Notes on strong disorder

Matthew Stephenson*
Stanford University

I. CONSTRUCTION OF THE METRIC

Solving for the vector field

The theory considered in [1] is

$$
\begin{equation*}
S_{b u l k}=\frac{1}{8 \pi \ell_{p}^{2}} \int d^{4} x \sqrt{-g}\left(R-\frac{3}{2}(\partial \chi)^{2}+\frac{6}{\ell^{2}} \cosh \chi\right)-\frac{1}{8 \pi} \int d^{4} x \sqrt{-g}\left(\frac{1}{6} v^{3} e^{3 \chi} F_{0}^{2}-\frac{1}{2} v e^{\chi} F_{1}^{2}\right) \tag{1}
\end{equation*}
$$

which we can further truncate for our purposes to

$$
\begin{equation*}
S_{b u l k}=\frac{1}{8 \pi \ell_{p}^{2}} \int d^{4} x \sqrt{-g}\left(R+\frac{6}{\ell^{2}}-2 \pi \ell_{p}^{2} \sigma(z) F_{\mu \nu} F^{\mu \nu}\right) \tag{2}
\end{equation*}
$$

In the presence of a point charge, the full action becomes

$$
\begin{equation*}
S=S_{b u l k}+Q \int A_{\mu} d x^{\mu} \tag{3}
\end{equation*}
$$

Assume that the point charge is located at $(z, x, y)=\left(z_{p}, 0,0\right)$, where x and y (or the polar r and θ) parametrise the flat boundary space. By assuming the background

$$
\begin{equation*}
d s^{2}=-g_{t t}(z) d t^{2}+g_{z z}(z) d z^{2}+g_{x x}(z)\left(d x^{2}+d y^{2}\right) \tag{4}
\end{equation*}
$$

and the electrostatic field with $A_{x}=A_{y}=0$, the Maxwell's equations give

$$
\begin{equation*}
\partial_{z}\left(\frac{\sigma g_{x x}}{\sqrt{g_{z z} g_{t t}}} \partial_{z} A_{t}\right)+\sigma \sqrt{\frac{g_{z z}}{g_{t t}}}\left(\partial_{x}^{2}+\partial_{y}^{2}\right) A_{t}=Q \delta\left(z-z_{p}\right) \delta(x) \delta(y) \tag{5}
\end{equation*}
$$

To find the solution for the vector field we follow [1] and use the WKB approximation

$$
\begin{align*}
& A_{t}(z, x, y)=\int \frac{d^{2} k}{(2 \pi)^{2}} e^{-i \vec{k} \cdot \vec{x}} \exp \left\{\frac{1}{\lambda}\left(W_{0}+\lambda W_{1}+\cdots\right)\right\}, \tag{6}\\
& \partial_{z} \rightarrow \lambda \partial_{z} \tag{7}
\end{align*}
$$

with $\lambda \ll 1$. The solution is

$$
\begin{equation*}
A_{t}(z, x, y)=\zeta(z)^{-1 / 4} \int \frac{d^{2} k}{(2 \pi)^{2}} e^{-i \vec{k} \cdot \vec{x}}\left(c_{k} e^{|\vec{k}| v(z)}+d_{k} e^{-|\vec{k}| v(z)}\right) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta=\sigma^{2} \frac{g_{x x}}{g_{t t}}, \quad \gamma=\frac{g_{z z}}{g_{x x}}, \quad v=\int d z \sqrt{\gamma(z)} \tag{9}
\end{equation*}
$$

The momentum-dependent constants can be fixed by matching the near-boundary and near-horizon geometries, as was done in [1].

[^0]
Solving for the metric backreaction

The Einstein's equation derived from is

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=\kappa_{4}^{2} \sigma\left(F_{\mu \rho} F_{\nu}^{\rho}-\frac{1}{4} g_{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}\right) \tag{10}
\end{equation*}
$$

where $\Lambda=-3 / \ell^{2}$ and the four-dimensional Newton's constant is $\kappa_{4}^{2}=4 \pi \ell_{p}^{2}$. We will set $\ell=1$.
In solving for A_{t}, the background was considered as fixed. Hence, we can state that A_{t} is of order ϵ, where $\epsilon \ll 1$. Now, to look for a backreaction of the metric to A_{t}, we assume that the metric can be written as

$$
\begin{equation*}
d s^{2}=-\left(g_{t t}+\epsilon^{2} h_{t t}\right) d t^{2}+\left(g_{z z}+\epsilon^{2} h_{z z}\right) d z^{2}+2 \epsilon^{2} h_{z r} d z d r+\left(g_{x x}+\epsilon^{2} h_{r r}\right) d r^{2}+r^{2}\left(g_{x x}+\epsilon^{2} h_{\theta \theta}\right) d \theta^{2} \tag{11}
\end{equation*}
$$

