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Abstract

The primary purpose of this article is to fundamentally invoke non-standard anal-

ysis throughout any interaction to thereby holographically “de-centralize” the hidden

conformal modes (large central tower OPEs). Ultimately, measurements, continuum,

and singularity mechanics are dualized against Wilson partitions, chaos representation,

and renormalization flow, to produce a universal topological field theory. The Primary

results established are: sub-harmonic chaos in U(1) gauge theory is identified and

quantized of the the flat space celestial hologram, a background model of virial loop-

information in Einstein’s gravity is U(1) probed at a critical { sub-topology, pressure}
measurement-phase and found to be a dual basis of d=4 2x2 Gaussian Unitary En-

semble gauge theory, in uniformity, establishing it as a candidate of non-perturbative,

loop QCD in gravity; the state preparation simultaneously produces a post-selected

supersymmetry algebra (over the canonical log-partition) which survives all possible

no-go tests. Finally, the uniform net weight of the canonical partition state identifies

the 2x2 GUE critical vacuum as a 1
8 -BPS topological phase measurement prepared

as a quasi-continuous SO(4)KK ⋉ RBPS state of information decay; indeed, the par-

tially conformal background is identified as a 1
4 -BPS shadow and given a mechanism

of spin-entanglement.

Notably also, the Cosmological Hierarchy problem is resolved, the fine structure

constant is derived (up to 5 orders of magnitude) using analytic black hole decay,

and a new, 21− pt emergent universal holographic constraint bound between celestial

gravitons, quantum information stability is shown at loop level, which further resolves

the naturalness of d = 4 emergent spacetime and the directedness of time.
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1 Introduction

Rather than proper contextualization of modern physics[1], this paper will instead focus
on the direct mathematical embedding of physics from a modern perspective. To that end,
it is only important to remember what shadows analytic techniques presently cast on the
past. Particularly, the following crude observations:

1) Newton didn’t know about electric/magnetic duality;
2) Maxwell didn’t know about space/time duality;
3) Einstein didn’t know about thermodynamic/gravitational dualities;
4) Hawking did know about AdS/CFT type dualites.

(1)

To this end, the remarkable state of physics currently may be painted as an extension of
the increasing scope of the sense of duality generally, with the AdS/CFT correspondence
[2] representing the breakneck development of a categorical closure mechanism of physi-
cal principles themselves[3]. To that extent, the difference between 21st century physics
and 20th century physics is, crudely, that this recent series of revolutions have revolved
around dualities themselves, not any specific a priori set of dualities. The full utilization
of functional principles of symmetry has yielded continual, and remarkable, mathematical
architecture in a relatively short period of time across nearly every subfield [4][5] [6] [7]
[8] [9] [10] [11] [12]. Perhaps unsurprising from the strong partnership between maths and
physics, this has all occurred in the background of a similarly incredible set of unifications
in pure mathematics [13].
This paper represents a sophomoric attempt to categorize modern features of dualities
from a functionally out-to-in perspective, generally reasoning that finding well defined
(and minimal) coordinates over phase space is the hard part of physics; this may be read
as a series of extensions towards my previous collaborations [14] [15] [16] (summarized in
my PhD thesis, to be published shortly [17]). Less (or more) concisely, a central thesis is
that measureability is, generically, a function of measures while, inversely, measures are not
necessarily a function of measureability: they are, by construction, the decider functions
of the minimal embedding topology. The number of functional measures available vastly
exceeds the number of measures; still, heuristically it is always possible to “measure mea-
sures of measureability"[7], known as the (quasi)uniformity embedding, and, accordingly,
particular work is made to avoid analytically standard asymptotic/perturbation construc-
tions.1

Less (or more) coherently, hidden symmetries may themselves produce symmetries in mea-
1Put cheekily , all apples fall at the same accelerative rate on (the same area of) Earth...unless the

apple is actually hiding a hidden system (such as a rocket/explosive device), in which case there may be
a sudden, less outside observable explanation for the trajectory. Dually, and beyond more cheekily, if it is
expected some subsets of apples may contain explosives it is less appropriate to drop it on the head of an
expectant,

√
2∆[h]
g

= t certain, Sir Isaac Newton.
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sure, although this may not always be measurable for every set of measures; this is exactly
the idea of “emergence". To this, black holes provide an interesting model of this effect
by producing strong effects on out-measurability without, necessarily, strongly changing
any in-moments (event horizons of active galactic nebula often have planet-scale surface
gravity); indeed hawking radiation [18] and black hole jets [19] are both strongly induced
by boundary effects of cosmic censorship [10], or a strict condition of stable black hole
embeddings [20]. In-fact, because of subtleties to be covered (concerning the existence of a
pullback cover), the information paradox cannot be resolved with classic hawking analysis
for the same reason that Newton could not unify light/matter, why Maxwell couldn’t unify
electicity and gravity, and why Einstein couldn’t unify quantum mechanics and relativity:
all considered the notion of duality to be itself rigid [21] (in the sense of being always,
everywhere thermodynamically actionable, or of Noether class). This paper will set out to
show, across a series of basic examples, black holes present a different class of symmetries
(in-interaction) that have interesting applications to the meaning of duality itself simply
because they exactly embody the classical notion of “action at a distance" (essentially be-
cause of their starkly censored interactions with the observable universe).

To that extent, this section ends with one final observation: everything observable in
the universe is unavoidably measured across time and under (weak) gravity [22] [23]. Still,
Banach compactification is always available in physics [7]; accordingly, it is computationally
optimistic to hypothesize that emergent dualities exist in the physics of measurement as an
interaction itself. Reflectively, measurement emergence can also be thought of as absolutely
axiomatic2 under classical thermodynamics [24], causality [25], and quantum stangeness
[26] conditions.

1.1 The Kerr Geometry

The primary system of interest throughout this paper will be the pure gravitational in-
teraction pole found in the metric given by the Kerr geometry. In Boyer-Lindquist[27], or
thermal, type coordinates,

ds2K = 2ωϕdϕ(dt− dϕ) + Σ
[
∆−1dr2 +

ωϕ
a
dϕ2 + dθ2

]
+

∆− aωϕ
Σ

(dt− ωϕdϕ)2 (2)

with ωϕ = a sin2 θ , Σ = r2 + a2 cos2 θ, ∆ = r2 − rsr + a2.3

In D = 4, the no hair theorems guarantee that classical Kerr black holes are uniquely
identified by two asymptotic invariants: the apparent event horizon area (which is time-
like tangent, a.k.a. the geodesic mass) and the angular momentum (constructed as a
near-horizon, null co-tangent e.g., a geodesic sheet index). Quickly, these invariants can be

2And, classically, the trivially relative dual of emergent measurements, a.k.a., experimental results/proof
construction, known as “error correction".

3Note that ∆ is polynomial, and can be readily inverted to find the coordinate singularites r±
rs

=
1
2
(1 ±

√
1− α2, ), where α = 2a

rs
. Under the no hair theorems, the geometry of this region determines the

black hole’s interaction space, lending to the idea of α as a dynamic parameter and rs and a canonical
scale.
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extracted by considering their Newtonian limits in the far-field regimes; rigorously[28], they
can be found by propogating the near horizon Killing-frame throughout the spacetime (and
noting it’s peeling invariants[29] at J +, under at matching condition at I0). Physically,
these invariants can be found by coupling a conformal, dynamic probe field to use as a
spectral couple[10], [30].

Critically the event horizon, despite being a completely contact shadowed surface, is in-
teractive: in fact, the second thermodynamic invariant is explictly related to this classical
extended region of interation, known as the ergosphere4 .

Figure 1: Some Stable Spacetime Interactions in d=4

Indeed, black holes with angular momentum change the geodesic states of spacetime (em-
beddings) local to neighborhoods of the event horizon: timelike orbits are rotationally
excited near Kerr black holes and, if the orbits are also massive5, they may exchange boost
radiation. 6 Indeed, there are a number of well known mechanical orbital procdures, known
as Penrose processes, which can be used to extract this boost energy from a Kerr black

4In fact, the Kerr black hole was originally built by looking for boosted symmetries of the Schwarzchild
solution in Eddington-Finkelstein (advanced and retarded) coordinates, which generatively led to the Kerr-
Schild metric (from which Boyer-Lindquist coordinates are derived)[31]. Thus, in fact, the available ther-
modynamic energy comes from a bound boost state in the Kerr-Schild metric: hence, Kerr black holes can
roughly be thought of as “boost-frame radiators". This line of thought is pushed further in what’s known as
the Inverse Scattering Method, a constructive technique in general relativity which is the jumping off point
to constructing higher dimensional black holes (or strings, or saturns, or otherwise generalized horizon
structures)[32]

5Have timelike legs at the conformal boundary, e.g., have timelike, near-asymptotic quasi-invariants
which may be deformed (on-sheet)(4)

6The edges of this region is known as the ergosphere, and are given by the points where the sign of gtt
changes: re+ = rs

2

(
1±
√
1− 4α2 cos2 θ

)
. This is a Penrose Process.
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hole. More generally, it is interesting to consider how this boost radiation may affect other
types of fields throughout physics(5); this paper will specifically concern how vector gauge
fields respond.

1.2 The Cosmological Constant

Starting from real-algebraic topology in d = 4 dimensions, R1,3[t, x⃗] → R[w] × R3[y] s.
t. A[M ] → Aλ[U(1)] ⋊ Aλ[R(3)], two solutions to the low-dimensional geodesic parame-
terization can be found immediately. Firstly, it can be immediately shown that the local
Poincare group can be globally extended to a global solution manifold R1,3 ≡ M4 known
as Minkowski space. Killing-groups in this geometry are constructed to satisfy the Lorentz
algebra globally; explicitly, the Minkowski metric is given by:

ds2Minkowksi = ηµνdx
µdxν = −dt2 +

D−1∑

i=1

(
dxi
)2 ⇒ gMin[·, ·] =

(
−∂2t ⊗ I

)
[·, ·] (3)

It is useful to note that, in this metric, the canonical differential form is pushed to within
a sign of the universal partial wave ∇µ[·] → (−δµt + δµi ) ∂µ[·]. Iconically, the effect is just
to change the sign-weight of the sub-dimensional partial wave, which can immediately be
understood as an exact algebraic decomposition of the null topology7 . This immediately
motivates the secondary canonical solution form, the Euclidean metric 8:

ds2Euclidean =
D∑

i=0

(
dxi
)2 ⇒ gEuc[·, ·] = I[·, ·] (4)

Then, it is immediate that a d = D−1 Euclidean sub-space canonically extends throughout
Minkowski spacetime,

gMin,(D)[·, ·] =
(
−∂2t ⊗ gEuc,(d)

)
[·, ·] (5)

Still, it is important to note that the converse is NOT universally true: d = D Minkowski
space must be canonically embedded in a D+1 dimensional Euclidean spacetime (and thus
only up to isomorphism of choice [33]) 9. Two “naive" manipulations may be used to isolate
the relevant subspaces:

ds2EM := ds2E + ds2M = 2dxidx
i ≡ ||dsE + idsM ||2 (6)

ds2E/M := ds2E − ds2M = 2dt2 ≡ (dsE + dsM )(dsE − dsM ) (7)

7ds2M = 0 ⇒ dt2 = dxidx
i; this can also be seen by the homogeneous wave equation in this geometry,

or the (flat) d’Lambertian, □[∗] = 0 ⇒ ω2 = k2
8which, of course, was historically discovered first through it’s universal applications in partial-wave

(Fourier) decomposition
9Existence, and the converse, immediately follows from Tychonoff’s theorem and the axiom of choice:

the D+1 Euclidean compactification exists iff R is compact over R⊗R. It is exactly this subtlety that allows
the compactification scheme of the AdS-CFT correspondence to produce actual bulk dispersion relations.
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Accordingly, the geometry of flat space may be considered as a “Minkowski polarization"
of the Euclidean embedding; further, the internal topology of flat time may be considered
as a “Minkowski factorization" of the Euclidean embedding.
Starting from the Einstein-Hilbert action:

SEH =

∫
R ⇔ S[xµ] =

∫
dnx

√
|g|R (8)

Here, it is important to note that the curvature/metric coupling comes about through the
Jacobian form, a canonical result from analysis which pulls the curved manifold back to it’s
domain coordinate form. 10 Importantly, the Jacobian is a universal result from real anal-
ysis which relies on sub-domain measures 11 Thus, identically, the Einstein-Hilbert action
minimizes the local curvature measure by imposing a universal, though coordinate specific,
measure envelope: the Jacobian. In particular, this can be interpreted as an equation
relating the curvature weighted metric (the canonical coordinate chart) and the curvature
tensor (the coordinate chart of the curvature 12, manifold) together, known as Einstein’s
Equations (here presented with no matter sources):

Gµν = Rµν −
R

2
gµν = 0 ⇒ gµν = 2

Rµν
R

(11)

The final, cavalier manipulation attempts to interpret the metric as a trace-normalization
of the curvature form. Ignoring the fact that the curvature is a function of the metric, the
RHS representation characterizes the metric as a “form-unit of curvature" a.k.a., the local
geodesic deviation-form or the acceleration of a test particle relative to a flat-Minkowski
coordinate embedding. Moreover, on face this naive interpretation has a difficult time ex-
plaining R = 0-curvature manifolds.

In fact, supposing a solution {g[xµ], R[xµ]} exists under some spacetime-symmetric δ-
diffeomorphism, it is immediately clear that another solution can be generated under a

10In physics there are two classical pullback spaces: the Euclidean domain, RD, and the Minkowski
domain, R(1,D−1). Importantly, classical General Relativity assumes a local Minkowski symmetry and thus
domain coordinates will almost always be Minkwoski (type unless otherwise specified or projected).

11In particular, it combines diffeomorphic symmetries to parameterize a local coordinate basis in (pa-
rameterized) units of the D -2 relative dual(-basis) velocities:

∫
dnx[λµ]f [xµ[λµ]] =

∫
dλν

∫
dnx[θµ]λνf [x

µ[λµ]] =

∫
dλνλµ̇

∫
dnx[θµ]θµ̇ν f [x

µ[λµ]] (9)

12or “tangent of the tangent": RαµβνV
µ =

(
[∇β ,∇ν ] + Tλβν∇λ

)
V α where Tλµν = 2Γλ[µν] is the torsion

tensor. Also, Rµν = δβαR
α
µβν . Then, Einstein’s equations read:
(
[∇µ,∇ν ] + Tλµν∇λ −

(
Gµν +

Rgµν
2

))
V µ = 0 (10)

This can be interpreted as saying that local area gaps in flat embeddings of geodesic (bundles) is sourced
by the torsion operator (as an affine velocity field) and/or by the Einstein tensor and the metric weighed
by the curvature scalar (which behave as mass terms). In this sense, energy-density and the curvature of
spacetime may be thought to warp the test path of vector probes. Note that a fine balance can, in principle,
develop between Tλµν∇λ and Gµν such that gµν ∼ 2

R
[∇µ,∇ν ].
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constant shift in the curvature action,

SΓ =

∫
ddx
√
| − g| (R+ 4Λ) ∀Γ ∈ R (12)

simply by adding a Λ-scaled Jacobi-density variation term to Einstein’s equations:

G(Λ)
µν := Gµν − Λgµν = 0 ⇒ gµν = 2

Rµν
R+ 2Λ

(13)

Again ignoring the functional dependence of the curvature of the metric, the RHS attempts
to interpret the metric as a shifted-trace-normalization of the curvature form. Then, ∀Λ ̸= 0

it is more plausible to interpret the low curvature limit directly by considering it’s trace
comparison to the “cosmological constant":

Λ >> R ⇒ gµν ≈
1

Λ
Rµν

∞∑

n=0

(
R

2Λ

)n
:= f [Λ,

R

2
]Rµν (14)

Λ << R ⇒ gµν ≈
2

R
Rµν

∞∑

n=0

(
2Λ

R

)n
:= f [

R

2
,Λ]Rµν (15)

Each expansion has a slightly different interpretation. To zeroth order, the relatively large
cosmological constant (the first formulation) treats gµν as a (globally) re-scaled Rµν , not a
local trace density; as such, this represents a global curvature density limit. At the same
order the second formulation recasts the metric as a tower of scalar interactions off of the
flat-space limit Λ→ 0 13.

13whence the cosmological constant behaves as a Lagrangian multiplier between the relevant (curvature

perturbation) splines:
k∑
n=i

(
2Λ
R

)n → 0 ⇒
k∑
n=0

(2Λ)nRk−n →
i∑

n=0

bn (2Λ)
nRk−n. Note that, in the relatively

small cosmological constant limit gµν [∗] ≈ 1
R
δµνTr[∗]
f [R

2
,Λ]

, where (·)[∗] represents the continuous functional
embedding of the tensor algebra. Immediately, this may be interpreted as a Weinberg pole in the cosmo-
logical phase space of the trace class measures under the propagation of a cosmological braid between the
curvature poles and the background cosmological pressure. Perhaps surprisingly, this naive deconstruction
will prove deep. For example, considering the KG equation on the massive (massless probe[14]) φ[·]:
(
∂ν +

d− 1

2
∂ν ln [Rf ]

)
Tr [∂νφ] = (Rf)m2φ ⇒

{ ∂νTr [∂νφ] = (Rf)m2φ 0 << |R| >> sup{|∂νφ|}
[
∂ν + d−1

2
∂ν ln [Rf ]

]
Tr [∂νφ] = 0 R→ 0 < |∂ν [Rf ] |

(16)

Accordingly, neighborhoods of large curvature are governed by a Gauss-type Law over the curvature (cou-
pling to the cosmological constant) weighed mass m̃ = Rfm2, which can be seen by taking the trace
over both sides (RHS is d = 0) and defining Dµ = Tr∂µ (or also by defining an adjoint representation,
φ = Tr[φ̃]); this immediately implies a weak conservation of some cosmological form factor over coordi-
nate curvature poles (of scalar, or thermal, probes). In the relatively small, stable curvature phase note
that the gauge-trace classfication ∂µTr[ ]→ − d−1

2
∂ν ln [Rf ]Tr[ ] gives a collection of neighborhoods with

continuous Trace-momentum eigenstates.
Note that the low curvature case reduces to the massless high-curvature case if (d=1 or) f ∼ 1

R
; then,

both relative scales ofthe cosmological constant produce 1
6

∞∑
n=1

enχ = − 1
12

where χ
∣∣
λ>R

= ln R
2Λ

= −χ
∣∣
λ>R

.

Finally, this matching may be directly compared to Ramanujan’s series − 1
12

=
∞∑
n if χ = ln 6n

n
, or

R
2Λ

= e±
1
2
d
dn

(ln 6n)2 ; in tune, this final expression may be naively inferred to resemble some (renormalized)
number (state-)operator over uniformly stable thermal strings in (perturbatively) curved spacetimes. This
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Considering how readily the initial difficulty of the low-curvature, flat-space limit fled
upon considering Λ ̸= 0 leads immediately to the consideration of some common sub-index
expansion of the global and trace curvatures: {R,Λ} → {R[l], sign[Λ]l2} (which amounts
to an effective lexiographic parameterization of the functional forms). Assuming the trace
density has a saddle-stable sub-index zero-point, l → 0, limit 14 gives R[l] =

∑
n=0

R[l],nl
n

and:

gµν =
Rµν
2l2

1

1 + sign[Λ]
∑
n=0

Rn[l]ln−2
≈ Rµν

2l2

∑

k=0

(
sign[Λ]

∑

n=0

Rn[l]l
n−2

)k
(17)

Although the RHS looks messy, it has a clean interpretation in terms of a topological circle
sub-basis (of the sub-scale order) S1[∼ l] by remembering the intrinsic curvature of a circle
of radius l is RS1[l] = 1/l, giving:

gµν ≈
∑

k=0

Rµν

2R
2(1−k)
S1[l]

(
sign[Λ]

∑

n=0

Rn[l]

Rn
S1[l]

)k
(18)

Then, interpreting the square function as the canonical R±/{∞} left/right (L/R) sub-
measure gives Rµν

R
2(1−k)
S1[l]

an interpretation as an L/R sub-density µ[R1−k
S1[l]

]. This can be seen

immediately by recognizing that if the curvature tensor could be expanded (or split) in
only even (or odd) powers of the circle curvature then the RHS would simplify greatly. 15

Under what’s known as the minimal coupling model, it is assumed that Einstein-Hilbert
action may be minimized simultaneously with some action represented, coupled fields:

Smin-model = SEH[g,R;x
µ] + Ŝ[ϕ(i), ∂µϕ

(i), ... ; g,R;xµ] (19)

Notice the above separates a model action into a purely geometric form and a set of

interpretation is directed (over the Ricci-tensor), which can be seen by the number sign change between the
Λ→ Λ0 ∈ {0,∞} limiting metric forms (under this “thermal uniformity condition"); further, note that in-
cluding (high curvature) asymptotic (anti-)mass strings implicitly present another emergent, Z2-symmetric
thermal membrane. A complete approach is to minimally express known m̃ algebras (from the standard
model) as trace-adjoint, asymptotically flat gauge membrane-charges[34] [35] [33].

14and that µ[R+/{∞}] = −µ[R−/{∞}] (where µ[·] = |[·]|) is a global measure on the covering set of
the canonical product topology [−Λ,Λ] ⊊ R/{∞} ⊗R/{∞}, while µ[·] = sign[·]|[·]|2 gives a measure on each
signed domain [R−/{∞}, 0]⊕ [0,R+/{∞}], but not on both. As such, Λ[l] = sign[Λ]l2 represents a topological
splitting into AdS and dS sub-topologies

15Furthermore, this immediately motivates higher derivative corrections to GR: minimal coupling models
canonically connect at the source level to Einstein’s equations. Still, it is plausible that these contact
expansions may also have higher derivative prescriptions at the level of the action These higher derivative
terms are known as Gauss-Bonnet contributions and will be largely ignored throughout the rest of this
work.

10



gravitationally interacting subfields. Then, Einstein’s equations may be written as:

Rµν − (
1

2
R+ Λ)gµν = Tµν ⇒ gµν =

Rµν − Tµν
1
2R+ Λ

(20)

Therein, the metric may be interpreted, in units of local curvature 1
2R + Λ, as a direct

difference between the spacetime curvature tensor and the stress-energy tensor. In fact, by
assuming the curvature form to be much larger than the stress-energy form in the discrete
measure, |Rµν | >> |Tµν |, the metric then may be interpreted as a canonically re-scaled
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curvature, a.k.a. the embedded acceleration16:

|Rµν | >> |Tµν | ⇒ gµν ∼
Rµν

1
2Tr[Rµν + δµν

2Λ
D ]

(21)

It is also naively useful to consider the large auxillary field limit; still considering the
16Starting from the standard, scalar geodesic equation, ta∂avα + taΓαaβv

β = 0, consider some other
(non-linear choice of affine representation) parameterization(s), λI , s.t. ta∇avα = ∇λ[xµ(α)[λI ]x

(α)
µ [λI ]].

Then, if the hidden index, xµ(α)[λI ] := CI(α)λ̃Ix
µ ≡ λ(α)x

µ is covered by gradient operators

(which commute with the base metric), 0 = ∇σ
[
xµ(α)[λI ]x

(α)
µ [λI ]

]
≡ ∇σ

(
g
(α)
µν ⟨xµ[λI ], xν [λI ]⟩(α)

)
=

gµν
[
∇σ
[
g(α)(β)xµ(α)x

ν
(β)

]
+ ⟨xµ|Γσ |xν⟩

]
OR: ⟨xµ, xν⟩(α) = −

∮
I
dλI (⟨xµ|Γλ |xν⟩ − gµν [0]), and assuming

the metric is not singular lets the final term be dropped (otherwise, the index will need to strongly con-
verge on the asymptotic algebra to regulate this term). Immediately, the product coordinate basis can be
interpreted as a (globally phased) tangent space co-form residue over itself (the so-called second canonical
tangent push up the trivial cohomology chain ) weighed over the affine space densities (indexed/measured
by {I, dλI}). When the affine parameter directly represents a spacetime coordinate the geodesic is mas-
sive; when the affine parameter directly represents a tangent space coordinate the geodesic is massless.
The latter symmetry is exactly responsible for the enhanced little group symmetry of the collinear graviton
envelope in (2, 2).[35]

Indeed, picking ⟨∗(i), ·(j)⟩ ∼ δ(i)(j) to be sub-orthogonal and minimal gives a natural (ordered) inner
index expansion with real weights: g(α)(β) |∗⟩ ⟨·| ∼ |·⟩ ⟨∗| g(α)(β). Then, imposing that the index expansion

be r-sub additive: (vava)
r = ||∂λxµ||λI ), gives: δ(i)(j) ∼ −

∮
I
dλI ⟨∗(i)|Γλ |·(j)⟩ and vava =

(
⟨∗, ·⟩(α)

) 1
r
=

(i)
2
r r

√∮
I
dλI ⟨∗|Γλ |·⟩. Critically, this shows that geodesic involutions may be constructed such that the

extended index connection is flat (within the inner automorphisms) if the number field F0 ∼ R[xµ] is
algebraically exact over the geometric connection (or, equivalently, iff every sub-measure can be analytically
continued, to a convergent extension, in a complete convex extension domain ). It’s important to note the
r = 2 case, vava ∼ i

√∮
I
dλI ⟨∗|Γλ |·⟩, which (correspond to single-spin operator product expansions, OPEs,

known as Penrose-spinners and) show that the canonical Field extension, R→ C, is resultant from finding
a “square-root" (or self dual) basis; this construction, in fact, exists (and will be discussed in more detail
later) even when black holes are present, and is known as the Kerr-Taub-Nut double cover [36].

Finally, the above co-dimension-2 split – which doesn’t necessarily corresponding to base topology vector
projections – is always possible (over real, finite symmetric topologies) and corresponds to the canonical
Jordan normal index-form of the “inner" λI -morphisms under the Riemann-Roch theorem, and univer-
sally follows from x−2n = x ⇒ x ∈ {±1,±i 1

n } having a universal R-linearly dependent pair of solutions
(∀n <∞), ±1, and a set of R-independent field extensions, i

1
n , dependent on the size of the R-represented

eigenspace; then, it is always possible to find an operator covering basis which pairs the top, nilpotent
eigen-operators with a long set of sub-space eigen-shift operators which are also nilpotent. This can also
be considered a practical algorithmic proof of the Uchida theorem for finite dimensional, (topologically)
real vector spaces over finite inner product algebras. Considering proper OPEs (with affinely infinite di-
mensional diffeomorphisms over GLn vector spaces), this has been shown to compactly cover measurable
functions under the functorial Langlands classification[13] and the converse classification of the analytic
extension-dual transfer cohomologies by Cogdell and Piatetski-Shapiro [37], which construct strongly mea-
surable innner OPE (conversly, a co-kernel outer R-support stabilizer) functor covers by tracking the local
Galois density extensions and showing that they can be arranged to uniformly converge within a prin-
ciple convergence index. Of particular importance later is to keep in mind the Ramanujan’s weight 12

modular form[38]: ∆(z) = q
∞∏
n=1

(1 − qn)24 =
∞∑
n=1

τ(nqn), where q[z] = e2πiz and, letting τ be multiplica-

tively homogeneous, τ(mn) = τ(m)τ(n) gives the following descendancy amongst prime (radical) towers:
τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1), and |τ(p)| ≤ 2p

11
2

12



minimal coupling limit:

|1|R << |Rµν | << |Tµν | ⇒ gµν ∼
Tµν

1
2Tr[Rµν + δµν

2Λ
D ]

(22)

Here, the interpretation is emergent, hence the care in subindexing the scale. In practice
this will be an IR flowed (tree-level re-summed) sub(-limit-)sequence; this interpretation
grants that the large field limit is self-dual descendant.
More naively yet, the RHS may be expanded in two senses: firstly, the auxillary radiation
modes may be canonically connected to the stress tensor through some set of induced
(adjoint) Ward identities over the momentum modes. By pulling these adjoint identities
back to the base space Tµν [λI ] →

∑
kI

δfkI [λI ]T̃
kI
µν [x

µ] the stress tensor can be decomposed

into sub-shelled mixing modes within the canonical algebras. Typically, the basis is chosen
to be the canonical Jacobian (resulting in the classical spin representations), although string
theory/w1+∞ [33] suggest that richer spin-multiplet representations should be included.
Either way, their exact forms are irrelevant at this level; substituting in:

gµν ∼

∑
kI

δ[fkI [λI ]]T̃
kI
µν [x

µ]

1
2Tr[Rµν + δµν

2Λ
D ]

=
∑

kI

δ[fkI [λI ]]
T̃ kIµν [x

µ]

Λ

[
1

Tr[
δµν
D +

Rµν
2Λ ]

]
(23)

13



Secondly, consider the divisor as some induced Tr[·]-level propagator 17. Then18 :

Tr[
δµν
D

+
Rµν
2Λ

] = ln
[
det[e

δµν
D

+
DRµν

2Λ ]
]
= 1 + ln[det[e

DRµν
2Λ ] (24)

⇒ D

Tr[δµν +
DRµν
2Λ ]

=
D

D + ln
[
det[e

DRµν
2Λ ]

] ∼
∑

n

(−1)n
(
R
Λ∂ ln

D
Λ + Tr[e

−DRµν
2Λ ∂Rµνe

DRµν
2Λ ]

)n

2n
(25)

∼
∞∑

n=0

n∑

k=0

(
n

k

)(
R

2Λ
∂ ln

Λ

D

)k (−1
2
Tr[e

−DRµν
2Λ ∂Rµνe

DRµν
2Λ ]

)n−k
(26)

Here, only the first term in the ln Taylor series was kept19.

In this approximation, there is a clear ordering among the fixed points: dimensions D
are the coarsest degree of freedom, followed by Λ, and then the curvature tensor. Ac-
cordingly: the dimension functional does not depend on the cosmological constant or
the (in-)curvature, the cosmological constant may be a functor of the dimension func-
tional (but not the curvature tensor), and the curvature tensor may be a function of
both: {D,Λ, Rµν} ∼ {D[·],Λ[D[∗]; [·]], Rµν [D[·],Λ[D[∗]; [·]]; [·], [∗]]}. Then, combining ev-

17For rigor, the subindexing set kn ∈ I has been included to allow for divergence functions/transition
representations. As a rule of thumb, when [·]n < 1 kn ≡ n; [·]n ⊂ {1 ≥ |z| ∈ C} ⇒ kn ∈ [−1, 1] ; [·]n ∈
{1 ≤ |z| ∈ C} ⇒ kn ∈ C−n[z]. Then, the Lorenz terms represent the representation’s peeling of the sum’s
divergence; because the LHS clearly converges it must be that these terms balance. Generally, if the function
is Cm+1[z] represented then C−n[z] functions may be uniformly connected to a Cm−n[w̄] smooth function
(the harmonic dual coordinate) through the Cauchy-Riemann (a.k.a., topologcial transition) equations on
some contour(s) envelope Γz̄z ⊂ (w̄, w) within the dual annulus of convergence. Generically there will be
poles within the annulus of convergence but outside of the contour path: they present the representation’s
momentum modes/boundary compactification states and are incorporated in a path-specific residues on
the inverse harmonic functions (a.k.a., as Green’s functions). Conceptualizing in the casework: |[·]| < 1
gives dual coordinates which cover the annulus of convergence; the complex convergent case has a(n)
(ir)regular puncture at the origin (when |[·]| = 1) which represent the holomorphic momentum modes
(compactified along the support domain, a.k.a. the unit circle, develops fixed points on it’s real branch
representing fixed sub-domain parameterization, a.k.a., bound Goldstone modes). Here, as |[·]| gets larger
the transition equations become over-constrained at (near) the origin of w̄ (because the oscillating, growing
terms dominate without bound) the origin resulting in point (regional) discontinuities within the annulus of
convergence of the harmonic dual w̄. When m−n ≥ 0 the w̄ representation is smooth and the interpretation
is as a (pure) series in the antiholomophic (transition) coordinate

18det[e[·]] = eTr[·] ⇒ Tr[·] = ln
[
det[e[·]]

]
and, ∂ detB = detB

(
B−1∂B

)
19And the ∂ operator is understood as an exact differential (linear form) operator under each Maxwell

relation. Temporarily granting the the un-indexed ∂ operator a new definition, and letting every indexed
∂l form be a regular partial differentiation, leads to:

∂D = δ[·]∂·D , ∂Λ = ∂·Λδ[·] + (∂∗D[∗])−1 ∂∗Λ∂D[∗] ≡ ∂·Λδ[·] + ∂∗Λδ[∗] (27)

and ∂Rµν = δ[·]
(
∂·Rµν

∣∣
∂·Λ=0

+ ∂ΛRµν
∣∣
∂·Rµν=0=∂D[∗]

)
+ δ[∗]

(
∂∗Rµν

∣∣
∂D[∗]=0

+

(
∂Λ

∂D

)−1

∂DRµν
∣∣
∂∗Rµν=0=∂D[·]

)
(28)

Then, considering [∗] to be the induced Λ (sub-coordinatization) basis, the second term shows that dimen-
sionally reduced sub-domains (such as membranes between trapped surfaces) have a natural contact form
with the cosmological constant

14



erything20, and defining21 Θ[D,Λ, Rµν ] := π + i
DRµν
2Λ :

gµν ∼
∑

kI

δ[fkI [λI ]]T̃
kI
µν [x

µ]

[ ∞∑

n=0

n∑

k=0

(
n

k

)(
R

2Λ
∂ ln

Λ

D

)k
Λ−1

(
1

2
Tr[eiΘ∂Rµνe

−iΘ]
)n−k]

(29)

⇒ T νν ∼
∑

kI

δ[fkI [λI ]]T
µν T̃ kIµν [x

µ]

[ ∞∑

n=0

n∑

k=0

(
n

k

)(
R

2Λ
∂ ln

Λ

D

)k
Λ−1

(
1

2
Tr[eiΘ∂Rµνe

−iΘ]
)n−k]

(30)

Then, the weak energy condition can be interpreted as saying that both T νν ≥ 0 and
Tµν T̃ kIµν [x

µ] ≥ 0, which in turn put strong constraints on the curvature portion of the sum
on the RHS.22

Critically, the above shows the metric descending to a peeling product between continuous
(formal field field extension) parameters Λ, R,D and the quantized degrees of freedom Rµν
(adjointly represented by the out of order trace operator) over Λ; immediately, Λ gains
a clear interpretation as a vacuum propagator under a continuous boundary frame and a
partially saddled charge algebra(sub-quantization) [40]. This motivates the higher order
derivative terms of Lovelock gravity as a tree-level boundary connection to a conformal fluid.
In particular, as derivatives are peeled off of the continuous field the matter currents (top
symmetries) descend into {[·], [∗], D[·],Λ[D[·]; [·]]} constraint forms (bottom symmetries).
Then, often the “middle" symmetries exhibit unique (or reduced) algebraic geometries (e.g.,
have simple holographic duals) which have well behaved field extensions (or, equivalently,
have well defined boundary kernels almost everywhere).
Interestingly, it turns out that:

21
[
kg−1m−4

]
=

Λ0mec
2

h2
≡ 8πGρΛme

(hc)2
(31)

⇒ FN [M = ρΛ,m = me; r = hc] =
1

4

21
[
kg−1m−4

]

2π
(32)

where Λ0 is the measured cosmological constant, me is the mass of the electron, ρΛ is the
cold dark matter density, G is Newton’s constant, h is plank’s constant, c is the speed of
light, and FN [∗; ·] is Newton’s law of gravitational attraction. Note the units are flux mass-
spacetime that reduce to units of space-flux in geometrized units [kg−1m−4] ∼[hc]∼1 [m

−3]

; then, although this expression seems unitful (and thus not fundamental), note that the
LHS is actually a force density (from M = ρΛ), meaning this presents as an invariant ratio
of unitful measures23.

20And assuming D[·] is at a fixed point (so that Λ−1 may be commuted with the fluid derivative terms);
Notably, the continuous terms are symmetric in indices, and further only contains contact terms involv-
ing sub-thermalized fields ( e.g. R[D,Λ,·]

Λ
, − ln Λ[D,[·]]

D
contacts expand Maxwell relations between sub-

commutative equivariant OPE representations.)
21Note: i∂Rµν = ∂

[
(θ − π) 2Λ

D

]
22In particular, this may be compared to superpositions of spacetimes, such as the BTZ spacetime

explored in [39]
23then note that 2π is the circumference of a unit circle, and that Hawking’s area law for the entropy runs

as SH ∼ A
4
, so that the RHS appears as a (geometrized) volume-flux invariant over circular (β-type) units;

this may be considered a virial force representation of some cosmological connection. Perhaps surprisingly,
it will indeed be shown (in the final section of this paper) that n = 21 represents a unique number density
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This exactly leads to an incredibly important example of bottom(-strong) symmetry emer-
gence: black hole jets.

1.3 Astrophysical Black Hole Environments

Emergent symmetries (mean-field fixed point degeneracies) are wide phenomena across
physics which, as mentioned above, may occur when complex boundary conditions contact
large degrees of (internal) freedom across deep, narrow channels [41]: then (interactively)
critical phase transitions can be interpreted as quasi-static tower (boundary) channel prop-
agators. In fact, this phenomena has a clear place in black holes physics when electromag-
netism is constructed as an indexing field in strong gravitating systems.

Similar to above, this model involves an order of coarseness; here, considering the gravita-
tional symmetries as top, let the metric topology be the coarsest fixed functor in the system.
Further, let the electromagnetic field be minimally (charge) perturbative and maximally
(spacetime, or in-metric) extended: the first condition requires that the field be force free,
while the second demands that current and field tensor exactly decompose the spacetime24.
This can also be interpreted as the fluid (charge quantization → zero) limit of the electro-
magnetic field [43]

So, consider a magnetically dominated, charge free electromagnetic field in the presence of
a dominate, fixed spinning black hole. Then, it is natural to enforce the top symmetries on
the bottom form by only considering functional derivatives which keep the metric fixed.

SEM =

∫ √
g
(
R+ F 2

)
(33)

Let the axisymmetric and stationary (a.k.a., the global symmetry, or toroidal) coordinates
be denoted by Greek indices,α, β ,and poloidal (or path) coordinates by Latin indices, i, j.
Further, preserve {µ, ν} to be free (any sector) coordinates. Accordingly, this leads to the
(curved spacetime) covariant formulation of electromagnetism which, under the force free
condition, then descends to a specific matching form:

Sbh⋉EM := SBH ⊕ SEM ∧ δ∗SBH ∼ 0

⇒ δS ∼ δ∗SEM
SEM := FµνFµν −AσJσ

s.t. Fµν := A[ν;µ] ∧ ∇µF νµ = Jν

then, 0 = Fνµj
ν = Fνµ∇σF σν

⇒ ∇σ [FνµF σν ] = F σν∂σFνµ

(34)

Critically, because the black hole remains functionally fixed (as a fixed spinning geometry),
the top symmetrization(/“fixed background") hypothesis supports vector fields which can
be gauged in the top (functor-form) symmetries; therein, let the spacetime, and therefore
the gauge field Aµ, be axisymmetric and stationary. Then, this immediately leads to the

in quantum gravity.
24This condition can always be met by a slightly stronger requirement of degeneracy, Fµ[νFα]β = 0 ⇒

Fab = [a, b], which guarantees that {J, a, b, B} are orthogonal and complete [42].
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conclusion that σ ∈ {i, j}, and that the toroidal magnetic field lines act as a strongly
gauged partition: Fαβ = 0 ⇒ Aϕ[r, θ] := φ.25 Indeed, considering the toroidal field form
(defined as everything not completely in the Path sector)26:

FT := F{µν}̸={i,j}dx
µ ∧ dxν = Fαidx

α ∧ dxi = − (At,idt+Aϕ,idϕ) ∧ dxi (35)

⇒ F = φ,idx
i ∧
(
At,i
φ,i

dt+ dϕ

)
+ Fijdx

i ∧ dxj (36)

and 0 = F ∧ F = FT ∧ FT = [At,jφ,i −At,iφ,j ] dxi ∧ dϕ ∧ dxj ∧ dt (37)

⇒ At,j
At,i

=
φ,j
φ,i

⇒ Ãt[·] ≡ At[φ[·]] (38)

It’s critical to note that the final equality of the top line is induced because the global
symmetries exactly “chop" the antisymmetric field index into an exact (partial gauge)
field index in the non-zero, non-poloidal (path) sector; then, 27, this allows a well defined
(toroidal sector complete) functor to be defined between the global gauge forms:

Fαj = A[j,α] ≡ −
(
δtαAt,φ + δϕα

)
φ,j :=

(
δtαΩ[φ]− δϕα

)
φ,j (39)

⇒ F = dφ ∧ (Ω[φ]dt− dϕ) + Fijdx
i ∧ dxj (40)

This can be cleanly interpreted as saying the poloidal sector has an everywhere well defined
electric potential, or that the toroidal sector has a well defined magnetic potential28. This

25Quickly, from: [1] ∼ Aϕ,t
At,ϕ

∼ ∂ϕ
∂t

∂Aϕ
∂At

, where ∂ϕ̂

∂t̂
is interpreted as a coordinate (4-space) rotation of

the ϕ̂ under the unit t̂ time translation (which, by the global symmetries and the d = 4 saturation,
implies it must be exactly the poloidal angular velocity, and “∼" is given under Ω−1 iso-sets, and “→"
runs from Cartan’s magic formula, Lx̂ = dx̂ · dX + d(x̂ ·X) )[42][43]. This follows exactly from the force
free condition, which runs to

[
L[Aϕ]

L[At]

]
∼ ∂·ϕ

∂·t
∂Aϕ[·]
∂At[·] and, when the spacetime has constant (local) angular

velocity, can be envisioned as Archemedian spirals (of iso-gauged field line flux) in time. Most concretely,
∂t
∫
γ[ϕ]

ϕ =
∫
γ[ϕ]

∂ϕAt ≡ At[r, θ] + C[r, θ] ⇒ At = ∂t
∫
γ[ϕ]

φ − C[r, θ]; by choosing a Gaussian (iso-)gauge
(or, equivalently, choosing a path γ s.t. the (constant weight) At measure (residue) is an exact Aϕ[r, θ]
multiple. Because the toroidal symmetries are global (constant gauged), and the T ⊕ P decomposition is
exact, P -pointwise compactification is always possible (and topologically smooth) because the field is close
under the Uchida theorem [44]: ∆tγAt =

∫
γ[φ]

φ ), C[r, θ]∆tγ ≡ C[φ]. Under the pointwise rescaling of the
time-gauged (iso-)sets (equivalent to modding out the spacelike magnetic charge accumulation) leads to:
At,i[r, θ] ∼ At,φ[φ] := −ΩF [φ]

26Note: dFT =
[
At,ijdx

t + φ,ijdx
ϕ
]
∧ dxj ∧ dxi = 0 = −dFP = 0; further, noting the uniqueness of the

determinate function F[µνFλρ] ∼ ϵµνλρ, the force free condition implies 0 = f [·]ϵµνσρjσ ⇒ f ≡ 0̂, or that
every force free field is “degenerate" F[µνFσρ] = 0 = F ∧ F , although the converse may not be true.

27generically, the low dimensions require the antisymmetric field algebra to interact with the canonical
representation algebra effectively widening the cover space of (antisymmetric field) kernel operators as the
domain descends onto canonically commuting pairs, ∂[i∂j] ≡ 0 [45]

28that lies exclusively across gradients of the φ field; this is known as the Alfven’s theorem [42], and
shows that equipotentials are exactly those which conserve the (toroidal) magnetic flux. See Appendix A
for more details.
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is seen exactly from the Jacobi identity, d ⋆F = J , which ensures the conservation form 29:
∮

γβ

∮

γi

[d ⋆ F − J ] = 0 =

∮

γβ

[(
ϵ mn
αβ Fmndx

α + ϵ αi
jβ Fαidx

j
)
∧ dxβ −

∮

γi

J

]
(41)

and 0 =

∮

γβ

∮

γi



(
∇i
(
ϵ mn
αβ Fmn

)
+ ϵ k

iαβ jk

)
dxα ∧ dxi

+
(
∇i
(
ϵ αi
jβ Fαi

)
+ ϵ α

ijβ jα

)
dxj ∧ dxi


 ∧ dxβ (42)

Particularly, the second line implies that jα must be a function of φ (and the toroidal
determinate), which (under current closure30) then implies jk, and therefore, Fij must be
a function of φ (and the toroidal determinate)31. So, in totality,

F = dφ ∧ (Ω[φ]dt− dϕ) + Fijdx
i ∧ dxj := dφ ∧ η +

√
−gP
gT
I[φ]dxi ∧ dxj (43)

OR:
Fνµ∇iF iν = 0 AND

Fαi = ηαφ,i

Fij = −
√
−gP
gT
I[φ]εij

give:
ηα√−g∇i

[
ηα
√−ggijφ,j

]
= 1

−gT
dI2

dφ

(44)

This is the fundamental equation of (degenerate) force free electrodynamics (in any ge-
ometry), and is known as the stream equation. Note the similarity to the Klein-Gordon
equation. ∇ν [

√−ggµν∇µφ] = −√−gm2φ, becomes immediate when it’s rewritten as:
1√−g
(
ηαη

α∇i
[√−ggijφ,j

]
+∇i

[
ηαη

α√−ggijφ,j
])

= 1
−gT

dI2

dφ + gijφ,jη
α∇iηα.32

29Using ⋆J = ϵ µνρσ Jµνρdx
σ := j = jσdx

σ ⇒ J == ϵ σ
µνλ jσ ∧ dxµ ∧ dxν ∧ dxλ

30∇φ(ϵijtφjφ) = ∇k(ϵiφβjjk)
31and can be seen explicitly by dJ = 0 ⇒ ∇j∇iϵ mn

φβ Fmn = ∇φ∇iϵ φi
jβ Fφi. Thus, under Stoke’s

theorem, √gFφi =
∮
φ
∇jϵ mn

φβ Fmn is an exact function of φ, and dually √gF ij =
∮
j
∇φϵ φi

jβ Fφi := −I[φ];
this is also known as Faraday’s Law,

√
| − gT |Fijdxi ∧ dxj = I[φ]ϵP

32Defining ∇i
[
ηαη

α√−ggijφ,j
]

:=
√−gm̃2φ̃, this becomes: ηα√−g∇i

[
ηαg

ijφ,j
]
+
√

1
−gT

dI2

dφ
=

(
||η||2m2φ+ m̃2φ̃

)
, from which the limiting result follows when

√−g >> m2. More generally, it may
be expected that algebraic lifts split the measure states over the affine length of the corotation vector
or, equivalently, that the radical basis elements in the extended manifold:

√
m̃2φ̃ =

√
m2φφ̃ ∧ ||η||mφ

= i
√
λφφ̃. Accordingly, it is instructive to try and split the global wedge units, ac⃗ ∧ (bd⃗) ≡ ab

(
c⃗ ∧ d⃗

)

as a Lie series over linear and sub-linear (“square-root") representations ∼ ⊕(k) ⊙k ∧(k)∗k. Considering
the units between the center and rightmost extensions, the natural guess is to push the scaling factor
against the massive scalar and some dual unit vector, ê, against the “light dressed" massive scalar field:
0 ∼ ||η||m

(
m2 + i

√
λ
)
φφ̃ ∧

(
φ− ê

||η||m

)
. Then, this approximate condition may be met in several ways:

λ ∼ −m4 ∨ ||η|| ∼ 0 ∨ m ∼ 0 ∨ φ ∼ ê
||η||m ∨ φφ̃ ∼(k) φ−

ê(k)
||η||m (45)

While the top row of algebraic conditionals represent fixed point expansions (of the functional basis ele-
ments), the second line represents a projective, finite difference conditional on the extended phase space.
Suppose that (the not necessarily regulated basis) obeys ||mη||2 << ||ê||2 and is chosen in the (freely ex-
tension) dual product expansion, ê(k) ∼(k) φφ̃, then this final condition reduces to (sheets of exact closure
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Indeed33, ||η||2 → 0 corresponds to light surfaces, F 2 = 0, iff the poloidal cap current

conditions):

φφ̃ ∼(k) φ (46)

⇒ −m2φφ̃+ λ(φφ̃)2 +
1

−gT
dI2

dφ
= −(φφ̃)α

(
m2φδβα + gijφ,j∇i

)
(φφ̃)β (47)

OR:

((
2λ

m2
φφ̃− eê

)
+

√
1− 4λ

−gTm4

dI2

dφ

)((
2λ

m2
φφ̃− eê

)
−
√

1− 4λ

−gTm4

dI2

dφ

)

= −(φφ̃)αδβα
(
m2φ+ gijφ,j∇i

)
(φφ̃)β (48)

which makes contact with the Higgs potential (note the (k) indexes were suppressed under the ∼(k) equiv-
ariance). Note that the RHS is zero iff λφφ̃ = m2

2
eê this implies an integrability constraint (emergent

soft pole) running between the four-point moment and the current(-squared) flux: dI2

dφ
= −gTm4

4λ
, or

λ ∼ e
4

−gTm4

∫ dI2

dφ
dλ

.
Finally, the adjoint gauge condition ∇

[
m̃2φ̃

]
= 0 induces ∇ ln (φφ̃)2 = −∇ lnλ; supposing the bare

mass moment m is constant over each integration domain and pulling dλ over the gradient dependent
sub-forms fα (representing Maxwell relations) yields: ∇ ln (φφ̃)2 ∼ 4

m4

∫
∇
[
fa[·]
−gT

dI2

dφ

]
dλa or (φφ̃) ∼

e
1
2

∫
d[·] 4

m4

∫
∇

[
fa[·]
−gT

dI2

dφ

]
dλa

. In particular, this paints the poloidal “cap" current as an iterative derivative in
the (induced) mass moduli (η dual push), φ→ (φφ̃)αφα and is critical to understanding the Menon-Dermer
solutions (and how to generically analytically continue them in the su(2) “Fermi-gauge").

33This implies both m → 0 as well as φ̃ → 0; the latter condition amounts to, under some well defined
perturbative scheme, a possibly closed ladder residue OPE [43] that may require proper field extensions
over some perturbation state regulators F[xµ] → F[xµ; ri[ai]] exactly when the perturbative scheme has a
hidden (large series) shell closure among series-residue algebras (see previous footnote).

For example, approximating the real function sin[·] by exclusively cubic monomials will never produce a
zero difference form although it will produce a universally stable (stabilizer OPE) residue:

∣∣T|I|[sin[x]] −
I∑
ni
bnx

3n|deg − |T|I|[sin[x]] −
I∑
ni
bnx

3n
∣∣
deg = [I 2

3
]deg, and naming the difference in residue interpolation

monomials between I → I + 1 truncations gives an exact, quadratic closure tower ∆n
T[x3][sinx] = 0;

repeating for cosine shows the same effect, ∆n
T[x3][cosx] = 0 , which stems from the choice of the low prime

3, as well as a sign of sin cos duality. Indeed, extending the ring by a derivative of the cubic monomials
gives a zero residue in both cases, and is directly descendant from the (sinx)′′ = (cosx)′ = − sinx (S1

cohomology) identities.
Still, the practical “perturbation fidelity" depends not just on the functional (in) convergence, but also

on the iterative smoothness of the out stability conditions. Suppose the missed truncation basis elements
may be (stepwise, log-convergence) weighed as ∼ 1

3
and the truncated overlap basis measure as ∼ − 1

3
;

then, this gives an difference alternating form, ∼ ± 2
3
, representing the “left/right waving" ends of the

3I-interpolant outside the convergence domain.
Indeed, this measure may be justified using the Fourier identity F [xn]) ∼ inδ(n)[x] and considering the

residual basis elements as higher geometry boundary terms with induced crossing forms; in fact, using a
generalized field extension i → âi, this shows exactly that regulator extensions (such as f [log a]) should
be expected to emerge at the min{lcm{|IScheme|, |IField|}} perturbative order. So, as will be seen shortly,
there exists a successful model of black hole jets generated from family of EM perturbation solutions
to Kerr-geometrized models of black holes (with an exact analytic horizon constraint form), known as the
Blandford-Znajek, model built from force free electrodynamics onto an O(a2)-towered stabilizer form; then,
it may be expected that power-convergence corrections, such as {i2, log a}, should occur at lcm{2, 3}+1 = 7
seventh order, as has been shown in recent high series expansions showing a sign degeneracy at α-seventh
order and a log |α| non-analytic regulator at eighth order [43].

Interestingly, this also points to the small iterative seed generation’s confluence with the global Z2 as the
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is zero34. Indeed, within light-surface solution covers, the stream equation reads as an
integrability class (P-current to Tb-field crossing) OPE condition,

| − gT |gijφ,jηα∇iηα = −dI
2

dφ
(51)

operative emergent point: finding un-even pushes of the split-monopole BZ solution may produce relatively
hyperfine solutions or new perturbation regimes. For example, considering the example from [43], which
appears to have a Z2 alpha symmetry being broken at fifth order

1

α2 + 1
+

√
(α2)α4 − 1

α2 + 1
∼ 1− α2 + |α|3 + α4 + |α|5(log |α| − 1

2
) +O(α6) (49)

(from the appearance of the | ∗ |2k+1 despite the evenness of the LHS). Considering smooth, infinite dimen-
sional extension α = i sin θ shows that the LHS is harmonically incomplete over a single copy of the reals
R[α],

sec θ2
[
1 + i

√
cos θ − (i sin θ)2 sin4 θ

]
∼ 1− α2 + |α|3 + α4 + |α|5(log |α| − 1

2
) +O(α6) (50)

because a single complex extension C(z, z̄) cannot cover the entire LHS entirely; instead, the extension is
topological: C[K, K̄] s.t. K ⊂ C[z, z̄]. This is directly manifest in the RHS, where the log emergence at
fifth order can be directly attached to a winding ambiguity in the ln/sin functionals’ pullbacks; further,
the constant index at fifth order, − 1

2
, is exactly related to the nilpotency of the (global) sub-cover sym-

metry (±i)2 → (iI)2 = −I. The lesson that perturbation representations may require properly (scheme)
independent scalar field extensions when every C embedding has a pushed (winding) degeneracy.

34Notably, F 2 = B2 − E2 represents the local field partition weights. F 2 := FµνFµν = I2

2π2|−gT | +

|µ̃(φ)|2ηαηα shows that real cap currents have an exact minimal bound under the field scalar index:
F 2|η2≥K2 ≥ K2. Still, pushing all the transcendental Field extensions together gives a “light-scalar in-

dex": η̃2 := [π
√
| − gT |η]2 =

2[π
√

|−gT |F ]2−I2
2|µ̃(φ)|2 := F̃2−I2

2||µ̃[φ]||2 . This light-surface orientated framework shows
some interesting things.
Firstly, the co-rotation form may be considered an (magnetic flux) operationalized measure density of the
second order field extension (closures) ∆tildeµ,φ[F̃

2 − I2] ∼ ([F − I], [F + I])∆̃; therein, some mileage is
gained in understanding it as a magnetically graded deflection between the local P(ath) current density
and the Faraday-tensor (scalar) density. Then, the sign of the Faraday scalar may be understood as the
composite tolerance of P-currents and spacelike co-rotation vectors: > 0 induces some dual support, = 0
induces Null support, and < 0 induces only timelike co-rotation support. It is important to note the crucial
role the lower boundedness of the I2[φ] variety plays in the well definedness of this construction.
Secondly, F 2 → 0 immediately understands light surface co-vector (gT -scaled)magnitudes as projective va-
rietal surfaces of the magnetic flux(-measure) over the P-current (real-measure); further, η2 is maximized
by the (reality) lower bound on the P-current algebra: covectors must be null (iff I = 0) or timelike at light
surfaces. Finally, and perhaps most excitingly, this reasoning can be inverted. Large, forced currents at
light surfaces must either (quasi-statically) induce: a nearly fixed field density with large, negative changes
in the co-rotation form (measure), or a nearly fixed co-rotation form (light-surface topology) with large,
(positively) balanced change in F 2, OR a huge positive field scalar induction (a large magnetic flux induc-
tion) and a relatively small change in the co-rotation form. Note the first case asymptotically preserves the
interior of the light-region, while the second case asymptotically preserves the exterior of the light-region;
then, the final state represents and interactive membrane state.
Although the µ[y, x] = |y2 − x2| is well ordered under the (algebraically axiomatic) global Z2 Field ex-
tension of the canonical commutative “+" ring, it is important to note that this equation is necessarily
field action degenerate: extensions of the field in-parameterizations (transported gauge relaxations on the
field shelling dynamics) certainly trickle directly through (the absolute value). For example, (n−)complex
extensions of (F, η) → (Z, χ) may be used to push off a quasi-regionalized |F̃ 2 − ||Z||2| ∼ 0 profile and,
using a real (quasi-literally Coulomb) P-current density, into a properly flowed (measure inverted) magnetic
flux partition, [φ̃] = 1

2

∫
µ−1[Z

2−I2
χ2 ]. In fact, the equivariant [φ̃] algebra may even be well represented by

a non-trivial sector of the P-current Field variable algebra (iff the extended difference ([Z − I,Z + I] can
be exactly completed, or closed, over the flux measure functorization). Indeed, this is exactly how field
regulation and classical off-shell propagation functionally works, but these schemes (almost always) require
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which universally support the field’s wave guiding kernels as (light-surface) asymptotic
boundary charges can be uniformly matched to any disjointly smooth harmonic OPE and
vice-versa; this is the Neukirch-Uchida theorem applied to the topological extension cover
of the pushed (functionally out), near-light surface (NLS) kernel OPEs. The duality is suffi-
cient because the field symmetries are exactly descendant, and the NLS solution-topology is
uniformly covered under Urysohn’s lemma, noting [d(P2[ζ])]→ I[hy+j], and the Froebinius
theorem always allows the sub-dimensional Fourier measure of the NLS-out compactifica-
tion.
Everything above was deduced from symmetry principals on the representation algebras35.
As will be shown later, the determinate of the Kerr metric is given as

√−g = sin θΣ

polodial sector of the Kerr metric (in Boyer-Lindquist, e.g. thermal coordinates) is given
by:

ds2 = Σ
[
∆−1dr2 +

ωϕ
a dϕ

2 + dθ2
]
− ∆−aωϕ

Σ (dt− ωϕdϕ)2 − 2ωϕdϕ(dt− ωϕ
2 dϕ) (53)

Structurally inspecting the line element, it could be expected that dt ∧ dr is a thermal
constraint form(/scattering-plane in 2−2) by looking for reciprocal coefficient pairs36 , and
that, accordingly, the dϕ2 ∼ (dt − ωdϕ)2 out-modes could generally also be (functionally-
)partitioned (along constant θ slices)37. But, as seen in the above construction, the only

a set of action independent prescriptions that are typically leveraged to give some insight into the Z → Z k
n

completion states.
35The canonical dualities, known as the Fundamental Theorem of Algebra and the three Isomorphism

theorems (of Lie Algebras):

(0) L is a Lie algebra iff L
Z(L)

∼ L′ ⊂ gl(L)

(1) Let φ be a (12) homomorphism; then imφ and kerφ are ideals and subalgebras, respectively.
(2)If I and J are ideals, then (I+J)

J
∼ I

(I∩J)
(3)Suppose I and J are ideals s.t. I ⊂ J ; then, J

I
is an ideal of L

I
and

(
L
I

)
/
(
J
I

)
∼ L

J

(52)

Reflecting on these measure identities as physical principles (under action) quickly resolves that these are
the classical (Logic) duals of the Laws of Thermodynamics by exact virial induction: (21)[(0)(3)](21)

36rewritten and defining dϕ̃ = dϕ
a

:

ds2 =
Σ

∆
dr2 − ∆

Σ
(dt− aωϕdϕ̃)2 + aωϕ

(
Σ

(
dϕ̃+

dθ√
aωϕ

)2

+
1

Σ
(dt− aωϕdϕ̃)2

)
− 2aωϕdϕ̃

(
Σ√
aωϕ

dθ + dt− aωϕ
2
dϕ̃

)
(54)

Notice that only the first two terms are both r → ∞ asymptotically bounded and (pointwise-)θ indepen-
dent (after dt → dt̃ := dt + aωϕ

∣∣
θ=θ0

dϕ̃). Note the general relation ∆ − Σ ≡ aωϕ − rsr is algebraically
sub-saturated by the ergosphere surface(/membrane) conditional: Σ = rsr ⇔ ∆ = aωϕ. Generically
(and heuristically), it may be expected that the Kerr metric: represents a (little group) scaling symme-
try between an asymptotic thermal sector (with a time-delayed spin response), a (spinning) connection
between massive poles on the ergosurface, and an affine line connection between (t, t̃) gauged by the (cylin-
drical) θ-coordinate image of the ergo-mediated interaction (note that the final term may be written:
∼ 2aωϕdϕ̃

(
Σ√
aωϕ

dθ + dt+dt̃
2

)
).

37Then, massless thermalized scattering (phase) volumes represent weights of the singularity shadow
[46, 47], S∆θ ∼ σ[Σ]Vδθ , while the massive, thermalized singularity scattering (Σ ∼ 0) volumes represent
frequency (ωϕ) enveloped, massless shadow modes: S∆(t)(ϕ)

∼ [ωϕdϕλndn
κn
(t)(ϕ)]

n. [33]
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computationally relevant pieces (onto the stream equation calculation) are:

ds2P = Σ
[
∆−1dr2 + dθ2

]
√−g = Σsin θ

√
gP = Σ√

∆

√−gT =
√
∆sin θ

(55)

Here, it is only relevant to note that the kernel of Σ[r, θ] has no real support and that the
real poles of ∆ are isolated and supported: R ∩ ker∆ ∼ Z(k).

Looking at the stream equation in the Kerr geometry:

Σ

∆sin2 θ

dI2

dφ
= csc θηα∇i

[
ηαΣsin θgijφ,j

]
= ηα∂r [η

α∆φ,r] +
ηα
sin θ

∂θ [η
α sin θφ,θ] (56)

In fact, cycling through this section’s logic, the central presumption is simply that that
black hole geometry is highly ignorant of the local (pseudo-charged) mass states which,
though gravitationally irrelevant, are free to perturb the electromagnetic fields (in such a
way as to not induce global charge separation); then, deductively, (stable) force free EM
fields could, as they interactively extend towards black hole horizons, experience an induc-
tive choke in the poloidal cap current which is exactly sourced by a geometrized, magnetic
flux wave (under co-rotating η-guide wave38.

38In fact, considering solutions such that sin θηα ∼ xα → csc θηα ∼ xα (which are useful in gluing
extremely spinning near horizon environments to outer-geometries [43]) gives:

aΣ

ωϕ∆

dI2

dφ
= xα∂r [x

α∆φ,r] + xα∂θ [x
αφ,θ] (57)

Note that, generically, the LHS ∼ e−i
(
ζ0+i ln

[
a2

∆
dφI

2
])

sin ζ0 behaves like an SO(2) expansion(let) in some
mixed, divergent rational form (ζ0 = i

2
ln ∆+rsr

aωϕ
); here, the current flux acts as a decay channel (a Cauchy-

tower) over the ∆-poles.
More instructively, let Σ

∆
= 1 +

2Mr−aωϕ
∆

:= 1 + χ; then, oversmooth the equation, 1 + χ→̃eχ to look for
pseudo-compact solutions (a field partition applied to the exponential representation of the δ measure[48]),

introducing an eigenvalue gain function on the current (field push) as dφI2 ∼ eiζ0+ln
ωϕ
a = sin2 θe

f[r]+aωϕ
∆

gives LHS ∼ e
rsr+f[r]

∆ , which is separated in r. This current-measure condition is strong and seemingly
abject, but can more readily be understood as saying that the current measure is an exact magnetic den-

sity of the RHS: I2=̂
∫
sin2 θdφe

f[r]+aωϕ
∆ =

∫
dφeln

ωϕ
a

−χe
f[r]+rsr

∆ ∼̂
∫
dφ e

f[r]+rsr
∆

+ln
ωϕ
a

1+χ
, which amounts to

saying that the current magnitude is a tidal expansion of the f [r] radial response profile about poles at
χ = −1 ⇒ rχ ∈ {0,±a cos θ} ≡ {0,±√aωϕ∂ ln[aωϕ]}. Note that in extremality, a → rs and this surface
sits (asymptotically) inside the outer horizon and collapses (asymptotically) onto the outside of the inner
horizon in the unspinning (Schwarzschild) limit. Further, if the magnetic flux is confined near θ∈̃{0, π

2
}

then the derivative of the Heaviside weight of each neighborhood produces a (delta function and an) θ-
current edge-mode of exactly form above (with coordinate, not flux, weights). Lastly, considering the ωϕ

a

measure envelope, θ ∼ 0 may be considered an accumulation point of “soft"-current residues.
Assuming the current gain function holds perturbatively, the over-smoothed stream equation can be sepa-
rated as:

xα∂r [x
α∆φ,r] =̃e

f[r]+rsr
∆ xα∂θ [x

αφ,θ] =̃0 (58)

Assuming there exists a stable χ-thermalized, ζ0-propogatation “cap" current density(-magnetic flux
residue), and noticing that the coarse OPE ln ζ0 is (r, θ)-separated, leads to the idea that there may
then exist (ζ0, χ)-separated solutions (covering a convergent family of inhomogeneous stream equations)
that may have an entirely T-dependent (or also constant), functionally infinite dimensional co-rotation
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Realizing’s the co-form’s geometrization39,

then: ∆→ 0 reduces the stream equation to:
sin θηα∂θ

[
csc θηβAd[gT ]αβφ,θ

]
− ΣdI2

dφ = −∆sin2 θηα∂r
[
ηβAd[gT ]αβφ,r

]
→ 0

where Ad[gT ]
αβηα → (2Mri sin θ)

2

Σ

[
(Ω− ΩH)(δ

β
t +ΩHδ

β
ϕ)
]

gives ηα
2Mri sin θ

Σ ∂θ

[
2Mri sin θ

Σ

[
(Ω− ΩH)(δ

α
t +ΩHδ

α
ϕ )
]
φ,θ

]
= dI2

dφ

(59)

(60)

⇒
∫
dφ
dI2

dφ

∣∣∣
∆→0

=

∫
dθ

2Mri sin θ

Σ
ηαφ,θ∂θ

[
2Mri sin θ

Σ

[
(Ω− ΩH)(δ

α
t +ΩHδ

α
ϕ )
]
φ,θ

]
(61)

=

∫
dθ

(
∂θ

[
2Mri sin

2 θ√−g [(Ω− ΩH)φ,θ]

]2
− φ,θ∂θ

[
2Mri sin

2 θ√−g Fθα

] [
(Ω− ΩH)(δ

α
t +ΩHδ

α
ϕ )
]
)

(62)

Taking the integration to be iterated on the closed magnetic flux domains guarantees the
rightmost term on the RHS zero (Faraday’s Law), leading to the Znajek condition40:

∮
dφ
dI2

dφ

∣∣∣
∆→0

−
∫
dθ∂θ

[
(2Mri sin θ)

2

Σ2
[(Ω− ΩH)φ,θ]

2

]
∼ [0]µ[φ] (63)

OR:
∫
dθ∂θ

[
(2Mriωϕ)

2

a2| − g| [(Ω− ΩH)φ,θ]
2 − I2

] ∣∣∣∣∣
∆→0

= 0 (64)

which fixes the magnetospheric current on the horizon of a spinning black hole as: I(ri, θ) =
(2Mri sin θ)

Σ [(Ω− ΩH)φ,θ]
∣∣∣
r→ri

. The stream equation, the light surface equation, and the

Znajek condition constitute the primary crossing relations in magnetospheric Kerr OPE

forms which perturbatively descend (from the thermalization modes) into (r, θ)-leveled field shells. This is
essentially the idea behind perturbative pushes on the Menon-Dermer class [43], and a complete model is
one of the central constructions of this paper.

39Using | − gT |[gT ]−1 = Ad[gT ] ≡Kerr
ωϕ
Σ

[
(∆+2Mr)2−aωϕ∆

a
2Mr

2Mr a− ∆
ωϕ

]
. Further, lim

∆→0
Ad[gT ] →

1
1
ωϕ

− a
2Mri

[ 2Mri
a

1
1 a

2Mri

]
≡ 1

1
ωϕ

− 1
ΩH

[
Ω−1
H 1
1 ΩH

]
, and the co-rotation T-metric (stream) pullback

is Ad[gT ]αβηα =
−ωϕ

ωϕ−ΩH

[
(Ω− ΩH)(δβt +ΩHδ

β
ϕ)
]
, which immediately suggests a well structured bound-

ary form in terms of the field velocity (and the horizon) alone: Ω[(ωϕ − ΩH), ωϕ,ΩH ]. Realizing that
ωϕ ∼ a ∼ (2Mri)Ω

(+)
H immediately suggests the existence of a family of radially stable, event horizon fixed,

a-linear (O(a2)), magnetic flux perturbation solutions under the reduced criteria (on-boundary-shell) of
simple convergence in the out-horizon region.

40Which acts as a magnetic flux-to-current connection in the boundary domain and, in this geometry,
is a strictly scalar function which greatly simplifies the field equations. In fact, this simplification can be
extended to near-Horizon extremal Kerr geometries to similarly simplify the high spin regime (and give a
sequence of gluing conditions between spin-membrane regimes); see [49] [43] for a new collection of high
spin, gluing NHEK solutions running from the same category of cohomological descent.
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matching conditions, summarized here41:

Σ
dI2

dφ
= ηα

(
∆∂r

[
Ad[gT ]βαηβφ,r

]
+ sin θ∂θ

[
csc θAd[gT ]βαηβφ,θ

])
(65)

| − gT |gijφ,jηα∇iηα = −dI
2

dφ
, I(ri, θ) =

(2Mri sin θ)

Σ
[(Ω− ΩH)φ,θ]

∣∣∣
r→ri

(66)

In 4D the realization of stable physical geometries with eternally trapped timelike sur-
faces (a.k.a., black hole solutions) provides an interesting, simple avenue into quantum
gravity exactly because they have two primary properties: 1) each time-slice is smoothly
separated into an unbounded (out) domain and a trapped (in) domain 42; 2) the time
parameter is a smooth index in the sense that it forward-propagates every (almost ev-
erywhere sub-symmetrized) cover (tower) of geodesic operators. 43. Interestingly then, a
canonical inner44 geodesic action can be used to uniformly index the outer geodesic space-
time (up to some global symmetry group). In fact, the classical uniqueness theorem of
the Kerr solution [31] is proven exactly by showing that the (here 2D) outer uniform in-
dex exactly closes the (spin patch-)global Poincare symmetry on the dually extended field
(here Sp(1, 2)⋉U(1)Sp(1, 2) ∼ SO(3) closes under the pullback of the canonical embedding
theorem: R ⋉U(1) R ∼ C ). Although not strictly physical, the field pull-back extension
still represents a (number-field) charge, although it is canonically neutral [51]. Still, the
field’s symmetrization is charged by the dual-extension (relative to it’s un-dualized base
representation45). Immediately, symmetries as this may be considered a form of informa-
tion Duality (iD).
This situation is immediately enhanced in the case of the so called minimal-coupling mod-

41Notice Ad[gT ] ≡Sch

[
(r sin θ)2 0

0 − ∆
r2

]
gives a stream equation r2 dI

2

dφ
=

ηα
(
∆∂r

[
r2 sin2 θΩ[φ]δαt − ∆

r2
δαϕφ,r

]
+ sin θ∂θ

[
csc θ(r2 sin2 θΩ[φ]δαt − ∆

r2
δαϕ )φ,θ

])
. Choosing Ω[φ] ≡ 0

yields −r4
∆

dI2

dφ
= δαϕηα

(
r2∂r

[
(1− 2M

r
)φ,r

]
+ sin θ∂θ [csc θφ,θ]

)
, which can be solved with

(φ, I[r]) ∼ (cos θ, 0) almost everywhere (except for a Jacobi-closure completion requirement in the
neighborhood of θ = π

2
where a Stoke’s form requires a I ∼ r−2); hence monopole configurations (choosing

an “up"/“down" gluing topology with opposite magnitude currents on either side of the upside-downside
duality) can immediately be seen as solutions of Schwarzschild magnetospherics and a natural base form
in any a-perturbation scheme. This is the starting point for the Blandford-Znajek solutions [19] [43] [49]
and will be discussed again in the d = 5 magnetospherics review.

42based on Lie-integrating along the surface curves (a.k.a., the surface sub-metric geodesics) to determine
the smallest compactification measure of the longest geodesic path; then, only paths locally extended to(/in
the neighborhood of) J± are unbounded (in the full spacetime topology).

43The proof is straightforward, following exactly from the global completeness theorems (in both GR
[50] and analysis[6])

44More precisely, a canonical juncture between any patch-network (a.k.a., a group extended-atlas/top-
index-Parameter) exists; here, the only in-geodesic measure is the affine length. Naturally, the uniformly
dual geodesic measure is the normal relative redshift

√
||χ||2na∇a ≡

√
||na∇aχ||2, where na represents

geodesic(-character). If there exists a trapped (Null) surface normal then there exists a (uniform) geodesic
index cover almost everywhere except exactly on the trapped surface, where the affine measure of the unit
normal runs to zero at the characteristic redshift (as under some exact kernel measure [14, 16]); in d = 4,
such relatively stable surfaces may be unambiguously compactified in the (stabilized) out topology and
uniformly pulled back to a fully actionable representation [10]

45More accurately, the free-product expansion of the base and extended topologies, TB , Text is ring-
indexed over the FPE T 2

B : RF ⋉ (TB , TB) ∼ (TB , Text)
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els of gravity, whereby the external field configurations (counter-)induct the gravitational
modes. Classically, this is represented in the Wald action [52]:

SWald := SG + SM (67)

which captures the idea that the gravitational and matter fields may be saddled along
the same extended domain symmetrizations. Typically, the idea is formulated as a series
of interaction gaugings between the gravitational and massive minimization modes which
enfold an exact in-symmetry, thereby allowing the gravitational modes to be “unfolded".
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2 Some Gedankenexperiment-inG

Generically coupled systems can be problematic in GR because canonical surfaces are nec-
essarily harmonically gauged . As seen above, when the curvature is of similar strength to
the local field currents neither appoximation of the metric clearly separates, leaving a com-
pletely mixed set of constraints (a.k.a., solutions exist as spacetime subdomains of validity
parameterized by matter constraints, which are defined dual to the matter’s spacetime-
measured density, the stress energy). This represents the strong coupling between local
particle dynamics and the far-averaged GR field which can only be resolved with a proper
quantization of the gravitational action 46

Historically, this relationship has been confounded by the local particle dynamics, which
have traditionally been seen to exactly reside on the classical (or softened) gravitational
vertex. This is the traditional QFT formulation of weak equivalence [55], which attempts to
directly match sectors of either theory into(/onto) each-other. Although this seemingly is
canonical 47 from Noether’s Second theorem, it only holds when the Ward-series closes[60].
In particular, when two closed, internally static systems are coupled with a closed, static
gauge the coupled system will not remain static (or even relatively stationary) exactly
when the internal degrees of freedom of either system interact with one another (a.k.a., the
anode/cathode coupling in batteries or the alternator/axle and friction/ground coupling
in electric cars); further, if the resulting coupled sub-unit interacts with the global closure
then the resulting system may even behave as if it were in a large, open system48.

2.1 Critical Phenomena in Ohmic Circuitry

A simple example can be found by considering LRC circuits, which (statically) convert
a voltage gap into a (decaying) current wave (at a tuned frequency); dually, this process
may be represented by a configuration of capacitors and variable resistors. Together with
Kirchoff’s rules, this duality will prove interesting. Qualitatively, starting from the circuit

46Which can be accomplished when a covering set of operators, ⟨SG, SM ⟩, form a combined sympletic form
Ω[⟨SG, SM ⟩] The gravitational symplectic form dualizes the spectrum which, because of the theory’s C∞

coordinate symmetry, is indeed infinite dimensional; still, there do exist systematic finite representations
[53] that can be used to bootstrap the sectors of the symplectic form (a prime example being the w1+∞
algebras [54] in Celestial Holography).

47It unambiguously is true when the gravitational sector can be completely embedded in the matter/gauge
(which, for example, is exactly the case with EM and GR under double-copy [56] and the Trace-dual [57]
[58]) algebras. This property also scales in low dimensions, where, in 2D for example, JT-gravity admits
an exact planar dual (representing a family of IR-envelopes parameterizing it’s UV divergences) [59]; in
this case, the family is formally infinite, representing a 1-loop resonance. The lesson is that mater degrees
of freedom are univariantly GR-compact (matter-states can propagate between spacetime multiplets), but
that matter/GR-equivariant degrees of freedom are topological loops (spacetime multiplets, NOT states,
propogate between matter-states). This is exactly the canonical top-Monodromy formulation (explored
shortly).

48This is exactly the idea of the thermal partition function (and a thermodynamic parameter); letting
the system be quantized (image-fixed a.k.a., operationalized) draws an exact analogy to method of images,
which gives some grasp on the nuances infinite-dimensional representations.
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Figure 1: Virial LRC Subunit

formulas for resistors, capacitors, and inductors, as well as Kirchoff’s laws:

VR = IRR IC = ∂t [CVC ] VL = LİL

∑
i

∮
ΣiCircuit

Vi = 0

∮
∂ΣnCircuit=Nodes

∂In = I
(in)
n − I(out)n = 0

(68)

Notably the passive components in electronics have two functionally dual state functionals,
∼ (V, I) that are (ideally) level matched by the state parameters Z ∈ {R,C,L}.49 Accord-
ingly, although each component within any closed circuit (which, by Kirchoff’s first, acts as
a global stabilizer) is itself only d = 1 dimensional (a.k.a., an exact time interaction), the
relative motion is a functional of both potentials (V̇Z [t], İZ [t]), from which it immediately
follows that each static component has a d = 3 phase diagram (in time).50. Endowing

49Note that the matching is either on the range domain, R ∼ VC
IR

or as a tangentially crossed ratio: in
the constant capacitance and inductance cases, C ∼ IC

∂tVC
and L ∼ VL

∂tIL
; assuming ⟨VLIC⟩ ∼ ⟨Power⟩ or

⟨ V̇C İL
CL
⟩ ∼ ⟨P ⟩ leads to the immediate deduction that LC circuits store energy in resonances (while resistors

dissipate energy in the real domain, PR ∼ ||IR||2R ∼ ||VR||2
R

).
50Resistance: (VR, IR)× (V̇R, İR)⋉

(
(1, R)×

(
1
R
, 1
))2, choosing units s.t. one of the (adjoint) measures

is ∼ 1 reduces the corresponding fixed point and reduces the dual dimensionality to d = 3. The other
two are immediate by realizing (VC , IC) ∼ (VC , CV̇C) and (V̇L, İC) ∼ V̇L(1,

1
L
). Then, it may be said that

the extra degree of freedom(/phase) is descendant from the outer circuitry geometry or, dually, that it is
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the structure components with time representations Z → Z[t] immediately lifts the above
arguments to show that non-stationary, non-isolated electronics may be (minimally) em-
bedded in d = 2+2 phase spaces. This motivates the idea of a circuit diagram, which may
be naturally thought of as a function space (with the time parameterization suppressed
and the non-stationarity components indexed by sub-circuit(/"chip") parameter sub-sub
phase-response indexes) with some canonically dual phase-image determined by the k = 2

circuit geometry (riding on the in/out and the k = 2 sub-geometries).

Figure 2: Some LRC Subunits

Eight different configurations are shown above.

Accordingly, it is interesting to study the virial completions of this (parasitic) circuit design.
Let the induction/resistor L/R be primary coupling-contacts of this system51. Further,
consider the resistor to be a (power-linear) variable resistor coupled to the current(s) of

emergent from the local reactivity on the characteristics of the passthrough topology (V [t], I[t]).
51The back-inductance of this system can actually be included inhomogeneously exactly as was done for

the capacitance above (except this time the inhomogeneous field will be in the tangent space, e.g. there
will be a first order derivative form on the inhomogeneous OPE) with RHS ∼ A[∗]Ṽ + B[∗] ˙̃V . This form
can be traced to the soft-magnetic moment of the regional circuit (of sub-units), which could be further
tuned by a (geo)metric placement of the LRC sub-units (as shown in the pictures above). Indeed, this effect
is typically engineered to the weakest scales to avoid spontaneous parasitic noise; still, the OPE adjoint
control of the (d=1) inhomogenous connection over superconducting phases allows tremendously regulated
network state control, as was displayed above [61].
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some other (family) LRC-unit(s), RI2;t/l (with an infinum resistance Rb, and a supremum
resistance R1). Let the second system have a fixed inductance/resistance (decaying wave
characteristic) of LR2; then, as the regulatory-capacitor discharges the dual “LC(R)2" sys-
tem’s characteristic (decay) frequency changes as well; or, dually, the combined system
develops a canonical, transient AC current (as the Fourier d = 1 band of the R[t] = 0

co-kernel).52

For example, suppose the discharge of the regulator is much quicker than the dual system;
immediately, the enveloping family can be represented by the bottom state (and similarly
for the slow regulator/top family). More interestingly, consider a variable resistor that
runs between intermediate values but returns to it’s top value at zero current; even better,
let this value of the resistance be ∞ (a “ chirp" coupling). Noting that an LC circuit is
simply a charge/current-wave dualized system, and that the regulated-circuit must envelop
to a dual-stable state, axiomatically the out circuit must be a voltage displaced dual mode.
Then AC waves emerge as dual-frequency echos (or exact multiplet-representations) of the
LC characteristic: specifically, whenever the peak power discharge, at fixed voltage, of the
(inner-time parameterized) resistance (evaluated on the outer LRC-function) is less than
some multiple of the dual, base-frequency displacement current then the multiplet mode is
excited in the out-circuit (precisely because the large power modes can be dually balanced
by a large, L-exact counter-displacements). Notably, a fast δ R-envelope centered around
0-resistance (an LC sub-envelope) excites none of the fundamental out-modes because they
would require formally divergence counter-currents in the out-circuit. Instead, the capaci-
tor’s voltage gap is discretely (dis)charged, representing a different relative grounding (or,
the property of parallel capacitance). BUT, every fast, bounded R-envelope is pushed into a
time ordered family of capacitors; here, extremely fast modes are excited as Rmax is pushed
down (representing a stable solution (family) basis of increasingly large, time-transient cur-
rents (radiators) balanced by decreasingly fast dual frequency-fluxes (counter-absorbers).

This emergence holds all the way until the fundamental dual-mode is excited, whereby the
(dual) envelope is saturated and the remaining family of regulatory resistances represent
a 1D continuous perturbation; immediately, it must directly descend to a 1D continuous
family of out-Amplitudes (using the Cauchy completion theorem), an AC wave; this is
manifestly observable in feedback/parasitic oscillation systems Rin/out matching cases and
represents emergent internal resistance). In fact, this makes it clear why LC circuits oscil-
late: repeating the calculation with a δ distribution around 1

0 results in a decreasing current
(radiator)/increasingly fast flux (counter absorber) family basis. The weak current states,

52This can immediately be accessed by considering some naturally (time) ordered set of inner states,
LRCn⃗ ni ∈ N0 such that ∃!{Rnj [tj ], Rkj [tj ]} = {0} (which allows a time persistent oscillatory mode).
Then, let the state be monotonically ordered by the (possibly k-degenerate) capacitance index, C(kj)

nj ,
which saturates some formally large bound (1, n] and, further, endow the relative inductive index, L(kj)

nj ,
with a strictly monotonic sub-index (capacitance degeneracy breaking) of states and pushing the degeneracy
index (kj) to the same formally large bound as n, ∼ (1, n] (so that the full frequency space represents a
finite lattice). Finally, let the variable resistors, R(k)

nj Equivalently, the discharging regulator represents
an in/out time-ordered family of the dual discharges that can be critically be determined by field-normal
boundary conditions (a.k.a., it is a top/bottom envelope on the dual (circuit) form).
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or edge-modes of the perturbation, then represent a family of dual flux displacements that
cover the 1D wavespace, which (assuming normal out-boundary conditions) can be indexed
by the fundamental mode.

Critically, the symmetry used before will only (regularly) cover up to ∞
∞ ∼ 1 and the exact

charge found before can only be included with a formal compactification/field extension
the of the U(1) charge space into an adjoint representation. In fact, naively looking for a
self-dual representation clearly gives the outer magnetic moment of the LC subunit (solu-
tions are identity dual, with no relative magnetic (planar) moment, 0⃗ ≡ (0, ẑI) , iff they are
non-adjointly compact, a.k.a. differ by only a direct voltage and in-plane displacement).
Here, (extended) perturbative the edge modes necessarily break the LRC regulator un-
less it is similarly supercharged; letting the regulator’s resistor be (analytically) functional
exactly extends the broken symmetry to it’s ulta-high frequency (= ultra low resistance)
cover space (therein, wireless spacetime transmission can be recast as a wave re-emergence
effect on the space of LC (and CR super-)charges a.k.a. EM dual charge densities can
be understood as “emerging locally" through a spacetime correlation gauging). Finally,
repeating the calculation using variable inductors identifies the local magnetic field with
the EM (electric) supercharge.

Mathematically, let the input/output junctures of the sub-circuit be indexed as L/R; fur-
ther, define Ṽ [∗] := VL[∗]− VR[∗]. Then, the (inhomogeneous) equations may be written:

A ∂t

[
CṼ

]
= I + ∂t [C (R+ L∂t) I]

B c○ Ĩ = IR + ∂t [C (R+ L∂t) IR] OR A s.t. ∂t
(
CṼ

)
A
↔ Ĩ and I ↔ IR

l○ ∂t

[
CL∂tĨ

]
= IC + ∂t [C (R+ L∂t) IC ] OR A s.t. ∂t

(
CṼ

)
A
↔ ∂t

(
CL∂tĨ

)
and I ↔ IC

r○ ∂t

[
CRĨ

]
= IC + ∂t [C (R+ L∂t) IC ] OR A s.t. ∂t

(
CṼ

)
A
↔ ∂t

(
CRĨ

)
and I ↔ IC

C c○ ