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I. INTRODUCTION

We have two kinds of equations of motion in classical electrodynamics, there are dynamical laws for the charges
and the equations for the electromagnetic (EM) field. They are coupled and therefore the latter have to be taken
into account when the autonomous equations governing the charges are sought. This procedure is rather usual in
contemporary practice, it is the construction of an effective theory. One identifies a subsystem and the elimination of
the remaining dynamical degrees of freedom generates complicated dynamical laws for the subsystem. In the context
of radiation back reaction the equations of motions for point charges have been identified first in the non-relativistic
case [1, 2], followed by the convariant formalism [3, 4], see refs. [5–7] for iterative solutions.

The elimination of dynamical variables generates non-local integro-differential equations for extended charge systems
which are difficult to handle. Therefore one usually carries out the point like limit for the charge distribution in
the hope of suppressing these non-local features. But this step which intended to simplify matters brings its own
complexities which can easily be understood retroactively by realizing its similarity with quantum anomalies. The
common element of these two phenomena is the Fourier integral which appears on the one hand, in the perturbative
treatment of quantum systems and in the other hand, in the Fourier representation of the Green functions used in
the elimination of dynamical variables in classical field theory. One finds quantum anomalies when this integral is not
uniformly convergent, when the limit of removing the ultraviolet cut-off can not be carried out on the integrand, before
the integration. The result is an unexpected sensitivity of the physics of finite scale on short distance phenomena.

It is advantageous to separate such anomalous forces, arising in classical electrodynamics from the singular nature
of the Coulomb potential at small distances from the rest which represent the true radiation backreaction. The latter
is finite for a point charge and is related to the far field produced by the accelerating charge [3]. The former is related
to the near field and leads to the Schott-term with the third time derivative of the coordinates when an expansion is
made in the retardation effects [6]. Another appearence of the non-radiational back reaction generated by the short
distance singularity of the Coulomb interaction is the survival of the effects of smearing out a charge distribution in the
point like limit. In fact, the problematic run-away solution of the equations of motion generated by the Schott-term
disappear when proper smearing is applied on the charge distribution [8].

Another kind of complications arise in deriving autonomous equations of motion from the separation of the degrees
of freedom to eliminate or to retain in the effective theory. The dependence of the equations of motion on this
separation is handled today by the renormalization group method where the issue of respecting the symmetries of the
whole system by the separation is clearly seen. In the context of classical electrodynamics special care is needed in
defining the conserved energy-momentum of the charges, appearing in the ballance equation in the usual derivation
the back reaction force. The point is the sensitivity on the choice of a reference frame to define the energy-momentum
vector from the energy-momentum tensor in order to arrive at relativistically covariant equations of motion and to
avoid the 4/3 problem [9, 10].

The goal of this paper is to asses another aspect of the choice of the degrees of freedom to eliminate in arriving at
the effective theory. Our concern is a quantum effect, the dynamics of charges in the Dirac-sea. On the one hand,
being a genuine quantum effect, it is made small by the Planck constant. But on the other hand, the sensitivity of
the back reaction problem on the dyanmics at short distance scales raises the question whether such a quantum effect
which becomes important at microscopic distances might let itself be seen at finite scales.

To find the effect of vacuum polarization on the Abraham-Lorentz force we need the Lienard-Wiechert potential,
the retarded Green function in particular for charges moving in the presence of the Dirac-see. This amounts in the
leading order of the loop-expansion to the Schwinger-Dyson resummation of the one-loop self energy in the photon
propagator. Since there is no Wick theorem for retarded Green functions we need Schwinger’s Close Time Path (CTP)
scheme [11] where the reduplication of the degrees of freedom achieved by the double time axis formalism provides us
the usual ingredients of the perturbation expansion for retarded Green functions [12].
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Another technical issue requiring special care is the causal structure of the retarded Green function. The one-loop
self energy in the vacuum is a singular function of the four momentum due to the pair creation processes. When the
characteristic scales of the radiation field is in the classical domain then one can usually ignore such processes. In
order to eliminate the unnecessary complications of the threshold singularities we approximate the self energy by its
gradient expansion form, by the leading order term in its expansion around vanishing four momentum. But such a
truncation endangers the expected causal structure of the retarded Green function and we have to turn to the spectral
representation of the CTP propagators for a proper treatment of this problem. But the spectral representation of
propagators is highly singular for massless particles and a way to arrive at a regular expression is found by establishing
a simple relation between the self energy and the spectral weight, realized by a Borel transformation.