The metric will be rotationally symmetric around the point charge's spatial origin at $r=0$. As a further simplification, we introduce a WKB parameter for slowly varying spatial dependence of the metric, alongside slowly varying radial bulk dependence,

$$
\begin{equation*}
\partial_{z} \rightarrow \lambda \partial_{z}, \quad \partial_{r} \rightarrow \mu \partial_{r} \tag{12}
\end{equation*}
$$

with $\lambda, \mu \ll 1$. Next, we expand the Einstein's equation to orders $\left\{\mathcal{O}\left(\epsilon^{2}\right), \mathcal{O}\left(\lambda^{0}\right), \mathcal{O}\left(\mu^{2}\right)\right\},\left\{\mathcal{O}\left(\epsilon^{2}\right), \mathcal{O}(\lambda), \mathcal{O}(\mu)\right\}$ and $\left\{\mathcal{O}\left(\epsilon^{2}\right), \mathcal{O}\left(\lambda^{2}\right), \mathcal{O}\left(\mu^{0}\right)\right\}$, [i.e. this is the same as setting $\mu=\lambda$ and expanding to $\mathcal{O}\left(\lambda^{2}\right)$], giving us a very simple solution

$$
\begin{align*}
& h_{t t}=\frac{\kappa_{4}^{2} \sigma}{6 g_{z z} g_{x x}}\left[g_{x x}\left(\partial_{z} A_{t}\right)^{2}+g_{z z}\left(\partial_{r} A_{t}\right)^{2}\right] \tag{13}\\
& h_{z z}=\frac{\kappa_{4}^{2} \sigma}{6 g_{t t} g_{x x}}\left[g_{x x}\left(\partial_{z} A_{t}\right)^{2}-g_{z z}\left(\partial_{r} A_{t}\right)^{2}\right] \tag{14}\\
& h_{z r}=\frac{\kappa_{4}^{2} \sigma}{3 g_{t t}}\left(\partial_{z} A_{t}\right)\left(\partial_{r} A_{t}\right) \tag{15}\\
& h_{r r}=-\frac{\kappa_{4}^{2} \sigma}{6 g_{t t} g_{z z}}\left[g_{x x}\left(\partial_{z} A_{t}\right)^{2}-g_{z z}\left(\partial_{r} A_{t}\right)^{2}\right] \tag{16}\\
& h_{\theta \theta}=-\frac{\kappa_{4}^{2} \sigma}{6 g_{t t} g_{z z}}\left[g_{x x}\left(\partial_{z} A_{t}\right)^{2}+g_{z z}\left(\partial_{r} A_{t}\right)^{2}\right] \tag{17}
\end{align*}
$$

where the four-dimensional Newton's constant naturally suppresses the $h_{\mu \nu}$ terms in comparison to $g_{\mu \nu}$.
What will be more useful for future is to solve for the metric in Cartesian form, which gives us

$$
\begin{align*}
d s^{2}= & -\left(g_{t t}+\epsilon^{2} h_{t t}\right) d t^{2}+\left(g_{z z}+\epsilon^{2} h_{z z}\right) d z^{2}+\left(g_{x x}+\epsilon^{2} h_{x x}\right) d x^{2}+\left(g_{x x}+\epsilon^{2} h_{y y}\right) d y^{2} \\
& +2 \epsilon^{2} h_{z x} d z d x+2 \epsilon^{2} h_{z y} d z d y+2 \epsilon^{2} h_{x y} d x d y \tag{18}
\end{align*}
$$

with

$$
\begin{align*}
& h_{t t}=\frac{\kappa_{4}^{2} \sigma}{6 g_{x x} g_{z z}}\left[g_{z z}\left(\left(\partial_{x} A_{t}\right)^{2}+\left(\partial_{y} A_{t}\right)^{2}\right)+g_{x x}\left(\partial_{z} A_{t}\right)^{2}\right] \tag{19}\\
& h_{z z}=-\frac{\kappa_{4}^{2} \sigma}{6 g_{t t} g_{x x}}\left[g_{z z}\left(\left(\partial_{x} A_{t}\right)^{2}+\left(\partial_{y} A_{t}\right)^{2}\right)-g_{x x}\left(\partial_{z} A_{t}\right)^{2}\right] \tag{20}\\
& h_{x x}=\frac{\kappa_{4}^{2} \sigma}{6 g_{t t} g_{z z}}\left[g_{z z}\left(\left(\partial_{x} A_{t}\right)^{2}-\left(\partial_{y} A_{t}\right)^{2}\right)-g_{x x}\left(\partial_{z} A_{t}\right)^{2}\right] \tag{21}\\
& h_{y y}=\frac{\kappa_{4}^{2} \sigma}{6 g_{t t} g_{z z}}\left[g_{z z}\left(\left(\partial_{y} A_{t}\right)^{2}-\left(\partial_{x} A_{t}\right)^{2}\right)-g_{x x}\left(\partial_{z} A_{t}\right)^{2}\right] \tag{22}\\
& h_{z x}=\frac{\kappa_{4}^{2} \sigma}{3 g_{t t}} \partial_{z} A_{t} \partial_{x} A_{t} \tag{23}\\
& h_{z y}=\frac{\kappa_{4}^{2} \sigma}{3 g_{t t}} \partial_{z} A_{t} \partial_{y} A_{t} \tag{24}\\
& h_{x y}=\frac{\kappa_{4}^{2} \sigma}{3 g_{t t}} \partial_{x} A_{t} \partial_{y} A_{t} \tag{25}
\end{align*}
$$

A charge near AdS infinity

All bulk geometries of (present) interest are asymptotically AdS with $g_{t t}=g_{z z}=g_{x x}=1 / z^{2}$. For simplicity, we will consider $\sigma(z)=\sigma$. The relevant black hole solution in such as setup (with the scalar $\chi=0$) is the AdS-RN R_{4} black hole. An electric charge placed far from the horizon, $z_{p} \ll z_{h}$ then induces an electric field with an approximate form of an electric charge in pure AdS,

$$
\begin{equation*}
A_{t}=q\left(\frac{1}{\sqrt{\left(z-z_{p}\right)^{2}+x^{2}+y^{2}}}-\frac{1}{\sqrt{\left(z+z_{p}\right)^{2}+x^{2}+y^{2}}}\right) . \tag{26}
\end{equation*}
$$

[Precise value of q to be fixed later] Near the boundary, for $z \lesssim z_{p} \ll z_{h}$, the metric becomes

$$
\begin{align*}
d s^{2}= & -\left(\frac{f(z)}{z^{2}}+\left(x^{2}+y^{2}\right) h(z, x, y)\right) d t^{2}+\left(\frac{1}{z^{2} f(z)}-\frac{\left(x^{2}+y^{2}\right) h(z, x, y)}{f(z)^{2}}\right) d z^{2} \\
& +\left(\frac{1}{z^{2}}+\frac{\left(x^{2}-y^{2}\right) h(z, x, y)}{f(z)}\right) d x^{2}+\left(\frac{1}{z^{2}}+\frac{\left(y^{2}-x^{2}\right) h(z, x, y)}{f(z)}\right) d y^{2}+2 \frac{2 x y h(z, x, y)}{f(z)} d x d y \tag{27}
\end{align*}
$$

with

$$
\begin{equation*}
h(z, x, y)=\frac{1}{6} \kappa_{4}^{2} \sigma q^{2} z^{2}\left[\frac{1}{\left(\left(z-z_{p}\right)^{2}+x^{2}+y^{2}\right)^{3 / 2}}-\frac{1}{\left(\left(z+z_{p}\right)^{2}+x^{2}+y^{2}\right)^{3 / 2}}\right]^{2} \tag{28}
\end{equation*}
$$

and the AdS-RN N_{4} emblackening factor

$$
\begin{equation*}
f(z)=1-M\left(\frac{z}{z_{h}}\right)^{3}+Q_{B H}^{2}\left(\frac{z}{z_{h}}\right)^{4} \tag{29}
\end{equation*}
$$

Now, the point charge correction to the background can be re-summed into the emblackening factor, giving

$$
\begin{align*}
d s^{2}= & -\frac{\bar{f}(z, x, y)}{z^{2}} d t^{2}+\frac{1}{z^{2} \bar{f}(z, x, y)} d z^{2}+\left(\frac{1}{z^{2}}+\frac{\left(x^{2}-y^{2}\right) h(z, x, y)}{f(z)}\right) d x^{2} \\
& +\left(\frac{1}{z^{2}}+\frac{\left(y^{2}-x^{2}\right) h(z, x, y)}{f(z)}\right) d y^{2}+2 \frac{2 x y h(z, x, y)}{f(z)} d x d y \tag{30}
\end{align*}
$$

with
$\bar{f}(z, x, y)=1-M\left(\frac{z}{z_{h}}\right)^{3}+Q_{B H}^{2}\left(\frac{z}{z_{h}}\right)^{4}+\frac{\kappa_{4}^{2} \sigma q^{2} z_{h}^{4}}{6}\left(x^{2}+y^{2}\right)\left(\frac{z}{z_{h}}\right)^{4}\left[\frac{1}{\left(\left(z-z_{p}\right)^{2}+x^{2}+y^{2}\right)^{3 / 2}}-\frac{1}{\left(\left(z+z_{p}\right)^{2}+x^{2}+y^{2}\right)^{3 / 2}}\right]^{2}$.

The full metric for a charge in a black brane geometry

The next step is to find the metric backreaction to the point charge in the full black brane geometry with the metric stated in Eq. (4). It was found in [1] that the vector field in such a geometry is

$$
\begin{equation*}
A_{t}^{(\pm)}(z, k)=\zeta(z)^{-1 / 4}\left(c_{k}^{(\pm)} e^{|\vec{k}| v(z)}+d_{k}^{(\pm)} e^{-|\vec{k}| v(z)}\right) \tag{32}
\end{equation*}
$$

where $(+)$ stands for the quantities in the region of $0 \leq z \leq z_{p}$ and (-) stands for the $z_{p} \leq z \leq z_{h}$ region, with

$$
\begin{equation*}
v^{(+)}=\int_{0}^{z} d z \sqrt{\gamma(z)}, \quad v^{(-)}=\int_{z}^{z_{h}} d z \sqrt{\gamma(z)} \tag{33}
\end{equation*}
$$

Let us begin by evaluating the vector field in the (+) region, where

$$
\begin{equation*}
A_{t}^{(+)}=\frac{Q}{(2 \pi)^{2} \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \int_{0}^{2 \pi} d \theta \int_{0}^{\infty} d k k e^{-i k r \cos \theta} \frac{\sinh \left(k v_{h}^{(+)}-k v_{p}^{(+)}\right) \sinh \left(k v^{(+)}(z)\right)}{k \sinh \left(k v_{h}^{(+)}\right)} \tag{34}
\end{equation*}
$$

Performing first the integral over θ, we get the expression

$$
\begin{equation*}
A_{t}^{(+)}=\frac{Q}{(2 \pi) \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \int_{0}^{\infty} d k k J_{0}(k r) \frac{\sinh \left(k v_{h}^{(+)}-k v_{p}^{(+)}\right) \sinh \left(k v^{(+)}(z)\right)}{k \sinh \left(k v_{h}^{(+)}\right)} \tag{35}
\end{equation*}
$$

which is in fact the Hankel transform of $\sinh \left(k v_{h}^{(+)}-k v_{p}^{(+)}\right) \sinh \left(k v^{(+)}(z)\right) / k \sinh \left(k v_{h}^{(+)}\right)$. In order to perform the integral transform, we assume that $e^{-k v_{h}} \ll 1$ and expand the integrand in this quantity, finding
$A_{t}^{(+)}=\frac{Q}{2 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \int_{0}^{\infty} d k \frac{k J_{0}(k r)}{2 k}\left[e^{-k\left(v_{p}^{(+)}-v^{(+)}(z)\right)}-e^{-k\left(v_{p}^{(+)}+v^{(+)}(z)\right)}-\sum_{m_{1}, m_{2}= \pm 1} m_{1} m_{2} \sum_{n=1}^{\infty} e^{-k\left(2 n v_{h}^{(+)}+m_{1} v_{p}^{(+)}+m_{2} v^{(+)}(z)\right)}\right]$,
which leads to,

$$
\begin{align*}
A_{t}^{(+)}=\frac{Q}{4 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \int_{0}^{\infty} d k \frac{k J_{0}(k r)}{k} \sum_{n=0}^{\infty} & {\left[e^{-k\left(v_{p}^{(+)}-v^{(+)}(z)+2 n v_{h}^{(+)}\right)}-e^{-k\left(v_{p}^{(+)}+v^{(+)}(z)+2 n v_{h}^{(+)}\right)}\right.} \\
& \left.-e^{+k\left(v_{p}^{(+)}+v^{(+)}(z)-2(n+1) v_{h}^{(+)}\right)}+e^{+k\left(v_{p}^{(+)}-v^{(+)}(z)-2(n+1) v_{h}^{(+)}\right)}\right] . \tag{37}
\end{align*}
$$

By noting that all exponential functions have the form $e^{-k a}$ with $a \geq 0$, we can find the full expression for the vector field in the region of $0 \leq z \leq z_{p}$,

$$
\begin{align*}
A_{t}^{(+)}= & \frac{Q}{4 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \sum_{n=0}^{\infty}\left[\frac{1}{\sqrt{\left(v_{p}^{(+)}-v^{(+)}(z)+2 n v_{h}^{(+)}\right)^{2}+x^{2}+y^{2}}}-\frac{1}{\sqrt{\left(v_{p}^{(+)}+v^{(+)}(z)+2 n v_{h}^{(+)}\right)^{2}+x^{2}+y^{2}}}\right. \\
& \left.-\frac{1}{\sqrt{\left(v_{p}^{(+)}+v^{(+)}(z)-2(n+1) v_{h}^{(+)}\right)^{2}+x^{2}+y^{2}}}+\frac{1}{\sqrt{\left(v_{p}^{(+)}-v^{(+)}(z)-2(n+1) v_{h}^{(+)}\right)^{2}+x^{2}+y^{2}}}\right] \tag{38}
\end{align*}
$$

Next we solve for the vector field in the $z_{p} \leq z \leq z_{h}$ region where

$$
\begin{align*}
A_{t}^{(-)} & =\frac{Q}{(2 \pi)^{2} \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \int_{0}^{2 \pi} d \theta \int_{0}^{\infty} d k k e^{-i k r \cos \theta} \frac{e^{-k v_{h}^{(+)}}}{k}\left[e^{\left.k v_{p}^{(+)}-\frac{\sinh \left(k v_{h}^{(+)}-k v_{p}^{(+)}\right)}{\sinh \left(k v_{h}^{(+)}\right)}\right] \sinh \left(k v^{(-)}(z)\right)}\right. \tag{39}\\
& =\frac{Q}{2 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \sum_{n=0}^{\infty} \sum_{m_{1}, m_{2}= \pm 1} m_{1} m_{2} \int_{0}^{\infty} d k \frac{k J_{0}(k r)}{2 k} e^{-k\left((2 n+1) v_{h}^{(+)}+m_{1} v_{p}^{(+)}+m_{2} v^{(-)}(z)\right)} \tag{40}\\
& =\frac{Q}{4 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \sum_{n=0}^{\infty} \sum_{m_{1}, m_{2}= \pm 1} m_{1} m_{2} \frac{1}{\sqrt{\left((2 n+1) v_{h}^{(+)}+m_{1} v_{p}^{(+)}+m_{2} v^{(-)}(z)\right)^{2}+x^{2}+y^{2}}} \tag{41}\\
& =\frac{Q}{4 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \sum_{n=0}^{\infty} \sum_{m_{p, h}= \pm 1} \frac{m_{p}}{\sqrt{\left(v^{(-)}(z)+m_{p} v_{p}^{(+)}+(2 n+1) m_{h} v_{h}^{(+)}\right)^{2}+x^{2}+y^{2}}} \tag{42}\\
& =\frac{Q}{4 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \sum_{n=0}^{\infty} \sum_{m_{p, h}= \pm 1} \frac{m_{p}}{\sqrt{\left(v^{(+)}(z)-m_{p} v_{p}^{(+)}-2 n m_{h} v_{h}^{(+)}-\left(m_{h}+1\right) v_{h}^{(+)}\right)^{2}+x^{2}+y^{2}}} \tag{43}
\end{align*}
$$

where we have used the identity $v^{(+)}(z)+v^{(-)}(z)=v_{h}^{(+)}$in going to the last line. Hence, we find

$$
\begin{align*}
A_{t}^{(-)}= & \frac{Q}{4 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \sum_{n=0}^{\infty}\left[\frac{1}{\sqrt{\left(v^{(+)}(z)-v_{p}^{(+)}+2 n v_{h}^{(+)}\right)^{2}+x^{2}+y^{2}}}-\frac{1}{\sqrt{\left(v_{p}^{(+)}+v^{(+)}(z)+2 n v_{h}^{(+)}\right)^{2}+x^{2}+y^{2}}}\right. \\
& \left.-\frac{1}{\sqrt{\left(v_{p}^{(+)}+v^{(+)}(z)-2(n+1) v_{h}^{(+)}\right)^{2}+x^{2}+y^{2}}}+\frac{1}{\sqrt{\left(v^{(+)}(z)-v_{p}^{(+)}-2(n+1) v_{h}^{(+)}\right)^{2}+x^{2}+y^{2}}}\right] \tag{44}
\end{align*}
$$

By comparing Eqs. (37) and (44) we see that the expression differ only in the signs in front of the difference $v^{(+)}(z)-v_{p}^{(+)}$. This comes from the fact that $v^{(+)} \leq v_{p}^{(+)}$in the $(+)$region and $v^{(+)} \geq v_{p}^{(+)}$in the (-) region. Clearly both results match at $z=z_{p}$. By defining all quantities with the index (+) as ones without any (\pm) index, i.e.

$$
\begin{equation*}
v(z) \equiv v^{(+)}(z)=\int_{0}^{z} d z^{\prime} \sqrt{\frac{g_{z z}\left(z^{\prime}\right)}{g_{x x}\left(z^{\prime}\right)}}, \quad v_{p} \equiv v\left(z_{p}\right), \quad v_{h} \equiv v\left(z_{h}\right) \tag{45}
\end{equation*}
$$

we can write the final expression for the vector field valid throughout the entire bulk geometry, $0 \leq z \leq z_{h}$ as

$$
\begin{align*}
A_{t}(z, x, y)= & \frac{Q}{4 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \sum_{n=0}^{\infty}\left[\frac{1}{\sqrt{\left(\left|v_{p}-v(z)\right|+2 n v_{h}\right)^{2}+x^{2}+y^{2}}}-\frac{1}{\sqrt{\left(v_{p}+v(z)+2 n v_{h}\right)^{2}+x^{2}+y^{2}}}\right. \\
& \left.-\frac{1}{\sqrt{\left(v_{p}+v(z)-2(n+1) v_{h}\right)^{2}+x^{2}+y^{2}}}+\frac{1}{\sqrt{\left(\left|v_{p}-v(z)\right|-2(n+1) v_{h}\right)^{2}+x^{2}+y^{2}}}\right] \tag{46}
\end{align*}
$$

As a further check on this result, we see that by taking the limit of $v_{h} \rightarrow \infty$, only the first two terms at $n=0$ can contribute. Hence, we recover the pure AdS result.

Multiple charges

We are interested in introducing multiple charges into the black brane geometry. Since Maxwell's equations are linear, we can simply add the various vector fields corresponding to a set of N point charges of charge Q_{i} placed at $\left(z_{1}, x_{1}, y_{1}\right), \ldots\left(z_{N}, x_{N}, y_{N}\right)$. Similarly, we define $v_{p, i}=v\left(z_{i}\right)$. The total vector field is then

$$
\begin{align*}
A_{t}(z, x, y)= & \frac{1}{4 \pi \zeta^{1 / 4}(z)} \sum_{i=1}^{N} \frac{Q_{i}}{\zeta_{p, i}^{1 / 4}}\left[\sum _ { n = 0 } ^ { \infty } \left[\frac{1}{\sqrt{\left(\left|v_{p, i}-v(z)\right|+2 n v_{h}\right)^{2}+\left(x_{i}-x\right)^{2}+\left(y_{i}-y\right)^{2}}}\right.\right. \\
& -\frac{1}{\sqrt{\left(v_{p, i}+v(z)+2 n v_{h}\right)^{2}+\left(x_{i}-x\right)^{2}+\left(y_{i}-y\right)^{2}}}-\frac{1}{\sqrt{\left(v_{p, i}+v(z)-2(n+1) v_{h}\right)^{2}+\left(x_{i}-x\right)^{2}+\left(y_{i}-y\right)^{2}}} \\
& \left.\left.+\frac{1}{\sqrt{\left(\left|v_{p, i}-v(z)\right|-2(n+1) v_{h}\right)^{2}+\left(x_{i}-x\right)^{2}+\left(y_{i}-y\right)^{2}}}\right]\right] \tag{47}
\end{align*}
$$

The final result for the metric, including the leading-order WKB backreaction, is then, as above,

$$
\begin{equation*}
d s^{2}=-\left(g_{t t}+h_{t t}\right) d t^{2}+\left(g_{z z}+h_{z z}\right) d z^{2}+\left(g_{x x}+h_{x x}\right) d x^{2}+\left(g_{x x}+h_{y y}\right) d y^{2}+2 h_{x y} d x d y \tag{48}
\end{equation*}
$$

with

$$
\begin{align*}
& h_{t t}=\frac{\kappa_{4}^{2} \sigma}{6 g_{x x}}\left[\left(\partial_{x} A_{t}\right)^{2}+\left(\partial_{y} A_{t}\right)^{2}\right] \tag{49}\\
& h_{z z}=-\frac{\kappa_{4}^{2} \sigma g_{z z}}{6 g_{t t} g_{x x}}\left[\left(\partial_{x} A_{t}\right)^{2}+\left(\partial_{y} A_{t}\right)^{2}\right], \tag{50}\\
& h_{x x}=\frac{\kappa_{4}^{2} \sigma}{6 g_{t t}}\left[\left(\partial_{x} A_{t}\right)^{2}-\left(\partial_{y} A_{t}\right)^{2}\right], \tag{51}\\
& h_{y y}=\frac{\kappa_{4}^{2} \sigma}{6 g_{t t}}\left[\left(\partial_{y} A_{t}\right)^{2}-\left(\partial_{x} A_{t}\right)^{2}\right], \tag{52}\\
& h_{x y}=\frac{\kappa_{4}^{2} \sigma}{3 g_{t t}} \partial_{x} A_{t} \partial_{y} A_{t} \tag{53}
\end{align*}
$$

II. CHARGE DIFFUSION IN THE PRESENCE OF A SINGLE CHARGE

In this section we compute the charge diffusion in the background geometry with a single charge. The vector field, as a result of a single charge, is

$$
\begin{align*}
A_{t}(z, r)= & \frac{Q}{4 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \sum_{n=0}^{\infty}\left[\frac{1}{\sqrt{\left(\left|v_{p}-v(z)\right|+2 n v_{h}\right)^{2}+r^{2}}}-\frac{1}{\sqrt{\left(v_{p}+v(z)+2 n v_{h}\right)^{2}+r^{2}}}\right. \\
& \left.-\frac{1}{\sqrt{\left(v_{p}+v(z)-2(n+1) v_{h}\right)^{2}+r^{2}}}+\frac{1}{\sqrt{\left(\left|v_{p}-v(z)\right|-2(n+1) v_{h}\right)^{2}+r^{2}}}\right] \tag{54}
\end{align*}
$$

or in terms of the Fourier space momentum,

$$
\begin{align*}
A_{t}=\frac{Q}{4 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \int_{0}^{\infty} d k J_{0}(k r) \sum_{n=0}^{\infty} & {\left[e^{-k\left(\left|v_{p}-v(z)\right|+2 n v_{h}\right)}-e^{-k\left(v_{p}+v(z)+2 n v_{h}\right)}\right.} \\
& \left.-e^{+k\left(v_{p}+v(z)-2(n+1) v_{h}\right)}+e^{+k\left(\left|v_{p}-v(z)\right|-2(n+1) v_{h}\right)}\right] . \tag{55}
\end{align*}
$$

The metric has the form

$$
\begin{equation*}
d s^{2}=-\left(g_{t t}+h_{t t}\right) d t^{2}+\left(g_{z z}+h_{z z}\right) d z^{2}+2 h_{z r} d z d r+\left(g_{x x}+h_{r r}\right) d r^{2}+r^{2}\left(g_{x x}+h_{\theta \theta}\right) d \theta^{2} \tag{56}
\end{equation*}
$$

where $h_{\mu \nu}$ are all proportional to $\mathcal{O}\left(A_{0}^{2}\right)$, hence $h_{\mu \nu} \propto \epsilon^{2}$. We will use

$$
\begin{equation*}
g_{t t}=\frac{f(z)}{z^{2}}, \quad \quad g_{z z}=\frac{1}{z^{2} f(z)}, \quad g_{x x}=\frac{1}{z^{2}} \tag{57}
\end{equation*}
$$

To find non-trivial effects of $h_{\mu \nu}$ on charge diffusion, we need to use the following scaling of the perturbations of the vector field,

$$
\begin{equation*}
\epsilon A_{\mu} \rightarrow \epsilon A_{\mu}+\epsilon^{3} a_{\mu} \tag{58}
\end{equation*}
$$

where we will use the radial gauge, $a_{z}=0$. Note also that $A_{i}=0$ and only $A_{t} \neq 0$. We can then use the Maxwell's equation

$$
\begin{equation*}
\nabla_{\mu} F^{\mu \nu}=0 \tag{59}
\end{equation*}
$$

expanded to $\mathcal{O}\left(\lambda^{3}\right)$ in the WKB expansion, with $\mu=\lambda$ to find the fluctuation equations for a_{t} and a_{r},

$$
\begin{align*}
r f^{2} \partial_{z}^{2} a_{t}+r f \partial_{r}^{2} a_{t}+f \partial_{r} a_{t}-r f \partial_{t} \partial_{r} a_{r}-f \partial_{t} a_{r} & =\frac{1}{3} \kappa_{4}^{2} \sigma z^{4}\left(\partial_{r} A_{t}\right)\left[\left(\partial_{r} A_{t}\right)^{2}+f\left(\partial_{z} A_{t}\right)^{2}\right], \tag{60}\\
r \partial_{t} \partial_{z} a_{t}-f \partial_{r}\left(r \partial_{z} a_{r}\right) & =0 \tag{61}\\
\partial_{t} \partial_{r} a_{t}-\partial_{t}^{2} a_{r}+f^{2} \partial_{z}^{2} a_{r}+f \partial_{z} f \partial_{z} a_{r} & =0 \tag{62}
\end{align*}
$$

Now, this is a coupled set of non-homogeneous differential equations. To find the solution, let us write

$$
\begin{align*}
& a_{t}=e^{-i \omega t} J_{0}(k r) \mathfrak{a}_{t}(z)+\alpha_{t}(t, z, r) \tag{63}\\
& a_{r}=e^{-i \omega t} J_{1}(k r) \mathfrak{a}_{r}(z)+\alpha_{r}(t, z, r) \tag{64}
\end{align*}
$$

where \mathfrak{a}_{t} and \mathfrak{a}_{r} will solve the homogeneous part of the linear differential equations. Furthermore, we can define a gauge-invariant variable

$$
\begin{equation*}
Z=k \mathfrak{a}_{t}-i \omega \mathfrak{a}_{r} \tag{65}
\end{equation*}
$$

which enables us to rewrite the homogeneous part of the system in terms of a single differential equation

$$
\begin{equation*}
\partial_{z}^{2} Z+\frac{\omega^{2} \partial_{z} f}{f\left(\omega^{2}-k^{2} f\right)} \partial_{z} Z+\frac{\omega^{2}-k^{2} f}{f^{2}} Z \tag{66}
\end{equation*}
$$

The solution has a standard hydrodynamic expansion in ω and k^{2} and a diffusive quasi-normal mode in the longitudinal direction outwards from the point charge at $r=0$.

Let us now move on to finding the solutions for the non-homogeneous α_{t} and α_{r} functions. By looking at equation (60), we can first analyse the time dependence of α_{t} and α_{r}. Since the right-hand-side has no time dependence, it is clear that α_{t} cannot be time-dependent unless it exactly satisfies $r f^{2} \partial_{z}^{2} \alpha_{t}+r f \partial_{r}^{2} \alpha_{t}+f \partial_{r} \alpha_{t}=0$. Let us assume that α_{t} does indeed satisfy this equation. We then have to solve

$$
\begin{equation*}
-r f \partial_{t} \partial_{r} \alpha_{r}-f \partial_{t} \alpha_{r}=\frac{1}{3} \kappa_{4}^{2} \sigma z^{4}\left(\partial_{r} A_{t}\right)\left[\left(\partial_{r} A_{t}\right)^{2}+f\left(\partial_{z} A_{t}\right)^{2}\right] \tag{67}
\end{equation*}
$$

which could be done with α_{r} linear in t. Eq. (61) would the imply that

$$
\begin{equation*}
\alpha_{r}=\frac{t \beta(z)}{r}, \tag{68}
\end{equation*}
$$

which is inconsistent with Eq. (60) because this solution makes the left-hand-side vanish identically. This contradiction leads us to conclude that α_{t} has no time dependence.

Now, let us assume that α_{r} has non-trivial time dependence. Then, according to Eq. (60), it must be true that

$$
\begin{equation*}
\partial_{t} \partial_{r}\left(r \alpha_{r}\right)=0 \tag{69}
\end{equation*}
$$

which can be solved by

$$
\begin{equation*}
\alpha_{r}=\frac{\beta(t, z)}{r} . \tag{70}
\end{equation*}
$$

This expression also automatically satisfies Eq. (61). The remaining equation, Eq. (62) becomes

$$
\begin{equation*}
f^{2} \partial_{z}^{2} \beta+f \partial_{z} f \partial_{z} \beta-\partial_{t}^{2} \beta=0 \tag{71}
\end{equation*}
$$

which implies that $\beta(t, z)=e^{-i \omega t} \gamma(z)$, i.e.

$$
\begin{equation*}
\partial_{z}^{2} \gamma+\frac{\partial_{z} f}{f} \partial_{z} \gamma+\frac{\omega^{2}}{f^{2}} \gamma=0 \tag{72}
\end{equation*}
$$

The function γ has a hydrodynamical expansion in ω and we can impose in-falling boundary conditions on its nearhorizon behaviour. Hence,

$$
\begin{equation*}
\alpha_{r}(t, z, r)=C_{r} \frac{e^{-i \omega t}}{r}\left(1-\frac{z}{z_{h}}\right)^{-i \mathfrak{w} / 2}\left[1+\mathfrak{w} \gamma_{1}(z)+\mathcal{O}\left(\omega^{2}\right)\right] \tag{73}
\end{equation*}
$$

where $\mathfrak{w}=\omega / 2 \pi T$. Of course, Eq. (72) is exactly the same as Eq. (66) with $k=0$. The main difference is the $1 / r$ dependence of α_{r}. We also note that C_{r} is an arbitrary constant, so we could just set $C_{r}=0$.

What remains to be solved is a very complicated differential equation

$$
\begin{equation*}
r f^{2} \partial_{z}^{2} \alpha_{t}+r f \partial_{r}^{2} \alpha_{t}+f \partial_{r} \alpha_{t}=\frac{1}{3} z^{4}\left(\partial_{r} A_{t}\right)\left[\left(\partial_{r} A_{t}\right)^{2}+f\left(\partial_{z} A_{t}\right)^{2}\right] \tag{74}
\end{equation*}
$$

By examining the right-hand-side, we see that it vanishes at $z=0$ but it has a sharp peak at $r=0$ and $z=z_{p}$, i.e. at the point charge. If we keep $C_{r} \neq 0$ then a_{r} diverges at $r=0$.

III. SOME IDENTITIES OF POTENTIAL USE

We can expand the "bracketed" part of the integrand in a Taylor series in small k, finding

$$
\begin{equation*}
A_{t}=\frac{Q}{4 \pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} \int_{0}^{\infty} d k k^{2} J_{0}(k r)\left[\left(\left|v_{p}-v(z)\right|-v_{p}-v(z)\right)\left(\left|v_{p}-v(z)\right|+v_{p}+v(z)-2 v_{h}\right)+\mathcal{O}(k)\right] \tag{75}
\end{equation*}
$$

and finally

$$
A_{t}= \begin{cases}\frac{Q}{\pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} v(z)\left(v_{h}-v_{p}\right) \int_{0}^{\infty} d k\left(k^{2}+\ldots\right) J_{0}(k r), & 0 \leq v(z) \leq v_{p} \tag{76}\\ \frac{Q}{\pi \zeta_{p}^{1 / 4} \zeta^{1 / 4}(z)} v_{p}\left(v_{h}-v(z)\right) \int_{0}^{\infty} d k\left(k^{2}+\ldots\right) J_{0}(k r), & v_{p} \leq v(z) \leq v_{h}\end{cases}
$$

For convenience, we define

$$
\begin{equation*}
A_{t} \equiv \mathcal{A}_{t}(z) \int_{0}^{\infty} d k\left(k^{2}+\ldots\right) J_{0}(k r) \tag{77}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\partial_{r} A_{t}=-\mathcal{A}_{t}(z) \int_{0}^{\infty} d k\left(k^{3}+\ldots\right) J_{1}(k r) \tag{78}
\end{equation*}
$$

Now, an inspection of plots (and eventually a more rigorous argument) shows that the dominant part of the A_{t} integral comes from the small k region. Similarly, this is the case for $\partial_{r} A_{t}$ unless $v(z)$ is close to v_{p}. Let as assume that $v(z)$ is not close to v_{p}. It is then reasonable to introduce a small dimensionless cut-off $k r \leq \Lambda \ll 1$, so that

$$
\begin{equation*}
A_{t} \approx \frac{\mathcal{A}_{t}(z) \Lambda^{3}}{3 r^{3}}, \quad \quad \partial_{r} A_{t} \approx-\frac{\mathcal{A}_{t}(z) \Lambda^{5}}{10 r^{4}} \tag{79}
\end{equation*}
$$

A useful combination is then

$$
\begin{equation*}
\left(\partial_{r} A_{t}\right)^{2}+f(z)\left(\partial_{z} A_{t}\right)^{2} \approx \frac{f(z)\left(\partial_{z} \mathcal{A}_{t}\right)^{2} \Lambda^{6}}{9 r^{6}}+\frac{\mathcal{A}_{t}^{2} \Lambda^{10}}{100 r^{8}} \tag{80}
\end{equation*}
$$

IV. NOTES

The spectrum has to be discrete in order for the system to localise.
[1] D. Anninos, T. Anous, F. Denef, and L. Peeters, (2013), arXiv:1309.0146 [hep-th].

[^0]: * matthewjstephenson@icloud.com

