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Abstract

The Hilbert Book Model project produced this publication. The search for a reliable foundation of physical
reality has had many setbacks and is slow. As a result, mainstream physics got at a sidetrack. Quantum
Field Theory, Quantum Electro Dynamics, and Quantum Chromodynamics use the minimal action
principle as their base. The Hilbert Book Model shows that continuums belong to the third phase of a
special set and cannot work as a foundation of mathematical physics. This document shows how the
three phases of the special set lead to a vector space and number systems, which apply to a system of
Hilbert spaces in which the local universe and a parallel multiverse can pose. Also, the document shows
that science must not consider the Higgs particle or the Higgs field as part of the Standard Model.
Instead, the Standard Model of experimental particle physicists should restrict to elementary fermions.

Most physicists interpret photons as excitations of the electric field. In contrast, the HBM interprets
photons as chains of dark energy objects, and the dark energy objects are shock fronts that excite the
field, representing the local universe. Hop landings of the state vectors of the fermions produce spherical
shock fronts that move with light speed away from the location of this landing. This conflicts with the
ideas of conservation laws that play in mainstream physics. According to the HBM, a big bang never
occurred. The model considers two episodes, and at the beginning of the second episode, time starts
running together with an ongoing creation of fermions.
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1 Justification

During my study, | used my scientific books to quietly read the formulas
and make notes between the text. In that way, | got a better
understanding of the content of the book. This book reflects most of the
content of a multipart PowerPoint presentation of the Hilbert Book
Model. PowerPoint presentations are not suitable for adding notes.

https://www.youtube.com/playlist?list=PLRn2RuujW3lJsZPxh7iNvlajFW
Y12G2Af

The HBM is a private research project | started more than a decade ago
when | was 70 years old to investigate the foundation of theoretical
physics and the relation between mathematical physics and physical
reality. As a long-retired physicist, | had ample time to rethink the
physics | used most of my career. In the university, | discovered that the
lectured physics was incorrect and held flaws and omissions. However, |
am convinced | found and repaired most defects and significantly
reduced the remaining mysteries.

Building on the discussion results between Hilbert, von Neumann,
Cantor, and Zermelo that stopped in the fourth decade of the twentieth
century, | accidentally discovered a special set that features phases and
phase transitions. Phases of the special set cannot pass the phase
transitions step-by-step. This set becomes the foundation of the Hilbert
Book Model (HBM).

My targets are students and young scientists that, like me, are curious
about the universe in which they live.

| keep the price of this book as low as possible. The price of paper and
the cost of pressing and managing the book decide this price. | use
Pumbo.nl for managing the book. Pumbo offers the book as a print-on-
demand service and in massive quantities as offset. A freely accessible
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paper will reflect the content of the book and will contain the active
versions of the URLs to which the book refers.

2 Introduction

With some arrogance, | dare to say that the Hilbert Book Model
now exposes the essential part of the foundations of physical
reality. Some mysteries stay, but the model describes these
clearly. For me, these mysteries exist because my knowledge of
mathematics does not allow me to explain the origin of these
mysteries. It is also possible that this mathematics does not yet
exist. The multipart PowerPoint presentation offers suggestions
for solving these mysteries via the modular structure of the
universe's content. A single sentence can shrink the essence of
the structure and behavior of the observable universe. "The
universe that manifests itself to researchers is one continuous
film of the possible coverages of space with versions of
number systems belonging to the associative division rings."

The HBM shows that each Hilbert space applies this version in
the archival of the members of the division ring that the Hilbert
space uses.

3 Explanation

The observation that humans cannot think and communicate
about things without providing these things with identification
in the form of a name or pointer and a short compact
description establishes a brief explanation. Indirectly, the
Hilbert spaces provide the identifiers and descriptions humans
require. The curious thing is that physical reality can function
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without these limitations. Yet physical reality also appears to
adhere to strict rules and existing structures. Many researchers
have come to know these rules and structures substantially and
formulate them in what they call mathematics and physics.

Several researchers doubt whether people can discover the
calculation rules that physical reality uses. However, the author
of this publication does not belong to that group.

My arrogance results from my conviction that those with
education at the level of a bachelor in the exact sciences of
mathematics or physics should easily be able to follow the
argument given here and check it as desired. With less prior
knowledge, much of the debate is easy to follow. I, as an author,
have done my best to make as many as possible of the by me
retrieved details freely accessible via the included URLs. The
text points in enumerated brackets to the URLs that make the
subject accessible online. The book publishes the URLs in the
references chapter. On the internet, the free accessible pdf
paper offers the URLs actively. The book displays the text
primarily in grayscale because colors increase the costs of
printing books. The corresponding pdf file shows the full-text
colors. The author publishes both the book and the related pdf
for this reason.

Because formulas scare off several readers, they house in
separate places. This applies to the calculation rules, the bra-ket
procedure of Paul Dirac, and essential equations. The formulas
locate in an individual chapter. Previous papers already
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published the formulas. Many of these formulas retrieve from
publicly accessible resources such as Wikipedia. Compared to
the publication “Setbacks of Theoretical Physics,” this treatise
adds the formulas for lattice theory and puts more emphasis on
the special set. This publication introduces the name
“special_set” for the mentioned special set. This new name
produces fewer problems with spelling and grammar correction
tools.

4 Clarification

When people focus their research on space, they quickly realize
that an empty space stands for the ultimate nothingness.
There is nothing in this space to which one could orient oneself.
There is no center, and there are no boundaries. It is not hard to
imagine that the space could hold many anonymous locations.
However, for humans, tracking the behavior of these locations
without giving them identification and a precise description is
impossible.

Locations are point-shaped objects that can occupy a position
in space. That position differs per location. Applying number
systems provides the required identification. The values of the
number system elements show the locations' positions.

Without the locations, the container is empty. What results is a
simple space that can function as a container. It is possible to
interpret this simple space as the ultimate nothingness. As a
container in which locations reside, the simple space functions

10



as a vector space. Two locations and their connecting direction
line form a vector.

The vector space owns a simple arithmetic. That arithmetic
enables the speciation of the more complicated arithmetic of
number systems. Hilbert spaces apply these number systems.
They select a private version of a number system.

This paper introduces a structure that harbors a system of
Hilbert spaces that all share the same underlying vector space.
Moreover, that system puts number systems in a well-defined
interrelationship.

5 Vector space

There is still no possibility to point to the position. The pointer
can consist of a base location and a pointing location
connected by a direction line. Scientists call this pointer a vector
and a space in which vectors occur a vector space. A simple
scalar number characterizes the length of the vector. The HBM
applies the name “vector space” and manages the vector space
accordingly.

Physicists give reality the extra adjective “physical” to indicate
that this notion concerns the structure and behavior of what
experimenters can observe from what they experience about
the university. The HBM copies that habit by using the name
physical reality for this notion. This publication will apply
“physical_reality” to ease the spelling and grammar-checking
tools.
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The HBM will use the name “direction_line” for the notion of a
direction line. This renaming happens for the same reason that
the HBM uses the name special_set. Direction_lines obey
simple arithmetic.

The direction_line and the length fully characterize the vector.
The integrity of the vector does not change when it shifts
parallel. The parallel shift can occur on the direction_line but
may also occur in another direction. Direction_lines can
therefore move parallel in the vector space. They have no
beginning and no end. This situation at once provides the
operation with which two vectors can add. If the base point
shifts from one vector to the pointer of the other vector, then
the non-overlapping points form a new vector called the sum
vector. If the direction_lines differ, the sum vector uses a new
direction_line.

The two possibilities form a parallelogram in which the sum
vectors are parallel and have equal lengths.

By multiplying the vector by a scalar, the length multiplies by
that scalar. This action creates a new vector. When the scalar is
negative, the base and pointer point change function and the
vector gets the opposite direction. At the same time, its length
may change. These simple calculation rules allow vectors to
pinpoint all locations in the vector space. The section Vector
arithmetic in the chapter Formulas contains the formulas.
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5.1 Independent directions

Vector arithmetic enables a scalar product of two vectors. The
scalar product can show the independence of the
direction_lines of vectors. The scalar product of independent
vectors is equal to zero. This way, several mutually independent
basic direction_lines exist in the vector space. Since
direction_lines can shift in parallel, a raster of direction_lines
can cover the vector space. The raster can form a primitive
coordinate system.

6 Number systems

The HBM applies the arithmetic of its vector space to derive the more
complicated arithmetic of the number systems that it uses.

6.1 Real numbers

With their calculation rules, vectors can help to construct
number systems. For example, an ongoing addition of a starting
vector and vectors equal to the starting vector and located on
the same direction_line yields an ordered series of designated
locations collectively representing the natural numbers. Using
the natural numbers as a label, we can count collections of
locations. The subtraction procedure appears by removing
locations from the collection and introduces the countdown
procedure. Finally, we meet the number zero on the base point
of the original starting vector and subsequently follow the
negative integers. The method for multiplying numbers appears
by adding groups of vectors frequently. That does not supply
new integers. The name of the reversal of multiplication is
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division and delivers fractions. Fractions can be new numbers.
The integer numbers, together with the fractions, form the
rational numbers.

6.2 Phase transitions

Scholars have shown that there are as many rational numbers as
natural ones. David Hilbert and his followers knew this. This size
equality means all rational numbers can label with a natural
number. However, this procedure only works if both number
sets hold infinite elements. The transition from finitely many
elements to infinitely many elements implies a change in state
for the special_set. In the new phase, the collection shows
different behavior. For this particular set, achieving this phase
transition step-by-step is impossible. Also, the way back does
not go in a step-by-step manner. Scientists do not often use the
terms phase and phase transition when concerning number
systems. This paper uses these terms to show the change in the
status of the number system that derives from the special_set.

David Hilbert used the parable of the Hilbert hotel to show that
countable infinity introduces another behavior of the
considered set. He did not use “phase transition” to classify the
set's behavior change. He and his followers did not consider the
different behavior as a different phase of the set. The HBM
assumes the different behavior as a distinct phase and the
behavior change as a phase transition. Accepting the
particularities of the special_set has this consequence.
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Adding or removing elements does not change the state of the
infinite special_set. The infinite set of well-ordered rational
numbers fills a large part of the same direction_line. A rational
number can arbitrarily close approach any location on this line.
Nevertheless, there are still many locations on this line that
rational numbers cannot appoint. We call the numbers that
these places show irrational numbers. Irrational numbers
include transcendental numbers, and rational numbers include
prime numbers. The third phase of the set consists of both. The
third phase is infinite and not countable.

Thus, the set of rational and irrational numbers again form a set
that can show as another phase of the special_set. The phase
transition happens again in one go and cannot occur step-by-
step. Counting the elements of the special_set in its third phase
is no longer possible. In this phase, all series of converging
members end in a limit that is a set member. The phase
transition adds several new calculation rules that manage the
change of cohesive parts of the collection. We obtained a
special_set that features particular behavior by adding the
irrational numbers. Mathematicians call the extra calculation
rules differential calculus. The author applies this name for the
additional arithmetic rules of the third phase of the special_set.
Differential calculus is closely related to the calculation rules of
rational numbers. The calculation rules can even mix. Without
disturbing actuators, nothing will change in the new phase of
the special_set. If something disrupts, this collection phase
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tends to remove the disturbance as quickly as possible by
sending away the consequences of the disruption in all
directions until the effects eventually disappear into infinity. We
know this because differential calculus shows this. As
mentioned, the disturbance never reaches disappearance step-
by-step. The result is that the number-covered area expands.
The differential calculus tells precisely how that happens. On
the so-far-considered direction_line, the response actsin a
single dimension.

When multiplied by themselves, the rational numbers treated
so far yield a positive number on the direction_line of the
natural numbers. We call the numbers that behave in this way
real numbers. We use this name for all numbers on this
direction_line and, therefore, for all phases of the numbers on
this direction_line. Squaring is the name for multiplying by
oneself. The section Arithmetic of the real numbers holds the
formulas.

The phase transitions cause the underlying set to be particular.
In this way, this set differs from standard sets. The set exists
because simple space holds it and only consists of point-like
locations. The author discovered this set by accident. He never
found a set with these features published beforehand.

6.3 Spatial numbers

There also appear to be systems of numbers that yield a
negative number that shares the direction_line of the real
numbers when multiplied by themselves. We call these spatial
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numbers. Often the name used for these numbers is imaginary
numbers. The HBM does not use that name because the
qualification imaginary also has different meanings. The spatial
numbers no longer fit on the direction_line of the real numbers.
They occupy one or three dimensions. Suppose spatial numbers
fall outside the first spatial dimension. In that case, the
calculation rules of the spatial numbers ensure that a third
spatial dimension covers with spatial numbers in addition to the
second spatial dimension. The result of the product of two
spatial numbers consists of an internal product that supplies a
real number and an external product that is zero or produces a
result in a direction that is independent of the direction_lines
of both factors. The internal product is the reason for the
negative square. Therefore, the spatial numbers' calculation
rules differ from the calculation rules of the real numbers. The
reaction to a disturbance of the third phase of spatial numbers
is more spectacular in the three-dimensional spatial number
system than in the one-dimensional spatial number system. The
section Arithmetic of spatial numbers holds the formulas.

6.4 Division rings

Nevertheless, real numbers can add with spatial numbers, and
spatial numbers can multiply with real numbers. This addition
creates new number systems. The real and one-dimensional
spatial numbers form the two-dimensional set of what the
model calls complex numbers. The HBM shares this name with
common mathematics. The real and three-dimensional spatial
numbers form the four-dimensional set of what the model calls
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quaternions. Again, the HBM shares this name with common
mathematics. This name sharing shows that the HBM applies
existing names for its number systems where no conflicts arise
and sufficient similarity exists. The Mixed Arithmetic section of
the chapter Formulas holds the corresponding formulas.

6.5 Confusing calculation rules

Two vectors can together deliver a scalar product. That scalar
product is zero or positive, and for two equal vectors, the scalar
product supplies the square of the length of the vector. This
length is the norm of the vector. The almost identical effect of
the inner product of spatial numbers has led to confusion
among many mathematicians and physicists, so these scientists
sometimes confuse spatial numbers with vectors. This confusion
happened, among other things, with the discoverer of the
quaternions. This confusion led to a public scandal that caused
the quaternions to fall into oblivion after the sixties of the last
century. As we will see, this had significant consequences for
mathematics and physics. [2]

/ History

Before Christ, Egyptians discovered simple fractions. Cantor
found the second and third phases of real numbers around
1870. Cantor did not use the designations phase and phase
transition. Instead, he and others turned their attention to
various kinds of infinities of sets. Cantor called them transfinite
numbers. Together with natural numbers, they form the
cardinal numbers. The Hilbert Book Model deals with only two
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forms of infinity. These are the countable infinity of the second
phase of numbers and the uncountable infinity of the third
phase of numbers.

Gerolamo Cardano discovered the complex numbers as early as
1545. In 1854 Sir William Rowan Hamilton discovered the
quaternions. He formulated his discovery using the four base
numbers. The base numbers are one real base number and
three spatial base numbers. The external product appears in the
outcome of the product of the first two spatial base numbers.
Hamilton discovered this formula while walking with his wife
over a sandstone bridge in Dublin. Out of joy, he scratched the
formula into the bridge's wall. The rain quickly erased the
inscription. Hamilton's students immortalized the formula on
the bridge through a bronze commemorative plaque. [3]

8 Set theory.

8.1 Collections in space

Around the turn of the nineteenth to the twentieth century, a
group of mathematicians and mathematical physicists led by
David Hilbert had an intense discussion about set theory. [4] [5]

David Hilbert intended to establish an axiomatic theory of both
mathematics and physics. Unfortunately, he retired before he
could finish that target.

The discussion focused on the various forms of infinity and
countability. The discussion partners also paid significant
attention to the phases and phase transitions of the collection.
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For example, they paid attention to the continuum hypothesis.
[6] However, they never used the words phases and phase
transitions. The HBM applies these names for the special_set to
distinguish this set from other sets.

The mentioned discussion ignored the container of the set and
paid no attention to the type of objects that formed the set.
These choices are significant in physical_reality and the Hilbert
Book Model. By choosing space as a container and locations as
elements of the set, the number systems the HBM uses to
discover the locations obtain added properties that human
researchers and physical_reality must consider. These added
properties are the symmetries that stand for the freedom of
choice that the calculation rules of the number systems do not
define. As a result, in the HBM, the number systems exist in
several versions that their symmetry distinguishes. For example,
the location of the geometric center of the number system can,
in principle, be anywhere in the vector space. Also, the
arrangement of the numbers can occur along the direction_lines
in one or the opposite direction. Physical_reality must adhere to
the calculation rules and will use as many symmetry choices as
possible. A different choice of symmetry yields a different
version of the number system. The word symmetry has various
meanings. These distinct meanings also occur in this
publication. In the HBM, geometric symmetries play a
prominent role. Differences between geometric symmetries are
essential.
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9 Coordinates
Three associative division rings exist. [7]

These are the real numbers, the complex numbers, and the
guaternions. Each of these number systems exists in several
versions that differ in their symmetry. Recording the symmetry
is possible with coordinate markers. These markers use the
location that shows the value of the number. In the HBM, a
Cartesian coordinate system records all the selection freedoms
of a version of a number system. The record removes the
selection freedom and helps establish the version of the
number system.[8]

In this way, the HBM connects the selected version to the
geometric symmetry of the number system and the symmetry
of everything that exclusively applies that version.

