}. Hence, exists some $2 \mathrm{n}-\mathrm{q}$ that can not be factorized, so $2 \mathrm{n}-\mathrm{q}$ is prime and the conjecture holds for all 2 n such that $3 \mid 2 \mathrm{n}-7$, i.e., for all $2 \mathrm{n} \equiv 1 \bmod 3$.

Case B: $3 \mid 2 n-5$:
$3|2 \mathrm{n}-5 \Rightarrow 3| 2 \mathrm{n}-(6 \mathrm{~m}-1)$ for all m (Lemma 1). So every left mirror composite is a multiple of 3 and no right mirror composite is a multiple of 3...

Following the same thought process than before, with q a right prime of the form $6 m+1$, it's straightforward to conclude that the conjecture holds for all 2 n such that $3 \mid 2 \mathrm{n}-5$, i.e., for all $2 \mathrm{n} \equiv 2 \bmod 3$.

Case C: $3 \mid 2 n-3$:
Matter of forward research.

March, 31, 2023.
Óscar E. Chamizo Sánchez. latinjrodrigo@gmail.com PA^{3}.

References:
Vaughan, Robert. Charles. Goldbach's Conjectures: A Historical Persp