invariant length scale
always there
results
structure

II. RETARDED GREEN FUNCTION

We seek in this work an improvement of the Lienard-Wiechert potential by taking into account the unavoidable
vacuum polarisation effects, obtained by the Schwinger-Dyson partial resummation of the perturbation series. The
obvious problem of this plan is the lack of Wick theorem for retarded Green functions. To recover the usual scheme
of perturbation expansion we use the CTP formalism [11, 12]. One generalizes in this scheme the usual perturbation
expansion, developed for transition amplitude for expectation values written in the Heisenberg representation. The
generating functional W [j+, j−] for the connected Green function of EM field which serves as the starting point for
the perturbation expansion is defined by [13]

e
i
ℏW [j+,j−] = TrT [e−

i
ℏ
∫
dx[H(x)−j+µ(x)Aµ(x)]]|0⟩⟨0|T̄ [e i

ℏ
∫
dx+j−µ(x)Aµ(x)]]] (1)

where T and T̄ denote the time and and the anti-time ordered product and H(x) is the Hamiltonian density of QED.
For the special case of j− = −j+ = jphys this expression is the trace of the density matrix at the final time, the upper
limit of the time integration in the exponent, in the presence of an external source jphys coupled to the EM field.
The external sources play double role, they are supposed to drive the system adiabatically to the desired initial state
generate in Eq. (1) adn generate the necessary operator insertions in perturbation expansion when the free generating
functional is considered, obtained by replacing H(x) by the free Hamiltonian density. One redoublicates the degrees
of freedom by the replacement A→ A+, A− etc. for each field variable and writes the generating functional as

e
i
ℏW [j+,j−] = TrT̃ [e

i
ℏ
∫
dx+j−µ(x)A−

µ (x)]e−
i
ℏ
∫
dx[H(x)−j+µ(x)A+

µ (x)]]|0⟩⟨0|] (2)

where T̃ is a generalized time ordering which places the + operators right of the - ones and puts the + or - operators
in time or anti-time order, respectively. The result is an extension of the usual formalism of quantum field theory
which obeys Wick theorem.

The propagators have a CTP block structure in this formalism

iℏ
(

D D+−

D−+ D−−

)
µ,ν

(x, y) =

(
⟨T [Aµ(x)Aν(y)]⟩ ⟨Aν(y)Aµ(x)⟩
⟨Aµ(x)Aν(y)⟩ ⟨T [Aν(y)Aµ(x)]⟩∗

)
(3)

for photons in particular. The identity

T [ϕaϕb] + T̄ [ϕaϕb] = ϕaϕb + ϕbϕa (4)

allows us to parametrise the photon propagator by three real tensors,(
D D+−

D−+ D−−

)
=

(
Dn + iℑD −Df + iℑD
Df + iℑD −Dn + iℑD

)
. (5)

The ++ block, D is clearly the causal propagator and the expressions

iℏDn
µν(x, y) =

1

2
ϵ(x0 − x′0)⟨0|[Aµ(x), Aν(x′)]|0⟩,

iℏDf
µν(x, y) =

1

2
⟨0|[Aµ(x), Aν(x′)]|0⟩,

ℏDi
µν(x, y) = −1

2
⟨0|{Aµ(x), Aν(x′)}|0⟩, (6)
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identify Dn and Df with the near and far field Green function, respectively because the combinations

iℏD
r
a
µν(x, y) = iℏ[Dn

µν(x, y)±Df
µν(x, y)] = ±Θ(±(x0 − x′0))⟨0|[Aµ(x), Aν(x′)]|0⟩ (7)

correspond to the retarded or advanced Green functions. Notice that the identity (4) holds for any time dependent
operator, therefore the block structure (5) remains valid for interactive fields, too.

The one-loop photon self energy improved proprgator can easiest be obtained in the framework path integration,
where the generating functional (1) is written as

e
i
ℏW [ĵ] =

∫
D[ψ̂]D[ ˆ̄ψ]D[Â]e

i
ℏ
ˆ̄ψ[Ĝ0−eσÂ/]ψ̂+ i

2ℏ ÂD̂
−1
0 Â+ i

ℏ ĵÂ+ i
ℏSCT (8)

in terms of the two component CTP doublets

ψ̂ =

(
ψ+

ψ−

)
, Â =

(
A+

A−

)
, ĵ =

(
j+

j−

)
, (9)

and the matrix

σ =

(
1 0
0 −1

)
(10)

acting on the CTP indices ±. The CTP propagators are

Ĝ−1
0 =

(
i∂/−mτ + iϵ 0

0 −γ0(i∂/−mτ + iϵ)†γ0

)
+ Ĝ−1

BC ,

D̂−1
0 =

(
□T + ξ□L+ iϵ 0

0 −□T − ξ□L+ iϵ

)
+ D̂−1

BC , (11)

where the transverse and longitudinal projection operators

T ab = gab − Lab, Lab =
∂a∂b

□
(12)

are introduced together with the covariant gauge fixing parameter ξ. The scalar product of space-time functions
includes the the space-time integration, fg =

∫
d4xfxgx =

∫
x
fxgx, vector and CTP indices being summed, too. The

boundary conditions in time, the closing of the + and - time countours are handled by the parts Ĝ−1
BC and D̂−1

BC in
the propagators, their explicite form is not needed in the sequal. The counterterms in SCT are the usual ones and
will be omitted below.

The integration over the charge fields in the path integral (8) yields

e
i
ℏW [ĵ] =

∫
D[Â]eTr ln[Ĝ0−eσÂ/]+ i

2ℏ ÂD̂
−1
0 Â+ i

ℏ ĵÂ (13)

and which can be written by the help of the expansion

ln[G−1 −A] = logG−1 −
∞∑
n=1

1

n
(GA)n. (14)

as

e
i
ℏW [ĵ] =

∫
D[Â]e

i
2ℏ ÂD

−1Â+ i
ℏ Âj+O(Â3). (15)

A simple Gaussian integral gives

W [ĵ] = −1

2
ĵDĵ +O(j3), (16)

where the improved propagator

D̂ =
1

D̂−1
0 − Π̂

(17)
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is introduced in terms of the self energy

Π̂στµν(x, y) = −ie2στℏtr[Gτσ0 (y, x)γµGστ0 (x, y)γν ], (18)

the CTP indices σ, τ assume the values ± and the trace is over the Dirac indices.
The Fourier transform

Π(q) =

∫
dxeiq(x−y)Π(x, y) (19)

of the block ++ of the polarisation tensor is well known, it reads

Π++µν(q) =
e2

12π2
q2
(
gµν − qµqν

q2

){
1

3
+ 2

(
1 +

2m2

q2

)[√
4m2

q2
− 1 arccot

√
4m2

q2
− 1− 1

]}
(20)

in mass shell subtraction scheme in units of ℏ = c = 1. Its expansion around k = 0, well below the pair creation
threshold yields

Π++µν(q) = −ℓ2(q2)2 (21)

with ℓ2 = αλ2C/15π, λC being the electron Compton wavelength. The calculation of the +- block is straghtforward,
too [14],

Π+−
µν (q) = 32π2ie2m2

(
gµν −

qµqν
q2

)(
1 +

q2

2m2

)∫
p

δ(q2 + 2pq)δ(p2 −m2)Θ(−p0 − q0)Θ(p0). (22)

Due to the ifrst Heaviside function in the right hand side Π+− is vanishing in the vincinity of q = 0.
Once the self energy is found we can turn to the calculation of the inverse in Eq. (17). This is not trivial because

the inverse of the free photon propagator in the second equation in (11) contains the boundary condition term which is
nonvanishing for the final time only and thereby breaks the invariance of the propagator with respect to the translation
in time. The careful performance of the limit when the final time is sent to infinite produces a Fourier integral for
the free propagator with the Fourier transform

D̂0µν(k;µ
2) = gµν

( 1
k2−µ2+iϵ −2πiδ(k2 − µ2)Θ(−k0)

−2πiδ(k2 − µ2)Θ(k0) − 1
k2−µ2−iϵ

)
(23)

with µ2 = 0 and continuous frequency spectrum in Feynman gauge ξ = 1. It contains Dirac delta in the off-diagonal
CTP blocks because we find only on-shell amplitudes here according to Eq. (3). The appearance of a distribution
whose inverse is ill defined indicates the same problem with the inverse propagatorD−1

0 . The simplest way to overcome
this difficulty is to use regulated distribution. When the Lorentz-shape regularization

δϵ(x) =
π

ϵ

1

x2 + ϵ2
(24)

is used with the limit ϵ→ 0 then a simple inversion gives

D̂−1
0µν(k;µ

2) = gµν

[
(k2 − µ2)

(
1 0
0 −1

)
+ iϵ

(
1 −2Θ(−k0)

−2Θ(k0) 1

)]
. (25)

We are now ready for the inversion of Eq. (17). But instead of carrying out the calculation explicitely we point
out a general feature of the CTP self energy insertions. The one particle irreducible two point function for photons,
ˆ̃G, displays the CTP same structure (5) as the propagators. But its insertion in the inverse propagator is due to the
elementary verices which represent the contact between the free propagator and the self energy insertion which comes
with an extra minus sign for the - CTP variables. Therefore the self energy in the Schwinger-Dyson resummation (17)

is actually Π̂ = σ ˆ̃Gσ. Let us consider a set of CTP matrices Aj of the structure (5). It is now a matter of simple algebra
to show that the product A1σA2σ · · ·An preserves the same CTP structure and (A1σA2σ · · ·An)r = Ar1A

r
2 · · ·Arn.

When this relation is applied to the Schwinger-Dyson resummation the relation

D
r
a =

(
1

D̂−1
0 − Π̂

)r
a

=
1

D
r
a−1
0 −Π

r
a

(26)
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follows where Π
r
a = Π++ − Π±∓. The iϵ prescription of the free inverse propagator can usually be ignored because

the self energy piece, the second term in the denominator possesses finite imaginary part in momentum space.
————————————————–

D(k) =
1

k2 −Π(k2)
=

Z∏
n(k

2 −m2
n)

=
∑
n

zn
k2 −m2

n

(27)

z−1
n = Z

∂D−1(k2)

∂k2 |k2=m2
n

(28)

UV. finiteness: ∑
n

zn = 0 (29)

III. SPECTRAL REPRESENTATION

The gradient expanded form of the one-loop photon self energy (20)-(22) yields

Πrµν(k) = −Tµνℓ2(k2)2. (30)

Though the exact photon self energy generates the correct causal structure for the resummed propagator (26) the
use of its one-loop approximation may lead to wrong analytic behaviour on the complex energy plan. A further
approximation we made is the gradent expansion which may further complicate the situation. In fact, the application
of the rule (26) for the gradient expansion result gives

Dr
µν = TµνDr +

1

ξ

Lµν

□− iϵ
. (31)

with the transverse part

Dr(k) =
1

k2 + ℓ2(k2)2
(32)

where the replacement k0 → k0 + iϵ has to be carried out in the fist k2 term of the denominator. The new poles
appearing on the energy plane due to the self energy term come in complex conjugate pairs and generate singulaities
on the physical sheet.

To provide corrections to the resummation, needed due to our truncation of the self energy we use the spectral
representation of the resummed propagators. The spectral function

2πρ(p2) =

∫
dxe−ipxiD−+

T (x) =
∑
n

δ(4)(p− pn)⟨0|Aµ(0)|n⟩Tµν⟨n|Aν(0)|0⟩, (33)

is supposed to be a tempered distribution and is introduced for the transverse part of the photon propagator. The
transverse part of the full propagator can then be written as

D̂T (x) =

∫ ∞

0

dµ2ρ(µ2)D̂0(x, µ
2) (34)

where the free massive scalar propagator D̂0(x, µ
2) is the matrix multiplying gµν on the right hand side of Eq.

(25). The important consequence of this relation is that every propagator, i.e. causal, retarded and advanced canbe
constructed with the same spectral function.

Eq. (34) shows the essence of the spectral representation, the exact propagator is a weighted sum of massive
propagators, the interaction creates competing mass shells. This simplicity is at the same time a weakness, at least
when some mechanism, like symmetry prevents mass generation in the theory. What remains from the spectral
representation in that case? It is clear that the spectral integral becomes formal for massless theories but the richness
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of a single mass shell can be exploited by the formal Taylor series of the Dirac delta, localised on the mass shell. We
therefore assume that the spectral weight can be written as

ρ(µ2) = R(∂µ2)δ(µ2), (35)

where R(∂µ2) is defined as a power series in ∂µ2 and ∂nµ2 interpreted as the n-th derivative acting on the Dirac delta.

After repeated integration by parts, allowed for distributions in Eq. (34) one arrives at

DT (x) = R(−∂µ2)D0(x, µ
2)|µ2=0. (36)

To find the structure of the newly introduced function R(z) we consider the Fourier transform of Eq. (34) and insert
the representation (35),

1

k2 −Π(k2)
=

∫ ∞

0

dµ2R(∂µ2)δ(µ2)
1

k2 − µ2
. (37)

We use this equation for the causal propagator for simplicity and write the free retarded propagator by menas of the
Schwinger representation,

D00
T (k2) = −i

∫ ∞

0

dµ2

∫ ∞

0

dsR(∂µ2)δ(µ2)eis(k
2−µ2+iϵ), (38)

and integrate by parts to obtain the expression

D00
T (k2) = −i

∫ ∞

0

dsR(is)es(ik
2−ϵ), (39)

where the µ2 integral had been carried out in a trivial manner. This equation shows a useful result, namely that the
exact propagator is the complex Laplace transform of the function R(iz). We can see that the n-th derivative ∂nµ2

acting on the Schwinger representation integral brings down (is)n before setting µ2 to 0. This as a consequence gives
sense to our treatment of R(∂µ2) as a power series

R(s) =

∞∑
n=0

cn
n!
sn. (40)

In fact, Eq. (39) requires that R(z), considered as a complex variable function, increases less fast than any exponential
function for |z| → ∞. The representation (40) yields immediately

D00
T (k2) = −

∫ ∞

0

ds

∞∑
n=0

in+1cn
n!

snes(ik
2−ϵ) = −

∞∑
n=0

(−1)ncn
(k2 + iϵ)n+1

. (41)

In the particular case of the self-energy

Π(k2) = −ℓ2(k2)2 (42)

one may follow a direct route to justify the power series representation (40) and to find the coefficients cn. For this
end we replace to the left hand side of Eq. (41) the expressions (37) and (42) and analytically continue to the entire
complex plane in k2 + iϵ→ z ∈ C,

1

z[1 + ℓ2(z − 2iϵ)]
= −

∞∑
n=0

(−1)ncn
zn+1

. (43)

Next we multiply both sides by zn and integrate along a closed contour encircling the poles to get

cn = −(−1)n
∑
j

Res

[
zn

z[1 + ℓ2(z − 2iϵ)]
; zj

]
, (44)

where zj are the locations of the poles z = 0 and z = − 1
ℓ2 , ϵ being ignored. The residue at z = 0 is only non-zero

when n = 0 where it is 1. The residues at the other pole are −ℓ−2n. We therefore have

cn =

{
0 n = 0,

−ℓ−2n n > 0,
(45)
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and the form

R(z) = 1− e
z
ℓ2 . (46)

Once the power series form (40) is confirmed then Eq. (36) is justified and leads to

DT (x) =
(
1− e−ℓ

−2∂µ2

)
D0(x, µ

2)|µ2=0 (47)

when inserted into Eq. (34).

IV. STATIC CHARGE

Let us look at the field of a static charge as a simple excercise. First we shall calculate the one-loop corrected
Coulomb potential using the standard method, and then make use of the derived operator equation for any form of
vacuum polarization tensor, to show its validity. Due to relativistic covariance one may apply a Lorents boost on the
resulting potential to obtain the field of a charge moving with constant velocity.

We perform first the calculation of the EM field

Aµ(x) = −
∫
dyDµν(x− y)Jν(y) (48)

for the current

Jµ(x) = eδµ0
∫
dtδ(x− (t,0)) (49)

of a static charge by using the one-loop improved near field propagator, Dn(x) = ℜD++(x),

A0(x) = −e
∫
dt

∫
d4k

(2π)4
P
e−ik(x−(t,0))

k2 + ℓ2(k2)2
, (50)

P being the principal value integral. A straightforward evalutation of the integral yields

A0(x) = − e

4πr

[
cos
(r
ℓ

)
− 1
]
. (51)

Another way to obtain the static potential starts is to rely on Eq. (47) where the unperturbed field of the static
charge

A(0)
µ (x) =

e

4πr
e−µr (52)

is induced by massive photons. According to Eq. (47) we have

A0
µ(x) =

1

2

(
1− e−ℓ

−2∂µ2

)
A(0)
µ (x)|µ2=0. (53)

It is easy to check that the operator ∂µ2 does not mix the even and the odd part of a function of µ hence the identity

R(−∂µ2)e−µr |µ2=0 = R(−∂µ2)[cosh(µr)− sinh(µr)]|µ2=0

= R(−∂µ2) cosh(µr)|µ2=0 (54)

follows, giving

A0(x) =
e

4πr
− e

4πr

∞∑
n=0

(−1)nℓ−2n

n!
∂nµ2 cosh(µr)|µ2=0. (55)

The even pieces in µ can easily be resummed after taking the limit µ2 → 0. They reproduce the Eq. (51).



8

FIG. 1: The electrostatic potential with vacuum polarization. The solid line, the envelope is the Coulomb potential in the
trivial, empty vacuum.

The dressed static potential Eq. (51) yields displays oscillations at the Compton length scale with a Coulomb-
potential envelop. In fact, the envelope can be obtained by smearing and we find in the small ℓ limit

A0(r) = lim
ℓ,ϵ→0

r+ϵ∫
r−ϵ

[
− e

4πy (cos(
y
ℓ )− 1)

]
dy

(r + ϵ)− (r − ϵ)

= lim
ϵ→0

e

8πϵ
[log(r + ϵ)− log(r − ϵ)]

= lim
ϵ→0

e

4π

[
1

r
+

ϵ2

3r3
+O(ϵ4)

]
=

e

4πr
. (56)

Furthermore, the potential is regular at short distances and tends to zero with r. Naturally, these expressions are
only reliable for r ≫ ℓ.

V. RADIATION BACKREACTION

The calculation of the static force law in the previous section and the determination of the back reaction force below
are actually carried out in a classical effective theory [15, 16] for the EM field, motivated by the gradient expanded
form of Π++µν , Eq. (21), and defined by the Lagrangian

L = − 1

16π
Fµν(1− ℓ2□)Fµν . (57)

The back reaction force after having taken into account the vacuum polarization should differ from that of the trivial
vacuum because the polarization cloud of the test particle introduces a non-trivial charge distribution and modifies
the self force. The traditional self force calulation is based on distributing the test charge homogeneously in a sphere
of radius r0. Such a charge distribution with discontinuous space-dependence generates unphysical high frequency
modes, such as runaway solutions and pre-acceleration in the limit r0 → [3] but such anomalies can be avoided by
keeping r0 finite, non-vanishing [8]. The higher order derivative, appearing in the effective action provides a smooth
high frequency cutoff which explains the observation that the run-away solutions are absent in this theory [17].

We can now turn to our main goal, the determination of the backreaction force fµ acting on a point charge in the
effective theory (57). There are two ways to reach that goal in the traditional case when the vacuum polarizations
are ignored, ℓ = 0. One is based on the application of the Lorentz force on the charge [1, 2],

fµ0 (x) = lim
r0→0

∫
dydzKµν(x, y)Dr

νρ(y, z)j
ρ(z) (58)

where jρ(z) is the electric current of the charges particle, the Green function generates the Liénard-Wiechert potential,
and convolution factor Kµν(x, y) makes the Lorentz force from the vector potential and includes some form factor
for the charge. This latter which contains the size of the charge r0 ̸= 0 as a scale factor is necessary because the
force is singular for vanishing distance. The point charge limit, r0 → 0 restricts the integration over y around x. The
graphical representation of the force as a loop integral is shown in Fig. 2 (a).

The limit r0 → 0 renders this construction questionable hence another, equivalent way has been sought without
the applicaltion of the Lorentz force. This procedure is based on the energy-momentum conservation, imposed on a
tube of radius r0 around the world line of the charge [3]. The resulting rate of loss of the energy-momentum of the
EM field can be written as

fµ(x)0 = lim
r0→0

∫
dydzdudvLµνρ(x, y, z)Dr

νκ(y, u)j
κ(u)Dr

ρσ(z, v)j
σ(v) (59)

for a point charge, where the factor Lµνρ(x, y, z) converts the two Liénard-Wiechert potentials, given by the two
propagator into the energy momentum tensor and produces its source at x. The two one-loop integrals are shown
graphically in Fig. 2 (b).
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(a) (b)

FIG. 2: Two ways of obtaining the back reaction force, (a): by means of the Lorentz force, and (b) by applying the energy-
momentum conservation. The solid and dashed lines denote the world line of the charge and the retarded Green function, the
symbol X stands for K or L for (a) or (b), respectively.

Notice that the loop-integrals in Eqs. (58)-(59) are ill defined for r0 = 0 and the limit r0 → 0 has to be carried out
after integration. In other words, the integral is not uniform convergent and the similarity with quantum anomalies,
mentioned in the Introduction is shown clearly.

According to Eq. (47) the Green function with self-energy improvement can be obtained in a linear manner from
free Green function. Therefore we use Eq. (58) which is linear in the Green function and write the back reaction force
as

f =
(
1− e−ℓ

−2∂µ2

)
f0(µ)|µ=0 (60)

wher f0(µ) denotes the back reaction force in electrodynamics based on photons of mass µ. The validity of this equation
requires thatKµν(x, y) be independent of the photon mass, a condition satisfied trivially because the explicit structure
of K is fixed by the charge distribution and the choice of the minimal charge-EM field coupling. Note that there is
no place for vertex corrections which could in principle introduce photon mass-dependent form-factors in an effective
theory where the conserved density-current vector of the charges is retained only.

The relation (60) establishes the reaction force in terms of that of a massive electrodynamics, the Proca model
defined by the action

S = −m0

∫
dτ
√
ż2(τ)− 1

8π

∫
dx

[
1

2
F 2(x)− µ2A2(x) + (∂µAµ(x))

2

]
− e

∫
dτ żµ[Aµ(z(τ)) +Aextµ(z(τ))]. (61)

with Fµν = ∂µAν − ∂νAµ. The external field Aext(x) is introduced to induce acceleration which produces radiation
and renders the reaction force problem well defined. When the vector potential is eliminated by its equations of
motion then the generated action-at-a-distance effective theory is

Seff = −m0

∫
dτ

√
ż2 − 4πe2

2

∫
dτdτ ′żµ(τ)Dn

0 (z(τ)− z(τ ′), µ)żµ(τ
′)− e

∫
dτ żµAextµ(z(τ)) (62)

where Dn = (Dr + (Dr)tr)/2 is the near-field Green function and the naive equation of motion is

d

dτ
(m0ż

µ(τ)) = −4πe2żν(z(τ))

∫
dτ ′∂νD

n
0 (z(τ)− z(τ ′), µ)żµ(τ

′) + 4πe2
∫
dτ ′żν(τ)∂µD

n
0 (z(τ)− z(τ ′), µ)żν(τ

′)

−eżν∂νAµ(z(τ)) + eżν∂µA
ν(z(τ)) (63)

When the solution of an initial condition problem is considered then one has to add certain homogeneous solutions
to the in the equation of motion which can be taken into account by replacing the near-field Green function by the
retarded one in the equation of motion [14]. The result is

d

dτ
(m0ż

µ(τ)) = −eżν(F rνµ + F extνµ ) (64)

with

Arν(x) = 4πe

∫
dτ ′Dr

0(z(τ)− z(τ ′), µ)żν(τ
′). (65)

The massive retarded Green function can be written as the sum of the massless one plus the rest,

Dr
0(x, µ) =

Θ(x0)

4π

[
2δ(x2)−Θ(x2)

µ√
x2
J1(µ

√
x2)

]
, (66)

the support of the latter being inside of the future light-cone. Hence the self force, the term continaing the retarded
propagator is of the structure of a sum of the self force due to the emission of massless particles and the rest, called
tail-term. The former is local in space-time because the massless Green function is restricted on the light-cone and the
latter contains the past history of the charge. The equation of motion (63) is naive because the massless contribution
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to the self force of point charge is divergence and needs some regularization procedure. Point splitting, applied in
along the world line around the charge has been proposed [18] which reproduces the self force for massless vector
particle emission, arising from the energy-momentum conservation [3]. It can be incorporated as a particular choice
of the form factor Kµν(x, y) in Eq. (58). Note that the tail contribution is finite on the point charge world line
and needs no smearing. Thus we can assume that the local, massless contribution to the right hand side of Eq.
(64) is reproducing the Abrham-Lorentz-Dirac force and the regular tail part is not influenced by the smearing over
infinitesimal distances.

What follows is the calculation of the tail contribution

Arν(x)|tail = −e
∫ τr

−∞
dτ
µJ1(µ

√
q2(τ))√

q2(τ)
żν(τ) (67)

where τ r is the latest proper time light can propagate to x from the world line to the equation of motion on the charge
world line at x = z(τ).

To calculate the space-time derivatives of Arν(x)|tail we need the derivative of the upper limit of integration, ∂µτ
r.

For this end we write the vector qr = x − z(τ r) in the form qr = R[ż(τ r) + w], where ż(τ r) and w are orthogonal,
ż · w = 0. Due to qr2 = 0 w is a spatial unit vector, w2 = −1 and we have the expression R = qr ż(τ r) scalar factor.
We make infinitesimal variation x→ x+ δx of the equation qr2 = 0, yielding

∂µτ
r =

qrµ

qr ż(τ r)
. (68)

This expression is used for the boundary contribution of the integral,

∂µA
r
ν(z(τ))|tail = −e

qrµżν(τ
r)

qr · ż(τ r)
µJ1(µ

√
q2(τ r))√

q2(τ r)
− e

∫ τr

−∞
dτ ′∂µ

√
q2(τ ′)

∂

∂
√
q2

[
µJ1(µ

√
q2)√

q2
żν(τ)

]
|q2=q2(τ ′)

(69)

where q(τ ′) = z(τ)− z(τ ′). We perform the change of integral variable τ ′ →
√
q2 by means of the identity resulting

from the variation τ ′ → τ ′ + δτ of the proper time

δ
√
q2 =

δq · q√
q2

= −δτ ż · q√
q2

(70)

with the result

∂µA
r
ν(z(τ))|tail = −e

qrµżν(τ
r)

qr · ż(τ r)
µJ1(µ

√
q2(τ r))√

q2(τ r)
+ e

∫
d
√
q2

qµ
ż · q

∂

∂
√
q2

[
µJ1(µ

√
q2)√

q2
żν(τ)

]
. (71)

The next step is a partial integration where the contribution cancels the first term on the right hand side and the
remaining integral is rewritten over the proper time,

∂µA
r
ν(z(τ))|tail = e

∫ τr

−∞
dτ ′

µJ1(µ
√
q2(τ ′))√

q2(τ ′)
żν(τ

′)

(
żµ(τ

′)

ż(τ ′) · q(τ ′)
+
qµ(τ

′)[z̈(τ ′) · q(τ ′)− 1]

(ż(τ ′) · q(τ ′))2

)
. (72)

This expression gives

F rµν(z(τ))|tailż
ν(τ) = e

∫ τr

−∞
dτ ′

µJ1(µ
√
q2(τ ′))√

q2(τ ′)

[z̈(τ ′) · q(τ ′)− 1]

(ż(τ ′) · q(τ ′))2
[gµν ż(τ

′) · ż(τ)− żµ(τ
′) · żν(τ)]qν(τ ′) (73)

Here we write ż(τ ′) = ż(τ)− q(τ ′) in the square bracket and find

F rµν(z(τ))|tailż
ν(τ) = e[gµν − żµżν ]

∫ τr

−∞
dτ ′

µJ1(µ
√
q2(τ ′))√

q2(τ ′)

[z̈(τ ′) · q(τ ′)− 1]

(ż(τ ′) · q(τ ′))2
qν(τ ′). (74)

The appropriately smeared equation of motion contains the Abraham-Lorentz-Dirac force as the local contribution,

d

dτ
(m0ż

µ)|loc = −2

3
e2[

...
z µ + z̈2żµ] (75)
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which gives finally by the help of the equation d
dτ żz̈ = z̈2 + ż

...
z = 0

d

dτ
(m0ż

µ(τ)) = e2[gµν− żµ(τ)żν(τ)]

[
−2

3

...
z ν +

∫ τr

−∞
dτ ′

µJ1(µ
√
q2(τ ′))√

q2(τ ′)

[z̈(τ ′) · q(τ ′)− 1]

(ż(τ ′) · q(τ ′))2
qν(τ ′)

]
+eFextµν(z(τ))ż

ν(τ).

(76)
Notice that the change of m0ż

µ(τ) is orthogonal to żµ(τ), i.e. the mass is renormalization renormalized by a constant
piece only.

VI. VACUUM POLARIZATION

We evaluate

−
∞∑
n=1

(
−ℓ−2

)n
n!

∂nµ2

(
µJ1

(
µ
√
q2
))

(77)

by using

µJ1

(
µ
√
q2
)
=

∞∑
j=0

(−1)j

j!(j + 1)!

(√
q2

2

)2j+1 (
µ2
)j+1

(78)

which gives

−
∞∑
n=1

(
−ℓ−2

)n
n!

∞∑
j=n−1

(−1)j

j!(j − n+ 1)!

(√
q2

2

)2j+1 (
µ2
)j−n+1

=

=

∞∑
n=1

(
ℓ−2
)n

n!

(
1

2

)n (√
q2
)n Jn−1

(
µ
√
q2
)

µn−1
(79)

Taking the limit µ2 → 0

=

∞∑
n=1

(
ℓ−2
)n

n!(n− 1)!

(√
q2

2

)2n−1

=
1

ℓ
I1

(√
q2

ℓ

)
(80)

This looks very problematic as I type Bessel function diverges for large arguments. I am not sure what went wrong
and what exactly is going on. This would modify the equation of motion to

d

dτ
(m0ż

µ(τ)) = e2[gµν − żµ(τ)żν(τ)]

∫ τr

−∞
dτ ′

I1

(√
q2

ℓ

)
ℓ
√
q2(τ ′)

[z̈(τ ′) · q(τ ′)− 1]

(ż(τ ′) · q(τ ′))2
qν(τ ′) + eFextµν(z(τ))ż

ν(τ). (81)
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