The limitations imposed by the vector space create geometric
symmetry. Therefore, if a model designs number systems
without these limitations, then that model does not meet
geometric symmetries.

9.1 Hopsand symmetries.

A hop can split in partial hops that occur only along the
cartesian coordinate lines. The first part jumps along a selected
coordinate line. The second part jumps along a perpendicular
coordinate line, and the third part occurs along a coordinate
perpendicular to both the first and second. This procedure takes
a choice at each of these jumps. These selections concern the
up or down direction along the coordinate line. These selections
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correspond to the symmetries that we discussed before. The
partial jumps lead to the Frenet—Serret formulas. These
formulas form the base of differential geometry.

Willard Gibbs promoted differential geometry, and Oliver
Heaviside advanced vector calculus. Both used complex
numbers rather than obliviated quaternions. Mainstream
physicists quickly embraced the suggested approaches, and
many of these scientists rejected quaternionic field theory. The
mainstream physicists spent little attention to the symmetries of
versions of number systems. Instead, symmetry groups and Lie
groups draw their attention. Universities wanted to coordinate
their lectures on theoretical physics and wanted to avoid
confusion. That is why most universities follow what they now
consider mainstream physics. Also, the part of the press that
treats science tends to follow mainstream physics and ignores
new developments in theoretical physics. This history explains
why theoretical physics appears to have entered a dead end.
Investigate:
https://www.researchgate.net/publication/363541991 The set
backs of theoretical physics

Still, Gibbs and Heaviside stimulated the development of
multidimensional differentiation technology and indirectly
promoted mathematical quaternionic differential analysis
development. The introduction of time as a progression
indicator produced the quaternionic differential analysis that
the Hilbert Book Model advocates. This development preceded
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and took place independent of the discussion of Hilbert, von
Neumann, Cantor, and Zermelo on set theory. The HBM
combines and exploits the results of differential calculus and set
theory.

10 Mainstream Science

10.1 Warning
Mainstream science still plays a crucial role in promoting a

standard reference for teaching and comparing science. This
role limits confusion for students and scientific institutions.
However, being promoted by mainstream science is not
synonym with granting the truth.

This warning especially holds for mathematics, theoretical
physics, and mathematical physics.

11 Hilbert spaces

David Hilbert discovered an extension of the concept of vector
space. His assistant John von Neumann provided the name
“Hilbert space” to this widened vector space. The Hilbert spaces
have the surprising property that they can archive elements of
the version of the number system used by the Hilbert space.
After the archival in an abstract structure, the stored
qguaternions retrieve in an orderly manner. A dedicated
operator manages the archival and the retrieval.

Scientists often describe the Hilbert space as a vector space that
owns an internal product. However, as previously argued, each
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vector space has a scalar product, not an internal product.
Moreover, it is difficult to imagine that a vector that depicts
itself via the scalar product yields a complex number or
quaternion as an eigenvalue.

Instead, Paul Dirac discovered a trustworthy procedure for
converting a vector space into a Hilbert space. This procedure
combines covariant ket vectors and contravariant bra vectors.
These are not vectors but are closely related to them. One
problem is that Dirac only showed this for real and complex
numbers. In that period, scientists showed little interest in
quaternionic Hilbert spaces. However, a small effort can adapt
the procedure to apply for quaternions. Hilbert spaces can thus
work with any of the associative division rings.

The HBM restricts the archival to the second phase of the
special_set. This choice limits the defined archival capability to
the separable Hilbert spaces.

Each separable Hilbert space chooses a private version of one
of these number systems. As mentioned, the separable Hilbert
space can archive collections of elements of this version and
retrieve them in an orderly manner. This capability also applies
to the entire chosen version of this number system. There is a
devoted operator who manages this collection. The HBM calls
this operator the reference operator. This assignment means
that each Hilbert space has a private parameter space. The
HBM gives that parameter space the name natural parameter
space of the Hilbert space. The natural parameter space of a
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separable Hilbert space is countable. It also means that the
symmetry of the version of the selected number system
characterizes the Hilbert space. The first version of the bra-ket
process works with countable number systems and yields
Hilbert spaces that use a countable number of independent
base vectors. Therefore, the HBM calls them separable. Section
Dirac’s bra-ket procedure treats the formulas.

11.1 Function space

The private parameter space turns every Hilbert space into a
function space. Through the functions, Dirac's bra-ket
procedure defines new operators who manage the target space
of the sampled function as eigenspace.
11.2 Quantum logic
To the surprise of many mathematicians, the set of the closed
subspaces of Hilbert space appears to have a lattice structure
that is slightly different from the lattice structure of classical
logic. Some scientists suggested that this deviation could be the
cause of the quantum structure of the energy exchange seen in
small particles and atoms. Therefore, they assigned the name
quantum logic to this new lattice. [9] A closed subspace of a
Hilbert space is again a Hilbert space. Differential calculus offers
a more obvious explanation. Differential calculus only comes
into effect in the third phase of number systems. Function
theory and differential calculus describe the third phase of
number systems. The Arithmetic of changes section describes
the formulas that govern the third phase of number systems.
The formula chapter treats lattice theory in a separate section.
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The countable parameter space of the separable Hilbert space
concerns the first two phases of the number systems, or it is
uncountable and concerns the undisturbed third phase. In that
case, the Hilbert space is no longer separable. The non-
separable Hilbert space provides operators with uncountable
eigenspaces or can manage multiple phases of the chosen
number system. The non-separable Hilbert space uses a
modified version of Paul Dirac's bra-ket procedure that uses
integrals of functions instead of sums of series. This changed
version supplies insight into the workings of uncertainties and
the expectation value of a stochastically spread series of
numbers.

The extension to non-separable Hilbert spaces uses Dirac
distributions rather than standard functions.

Not all features of standard functions hold for Dirac
distributions which are generalized functions. This distinction is
why non-separable Hilbert spaces do not behave like separable
Hilbert spaces. This distinction becomes actual in the system of
non-separable Hilbert spaces.

11.3 Other features of Hilbert spaces
Several unique features reveal by playing with subspaces of the

Hilbert space. First, subdividing into subspaces does not prohibit
the content of the subspace from functionally relating to the
content of other subspaces.

26



11.3.1 Subdividing into Hilbert spaces
Every closed subspace of a Hilbert space is a Hilbert space. The

set of closed subspaces of a Hilbert space is lattice isomorphic
with quantum logic.

The version of the number system that defines the private
parameter space subdivides into other number systems with a
lower number of dimensions. For example, the quaternionic
number system holds a complex number system for every
direction_line in the spatial part of a quaternionic number
system that crosses the number 0. The complex number system
contains a real number system. Thus, the quaternionic Hilbert
space holds complex-number-based Hilbert spaces as
subspaces. These complex-number-based Hilbert spaces have
real-number-based Hilbert spaces as a subspace. These Hilbert
spaces support their own function space.

11.3.2 Subdividing into parameter space and target space

When visualizing functions, humans intuitively put the
parameter and target spaces into separated independent space
parts. The HBM shares that habit.

The parameters relate to the target values. In non-separable
Hilbert spaces, functions usually act in the third phase of the
number system. However, the model applies sampled functions
in separable and non-separable Hilbert spaces.

The subdivisions require extra dimensions. The vector space
owns ample space to harbor these extra dimensions. We call
the subspace space that holds the target spaces of all functions
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the common target space. In a separable Hilbert space, an
orthonormal set of base vectors representing a target value of
one or more functions can span the common target space.

11.3.2.1  How and why the HBM creates time

The Hilbert Book Model applies the real part of the parameter
space to implement the indicator for the progression of change.
It uses the common target space to harbor a collection of target
spaces of static functions that each belong to the values of the
corresponding progression indicator. We will call the value of
the progression indicator a timestamp. This replacement of the
real parts of the quaternions by a progression indicator
introduces the notion of time into the model. This subdivision
acts as the functionality of a book in which each page stands for
an instant of the history of the usual target space. Thus, time is
an artificial parameter. The hop landings never coincide.
Therefore, time can intercalate, and the model can sequence
the real parts of quaternions in the archived hopping paths.

The model applies this opportunity by exchanging the real parts
of the hop landings against the artificial progression steps that
the HBM introduces as instances of time.

Humans created differential calculus as part of mathematics.
The creation of the artificial time concept allows humans to
apply differential calculus.
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11.3.2.2  Keeping the relation between parameter value and target
value

The original arrangement of locations in the parameter space
can be demolished in the target space. This demolishment
would occur when oscillations or rotations are involved. The
demolishment endangers the relation between parameter value
and target value. In the model, embedding other Hilbert spaces
or clusters of Hilbert spaces into the target space resolves this.
The embedding plots the image of the Hilbert space or the
cluster of Hilbert spaces into the target space. The embedded
Hilbert spaces or Hilbert space clusters will implement the
oscillations and rotations. Section A system of Hilbert spaces
treats this. Embedding floating Hilbert spaces, or clusters of
Hilbert spaces, disrupts the relation with the background
parameter space.

Consequently, these objects own a different time sequence than
the elementary floating Hilbert spaces. That time sequence
depends on the local gravitational potential in the embedding
field. See the presentations of Carlo Rovelli about the notion of
time and gravitational time dilatation. The following section
explains how the HBM introduces time.

11.3.2.3 The Hilbert Book model

11.3.2.4  Separating the target space into a mirror-symmetric and an
anti-mirror-symmetric part

Along direction_lines on each page of the usual target space,
superpositions of cosine functions can stand for the mirror-
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symmetric functions. Likewise, the superpositions of sine
functions can stand for the anti-mirror-symmetric functions.

At the geometrical center of the parameter space, the cosine
functions have a maximum. At the geometrical center of the
parameter space, the sine functions switch from negative to
positive. The anti-mirror-symmetric target spaces realize in a
separate subspace. In the formulas, the imaginary factor
shows this. In Hilbert space, this imaginary factor stands for a
split into another subspace.

A cosine function can combine with a sine function with the
same frequency into a complex number-valued exponential
function. This combination is allowed because the imaginary
factor i belongs to the direction of that same direction_line. The
resulting complex exponential function has the remarkable
property that it relates to the partial differential change
operator that belongs to the selected direction_line. The section
Fourier transform in the formula chapter presents the details.

The sine and cosine functions use spatial frequencies as their
parameters. This application introduces a frequency parameter
space parallel to the spatial position parameter space. The
frequency parameter space covers three spatial dimensions in
the quaternionic Hilbert space. The frequency parameter space
serves spectral functions that populate the common target
space. We also call this representation the change space.
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The HBM does not restrict frequencies to a single direction_line.
It enables spatial frequencies up to three dimensions and
quaternionic frequencies that cover four dimensions.

11.3.2.5 Separating the target space into scalar function targets and
spatial function targets

The split into mirror symmetric target space and anti-mirror
symmetric target space can occur separately for the scalar and
spatial function targets.

11.3.3 Adding change with time

If the change with time also includes the split into mirror-
symmetric and anti-mirror-symmetric dependency, then the
frequency parameter space will cover four dimensions. Fourier
series show that the base vectors that span the location
parameter space are superpositions of the base vectors of the
frequency parameter space with all coefficients having the same
amplitude. This statement also holds vice-versa.

12 Potentials and forces
In physics, potential energy is energy held by an object
because of its position relative to other objects.

The potential at a location is equal to the work (energy
transferred) per unit of actuator influence that physics requires
to move an object to that location from a reference location
where the value of the potential equals zero.

The Hilbert Book Model considers the potential to be zero at

infinity. Suppose the model selects infinity as the reference

location. In that case, the potential at a regarded location is
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equal to the work (energy transferred) per unit of actuator
influence that involves moving an object from infinity to that
location. In that case, the potential at a location stands for the
reverse action of the combined actuator influences that act at
that location.

12.1 Center of Influence of Actuators

The influence of similar actuators can superimpose. Thus, a
geometrical center of these influences defines the location of
the virtual location of a representant of the considered group of
actuators. In physical_reality, virtual locations do not exist. It is
a theoretical concept.

This virtual representant has a potential that has the same
potential that a point-like actuator of the same influence type
would possess. In the Hilbert Book Model, static point-like
actuators other than charges do not exist because the
embedding field tends to remove them as quickly as possible.
However, a model can define static virtual point-like actuators.
12.2 Forces

The first-order change holds five terms, two scalar terms, and
three spatial terms. In each of these subgroups, the terms can
compensate for each other. For example, in the group of spatial
terms, the gradient of the scalar part of the quaternionic field
can compensate for the time variation of the spatial component
of the quaternionic field. If we neglect the curl of the part of the
qguaternionic field, then the gradient of a local potential can
cause a time variation of a spatial field that describes the
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movement of influenced objects. If these are uniformly moving

massive objects, then these objects will accelerate. So, the

spatial field will stand for a force field.

12.3 Actuators

We list the actuators of spherical responses discussed in this
paper in the table below.

Actuator Description Influenced | Symbol | Symbol
objects 0] 0
Actual electric Electric charges are the sources or sinks of Other 0 q
charge electrical fields and cause potentials in the electric
electrical field. The influenced objects are charges
other electric charges. In the HBM, these
charges exist at the geometrical centers of
floating Hilbert spaces.
Virtual electric Virtual charges stand for a collection of Other ) q
Charge electric charges electric
charges
Isotropic pulse Isotropic pulses are embeddings of hop Other M m
landings of the state vector of floating massive
Hilbert spaces into the dynamic universe objects
field. These pulse responses are spherical in
the form of spherical shock fronts.
Floating Hilbert space | Virtual mass represents a collection of Other M m
isotropic pulses that a floating Hilbert space massive
generates. objects
Virtual mass Virtual masses stand for a collection of Other M m
masses of floating Hilbert spaces. massive
objects

The Hilbert Book Model also explains the notions of attracting
and repelling by introducing progression as time.
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Electric fields and gravitational fields differ fundamentally in
their start and boundary conditions.

Electric charges can attract or repel each other.
Masses will always attract each other.

Spherical pulse responses in the form of spherical shock fronts
are dark matter objects. However, the qualification “dark” not
justifies when vast numbers of these objects cooperate such
that they become perceivable.

13 Stochastic processes

Replacing the real parts of archived quaternions with progression
indicators introduces a stochastic process. The HBM suggests that this
stochastic process is a combination of a Poisson Process and a binomial
process. If we consider this process as a combination of a Poisson
process and a binomial process, and if a location density distribution
that owns a Fourier transform in the form of a frequency spectrum that
describes the effect of the binomial process, then the stochastic process
holds a characteristic function. In the HBM, the frequency spectrum
can cover up to four dimensions.

The characteristic function of a stochastic process in the change space
can control the spread of the location density distribution of the
produced location swarm in position space.

A dedicated footprint operator archives the production of the stochastic
process in its eigenspace. After reordering the timestamps, the
footprint operator stores its eigenvalues in the quaternionic storage
bins. The storage bin contains a real number valued timestamp and a
three-dimensional spatial number value for the archived hop landing
location. After sequencing the timestamps in equidistant steps, the hop
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landing locations stand for a hopping path of a point-like object. The
hopping path regularly regenerates a coherent hop landing location
swarm. The location density distribution describes this swarm.

If this location density distribution is a Gaussian distribution, then its

Fourier transform decides exactly the location density distribution of
the swarm. The Fourier transform is again a Gaussian distribution but
has distinctive characteristics.

The author dares to suggest that the stochastic process combines a Poisson and binomial
process because he measured the spatial frequency characteristics of many imaging spots and
line images in images produced by lenses and image intensifier devices.

Luminance Luminance

1(x) :Line Spread Function

\/Y Fourie Transform

Flw,, w,)

J{x, ¥): Point Spread Function
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The optical transfer function is the Fourier transfer of the point
spread function (PSF), shown in the second picture (b,c).

The modulation transfer function (MTF) is the modulus of the optical
transfer function. Each cut through the center of the MTF is
symmetric. Therefore, it suffices to specify half of that curve.

Often, a peak appears at the center of the MTF. Optical experts call
the cause of the peak veiling glare. Picture (d) shows this peak.

Analyzing the Fourier transfer of the line spread function (LSF) is more
manageable because it covers more contributing imaging objects and
corresponds with a cut through the central axis of the MTF.

The central axis of the MTF shows the distribution of the imaging objects in the image. The HBM
states that photons are one-dimensional chains of shock fronts. Thus, if the imaging objects are
photons, then according to the HBM, the central axis of the MTF shows the distribution of the
energy that the shock fronts carry. In the peak, the shock fronts are less spatially related than in
the broader part of the MTF. In analyzing the image of a galaxy, the veiling glare might stand for
the halo that cosmologists see around these galaxies.

The notion of the MTF does not restrict to photons. The imaging objects can form a mixture of
photons, elementary fermions, and conglomerates of elementary fermions. In that case, the
MTF is a function of these contributors' angular, chromatic, and phase distribution. The author
participated in developing world standards for specifying and measuring the OTF and the MTF.
It started with a STANAG standard, the ISO and IEC standard, and included country-wide
standards such as the German DIN standard accepted these worldwide standards. At low dose
rates, the relative contribution of noise will increase. The Detective Quantum Efficiency (DQE)
objectively measures this influence. The author also participated in standardizing the DQE for
IEC and DIN.

The described stochastic process can deliver the actuators that
generate the pulse responses that may deform the dynamic universe
field. In some way, an ongoing embedding process must map the
eigenspace of the footprint operator onto the embedding field. As
previously argued, the footprint operator's eigenspace corresponds to a
dynamic footprint vector that defines a location density function and a
probability amplitude. The footprint vector exists in the underlying
vector space and has a representation in Hilbert space via the footprint

operator. The footprint vector acts as the state vector of the separable
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Hilbert space, and the probability amplitude corresponds to what
physicists call the wave function of the represented moving particle.

13.1 Optical Transfer Function and Modulation Transfer function

Some stochastic processes own a characteristic function. This
characteristic function is the Fourier transform of a location density
distribution. Experimenters commonly use such stochastic processes to
qualify imaging excellence via the Optical Transfer Function of an
imaging process or imaging equipment. The Optical Transfer Function is
the Fourier transform of the Point Spread Function. For spatial
locations, the PSF acts as a location density distribution. The
Modulation Transfer Function is the modulus of the Optical Transfer
Function and is a symmetric function. The vertical axis of the MTF
shows the energy distribution of the spatial spectrum. In the case of
light, it is the chromatic distribution of the PSF. A central peak in the
form of a rapid decrease of the MTF at low spatial frequencies shows
the existence of a veiling glare or halo. It is energy that is less correlated
to location.

The Line Spread Function (LSF) equals the integral over the Point Spread
Function in the direction of the line. The Fourier transform of the Line
Spread Function equals the cut through the center of the Optical
Transfer Function. The cut runs perpendicular to the direction of the
line. The LSF can be a function of the direction of the line. In that case,
the PSF has a non-isotropic angular distribution. The Fourier transform
of the convolution of two functions equals the product of the Fourier
transforms of the functions. The result of the Fourier transform
conforms to the convolution of the OTF with the Fourier transform of
the blade sharp pulse that corresponds to the Fourier transform of the
integral along the line.
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A phase distribution will also occur if an ongoing dynamic process
generates the PSF. The Optical Transfer Function combines the
Modulation Transfer Function and the Phase Transfer Function. In
complex number-based descriptions, the Phase Transfer Function is the
argument of the Optical Transfer Function.

A system of Hilbert spaces that share the same underlying vector space
can perform the job of the imaging platform. In this system, the
embedding process is the alternative name for the imaging process.
However, this explanation still says nothing about the essence of the
underlying stochastic selection process. That stays a mystery.

The concept of the Optical Transfer Function also makes sense for
dependence on time. For time dependence, the name of the tool is also
Fourier analysis. Together the two tools perform a four-dimensional
spectral analysis.

13.2 Photons

Photons are not electromagnetic waves. Instead, photons consist of
chains of equidistant one-dimensional shock fronts that travel along a
geodesic. The one-dimensional shock fronts are shock fronts that often
get the name dark energy objects. However, when cooperating in huge
guantities, the objects become observable, and then the name “dark
object” becomes confusing; see the section on differentiation.

13.3 Light

Light is a distribution of photons. A beam of light can have an angular
distribution, a chromatic distribution, and a phase distribution. A
homogeneous light beam holds a single frequency and usually a narrow
angular distribution.

13.4 Refraction
Refraction occurs at the borders of transparent media in which
information transfer occurs with constant speed. The information
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transfer can take place through chains of absorption and reemission
cycles. In free space, nothing exists that absorbs or emits photons, but
photons can travel through free space along geodesics [10].

Refraction enables the construction of lenses, fiber plates, optical fibers,
prisms, and mirrors.

A separate part of optics covers refraction. [11]

13.5 Holographic imaging

Transparent optical lenses and tiny apertures can function as Fourier
transformers. They map distributions of photons in position space into
distributions in frequency space. The name of these distributions is a
hologram. [12]

Photographs can capture holograms. Also, metal mirrors imprinted with
phase patterns can generate holograms when the imprinted mirror
reflects a coherent beam of light.

13.6 Electron optics

Electron optics concerns imaging charged particles by artificially
constructed electric or magnetic fields or electromagnetic fields
[13][14]. Construction elements are metallic electrodes at a given
voltage or coils that carry electric currents.

Radio transmission is a special kind of electron optics.

14 Social influences

The rise of National Socialism in Hitler's Nazi Germany disrupted
the promising discussion about set theory and number systems.
Nazism threatened key discussion participants, or they had to
flee to safer places. Many fled to the United States of America,
where the government morally obliged them to cooperate in
the fight against Nazism by taking part in the development of
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new weapon systems, such as the atomic bomb. Sets and
number systems no longer attracted their attention. The
success of the complex functional analysis, which can treat
singularities, worsened this effect. [15]

Joshua Willard Gibbs and Oliver Heaviside led the physicists
toward geometric differential theory and vector analysis. [16]
[17]

In this way, many scientists thought the spatial functions would
be sufficient to explain physical phenomena. However, this
choice is at the expense of the relationship with the real
functions, which quaternionic function theory regulates more
clearly. Many physicists no longer understood the reason
Hilbert spaces attracted their attention. The complex Hilbert
spaces became a toy of the mathematicians who developed all
kinds of fancy complex Hilbert spaces.

15 Ongoing investigation

At CERN in Geneva, sufficiently far from the Nazi sphere of
influence, a small group continued with quantum logic and
Hilbert spaces. The book "Foundations of quantum mechanics"
by Josef M. Jauch guided my attention to quaternionic Hilbert
spaces. [18]

Due to too few results, this research languished and died out in
the sixties.
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16 New insight

Now we are taking a giant step. This step concerns a significant
difference in understanding between me and mainstream
theoretical physics. The curious shortlist of properties of the
electric charges of the first generation of elementary fermions
prompted this difference. This list covers charges with values -1,
-2/3,-1/3,0, +1/3, +2/3, and +1. This list is part of the Standard
Model of the experimental particle physicists who have
summarized their main observations in that Standard Model.

[19]
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Multiplying with 3 turns the list into a list of integers -3, -2, -1, 0,
+1, +2, and +3. This series is the list of differences between a
reference symmetry and other symmetries of versions of
guaternionic number systems when the coordinate axes restrict
to be parallel.

We limit our use of the Standard Model to a subset and exclude
the bosons and the gluons. We exclude theoretical theories like
Quantum Field Theory, Quantum Electro Dynamics, and
Quantum Chromo Dynamics. Opportunistic theoretical

41



physicists introduced QFT, QED, and QCD that spoiled the
experimental results with these not-so-well-founded theoretical
ideas by inserting them into the Standard Model. The minimal
action principle from which a Lagrangian derives forms the
foundation of these theories. These concepts play in the third
phase of number systems. The calculation rules and restrictions
of the third phase exist in the first and second phases.
Therefore, these theories cannot explain the existence of
electric charges and diverse types of fermions. Furthermore,
these theories have no reasonable explanation for the presence
of the wave function, and their rationale for the existence of
conglomerates is questionable.

The similarity with the symmetries of versions of number
systems stimulated me. However, it is not the similarity with
the symmetries themselves that provides the reason. Instead,
one of the Hilbert spaces plays the role of a background system.
All other system members float with their geometric center
over the parameter space of this background system. Especially
the difference between the symmetries of the versions of the
number systems that float with their separable Hilbert space
and the symmetry background platform control the situation.
This opportunity occurs in a system of separable Hilbert spaces
that all apply the same underlying vector space.
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17 A System of Hilbert spaces

The author calls the system of Hilbert spaces the Hilbert
repository because it stores all data of a multiverse. Two types
of systems of Hilbert spaces exist.

The first type is a system of separable Hilbert spaces.
The second type is a system of non-separable Hilbert spaces.

Both systems hold a member that acts as a background
platform.

17.1 A System of separable Hilbert spaces

The background platform owns a companion non-separable
Hilbert space that embeds its separable companion. This
companion archives a dynamic universe field. The floating
separable members can harbor an electric charge at their
geometric center. A dark hole holds the countable parameter
space of the separable Hilbert space that functions as the
background platform. The HBM employs the name “dark hole”
because continuous objects cannot penetrate this countable
subset and cannot leave the encapsulated region. It is a second
phase contained in a third phase surround.

We limit ourselves to Hilbert spaces derived from the same
vector space. Furthermore, we choose four mutually
independent directions in the underlying vector space. The axes
of the Cartesian coordinate system of the number system shall
be parallel to one of the chosen direction_lines. This choice,
therefore, leaves only a few different symmetry types. The

exact reason, which enforces this restriction, is not apparent.
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However, the limitation makes comparing symmetries and
computing symmetry differences easier. To understand the
consequences of the limitation, we put the symmetries of the
remaining versions of the quaternionic number system in a
table whose lines we arrange with binary written hexadecimal
rank numbers. We choose one of the sixteen remaining versions
as a frame of reference platform and place this version at the
front of the queue. The table mentions the fitting fermions by
name.

You will notice that the anti-attribute raises a conflict between
symmetries and the electric charges of the Standard Model. The
reason might be that the anti-attribute is not measurable.

No R G B real | Difference | charge type Rgb
0 0 0 0 0 0 0 background
1 1 0 0 0 1 -1/3 down R
2 0 1 0 0 1 -1/3 down G
3 1 1 0 0 2 -2/3 anti-up B
4 0 0 1 0 1 -1/3 down B
5 1 0 1 0 2 -2/3 anti-up G
6 0 1 1 0 2 -2/3 anti-up R
7 1 1 1 0 3 -3/3 electron
8 0 0 0 1 0 0 neutrino
9 1 0 0 1 -1 1/3 anti-down B
A 0 1 0 1 -1 1/3 anti-down G
B 1 1 0 1 ) 2/3 up R
C 0 0 1 1 -1 1/3 anti-down R
D 1 0 1 1 ) 2/3 up G
E 0 1 1 1 -2 2/3 up B
F 1 1 1 1 -3 3/3 positron

B G R
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All these Hilbert spaces are separable and use number systems
that belong to the first or second phase.

The remaining system of Hilbert spaces holds a Hilbert space
that can serve as a background platform. Therefore, the HBM
assumes that the reference version functions as a background
platform.

The background platform must have an infinite number of
subspaces. An infinite number of subspaces means that the
version of the number system chosen by this Hilbert space has
an infinite number of elements.

17.2 A modeling platform

A system of Hilbert spaces that all share the same underlying
vector space can function as a modeling platform that not only
supports dynamic fields that obey quaternionic differential
equations. The model can, in principle, capture all phenomena
in @ dynamic universe.

The system of separable Hilbert spaces applies the structured
storage ability of the Hilbert spaces that are members of the
system. The requirement that all member Hilbert spaces must
share the same underlying vector space restricts the types of
Hilbert spaces that can be a member of the system of separable
Hilbert spaces. In the change chapter, we already restricted the
definition of partial change along the directions of the Cartesian
coordinate system. It appears that the coordinate systems that
decide the symmetry type of the members of the system of
separable Hilbert spaces must have the Cartesian coordinate
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axes in parallel. The Cartesian coordinate system is due to the
existence of the primitive coordinate system in the underlying
parameter space. The restriction enables the determination of
differences in symmetry. The Model selects the sequence along
the axis only up or down. It also means that partial change has a
systemwide significance. Thus, the model tolerates only a small
set of symmetry types. One of the Hilbert spaces will function as
the background platform, and its symmetry will serve as
background symmetry. Its natural parameter space will act as
the background parameter space of the system. All other
system members will float with the geometric center of their
parameter space over the background parameter space. These
features already generate a dynamic system. The symmetry
differences cause symmetry-related sources or sinks that will
exist at the geometric center of the natural parameter space of
the corresponding floating Hilbert space. The sources and sinks
correspond to symmetry-related charges that generate
symmetry-related fields. In physics, these symmetry-related
charges are electric charges.

Not the symmetries of the floating Hilbert spaces are essential.
Instead, the differences between the symmetry of the floating
member and the background symmetry are crucial for showing
the type of the member Hilbert space. The counts of the
differences in symmetry restrict to the shortlist -3, -2, -1, 0, +1,
+2, +3.
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It is possible to understand the existence of symmetries and
symmetry differences. However, the presence of corresponding
symmetry-related charges is counterintuitive. The Model does
not yet explain the realization of these charges as sources or
sinks of symmetry-related fields.

All floating Hilbert spaces are separable. The background Hilbert
space is an infinite-dimensional separable Hilbert space. It owns
a non-separable companion Hilbert space that embeds its
separable partner.

The system of separable Hilbert spaces supports the containers
of footprints that can map into the quaternionic fields. The
vectors that stand for the footprint vectors originate in the
underlying spatial field. They function as state vectors for the
Hilbert spaces that serve as containers for the footprints. The
state vector stands for the vector from the underlying vector
space that aims at the geometric center of the floating Hilbert
space. This picture enables the maps of these state vectors and
the corresponding footprint in the dynamic universe field. The
state vector stands for a vector from the underlying vector
space that tries to find the position of the floating platform's
geometric center in the background platform's parameter
space. State vectors are particular footprint vectors. Together
this entwined locator installs an ongoing embedding process
that acts as an imaging process that maps the geometric center
of the floating platform onto the background parameter space.

47



Finally, the eigenspace of a dedicated footprint operator maps
this image into the dynamic field that stands for the universe.

In this way, the image maps a vast number of ongoing hopping
paths onto the embedding field. Physicists call this dynamic
field the universe. On the floating platforms, the hopping paths
close. The movement of the floating platforms breaks the
closure of the images of the hopping paths.

17.2.1 Conglomerates

Elementary fermions behave as elementary modules. The
conglomerates of these elementary modules populate the
dynamic field that we call our universe. All massive objects,
except black holes, are conglomerates of elementary fermions.
Therefore, all conglomerates of elementary fermions own mass.
This mass ownership of modules means that massive modular
systems cover the universe.

A private stochastic process decides each elementary fermion's
complete local life story. The fermion controls that stochastic
process in the change space of its private Hilbert space. The
private stochastic process produces an ongoing hopping path.
This hopping path corresponds to a footprint vector that
consists of a dynamically changing superposition of the
reference operator's eigenvectors. The section of the formula
chapter that treats the arithmetic of change explains this. Each
floating platform of the system of separable Hilbert spaces
owns a single private footprint vector. The footprint vector acts
as the state vector of the elementary fermion, and the
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probability amplitude corresponds to what physicists call the
particle's wave function.

This picture invites the idea that stochastic processes whose
characteristic functions define in the change space of the
background platform represent conglomerates of elementary
fermions. In this change space, the characteristic function of a
stochastic process that specifies a conglomerate is a
superposition of the characteristic functions of the components
of the conglomerate. The dynamic superposition coefficients
function as displacement generators. This functionality means
that these displacement generators define the internal
oscillations of the components within the conglomerates. It
might not hold for higher-order conglomerates, but in the HBM,
it fits for lower-order conglomerates.

Since the HBM does not define the position in change space,
the fact that a component belongs to a conglomerate does not
restrict the distance between the components. This way of
determining the membership of a conglomerate introduces
entanglement. Independent of their mutual distance,
components of a conglomerate must still obey the Pauli
exclusion principle.

17.2.2 Interaction with black holes

Field excitations cannot enter or leave black holes, but the
Hilbert spaces that stand for elementary fermions may hover
over the enclosed region of the black hole. So, part of the
footprint of the elementary particle may map into the territory
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of the black hole. The mass of the black hole attracts nearby
elementary fermions. Together with the effect of hovering, this
may enable the growth of black holes and the merge of
approaching black holes. It may also explain the merge of a
black hole and a dense star.

17.2.3 Hadrons

Hadrons can be mesons or baryons. They are conglomerates of
quarks. Quarks can only bind via oscillations and via the
attraction that their electric charges induce. Since the symmetry
of quarks does not differ from the background symmetry in an
isotropic way, the footprint of quarks does not deform the
embedding field. So, mass does not help to bind the quarks until
they reach an isotropic symmetry difference. Scientists call this
phenomenon color confinement. Hadrons feature mass. Thus,
these conglomerates are sufficiently isotropic to deform the
embedding field. Once configured, the mutual binding of
baryons is strong. Baryons make up the nuclei of atoms.

17.2.4 Atoms

Compound modules are composite modules for which the
images of the geometric centers of the platforms of the
components coincide in the background platform. The charges
of the elementary module platforms show the corresponding
platforms' primary binding. Physicists and chemists call these
compound modules atoms or atomic ions.

In free compound modules, the geometric symmetry-related
charges do not participate in internal oscillations. The targets of
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the private stochastic processes of the elementary modules
oscillate. This oscillation means that the hopping path of the
elementary module folds around the oscillation path, and the
hop landing location swarm smears along the oscillation path.
The oscillation path is a solution to the Helmholtz equation.
Each fermion must use a different oscillation mode. A change in
the oscillation mode goes together with the emission or
absorption of a photon. As suggested earlier, the emission or
absorption of a photon involves a switch from the quaternionic
Hilbert space to a subspace, which a complex-number-based
Hilbert space stands for. The duration of the switch lasts an
entire particle regeneration cycle. During that cycle, the
stochastic mechanism does not produce a swarm of hop landing
locations that produce pulses that generate spherical shock
fronts. Instead, it creates a one-dimensional string of
equidistant pulse responses that cause one-dimensional shock
fronts. The center of emission coincides with the geometrical
center of the compound module. This location ensures that the
emitted photon does not lose its integrity. All photons will share
the same emission duration, which will coincide with the
regeneration cycle of the hop landing location swarm. This
coincidence is the reason that photons obey the Planck-Einstein
relation E=hv. Absorption cannot interpret so easily. It only
becomes understandable as a time-reversed emission act.
Otherwise, the absorption would require an incredible aiming
precision for the photon. The number of one-dimensional

51



pulses in the string corresponds to the step in the energy of the
Helmholtz oscillation.

The stochastic process that controls the binding of components
appears to manage the absorption and emission of photons and
the change of oscillation modes. If photons arrive with too low
energy, then the energy spends on the kinetic energy of the
common platform. If photons arrive with too high energy, then
the energy distributes over the available oscillation modes, and
the model spends the rest on the kinetic energy of the shared
platform, or it the energy escapes into free space. The process
must somehow archive the modes of the components. It can
apply the private platform of the components for that purpose.
Most probably, the current value of the dynamic superposition
coefficient archives in the eigenspace of a particular
superposition operator.

17.2.5 Molecules

Molecules are conglomerates of compound modules that each
keep their private geometrical center. However, the compound
modules share electron oscillations. This sharing binds the
compound modules with geometric symmetry-related charges
into the molecule.

17.2.6 Earth

On Earth, conglomerates of molecules can form living species.
Living species archive essential properties in RNA and DNA
molecules.
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17.2.7 Particles and fields
The model interprets the floating elements of the system as particles. In

contrast, the model does not interpret the background platform as a
particle. Still, all elements of the system of Hilbert spaces are platforms
that show similar capabilities and properties. For example, all floating
platforms act like symmetry-related fields, and these fields correspond
to symmetry-related charges. However, the background platform does
not offer a symmetry-related field or a symmetry-related charge.
Instead, it acts as a universe-wide embedding field, which the presence
of floating members deforms. Mainstream physics considers the Higgs
particle responsible for the capabilities that this paper assigns to the
background platform. In this paper, the background platform, including
its non-separable companion, implements the origin of the gravitational
potential via the action of spherical shock fronts that actuators that
cause isotropic pulses generate.

17.2.8 Modular system communities
The modular construction of objects in the universe invites the

consideration of communities of modular systems that belong to the
same type or species. Examples are ants, bees, herd animals, and
humans. These are living species. Type communities offer the
advantage that the community members can cooperate to perfect the
community's resilience by exploiting the members' diversity. Usually,
the community survives orders of magnitude longer than the individual
members. The community can promote, support, and guard the culture
and intercommunication of the community. A danger of this effect is
that the community grows to such an extent that it endangers running
out of resources. Another risk is that the community oppresses its
members to support the interests of the community against the
interests of the individual members. After the arrival of intelligent
species, modular design, and construction can change from stochastic
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design and construction into intelligent design and construction. This
capability accelerates the generation of modular systems and produces
incredibly sophisticated modular systems in a brief period. This trend
can even create new intelligent species. Robots occupy this next
generation. It is astonishing to see how badly human communities can
manage the outrun of resources, can prevent wars, can stop terrorism,
and can prevent economic crises.

On the other hand, humanity has difficulty managing pandemic
outbreaks. Moreover, humans consider democracy the most effective
solution and nationalism a lousy solution. Unfortunately, none of these
views appear to be correct.

17.3 A System of non-separable Hilbert spaces

The second type is a system of non-separable Hilbert spaces.
The background platform is a non-separable Hilbert space,
which archives a dynamic multiverse field. The parameter space
of the background platform is a continuum; therefore, a black
hole does not encapsulate it. The floating members of the
system are the background platforms of systems of separable
Hilbert spaces that own a companion non-separable Hilbert
space that embeds its separable partner. A black hole holds the
parameter space of the separable part of the background
platform.

This system shows similarities with the holographic principle that some
theoretical physicists promote [20]. However, the model reaches this
resemblance without the tools of string theory or qguantum gravity
because, in this paper, the black hole is supposed to hold a countable
parameter space related to a continuous surrounding common target
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space. The system does not show the recycling universe of Sir Roger
Penrose.

The floating members of the system are universes that connect
relationally to a private black hole. The corresponding space
compartment stands for this black hole's influence range. The countable
parameter space contained in the black hole relates to the content of
the compartment. The borders of the compartments do not function as
barriers for photons, fermions, atoms, planets, or stars. The background
member of the system holds the continuum parameter space of the
whole multiverse. It relates to all the contained universes.

Astronomers see that black holes can merge and that neutron stars can
collapse into new black holes. These events redistribute the
compartments. These events cause graphical shock fronts that
constitute an enormous number of superimposed spherical shock fronts
that arise in a small region and a short period. A gravitational wave is a
misnomer for these phenomena.

The parameter space of the multiverse adapts to the changes in the
covered compartments.

17.3.1.1 Compartments

This configuration stands for a dynamic multiverse that divides
part of the underlying vector space into a set of compartments.
Each compartment supports a dynamic universe.
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Compartments

j Black holes

. BH ¢ densest packaging
univeree L

This picture shows an artist's impression of a simple space covered by
compartments.

Objects can pass the borders of the regions.

These objects range from particles to galaxies.

18 Conclusions

The Hilbert Book Model applies the system of Hilbert spaces that all
share the same underlying vector space. The author calls this system
the Hilbert repository. This approach differs on various essential points
from the approach that mainstream physics follows. Still, an astonishing
agreement exists between the Standard Model of the elementary
fermions that the Standard Model of the experimental particle
physicists holds and the system of separable Hilbert spaces.

The HBM considers physical_reality to represent what experimental
physicists want to observe. Humans can only control physical_reality
indirectly by altering the conditions on which physical_reality (PR)
reacts. Physical_reality reacts according to its laws and does not
consider collateral damage, and does not negotiate. PR is a harsh and
consistent controller. It is the essential opponent for humanly installed

57



governments and institutions. For example, on Earth, PR reacts to
climate deterioration with disasters that touch all humans and all living
species.

In the system of separable Hilbert spaces, spatial coordinate axes play a
vital role. These axes must be systemwide in parallel. The reason for this
restriction is not apparent. The HBM seeks the logic in that the simple
coordinate system of the vector space relates to the coordinate system
that exists in the version of the number system that a Hilbert space
selects.

In spatial continuums, first-order change usually occurs along the spatial
coordinate axes. In locally spherical symmetric conditions, change
covers all directions. The freedom of choice left by spatial arithmetic
always appears along the Cartesian coordinate axes. This fact is due to
the adaptation to the primitive coordinate system in the underlying
parameter space.

In the Hilbert Book Model (HBM), the footprints of all massive objects
recurrently regenerate with a high repetition rate that corresponds with
the duration of the emission of photons.

Mainstream physics still has not found a suitable explanation for dark
matter objects and dark energy objects. The HBM explains these objects
as field excitations that behave as shock fronts. Solutions of second-
order quaternionic partial differential equations describe the shock
fronts in detail. The spherical shock fronts are the only field excitations
that deform the field that embeds them. According to the HBM,
photons are strings of equidistant one-dimensional shock fronts. Black
holes are slowly varying objects that hold a countable content. Black
holes deform their continuous surround. From enough distance, the
black hole can appear as a point-like object. In this situation, the
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description of the black hole becomes simple. However, for the HBM,
nearby black holes are complicated objects.

Elementary fermions are complicated objects in which a private
guaternionic separable Hilbert space manages the fermion's properties.
These Hilbert spaces own a private parameter space and a private
symmetry. The separable Hilbert spaces float with the geometric center
of their parameter space over a background parameter space, which a
background separable Hilbert space manages. This background Hilbert
space owns a non-separable Hilbert space. The non-separable Hilbert
space embeds its separable companion. The non-separable Hilbert
space manages several continuums in the eigenspace of a
corresponding dedicated operator. One of the continuums is a dynamic
field, which physicists call the universe. The universe field embeds the
images of the geometric centers of the floating separable Hilbert
spaces.

Stochastic disturbances of the locator vector in the underlying vector
space and points to the geometric center of the floating Hilbert space
blur this map. Depending on the difference in symmetry, the
embedding of the image may cause a spherical shock front response
that will temporarily deform the universe field. The corresponding
shock front moves away in all directions until it vanishes at infinity. This
conflicts with the conservation laws that mainstream physics supports.
An ongoing creation of fermions that compensates for the vanishing of
spherical shock fronts but does not compensate for the expansion of
the covered part of the simple space compensates for this. The HBM
turns the simple space into a vector space. The simple space and, thus,
the vector space has no boundaries. The content of the shock front
expands the covered volume of the field that corresponds to the
background Hilbert space. The generation of the spherical shock front
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needs an isotropic symmetry difference with the background platform.
Only a few fermion types feature an isotropic symmetry difference.
Isolated quarks do not own the required isotropic symmetry difference
and will not produce a deformation of the universe. However,
combined in a hadron such that the combination features an isotropic
symmetry difference, the hadron can cause deformation. This
phenomenon is known as color confinement.

The non-separable Hilbert space embeds its separable partner.
Consequently, the parameter space of the non-separable Hilbert space
is the parameter space of the separable companion Hilbert space where
the irrational numbers add to the rational numbers. The result is a
continuum. Deforming actuators do not affect the parameter spaces.
However, the continuum eigenspaces of other operators than the
reference operator of the non-separable Hilbert space can vibrate,
deform, and expand.

Symmetry-related charges exist at the geometric centers of the floating
Hilbert spaces. The charges depend on the difference in symmetry
between the floating platform and the background platform. The
charges function as sources or sinks of corresponding symmetry-related
fields. These fields differ fundamentally from the universe field.
However, both types of fields obey the same quaternionic field
equations. They differ in their start and boundary conditions.
Mainstream physics supports general relativity (GR). However, GR does
not consider the electromagnetic and gravity fields fundamentally
different. GR applies tensor calculus, whereas the HBM applies
guaternionic field theory and disruption of the gravitation field by
spherical actuators. In the HBM, the gravitation field is the local
representant of the universe field. At quantum scales, the gravitation
field does not meet the condition that the distance to the observed
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scene is considerable, such that the formulas can simplify. Therefore,
the HBM does not apply the gravitation field at quantum scales. Still,
shock fronts are valid solutions to quaternionic differential equations at
guantum scales.

In the HBM, the archival of the footprint in the floating separable
Hilbert space enables the independent retrieval of that footprint at a
later instance. Thus, the footprint can generate in an episode before the
beginning of the flow of time. The retrieval can occur as a function of
the flow of time and uses the archived timestamps for synchronizing the
retrieval. This conclusion means that the model retrieved no archived
footprint data before the instant of time zero. Without deforming
actuators, the embedding field stays flat. Thus, the embedding field was
in its maiden state at the beginning of the flow of time. The function
that described the universe field was equal to its parameter space.
Immediately after that instant, the locator landings started, distributed
randomly over that parameter space, to mark the locations of the
geometrical centers of the floating Hilbert spaces. Depending on the
symmetry of the floating Hilbert space, this resulted in a corresponding
spherical shock front. This description certainly does not look like the
Big Bang that mainstream physics promotes. Instead, already at its
start, the ongoing embedding was a quiet imaging process.

The background non-separable Hilbert space defines the conglomerates
of elementary fermions as superpositions in change space. For that
reason, it applies the characteristic functions of the stochastic
mechanisms that generate the footprints of the elementary fermions.
However, the model does not define the position in the change space.
This inability is the reason for the existence of entanglement. The Pauli
exclusion principle works independently of the distance between the
elements of the conglomerate.
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Elementary fermions act like elementary modules. Together they make
up all massive objects that occur in the universe. Black holes form the
notorious exception. For the rest, the universe's content is one
extensive modular system that produces an enormous number and
diversity of modular subsystems. Atoms, molecules, rocks, planets,
stars, galaxies, and living species are all examples of modular systems.
Every human is a modular system. Humanity is a modular system
community. On planet Earth, before the arrival of humans,
modularization happened in a stochastic way. Since the arrival of
humans, modularization can happen intelligently. Computers and
robots are excellent examples of this development.

Once the elementary fermions formed, the rest of the universe's
content followed automatically. Modular systems that care for their
community and the modular systems on which they depend have the
highest chance of survival. See “A law of nature” in [21].

Mainstream physics usually bases on the steady action principle.
Currently, mainstream physicists prefer the name minimal action
principle. The minimal action principle does not request a recurrent
regeneration of the objects that occur in the universe. It does not
require that conglomerates generate in a modular way. It also does not
oppress the strange reaction of continuums to disruptions by actuators.
Also, mainstream physics does not explain the origin of electric charges
and the diversity of elementary particles.

Forces require a point of engagement. Fields do not own a point of
engagement. For quaternionic functions, the first-order change already
connects the gradient of a scalar field to the time variation of the
corresponding spatial part of the field. It suffices that the universe field
shows a gradient in its scalar part and that the spatial part of the field
moves uniformly. Thus, a gravitational potential raises an acceleration
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of the moving spatial field. Intuition cannot tell you this. But
mathematics does.

Finally, the paper introduces the system of non-separable Hilbert
spaces. This system concerns a multiverse consisting of universes that
all apply a black hole to archive the private parameter space of the
background platform of the system of separate Hilbert spaces that
stands for the considered dynamic universe. The system of non-
separable Hilbert spaces corresponds to a coverage of space by
compartments holding a dynamic universe and a private black hole.

Astronomers see that black holes can merge and that neutron stars can
collapse into new black holes. These events redistribute the
compartments.

The HBM does not provide a clear explanation for multiverses' coverage
of simple space. The artist's impression of the coverage by
compartments is its best guess.

19 Formulas

19.1 Relativity and curvature

Most formulas feature Euclidean format. In this chapter, the HBM, in
first approximation, ignores the relative speed difference between the
source of information and the observer of the information. In the
embedding field, the information follows geodesics. In this chapter, the
formulas do not treat this extra complication. General relativity claims
to consider both influences but does not recon the coupling of the
embedding field and the electric field via electric charges [22].

19.2 Physical units

This chapter applies mathematical formulas that do not hold physical
units. Physical units are the adaptation of the considered subject to
units that experimental physicists use to measure that subject.
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Lightspeed ¢ is such a physical unit because it stands for a physical unit
measured in meters per second. Physicists use permittivity ¢ = ¢, for the

electrical field. In free space ¢ =1. Physicists use permeability = u,u for
the magnetic field. In free space 4 =1.

The two physical units are related via light speed ¢ [23] [24].

R (19.2.1)

Eoly

19.3 Vector arithmetic
In this section, vectors in a vector space will be in boldface font, and

scalars will be in italic font.

The addition of vectors is commutative. Addition occurs by shifting one
of the vectors in parallel until it coincides with the alternative point of
the other vector. Now the two resulting points stand for the vector
sum. The arithmetic of scalars resembles the arithmetic of rational
members of the real number systems. Vector addition is commutative.
The addition creates new vectors;

V+W=W+V (19.3.1)
Vector addition is also associative;
(utv)+w=u+(v+w) (19.3.2)
Multiplication with a scalar is commutative. This multiplication may

change the length and, thus, the integrity of the vector. In addition, it
may create a new vector;

wW=av=va (19.3.3)
Multiplication with scalars is distributive for scalars and vectors;

(a+b)v=av+bv (19.3.4)

a(v+w):av+aw
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Multiplication with negative scalars reverses the direction of the vector.
In particular;

(-)v=—v (19.3.5)

Vectors obey a scalar product. However, they do not obey an outer
product. Otherwise, their arithmetic would equal the arithmetic of the
spatial numbers, and the vector space's dimension would be restricted
to three.

19.3.1 Base vectors
A selected base {u } is a subset of the vectors that the model uses to

define another vector as a superposition of the members of the base;

v=S"vu, (19.3.6)

i=0

A scalar product (v,w) of two vectors v and wwould be defined in

terms of the orthonormal base {u,}as;
<V,W>=Zvl.wj<ui,uj> , (19.3.7)

while;
<ui,uj>=5[j (19.3.8)

If the orthonormal base spans the entire vector space, then the vector
space holds N dimensions. N can be infinite.

The scalar product that covers all dimensions generates a metric. That
metric can show the length ¢, of the vectora as a scalar. The scalar

product can show the length of a vector;

=[al

{
“ 19.3.9
(a.2)=al | )
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If the scalar product equals zero, either one of the vectors has zero
length, or the two vectors live in different dimensions. In that case, the
vectors are independent. In a N dimensional vector space, precise N
vectors can be mutually independent.

The model applies the scalar product to construct a set of coordinate
markers forming a coordinate system.

19.3.2 Grid of coordinate markers
Coordinate markers can form a grid. The human brain can imagine a

spatial grid of maximally three dimensions. Humans picture this grid as
equidistant Dirac pulses that constitute a comb function.
Mathematicians extend this to much higher dimensions and towards
infinite dimensional spaces. The superposition of functions adapts to
this extension. Moreover, the adaptation enables infinite-dimensional
function spaces. In this way, the Fourier series that the special_set
supports in its first two phases turn into support of Fourier integrals in
the third phase of this set.

19.4 Arithmetic of real numbers

We will show the real numbers with the suffix ..

For real numbers, addition and multiplication are
commutative, associative, and distributive;

b +a =a +b,

(ar+br)+cr:a,+(b,.+cr) (19.4.1)
ba =ab

b = 19.4.2

(a,b,)c, =a,(bec,) ( )

a,(b,+c )=ab +ac, (1943)

For real numbers, the square is zero, or it is positive;

a.a, >0 (1944)
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19.5 Arithmetic of spatial numbers

For spatial numbers, addition is commutative and associative;

S

b+a=a-+

. . 19.5.1
(Ez+b)+E:&+(b+E) ( )

The product < of two spatial numbers sand s results in a
real scalar part +. and a new spatial part 4;

d=d +d=ab (19.5.2)
d,=-(a.b) 1s the inner product of a and 5

For the inner product and the norm |a|holds (a,a)=|j|’.

(a8)=lalp]cos() (19.5.3)

The angle a between the spatial numbers @ and 5 is measured
in radians.

The square of a spatial number equals zero, or it is a negative
real number;

da=—(a,a)<0 (19.5.4)
d=axb 1S the outer product of 4 and 5.
The spatial part Jis independent of zand independent of 5.
This independence implies that (a.d)=0and (5.4)=o.

axb|| = a||p||sin(e)|
- el 1955

axb=-bxa
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It is possible to write spatial numbers as superpositions of base
numbers. For the three-dimensional spatial numbers, this
means;

.
L (19.5.6)

The + sign shows the chiral choice of the handedness of the
outer product.

19.6 Mixed arithmetic
The addition and multiplication of real numbers with spatial numbers

are commutative;

‘ (19.6.1)

7

Mixed numbers show without suffixes and caps. For example, inside
the following formula ¢ acts as a mixed number.

c=c.+c¢ (19.6.2)
Quaternionic multiplication obeys the equation;

c=c, +Efabf(ar+;)(br +B)

—ab,—(ab)vab+ab, taxh (19.6.3)
The + sign shows the freedom of choice of the handedness of the
product rule when selecting a version of the quaternionic number
system. In this way, the handedness of the product rule is a special kind
of geometric symmetry.

The application must select the version of the number system before
it can use the product in calculations.
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Two quaternions that are each other’s inverse can rotate the spatial
part of another quaternion;

c=abla (19.6.4)

The construct rotates the spatial part of b that is perpendicular to a
over an angle that is twice the angular phase ¢ of a=|a|” where

f=a/”a“ .

Cartesian quaternionic functions apply a quaternionic parameter space.
A Cartesian coordinate system sequences this parameter space. The
users of quaternionic functions tend to interpret the real part of the
guaternions in the parameter space as instances of (proper) time. The
spatial parts often appear as spatial locations. With these
interpretations, the real parts of quaternionic functions stand for
dynamic scalar fields. The spatial parts of quaternionic functions stand
for dynamic spatial fields. Often, those users call these fields vector
fields. “Vector field” is a misleading name. Vectors obey different
arithmetic.

19.7 Arithmetic of change

In continuumes, all convergent series of numbers end in a limit that is a
member of that continuum. This fact enables the differentiation of the
continuum. Differential calculus shows that a continuum can change. In
the Hilbert Book Model, the continuum shows astonishing behavior. It
has the habit of removing deformations. Without disturbing actuators,
the continuum stays flat.

19.7.1 Differentiation

Along a direction_line, a partial differential describes the change. If in a
region of the space coverage inside this direction_line, all converging
series of coordinate markers result in a limit that is a coordinate
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marker, then the partial change of the space coverage along the
direction of ris defined as the limit

a_‘//:hm'//(r+5r)_l//(r) (19.7.1)

or 5r—0 or

If all its irrational numbers cover the region, then this limit exists. The
region does not ensure the existence of the limit. If the limit does not
exist, then the location stands for a singular point. It is also possible
that an enclosed discrete set of point-like objects covers the
surrounding region. In that situation, this set is not a continuum.

If the spatial part of the neighborhood is isotropic and the limit also
exists in the real number space, then the total differential change df of

field f equals

df = afa’r+—za’x+g]dy+a—ka’z (19.7.2)
ot ox oy 0z

or of of of

In this equation, the partial differentials ,

,—, behave like
T Ox Oy Oy

quaternionic differential operators.

The quaternionic nabla V assumes the particular condition that partial
differentials direct along the axes of the Cartesian coordinate system in
a natural parameter space of a non-separable Hilbert space. Thus,

4 —
V=Zai=i+?3+j3+kg (19.7.3)
o Ox;, Ot Ox oy 0z

The following section will apply this by splitting the quaternionic nabla
and the function into scalar and spatial parts.
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The first-order partial differential equations divide the first-order
change of a quaternionic field into five distinct parts that each
represent a new field. We will replace the quaternionic field change
operator with a quaternionic nabla operator. This operator behaves like
a quaternionic multiplier.

The first-order partial differential follows from

0 0 0 0 =
V=i— = —, ==V +V (19.7.4)
0t Ox 0y Oz

The spatial nablaV is well-known as the del operator. \Wikipedia treats
the del operator in detail. The partial derivatives in the change operator
only use parameters that they take from the natural parameter space.

o - 3
$=Vy =(—+Vj(% +7)

0t (19.7.5)
=V, ~ (V. )+ Vi +Vy, £V xij

Only the corresponding version of the quaternionic nabla is active in a
selected version of the quaternionic number system. In a selected
Hilbert space, this version is always the same everywhere.

19.7.1.1 Five terms

The differential Vi describes the change of field y . The five separate
terms in the first-order partial differential have separate physical
meanings. All basic fields feature this decomposition. The terms may
stand for new fields;

4=V, -(V.y) (19.7.6)

¢, is a scalar field.

b=V y+Vy £Vxiyj (19.7.7)
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¢ is a spatial field.

Vf is the gradient of f .
<§,f>is the divergence of £ .

V x f isthe curl of /.

Important properties of the del operator are;

O (V) =9 (V.7) (9.5
Sometimes parts of the change get new symbols;
E=-Vy-Vy,

B=Vxy

(19.7.8)
(19.7.9)
(19.7.10)

(19.7.11)

(19.7.12)

(19.7.13)

The formula (19.7.5) is complete and does not leave room for gauges.
However, Maxwell's equations treat the equation (19.7.6) as a gauge.

The parts with new symbols obey;

(6,1‘3’):0
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19.7.1.2  The conjugate equation
The conjugate of the quaternionic nabla operator defines another type
of first-order field change.

V=V -V (19.7.17)
. 0 - .
§=V¢=(E—V)(¢r+¢)

=V ¢ +<‘§,g}5>+vr$—?¢r TVxg

(19.7.18)

All dynamic quaternionic fields obey the same first-order partial
differential equations (19.7.5) and (19.7.18).

Vi=V'=V, —-V=V +Vi=V +V’ (19.7.19)

19.7.1.3  Other normal differential operators
In the Hilbert space, the quaternionic nabla is a normal operator. The
operators

VIV=VV'=VV=VV' =V V, +(V.V) (19.7.20)
are normal operators who are also Hermitian operators.
The separate operatorsV V _ and <§ﬁ> are also Hermitian operators.

<§ﬁ>is known as the Laplace operator.

The two operators can also combineas 0=V V — <§ﬁ>. This

construction is the d’Alembert operator.
The solutionsto V.V _+ <§ﬁ> =0and V.V, —<§ﬁ> =0 differ.

These two equations offer different solutions, so they deliver different
dynamic behavior of the field. The equations control the behavior of
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the embedding field that physicists call their universe. This dynamic
field exists everywhere within the reach of the parameter space of the
function. Both equations also control the behavior of the symmetry-
related fields. The homogeneous d’Alembert equation, known as the
wave equation, offers waves and wave packages as its solutions. Both
equations provide shock fronts as solutions, but only the operators in
the equation (19.7.18) deliver shock fronts with a spin or polarization
vector. Integration over the time domain turns both equations in the
Poisson equation and removes the spin or polarization vector.

Shock fronts require a corresponding actuator and occur only in odd
numbers of participating
dimensions.

19.7.1.4  Continuity equations
Continuity equations are partial quaternionic differential equations.

Users interpret the dynamic changes in the field as field excitations,
field deformations, or field expansions.

The here-discussed field excitations are solutions to the mentioned
second-order partial differential equations. Without a corresponding
actuator, the field will not react. Spherical pulses are the only actuators
that deform the field. The field responds to these pulses by quickly
removing the deformation. The removal sends the deformation away in
all directions in the form of shock fronts until these fronts vanish at
infinity. This behavior follows from the solutions presented in (19.7.29)
and (19.7.31).

One of the second-order partial differential equations results from
combining the two first-order partial differential equations ¢ =V and

C=Vg.
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C=Vp=V'Vy=VVy-= (vr +§)(Vr —§)(y/r +)

=(V,v,+(V,V))y
(19.7.21)

All other terms vanish. <§ﬁ> is the Laplace operator.

The integration over the time domain results in the Poisson equation;

D= <€ﬁ>w (19.7.22)
Under isotropic conditions, a particular solution of the Poisson equation
1
is the green’s function ﬁ of the affected field. This solution is
Ar\g—q'

the spatial Dirac 5(g) pulse response of the field under strict isotropic

conditions.

V‘q qu—‘q — (19.7.23)
_ id
S Y
<V’V>61—E'}_ “i-q
(9_<> (19.7.24)
=— ﬁ,j] 23 = 475(G-q')
q—49

This solution corresponds with an ongoing source or sink in the field.

A point-like stationary spatial pulse cannot start a shock front.
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Therefore, the stationary spatial point-like object must be a sink or a
source.

In mathematical physics and for physical_reality, stationary point-like
masses do not persist. Instead, the embedding field sends them away.

Change can occur either in one spatial dimension or in two or three
spatial dimensions.

19.7.1.5 Dynamic Pulse Response
Under the proper conditions, the field's dynamic pulse response is a
solution to a particular form of the equation (19.7.21).

(vrvr + W,?))W = 47z5(q —5‘)9(7 +7') (19.7.25)

Here 6(7) is a temporal step function and §(g) a spatial Dirac pulse

response. For the spherical pulse response, the pulse must be isotropic.
After the instant ', the equation turns into a homogeneous equation.

The shock front in one dimension along the line g — g is a
straightforward solution;

W=f(‘é—5"i6(f—f')ﬁ) (19.7.26)

Here 7 is a normed spatial quaternion. This spatial quaternion has an
arbitrary direction that does not vary in time. In this equation, the
normalized spatial number 7 also interprets as the polarization of the
solution. We intentionally placed the normalized spatial number 7
close to speed c. The function f can be a primitive shock front or a
superposition of primitive shock fronts. The single primitive shock front
solution stands for a dark energy object. It stands for a quantum of
energy.
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The adjective “dark” is confusing because shock fronts become
observable when they cooperate in huge quantities.

19.7.1.6  Trick
In isotropic conditions, we better switch to spherical coordinates. Then
the equation gets the form;

0 N 0’ 9 0

or*  or’ ror v
0* 0

(afz aﬁ](w)

The second line describes the second-order change of w7 in one

(19.7.27)

dimension along the radius r. The above text describes the solution. A
solution to this equation is;

wr=f(rtcrn) (19.7.28)

The solution of (19.7.27) is described by;

yo f(‘Q—q"J_rc(r—r')ﬁ)

— (19.7.29)
i-d]
The normalized spatial number 7 can show as the spin of the solution.
It might be related to the direction the model selects when the
guaternion-based Hilbert space temporarily reduces to a subspace that
holds a complex-number-based Hilbert space. The spherical pulse
response acts as an expanding or contracting spherical shock front.
Over time this pulse response integrates into the green’s function. This
integration means that the isotropic pulse injects the volume of the
green’s function into the field. Subsequently, the front spreads this
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volume over the field. The contracting shock front collects the volume
of the green’s function and sucks it out of the field. The + sign in the
equation (19.7.25) selects between injection and suction. The shock
front moves away from the pulse that caused the front. Finally, it
vanishes at infinity. The inserted volume expands the field.

Spherical shock fronts are dark matter objects.

When they cooperate in huge quantities, they may become perceivable.
Then they are no longer dark.

Shock fronts only occur in one and three dimensions. A pulse response
can also occur in two dimensions, but in that case, the pulse response is
a complicated vibration that looks like the result of a throw of a stone in
the middle of a pond. The HBM does not go into details of that
situation.

2
Equations (19.7.21) and (19.7.22) show that the operators a—zand
T

<§ﬁ> are valid second-order partial differential operators.

These operators combine in the quaternionic equivalent of the wave
equation;

cﬂ{a—;—ﬁﬁgw =ay (19.7.30)

This equation also offers one-dimensional and three-dimensional shock
fronts as its solutions;

W:f(\ci—q'

ic(r—r'))

i~d

(19.7.31)
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t//:f(‘cj—ﬂic(r—r')) (19.7.32)
These pulse responses do not hold the normed spatial number 7 .

Apart from pulse responses, the wave equation offers waves as its
solutions. That is why scientists named it the wave equation.

19.7.1.7  Split

If, locally, the field can split into a time-dependent part T(7) and a
location-dependent part A(q), the homogeneous version of the wave
equation can be transformed into the Helmholtz equation.

O e
611/; = <V,V>(// =—0'y (19.7.33)
v(q,7)=A@)T(z) (19.7.34)
10°T 1= — )
;ﬁzgw,vﬂz—w (19.7.35)
<§,§>A+w2A=0 (19.7.36)
o°T
8—2+a)2T=0 (19.7.37)
T

@ acts as quantum coupling between(19.7.36) and (19.7.37).

The time-dependent part T(7) depends on initial conditions, or it shows
the switch of the oscillation mode.

During the switch, the quaternionic Hilbert space temporarily switches
to a complex-number-based Hilbert space that is a subspace of the
Hilbert space. The switch takes a corresponding interval; during that
interval, the subspace emits or absorbs a sequence of equidistant one-
dimensional shock fronts. Together, these shock fronts form a photon.
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The text above discusses the one-dimensional shock fronts. The switch
of the oscillation mode means that the oscillation stops temporarily,
and instead, the system emits or absorbs energy that compensates for
the difference in potential energy. The location-dependent part of the
field A(q) describes the possible oscillation modes of the field and
depends on boundary conditions. The oscillations have a binding effect.
They keep moving objects within a bounded region.

For three-dimensional isotropic spherical conditions, the solutions have
the form.

(r,0,0) :iZ{(al Ji(kr))+B,Y" (6,0)}  (19.7.38)

=0 m=-1

Here j, and y, are the spherical Bessel functions, and y,” are

the spherical harmonics. These solutions play a role in the spectra
of atomic modules.

Planar and spherical waves are the more straightforward wave
solutions to the equation (19.7.33);

t//(é,r):exp{ﬁ(<l€,q—c70>—a)r+g0)} (19.7.39)
w(G.7)= eXp{ (% |qu _q;j' M+¢)} (19.7.40)

A more general solution is a superposition of these basic types.

19.7.1.8 Homogenous Equations

Two relatively similar homogeneous second-order partial differential
equations exist. They are the homogeneous versions of equations
(19.7.25) and (19.7.30). The equation (19.7.25) has spherical shock front
solutions with a spin vector that behaves like the spin of elementary
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particles. The field only reacts dynamically when corresponding
actuators trigger it. For example, pulses may cause shock fronts that,
after the trigger, keep traveling. Oscillations of type (19.7.39) and
(19.7.40) must be initiated by periodic actuators.

The inhomogeneous pulse-activated equations are;
(V.V, 2(V.V) )y =475(G—-q")0(r £ 7") (19.7.41)

Without the interaction with actuators, all vibrations and deformations
of the field keep busy vanishing until the affected field resembles a flat
field. Only an ongoing stream of actuators can generate a more
persistently deformed field.

An ongoing embedding of the actuators into the eigenspaces of
operators that archive the dynamic fields provides this.

19.7.1.9 Isotropic conditions

The two shock front solutions show an interesting property of the
Laplace operator. In isotropic conditions, the Poisson equation rewrites
as;

. - o’ 20 10

The product ¢ = (ry)is a solution of a one-dimensional equation in
which 7 plays the variable.

Section Trick treats this situation.

The same thing holds for all differential equations that contain the
Laplace operator<§ﬁ>
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So, spherical solutions of the second-order differential equations &/
follow from the solutions ¢ of one-dimensional second-order differential
equations by dividing & by the distance 7 to the center.

In isotropic conditions, the quaternionic differential calculus can scale
down to complex-number-based differential calculus. This downscaling
already works at local scales. If, on larger scales, the isotropic condition
violates, the model must adapt the coordinates of the complex-number-
based abstraction to the deformed Cartesian coordinates of the
guaternionic platform. This adaptation makes sense in moderate
deformations of the quaternionic field. After adaptation, the map of
each complex-number-based coordinate line becomes a geodesic.

These tricks are possible because it is possible to consider complex-
number-based Hilbert spaces as subspaces of quaternionic Hilbert
spaces.

19.7.1.10 Bosons

The trick becomes relevant when rotations obstruct the relation with
the geometric center of the natural parameter space. For example,
neutrinos that encircle the electrons explain the muon and tau
generations of the electron.

These combinations form bosons. They are composites and not
elementary particles.

19.7.1.10.1 Spin

Suppose the dimension of the quaternionic Hilbert space reduces to the
dimension of a subspace that applies a complex-number-based Hilbert
space. In that case, whether the selected direction involves a polar or
azimuth angle might become significant. In mathematics, the polar
angle range is twice the azimuth angle range. In physics, the two ranges
belong to different particle types. Fermions apply odd counts of the
azimuth angle range. Bosons apply an even count of the azimuth angle
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range or an integer count of the polar angle. The choice can take a role
as spin value.

In physics, fermions feature a half-integer spin value, and bosons
feature an integer spin value.

19.7.2 Enclosure balance equations

Enclosure balance equations are quaternionic integral equations that
describe the balance between the inside, the border, and the outside of
an enclosure.

These integral balance equations replace the del operator V with a
normed vector 7 . The vector 7 orients outward and perpendicular
to a local part of the closed boundary of the enclosed region,;

Vy iy (19.7.43)

This approach turns part of the differential continuity equation into a
corresponding integral balance equation;

[[[Vwar ={piyas (19.7.44)

7i dS plays the role of a differential surface. 7 is perpendicular to that
surface.

This result separates into three parts;

Vi =—<§,1/7>+§wr +V Xy < iy
(19.7.45)
=—(n,y)+ny, tixy
The first part concerns the gradient of the scalar part of the field;

Vy, < iy, (19.7.46)

”Wyxrdlfzcjﬁﬁy/rds (19.7.47)
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An integral balance equation, known as the Gauss theorem, treats the
divergence. It is also known as the divergence theorem [25];

(Vi) e (.7) (19.7.48)

[[[{(V.7)av =gp(i.i7)as (19.7.49)

A corresponding integrated balance equation treats the curl;
Vi < ig (19.7.50)
m?xzpdrf: #ﬁx:f/dS (19.7.51)

Equation (19.7.49) and equation (19.7.51) can combine in the extended
theorem;

[[[Vwdr =dpi s (19.7.52)

The method also applies to other partial differential equations. For
example;

:ﬁ< ,gﬁ)—<ﬁ,ﬁ>z/7 (19.7.53)
(1990 ) ar =G5 {9197)s~ (9.9}
(19.7.54)
One dimension less, a similar relation exists;
( an n )clS <a,di> (19.7.55)

This equation is known as the Stokes theorem [26]
The curl can show as a line integral;
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(Vxy,ii) = lim(lcj§<y7,df>] (19.7.56)

A—0 AC

19.7.2.1  Derivation of physical laws
The quaternionic equivalents of Ampeére's law are [27];

J=VxB=V E& J=ixB=V E (19.7.57)

[[(VxB.iiyds =§(B.dl )= [[(J+V E,ii)as  (19.7.58)
S C S
The quaternionic equivalents of Faraday's law are [28];
V.B=Vx(Vy)=-VxE<V B=iix(Vy)=-VxE
(19.7.59)

$(E.dly=[[(V=E,i)ydS =—[[(V,B.ji)ds  (19.7.60)
c S
J=Vx(B=E)=Vx$-V,G=vp (19.7.61)

HWX@’@‘ZS:CJS( *»dﬁ>):H<‘7ﬂ+Vr@,ﬁ>dS (19.7.62)
S c

S

The equations (19.7.60) and (19.7.62) enable the derivation of the
Lorentz force [29];

VxE=-V B (19.7.63)
<[ (Bi)s - | j)<*(fo) i s+ [[{8(n) )
s S(7, S(z
(19.7.64)

The Leibniz integral equation states [30];
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S()
_ ﬂ)<)%(fo)+(ﬁ,i(f0)>v(fo),ﬁ>ds- ( )<v(fo)xf((fo),di>
(19.7.65)

With X =B and <§,E>=O follows;

do, _
el [ o § s
__qg< > j)(a(ro)xé(%),d*>

0 (19.7.66)

The electromotive force (EMF) ¢ equals [31];

=T (19.7.67)
= >+ < TO ><B dl>
C(TO) C(7y)

F=qE+qVxB (19.7.68)

19.8Dirac’s’ bra-ket procedure

Paul Dirac introduced a handy notation for the relationship between the
ingredients of a Hilbert space. The bra-ket combination allows using
complex numbers and quaternions as superposition coefficients. The
bra-ket combination restricts the applied numbers to members of an

86



associative division ring. This restriction reduces the choice to real
numbers, complex numbers, and quaternions. The bra-ket combination
selects a private version of that associative division ring. First, we focus
on separable Hilbert spaces. Inside separable Hilbert spaces, the applied
sets of numbers are countable. With that restriction, the bra-ket
combination turns the underlying vector space into a separable Hilbert
space.

19.8.1 Countable number systems

In this section, we focus on separable Hilbert spaces. Inside separable
Hilbert spaces, the applied sets of numbers are countable. With that
restriction, the bra-ket combination turns the underlying vector space
into a separable Hilbert space. Selecting a version of the number
system, fixes the symmetry of the number system. This section treats
the case that the Hilbert space applies quaternions to specify the values
of bra-ket combinations. The format of the formulas that show also
holds for complex numbers and real numbers. The values of bra-ket
combinations will apply in linear combinations of vectors and as
eigenvalues of operators.

The bra-ket method establishes this by distinguishing the vectors from
the underlying vector space into two types of vectors with different
arithmetic. The two types stand for separate views of the underlying
simple vector space. The ket (f| is a covariant vector, and the bra |g) is

a contravariant vector. The vectors f and g exist in the underlying
vector space. The arithmetic of the ket vectors differs from the
arithmetic of the bra vectors. The bra-ket combination (f |g) has a
quaternionic value. If the underlying vectors f and g are equal, then the

bra-ket combination can act as a metric. Since the product of
guaternions is not commutative, the user must take care with the
format of the formulas when quaternions apply.
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19.8.1.1 Ket vectors
The addition of ket vectors is commutative and associative;

£) +|g) =|g) +|f) =|f +g) (19.8.1)

(|f +g))+h)=|f)+(|g+h))=|f +g+h) (19.8.2)

Together with quaternions, a set of ket vectors forms a ket vector
space. Ket vectors are covariant vectors.

A guaternion & can help to construct a covariant linear combination
with the ket vector |f);

laf) =|f)a (19.8.3)
19.8.1.2  Bra vectors
For bra vectors hold;
(f|+(g| = (g|+ {f| =(f + g (19.8.4)
(<f+g\)+<h\:<f\+(<g+h\):<f+g+h\ (19.8.5)

Bra vectors are contravariant vectors.
(af|=a’ (1] (19.8.6)

Quaternions can form linear combinations with bra vectors. Together
with quaternions, a set of bra vectors creates a bra vector space.

A set of bra vectors form the vector space that is adjunct to the vector
space of ket vectors that are the origins of these maps. If the map
images the adjunct space onto the original vector space, then the bra
vectors may map onto the corresponding ket vector.

19.8.1.3  Bra-ket combination
For the bra-ket combination holds;
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(flg)=(g|f) (19.8.7)

For quaternionic numbers & and £ hold;

(of |g)=(g|af) =((gIf)a) =a'(f|g) (19.8.8)
(f|Bg)=(fg)p (19.8.9)

(a+p)flg)=a (flg)+f (fIg)
‘ (19.8.10)

=(a+p) (flg)

These formulas correspond with (19.8.3) and (19.8.6);
(af|=a’ (f| (19.8.11)
lag) =|g)a (19.8.12)

We made a choice. Another possibility would be (af|= o (f| and
ag)=|g)a’

19.8.1.4  Operator construction
|f)(g| is a constructed operator;

g)(f|=(If)(g]) (19.8.13)

The superfix "shows the adjoint version of the operator.

For the orthonormal base { ql.>} consisting of eigenvectors of the

reference operator holds;
(q,1q,)=95,, (19.8.14)

Eigenvectors belong to the underlying vector space. Eigenvalues belong
to the natural parameter space. The natural parameter space is a
selected version of the applied number system. The bra-ket method
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enables the definition of new operators that quaternionic functions
define;

<g|F|h>=g{<g|%>F(q[)<q,-|h>} (19.8.15)

The symbol F'is used both for the operator /' and the sampled
quaternionic function F(g). This format enables the shorthand;

F=[q,)F(q,){a] (19.8.16)
for operator F'. For the adjoint operator;
F'= q[>F* (q[)<qi (19.8.17)

For reference operator$? holds;

R = (19.8.18)

4,)9:(4,
If {g,} consists of all rational values of the version of the quaternionic

number system that Hilbert space ) applies, then the eigenspace of R
represents the natural parameter space of the separable Hilbert space
9. Itis also the parameter space of the function F(g)that defines the

natural operator F'in the formula (19.8.16). This formula turns the
separable Hilbert space into a sampled function space.

19.8.1.5 Expected value.
Any bra vector(g| can write as a linear combination of the bra base

I

vectors {<q,.
N

(g|=2 {(glg,){a} (19.8.19)

i=1
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Any ket vector |g)can write as a linear combination of the ket base

q)};

vectors {

q:)(4,

The eigenvalues archive as a combination of a real value and a spatial
value. These parts take independent dimensions. If the real parts
sequence, then the sequence of eigenvalues stands for an ongoing
hopping path. Suppose this ongoing hopping path recurrently
regenerates the same hop landing location swarm. In that case, the hop
landing locations can sum over the regeneration period in the cells of a
dense spatial grid. The total sum results in a spatial center location. The
sums in the cells describe a location density distribution. The center
location acts as the expected spatial value of the hop landing locations.
A hop landing location distribution will describe the hop landing
location swarm. If the swarm covers a more significant number of
locations, then the location density distribution description will be more
correct. If the results for the grid cells sample over a more substantial
part of the real numbers, then the describing location density
distribution approaches a continuous function.

g, =(gla.)a

g) (19.8.20)

|g>=i{

i=1

This means that Kg

g> can take the role of a hop

landing location distribution.
Here, we only used the spatial parts of the eigenvalues.

The expected spatial value for the operator R and vectorg is;

(), = (e[ R[g)= > {(e

i=l1

G,)d,(4.|g)} (19.8.21)

The expected value plays its role in a series of ordered observations or

events. After sequencing the timestamps of the samples, the string of
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samples stands for an ongoing hopping path. If the vector g aims at a
particular location inside the parameter space of the Hilbert space, then
the mechanism that generates the ongoing hopping path recurrently
regenerates a hop landing location swarm that a stable location density
distribution describes. For large values of N, the location density
distribution approaches a continuous function (g|g){g|g), and the

distribution <g|c?> interprets as a probability amplitude. The square of

the modulus of this probability amplitude is a probability density
distribution. What these continuous functions describe are discrete
sets. The approach fits better if the number of elements in the set is
more significant and there exists a requirement for a considerable
coherence of the set.

Suppose at instant zero, the vector equals the eigenvector that belongs
to eigenvalue zero, and the expectation value also equals zero. In that
case, the hop landing locations {g,} will tend to stay awhile about the

geometrical center of the Hilbert space. If the tendency lasts, the vector
g will function as a unique state vector of the Hilbert space.

An active stochastic selection process will give the location density
distribution a statistical sense. A footprint vector |g) that varies over

time stands for that selection process. The selection process's
characteristic function checks how |g) varies over time. A vectorg in

the underlying vector space stands for the footprint vector. The Hilbert
space can archive the life history of the footprint vector in the form of a
cord of quaternionic eigenvalues from a devoted footprint operator.

The state vector of the Hilbert space is a unique footprint vector of the
Hilbert space. At every instant of time, the footprint vector has the
expectation value of zero. At instant zero, the state vector equals the
eigenvector that belongs to location zero. This fact still does not say
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everything about the essence of the required underlying stochastic
selection mechanism. The decision of the HBM to replace the real parts
of the geometric eigenvalues against timestamps hides what happened
to the hopping path. For example, this description does not explain the
value and stability of the recurrence rate of the hop landing location
swarm. It is not clear why the characteristic function of the stochastic
mechanism is stable. Nevertheless, the decision made the application of
differential calculus possible.

19.8.1.6  Operator types
1 stands for the identity operator.

For normal operator N holds; NN" = NN,

The normed eigenvectors of a normal operator form an orthonormal
base of the Hilbert space.

For unitary operator U holds; UU' =UU =1

For Hermitian operator A holds; H=H'

" N+N' . " N-N'
N has a Hermitian part; 5 and an anti-Hermitian part;

For anti-Hermitian operator 4 holds; 4 = —A"

A Hermitian operator has real eigenvalues. An anti-Hermitian operator
has spatial eigenvalues.

The reference operator R is a normal operator.

19.8.2 Uncountable number systems

Every infinite-dimensional separable Hilbert space owns a unique non-

separable companion Hilbert space that embeds its separable partner.

The non-separable Hilbert space allows operators that maintain

eigenspaces that, in every dimension and every spatial direction, hold
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closed sets of rational and irrational eigenvalues. These eigenspaces are
uncountable and behave as dynamic sticky continuums. These
continuums can vibrate, deform, and expand.

Gelfand triple and Rigged Hilbert space are other names for the
general non-separable Hilbert spaces.

In the non-separable Hilbert space, the bra-ket method turns from a
summation into an integration for operators with continuum
eigenspaces;

(gl 7 1n)=[[[[{(ala) F (q)(gn)|avdr (19.8.22)

Here we omitted the enumerating subscripts that we used in the
countable base of the separable Hilbert space. Instead, the integration
applies the infinitesimal dVdr originating from the continuum in the
private parameter space.

The shorthand for the operator F'is now;
=|q)F(q){q]| (19.8.23)
For eigenvectors |g), the function F(q) defines as;
F(q)=(a|Fa)=[[[[{{a14") F(a){q'|q)}dV'dr" (19.8.24)
The function F(¢) no longer samples.

The reference operator R that supplies the continuum’s natural
parameter space as its eigenspace follows from;

(g| Rh) jm{ g|q)q(q|h)|dvdz (19.8.25)

The corresponding shorthand is;

R =|q)q(4| (19.8.26)
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The reference operator is a special kind of defined operator. Via the
guaternionic functions that specify defined operators, the claim
becomes clear that every infinite-dimensional separable Hilbert space
owns a unique non-separable companion Hilbert space that embeds its
separable companion.

The reverse bra-ket method combines Hilbert space operator
technology with quaternionic function theory and indirectly with
guaternionic differential and integral technology. The replacement of
the real parts of geometric eigenvalues made this possible. Humans, not
physical_reality made this choice!

19.8.2.1 Expected spatial value.

Like the separable Hilbert space situation, the model applies a grid
overlay of the spatial part of the parameter space to integrate over the
grid cells. The expected spatial value averages over a part of the real
part of the parameter space.

In the non-separable Hilbert space, the model defines the expected
spatial value as an average over the spatial part of the parameter space;

(%), =(e[Rg) m {(glg)d(qlg)lav (19.8.27)

Usually, the model keeps the real part of the parameter space fixed,
and the integration occurs over the spatial part of the parameter space.

The location density distribution is a continuous function with values
corresponding to locations in the spatial part of the parameter space;

(gla)| =(g|a)(q|g) (19.8.28)

Thus, the variable ¢ can be any value in the spatial part of the
parameter space.
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19.9 Lattice theory

19.9.1 Relational structures
The interface types, relation types, and module types feature a
lattice structure.

Also, the closed subspaces of separable Hilbert spaces feature a
similar lattice structure.

Garret Birkhoff and John von Neumann stated that lattice structure
in 1936; decades later, Maria Pia Soler proved this mathematically in
Soler's theorem.

John von Neumann was the assistant of David Hilbert.

Many scientists suspected the lattice structure of the separable
Hilbert spaces as a foundation of physics. However, this conclusion
does not justify. Instead, the HBM relies on the special_set as a
better candidate for the foundation of theoretical physics.

Later, the author suggests that the lattice structure of the closed
subspaces of a separable Hilbert space is a requirement for the
modularization of the fermions.

19.9.2 How quantum logic got its name
In 1936 Garret Birkhoff and John von Neumann reported a skeleton

relational structure that can function as a foundation of a model of
physics.

They called it quantum logic.

~25 axioms define classical logic, which differs in only two axioms from
guantum logic.

In quantum logic, the distributive law fails, and the modular law
weakens.

96



Due to the remarkable resemblance with classical logic, Birkhoff and
von Neumann classified their skeleton relational structure as logic and
called it quantum logic.

19.9.3 Lattice structure
A lattice is a set of elements a, b, c, .,.,. that closes for the
connection's conjunction N and disjunction U.

Symbol € stands for implication.
These connections obey;
The set orders partially.

With each pair of elements a, b belongs an element ¢, such that
a c candb C c.

The set is a N half lattice if, with each pair of elements a, b an
element c exists, such thatc = a N b.

The set is a U half lattice if, with each pair of elements a, b an
element c exists, such thatc = a U b.

The set is a lattice if it is both a N half lattice and a U half lattice.

19.9.3.1  Partially ordered set
The following relations hold in a lattice;

anb=>bnNa
(anb)nc=an (bnc
an(auvUb)=a
aUb=bUa
(aUb)Uc=aVU ((bUrc)
aVU(anb) =a

A lattice has a partial order inclusion C;
97



aCbh&®acb=a

A complementary lattice contains two elements n and e, with each
element a, a complementary element a’;

anNna=n anNnn=n
ane=a avua =c¢e

aUe =¢e auUn = a

19.9.4 Orthocomplemented lattice
This type of lattice contains with each element a an element a” such

that;

auUa =ce
ana =n
(a")" — a

a C b @ b" C a"

19.9.4.1 Distributive lattice
In a distributive lattice;

anMUc)=(anb)U (anc)
aU(Mbnc)=(@Ub)n (aUrc)

19.9.4.2 Modular lattice
In a modular lattice;

(anb)uU@anc)=an (buU(anc))
Classical logic is an orthocomplemented modular lattice.

19.9.5 Weak modular lattice
There exists an element d such that;

acce (aub)nec
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=aVUbnc)uUdnoec)
where d obeys:
(aub)ynd=d
and=n
bnd=n
[(a c gland(b c g)] @ dc g

Quantum logic obeys the weak modular law.

19.9.6 Atomic lattice
In an atomic lattice is;

ElpeLVxeL{x Cp=>x=nj

VaevaeL{(a <x<an p)

= (x = aorx = a N p)}
p is an atom.

19.9.7 Logics
Classical logic has the structure of an orthocomplemented distributive

modular and atomic lattice.

Quantum logic has the structure of an orthocomplented weakly
modular and atomic lattice.

Scientists also call quantum logic an “orthomodular lattice.”

19.9.8 Rules and relational structures
The part of mathematics that treats relational structures is lattice
theory.

Logic systems are applications of lattice theory.

Classical logic has a simple relational structure.
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However, since the paper of Birkhoff and von Neumann in 1936, we
know that physical_reality cheats classical logic.

Since then, many scientists have thought that nature obeys quantum
logic.

Quantum logic has a much more complicated relational structure than
classical logic.

Quantum logic enables modularization in abstract structures.
Physical_reality applies these abstract structures.

19.9.8.1 The axioms
The axioms concern relations between elements

The axioms do not concern the content of the elements.
The axioms describe countable discrete sets of elements.

The axioms do not necessarily concern logic systems.

19.10 Fourier transforms.

A cosine function combines with a sine function that owns the same
frequency into a complex number-valued exponential function. The
imaginary factor Z belongs to the direction of that same direction_line.

@(27xp) = cos(2zxp) + issin(27xp) = exp(i2zxp) (19.10.1)

This sum has the remarkable property that p resembles the partial
differential change operator for the direction iof x;

)

I—@=-21pp (19.10.2)
0X

)

[—@==-27XQ (19.10.3)
op
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X and p are related via a Fourier transform [32].

This section does not show the spatial direction number with a vector
cap in the exponentials. Instead, we use the convention that complex
number versions of the exponential function apply.

The relation between ¥ (x) and 7 (p,,) in the sum;

V/(X) - i {‘/7(px,n )ezmxvan (px,n+l o px,n )} (19104)

n=—00

gives the Fourier transform in a separable complex-number-based
Hilbert space,

In the limit where Ap, = (pm+1 —px,n)—> 0 the sum becomes an

integral;

v =[ {7 (p.)e™ dp, (19.10.5)
The reverse Fourier transform runs as;

7 (p) =" {w(x)e™ Jdx (19.10.6)

In these formulas, the symbol i is a normalized spatial number part of a
complex number. i corresponds to the spatial direction that
constructing the complex-number-based Hilbert space selected.

. =0
The function e”™"is an eigenfunction of the operator p, = P which
X
is recognizable as part of the change operator (19.7.3);
s a 27ixp = 2mixp
[ —e " =2rpe ™ (19.10.7)
Ox
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The eigenvalue p_stands for the eigenfunction and the eigenvector p_

. . 27 .
in the change space. In the same sense, the function ¢ "~ is an

. . . - 0 :
eigenfunction of the position operator —i —and corresponds with the

p,
eigenvalue x of that operator;
s 0 =2 mixp —2zixp
—i—e  =2xxe x (19.10.8)
op,

The eigenvalue x stands for the eigenfunction and the eigenvector x in
the position space.

The Fourier transform of a Dirac delta function is;
S(py=["{s(x)e™m Jax =1 (19.10.9)
The inverse transform tells;
s(x) =" {1-&™"}dp, (19.10.10)

In the integral, factor 1 expresses that all superposition coefficients
have norm 1.

1 * i(x-a
S(x—a) :—j e dp. (19.10.11)
2 I
ezmbxa = I_OO 5(x—a)ezmx])xdx (191012)
. =0
The operator p, =1 6_ is often called the momentum operator for the
X

spatial direction7 of the coordinate x . pdiffers from classical

momentum, which is the product of velocity v and mass m. It is vital to
notice that every orthonormal base vector of the position space is a
superposition of ALL orthonormal base vectors of the change space.
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Further, the norms of the superposition coefficients are all equal.
Similarly, every orthonormal base vector of the change space is a
superposition of ALL orthonormal base vectors of the position space.
Again, the norms of the superposition coefficients are all equal. Thus,
jumping between different bases randomizes the landing base vector.

Fourier transforms convert convolutions of functions into products of
the Fourier transforms of the functions.

19.11 Uncertainty principle
The uncertainty principle states;

1
1677

UZ(X—xo)z |l//(x)|2dx)(ji(px _px,0)2|9‘7(l9x)|2dpx) N
(19.11.1)

For a Gaussian distribution, the equality sign holds. The Fourier
transform of a Gaussian distribution is again a Gaussian distribution
with a different standard deviation.

If ¥ (x) spreads, then 7 (p,) shrinks, and vice versa.

19.12 Center of Influence of Actuators
The potential V(r) describes the effect of a local response to an actual

or virtual isotropic point-like actuator. It reflects an agent's work to
bring a unit amount of the actuator influence from infinity to the
considered location;

V(r)=0,s/r (19.12.1)

Here 6, stands for the actuator influence. & takes care of adaptation to

physical units. 7 is the distance to the location of the point-like
actuator.
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A swarm of point-like actual or virtual actuators that superimpose their
potentials in the potential of a single actuator or virtual actuator
produces a potential that, viewed from a sufficient distance 7, has a

shape;

V(ir)y=0¢/r

(19.12.2)

Here ® stands for the actuator influence of the resulting actual or

virtual actuator. 7 is the distance to the center of the actuator

influence. This formula is valid at sufficiently large values of 7 such that

a swarm of actuators functions as a point-like object.

In a coherent swarm of actuating objects 9. ; —1.2.3... 7z, €ach with
l? S > 9"

static influence 6, at locations 7;, the center of actuation R follows from;

20,7 -R)=0

Thus;

Where;

(19.12.3)

(19.12.4)

(19.12.5)

In the following, we will consider an ensemble of actuating objects with

a center of actuation R and a fixed combined actuation influence® as a

single virtual actuation object that locates at R . The separate actuators
0. may differ because, at the instant of summation, the corresponding

influence might have partly faded away.
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R can be a dynamic location. In that case, the ensemble must move as
one unit.

19.13 Forces

The first-order change of the quaternionic field divides into five
separate partial changes. Some of these parts can compensate for each
other.

Mathematically, the statement that nothing in the field changes in the
first approximation indicates that the first-order partial differential will
be equal to zero locally.

§=VE=V,E—(V.E)+VE+V,E4VRE=0 (19.13.1)

Thus
¢, =V,&-(V.£)=0 (19.13.2)
F=VE+V E+VxE=0 (19.13.3)

It is possible to interpret these formulas independently. For example,
according to the equation (19.13.2), the variation in time of £, can

compensate the divergence of &. The terms that are still eligible for
change must together be equal to zero. For our purpose, we expect the
curl V x £ of the spatial field & to be zero. The resulting terms of the
equation (19.13.3) are

VE+VE =0 (19.13.4)

The following text plays the role of the spatial field and &, plays the role

of the scalar potential of the considered object. The spatial part&
conforms to the uniform speed of movement of the floating group of
influenced objects. The main characteristic of this field is that it tries to
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keep its overall change at zero. The author calls { the conservation
field.

At a considerable distance 1, we approximate this potential by using the
formula;

gr(r)z% (19.13.5)

r
The new artificial field 5:{%,v}considers a single uniformly moving
influenced object or a set of influenced objects that move uniformly as
a normal situation. It is a combination of scalar potential % and speed

v . This movement speed is the relative speed between the floating and
background platforms. At equilibrium, this speed is uniform.

If the gradient of ¢ differs from zero, then the artificial field {%,\7}
r r

tries to counteract this by changing field v into a field of accelerated
objects a;

a:é:-ﬁ(%jz Ocr (19.13.6)
r) |

In reverse, the accelerated spatial field a acts on actuator influences

%that appear in its realm by afflicting a gradient to this potential.
r

Thus, if two uniformly moving actuator influences 0, and ®, exist in
each other’s neighborhood, then any disturbance of the equilibrium will
cause the force r;

€0,0,(7-%) _9,0(7-7)

- 3 - - -3
‘7”1_’”2' |V1_7”2}

—

F(F-%)=0d= (19.13.7)

—X|
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The influenced objects own mass and can possess electric charge. Static
electric charges only influence electric charges. Massive actuators only
influence massive objects.

19.14 Deformation potentials

The model consider the deformation potential to be zero at infinity.
The deformation potential at a considered location equals the work
(energy transferred) per unit mass the model would need to move an
object from infinity to that location. Isotropic pulses that deform the
embedding field introduce an extra complication because the pulse
response is a shock front that quickly fades away. Therefore, we
reinvestigate this kind of potential.

19.14.1 Center of deformation

Suppose the actuator is a response to an isotropic pulse. In that case,
the deformation potential V'(r) describes the effect of a local response
to an isotropic point-like actuator. It reflects the work that must be
done by an agent to bring a unit amount of the injected stuff from
infinity back to the considered location;

V(ry=m,G/r (19.14.1)

Here m , stands for the mass that corresponds to the complete pulse

response. G takes care of adaptation to physical units. 7 is the distance
to the location of the pulse. The pulse response is a spherical shock
front.

A stream of these deforming actuators recurrently regenerates a
coherent swarm of embedding locations in the dynamic universe field.
Viewed from a sufficient distance 7, that swarm generates a potential;

V(r)=MG/r (19.14.2)
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Here M is the mass that corresponds to the considered swarm of pulse
responses. 7' is the distance to the center of the deformation. This
formula is valid at sufficiently large values of 7 such that the whole
swarm can function as a point-like object.

In a coherent swarm of massive objects pi=1,2,3,.n each with

static mass mz, at locations 7, the center of mass R follows from;

S m (7= R)=0 (19.14.3)
Thus;
ﬁ:ﬁ m (19.14.4)
Where;
M=m, (19.14.5)

In the following, we will consider an ensemble of massive objects with a
center of mass R and a fixed combined mass M as a single massive

object that locates at R. The separate masses mz, may differ because, at

the instant of summation, the corresponding deformation might have
partly faded away.

R can be a dynamic location. In that case, the ensemble must move as
one unit. The problem with the treatise in this paragraph is that in
physical_reality, point-like objects that own a static mass do not exist.
Only pulse responses that temporarily deform the field exist. Except for
black holes, these pulse responses form all massive objects in the
universe.
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19.15 Pulse location density distribution

It is false to treat a pulse location density distribution as a set of point-
like masses, as the formulas (19.14.3) and (19.14.4) show. Instead, the
deformation potential follows from the convolution of the location
density distribution and the green’s function. This calculation is still
incorrect because the exact result depends on the fact that the
deformation due to a pulse response quickly fades away, and the result
also depends on the density of the distribution. If the application can
ignore these effects, then the resulting deformation potential of a
Gaussian density distribution according to;

ERF(r)

r

g(r)~GM (19.15.1)

Where ERF(r) is the well-known error function. Here the deformation

potential is a perfectly smooth function that, at some distance from the
center, equals the approximated deformation potential described
above in the equation (19.14.2). However, as shown above, the
convolution only offers an approximation because this computation
does not account for the influence of the swarm's density, and it does
not compensate for the fact that the deformation by the individual
pulse responses quickly fades away. Thus, the exact result depends on
the duration of the recurrence cycle of the swarm.

In the example, we apply a normalized location density distribution, but
the actual location density distribution might have a higher amplitude.
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ERF(r)/r and 1/r
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This influence might explain why some elementary module types differ
in their mass.

The explanation of the generations of elementary fermions in the
section Bosons, differs from the explanation of the different masses of
elementary fermions.

This influence might also explain why different first-generation
elementary particle types show different masses. Due to the
convolution, and the coherence of the location density distribution, the
blue curve does not show any sign of the singularity that the red curve,
which shows the green’s function, holds.

In physical_reality, no point-like static mass object exists. The most
important lesson of this investigation is that far from the deformation
center of the distribution, the here-shown simplified form of the
deformation potential characterizes the deformation of the field as;

4y~ M (19.15.2)

r
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Warning: This simplified form shares its shape with the green’s function
of the deformed field. This sharing does not mean that the green’s

function owns a mass that equals M :é. The functions only share the

form of their tail.

19.16 Rest mass
The weakness in the definition of the deformation potential is the

definition of the unit of mass and the fact that shock fronts move with a
fixed finite speed. Thus, the definition of the deformation potential only
works properly if the geometric center location of the swarm of injected
spherical pulses is at rest in the affected embedding field. The
consequence is that the mass that follows from the definition of the
deformation potential is the rest mass of the considered swarm. We
will call the mass that corrects for the observer's motion relative to the
observed scene the inertial mass.

19.17 Observer
The inspected location is the location of a hypothetical test object that

owns an amount of mass. It can stand for an elementary particle or a
conglomerate of such particles. This location is the target location in the
embedding field. The embedding field is supposed to deform by the
embedded objects.

Observers can access information the model retrieved from storage
locations with a historic timestamp. That information transfers to them
via the dynamic universe field. This dynamic field embeds both the
observer and the observed event. The dynamic geometric data of point-
like objects archive in Euclidean format as a combination of a
timestamp and a three-dimensional spatial location. The embedding
field affects the format of the transferred information. The observers
perceive in spacetime format. A hyperbolic Lorentz transform converts
the Euclidean coordinates of the background parameter space into the
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spacetime coordinates that the observer perceives. The embedding
field may deform. This deformation also affects the transferred
information.

Photons follow geodesics in the embedding field [33].

19.17.1 Lorentz transforms.
In dynamic fields, shock fronts move with speed c. In the quaternionic
setting, this speed is unity.

X’ +y +z = (19.17.1)

In flat dynamic fields, swarms of triggers of spherical pulse responses
move with lower speed v.

For the geometric centers of these swarms still holds;

2 +y2 42 22 :x'2+y'2+z'2—022"2 (19_17_2)

If the locations {x,y,z}and {x',»',z'} move with uniform relative speed v,
then;

ct'=ctcosh(w)—xsinh(o) (19.17.3)

x'=xcosh(w)—ctsinh(o) (19.17.4)

cosh(w) = xp(@) +exp(-0) S (19.17.5)
o) 2 _ 2

sinh(@) = xp(@) ~exp(-0) = (19.17.6)
b 22

cosh(®)’ —sinh(w)’ =1 (19.17.7)

These equations describe a hyperbolic transformation that relates two
coordinate systems. The transformation is known as a Lorentz boost.
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This transformation can concern two platforms P and P' on which
swarms reside and that move with uniform relative speed.

However, it can also concern the storage location P coordinate time '
and location {x',y',z"} .

This hyperbolic transform relates two platforms that move with uniform
relative speed. One of them may be a floating Hilbert space on which
the observer exists. Or it may be a cluster of platforms that cling
together and move as one unit. The other may be the background
platform on which the embedding process produces the footprint
image.

The Lorentz transform converts a Euclidean coordinate system
consisting of a location {x,y,z} and proper timestamps 7 into the

perceived coordinate system consisting of the spacetime coordinates
{x',y',z',ct'}, in which z' plays the role of coordinate time. The uniform

velocity v causes time dilation; At':i2 and length contraction;
\%

%)

C

1—

2

"
AL'=AL|1-—

C
19.17.2 Minkowski metric

The Minkowski metric rules spacetime.

In flat field conditions, proper time T defines as;

2

t —
r= +*/C v (19.17.8)

c

And in deformed fields, still;

ds’ =c’dr’ =c’dt’ —dx’ —dy’ —dz’ (19.17.9)
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Here ds is the spacetime interval and drz is the proper time interval. 4t
is the coordinate time interval?

19.17.3 Schwarzschild metric
Polar coordinates convert the Minkowski metric to the Schwarzschild

metric. The proper time interval dz obeys;

r r

-1
dr? =(1—r—sjc2dﬁ —(1—”—3) dr’ =r*(d6” +sin’ dp*) (19.17.10)
Under pure isotropic conditions, the last term on the right side

vanishes.

According to mainstream physics, the symbol 7, stands for the
Schwarzschild radius in the environment of a black hole;

2GM
=

y 2
’ c

(19.17.11)

The variable requals the distance to the center of mass of the massive
object with mass M .

The Hilbert Book model finds a different value for the boundary of a
spherical black hole. That radius is a factor of two smaller.

19.17.4 Event horizon
The deformation potential energy U(7);
mMG
U(r)= (19.17.12)
r

at the event horizon » =r,, of a black hole, is supposed to be equal to

the mass-energy equivalent of an object that has unit mass m =1 and is
brought by an agent from infinity to that event horizon. Dark energy
objects are energy packages in the form of one-dimensional shock
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fronts that are a candidate for this role. Photons are strings of
equidistant samples of these energy packages. The energy equivalent of
the unit mass objects is;

M
E = me = ™G (19.17.13)
reh
Or;
MG
Ty =— (19.17.14)

At the event horizon, the system consumes all energy of the dark

energy object to compensate for the deformation potential energy at
that location. No field excitation, and particularly no shock front, can
pass the event horizon. In the equation (19.17.13), the mass m of the
test object could have been replaced by the mass m_ of the spherical

shock front that represents the dark matter object or by the mass m, of

an electron.

The equivalent energy of this mass is the energy of a dark energy object
that a one-dimensional shock front represents.

In the case of m, the equivalent energy is the energy of the annihilation
or creation photon of the electron.

The annihilation and creation photons have the same duration and hold
the same number of shock fronts. That number is the same as the
number of spherical shock fronts in the footprint of the electron.

The event horizon blocks all field excitations. This blockage means that
the image of the floating separable Hilbert space that stands for the
electron cannot pass the event horizon. The model postulates that this
holds for all floating Hilbert spaces in the system.
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19.17.5 Time dilatation and length contraction
Time dilatation defines as;

A=y Ar=—2L (19.17.15)

A tick Az of a coordinate time clock is smaller than the tick Az of a
proper time clock. In a gravitation potential, the relation is;

A= AT AT (19.17.16)
MG \/ e
R [

rc re

Here v, is the escape speed [34].

Length contraction defines as;

2
aL=2L _ap 1-2 (19.17.17)
V4 C

In a gravitation potential, the relation is;

M 2
AL = AL, /1—%:&0,/1-;@2 (19.17.18)

Here L, is the length in free space.

19.18 Inertial mass
The Lorentz transform also gives the rest mass to the mass applicable

when the embedding field moves relatively with uniform speed v to the
floating platform of the observed object.

In that case, the inertial mass A relates to the test mass M, as

M=yM,=——2— (19.18.1)
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This relation indicates that the formula (19.14.2) for the deformation
potential at distance 7, must be changed to

M,G
, vz
14 1_72
C
19.19 Inertia

The relation between inertia and mass is complicated. We apply an
artificial field that resists its change. The condition that for each type of
massive object, the deformation potential is a static function and that in
free space, the massive object moves uniformly shows that inertia rules
the situation's dynamics. These conditions define an artificial
guaternionic field that resists change. The scalar part of the artificial
field that the deformation potential presents and the massive object's
uniform speed represents the field's spatial part.

V(r)= (19.18.2)

The first-order change of the quaternionic field divides into five
separate partial changes. Some of these parts can compensate for each
other.

Mathematically, the statement that in the first approximation, nothing
in the field &changes indicates that, locally, the first-order partial
differential v& will equal zero;

C=VE=V,E—(VE)+VE+V ExVXE=0  (19.19.1)

Thus;
§,=v,&-(V.E)=0 (19.19.2)
{=VE+V ELVXE=0 (19.19.3)

These formulas interpret independently. For example, according to the
equation (19.19.2), the variation in time of &, can compensate the
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divergence of & . The terms that are still eligible for change must
together be equal to zero. For our purpose, we expect the curl V x & of

the spatial field & to be zero. The resulting terms of the equation
(19.19.3) are

VELVE =0 (19.19.4)

In the following text plays & the role of the spatial field and &, plays the
role of the scalar deformation potential of the considered object. For
elementary modules, this field concerns the effect of the hop landing
location swarm on the floating platform on its image in the embedding
field. It reflects the activity of the stochastic process and the uniform
movement of the geometric center of the floating platform over the
embedding field in the background platform. A mass value and the
uniform velocity of the floating platform relative to the background
platform characterize it. The real (scalar) part conforms to the
deformation that the stochastic process causes. The spatial part
conforms to the speed of movement of the floating platform. The main
characteristic of this field is that it tries to keep its overall change at
zero. The author calls ¢ the conservation field.

At a considerable distance r, we approximate this potential by using the
formula;

ey~ (19.19.5)

r
Here M is the inertial mass of the object that causes the deformation.

The new artificial field (g:{GM,v} considers a uniformly moving mass
r

. : : N .. GM
as a normal situation. It is a combination of scalar potential — and
r

118



speed v . This movement speed is the relative speed between the
floating and background platforms. At rest, this speed is uniform.

GM ,v} tries to counteract the

If this object accelerates, the new field {
r

change of the spatial field v by compensating this with an equivalent
change of the scalar part oM of the new field ¢. According to the
r

equation (19.19.4), this equal change is the gradient of the real part of
the field;

(19.19.6)

r

a:‘;}:_ﬁ(GMj: GMBr

d
The shown generated spatial field acts on masses that appear in its
realm.

Thus, if two uniformly moving masses m and M exist in each other’s
neighborhood, then any disturbance of the situation will cause the
deformation force;

(19.19.7)

Here M =yM, is the inertial mass of the object that causes the
deformation. m,is the rest mass of the observer.

The inertial mass M relates to its rest mass M, as;

M=yM,=—20 (19.19.8)

This formula holds for all elementary particles except for quarks.
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The problem with quarks is that these particles do not supply an
isotropic symmetry difference. They must first combine into hadrons to
generate an isotropic symmetry difference. This phenomenon is known
as color confinement.

19.20 Momentum
In the formula (19.19.7), the factor j that corrects for the relative

speed relates mass to force, can be attached to m, orto M ;
GmM, (1= 7,)

- =13
"’1_”2'

F(Fl_ 2):7/

|

(19.20.1)

The force relates to the temporal change of the momentum vector P of
the observer;

— _'._d]S

F=p=2L (19.20.2)
dt

The momentum vector P is part of a quaternionic momentum P . The
momentum depends on the relative speed of the moving object that
causes the deformation, which defines the mass. The speed measures
relative to the field that embeds the investigated object. The object
deforms the field. For free elementary particles, the speed equals the
floating speed of the platform on which the particle exists.

P=P+P (19.20.3)

P =57+ (19.20.4)
P=ymgy (19.20.5)

| = o (19.20.6)

|PI* = 72mie® = B? + 2mi |9 (19.20.7)
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|Pl|=yme=E/c (19.20.8)

2
E=yme (19.20.9)
B =yt mye’ =y 'mg |V
= 72m§ (62 —Hv” j/zmg 2 H H J
(19.20.10)
P =moc:£
re (19.20.11)
Hﬁ|\:7’mo||‘7u (192012)
- _E R
P=P +P=myec+ymy=—+ymyy
re (19.20.13)
If v=0 then P=0 and "P":P:R:moc
Here Einstein’s famous mass-energy equivalence is involved.
2 2
E=ymc=me (19.20.14)

The disturbance by the ongoing expansion of the embedding field
suffices to put the deformation force into action. So, the description
also holds when the field < describes a conglomerate of platforms and
M stands for the mass of the conglomerate.

The artificial field ¢ represents the underlying model’s habit that
ensures the constancy of the deformation potential and the uniform
floating of the considered massive objects in free space.

Inertia ensures the minimization of the field's deformation of the third-
order differential (the third-order change). It does that by varying the
speed of the platforms on which the massive objects exist.
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Inertia arises from the definition of mass that applies to the region
outside the sphere where the deformation potential behaves like the
green’s function of the field.

GM
There, the formula =~ 7 applies.

Further, it shows the modules' intention to keep the deformation
potential inside the sphere constant. At least, that holds when this
potential averages over the regeneration period. In that case, the
overall change ¥ in the conservation field ¢ equals zero. Next, the
definition of the conservation field supposes that the swarm which
causes the deformation moves as one unit. Further, the model uses that
the solutions of the homogeneous second-order partial differential
equation can superimpose solutions of that same equation.

The popular sketch in which smooth dips show the deformation of our
living space is false. This paper's story shows the deformations as local
extensions of the field, which stands for the universe. In both sketches,
the deformations elongate the information path, but none explain why
two masses attract each other. The above explanation founds on the
habit of the stochastic process to recurrently regenerate the same time
average of the deformation potential, even when that averaged
potential moves uniformly. Without the described practice of stochastic
processes, inertia would not exist.

The applied artificial field also explains the deformation attraction by
black holes.

The artificial field that implements mass inertia also plays a role in other
fields. For example, similar tricks can explain the electrical force from
the fact that sources and sinks that the green’s function describes
producing the electrical field.
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19.20.1 Forces
In the system of separable Hilbert spaces, all symmetry-related charges

exist at the geometric center of an elementary particle, and all these
particles own a footprint that can deform the embedding field for
isotropic symmetry differences. In that case, the particle features mass
and forces might couple to acceleration via;

F =ma (19.20.15)

Or to momentum via; F=D (19.20.16)
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20 Postscript

20.1 The initiator of the project
The Hilbert Book Model Project is ongoing. Hans van Leunen is the

initiator of this project. The initiator was born in the Netherlands in
1941. He will not live forever. This project will hold his scientific
inheritance.

A Wikiversity project introduced the Hilbert Book Model [35]. In the
opinion of the initiator, a Wikiversity project is a perfect way of teaching
new science. It primarily serves the needs of independent or retired
scientific authors.

The initiator supports a ResearchGate project that considers the
Hilbert Book Model Project [36]. In addition, the ResearchGate
site supports a flexible way of discussing scientific subjects [37].

The initiator has generated documents that hold highlights as
excerpts of the project, and he stored these papers in his personal
e-print archive [21]

As long as I can keep it online, the private website http://www.e-
physics.eu holds most documents in pdf and docx format. None of these

documents claims the copyright. Therefore, everybody is free to use the
content of these papers.

20.2 Trustworthiness

Introducing new science always introduces controversial and
unorthodox text. The Hilbert Book Model Project is an ongoing
enterprise. The author regularly revises its dynamic content.

The author does not make available a peer review of the content of this
project. It is the author's task to ensure the correctness of what he
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writes. In the author's vision, the readers must check the validity of
what they read. The peer review process cannot cope with the
dynamics of revisions and extensions that become possible via
publishing in freely accessible e-print archives. Compared to openly
accessible publications on the internet, the peer review process is slow.
In addition, it inhibits the usage of revision services, such as those
offered by vixra.org and arxiv.org/

Reviewers are biased, and they are never omniscient. Moreover, the
peer review process is expensive and often poses barriers to the
renewal of science.

One way to check the validity of the text is to expose parts of the text to
open scientific discussion sites such as ResearchGate.net.

The initiator challenges everybody to disprove the
statements made in this report. He promises a fine XO
cognac bottle to anyone who finds a significant flaw in the
presented theories.

This challenge stands already for years. Up so far, nobody claimed the
bottle [38].

20.3 The author

Hans was born in Helmond in 1941 and visited the Eindhoven HTS in
chemistry from 1957-1960.

After his military service from 1960-1963, Hans started at the Technical
Highschool Eindhoven (THE) to study applied physics. The university's
name changed to the Technical University Eindhoven (TUE).

Hans finished this study in 1970 and then joined Philips Elcoma EOD in
developing image intensifier tubes. Later this became a department of
Philips Medical Systems division. Hans established the standard for
measuring and specifying the Optical Transfer Function for STANAG,
ISO, IEC, and DIN as part of his job. He also contributed to the standard
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for measuring and defining the Detective Quantum Efficiency for IEC
and DIN.

In 1987 Hans switched to an internal software house. In 1995 Hans
joined the Semiconductor division of Philips. During this period, Hans
designed a system for modular software generation.

In 2001 Hans retired.

From 1983 until 2006, Hans owned a software company "Technische en
Wetenschappelijke Programmatuur" (TWP).

A private website treats my current activities [39].
| store my papers in a freely accessible e-print archive [21].

To investigate the foundations and the lower levels of physical reality,
Hans started 2009 a personal research project that in 2011 got its
current name, "The Hilbert Book Model Project."

The Hilbert Book Model is a purely mathematical unorthodox, and
controversial model of the foundations and the lower levels of the
structure of physical_reality.

Hans’s motto: If you think, then think twice.

Hans’s conviction: We live in a universe that recurrently renews its
content at a high regeneration rate.

20.4 Early encounters

| am born with a deep curiosity about my living environment. When |
became aware of this, | was astonished why this environment appeared
so complicated, and at the same time, it behaved coherently. In my
childhood, | had no idea. Later unique experiences offered me
indications. After my retirement, | started 2009 a personal research
project to discover and formulate the clues.
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My interest in the structure and phenomena of physical_reality started
in the third year of my physics study when the configuration of
guantum mechanics confronted me for the first time with its
extraordinary approach. The fact that its method differed
fundamentally from the way that physicists did classical mechanics
astonished me. So, | asked my wise lecturer, Professor Broer, what
origin this difference relies upon. He answered that the superposition
principle caused this difference. | was not happy with this answer
because the superposition principle was indeed part of the method of
guantum mechanics. Still, in those days, | did not understand how that
could present the leading cause of the difference between the two
methodologies. So, | decided to dive into literature, and after a search, |
met the booklet of Peter Mittelsteadt, “Philosophische Probleme der
modernen Physik” (1963). This booklet held a chapter about quantum
logic that appeared to maintain a more proper answer. Later, this
seemed a far too quick conclusion. In 1936 Garrett Birkhoff and John
von Neumann published a paper describing their discovery of “guantum
logic.”.

Since then, mathematical terminology has known the discovered
guantum logic as an orthomodular lattice [9]. This lattice's relational
structure is quite like the relational structure of classical logic. That is
why the duo called the orthomodular lattice “quantum logic.” This
name was an unlucky choice because no good reason exists to consider
the orthomodular lattice as a system of logical propositions. In the same
paper, the duo showed that the set of closed subspaces of a separable
Hilbert space has exactly the relational structure of an orthomodular
lattice. John von Neumann long doubted between Hilbert spaces and
projective geometries. Ultimately, he selected Hilbert spaces as the best
platform for developing quantum physical theories. That appears to be
one of the main reasons quantum physicists prefer Hilbert spaces as a
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realm in which they model quantum physical systems. Another habit of
guantum physicists also intrigued me. My lecturer taught me that all
observable quantum physical quantities are eigenvalues of Hermitian
operators. Hermitian operators feature real eigenvalues. When | looked
around, | saw a world with a structure configured from a three-
dimensional spatial domain and a one-dimensional and, thus, scalar
time domain. In the quantum physics of that time, no operator stands
for the time domain, and no operator delivers the three-dimensional
spatial domain compactly. After some trials, | discovered a four-
dimensional number system that could provide a suitable normal
operator with an eigenspace representing my living environment's full
four-dimensional representation. At that moment, | had not yet heard
from quaternions. Still, an assistant professor Boudewijn Verhaar
quickly told me about the discovery of Rowan Hamilton that happened
more than a century earlier. Quaternions are the number system of
choice for offering the structure of physical_reality its powerful
capabilities.

The introductory paper of Birkhoff and von Neumann already
mentioned quaternions. Much later, Maria Pia Soler offered hard proof
that Hilbert spaces can only cope with members of an associative
division ring. Quaternions form the most versatile associative division
ring. To my astonishment, | quickly discovered that physicists preferred
a spacetime structure with a Minkowski signature instead of the
Euclidean signature of the quaternions. The devised Hilbert Book Model
shows that in physical_reality, the Euclidean and spacetime structures
appear parallel. Observers only see the spacetime structure. Physics is a
science that focuses on observable information. My university, the TUE,
targeted applied physics, and there was not much time nor support for
diving deep into the fundamentals of quantum physics. After my study, |
started a career in the high-tech industry, where | joined the
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development of image intensifier devices. There followed my
confrontation with optics and with the actual behavior of elementary
particles.

In the second part of my career, | devoted my time to establishing a
better way of generating software. | saw how the industry was booming
in the modular construction of hardware. However, the software still
developed as a monolithic system. My experiences in this trial appear in
the paper “Story of a War Against Software Complexity;” and the report
“Managing the Software Generation Process” [21]. It taught me the
power of modular design and modular construction.

Only after my retirement, | got enough time to dive deep into the
foundations of physical_reality. In 2009 after my recovery from severe
disease, | started my research project that in 2011 got its current name,
“The Hilbert Book Model.” For the rest of his life, the author takes the
freedom to upgrade the related papers at a steady rate.
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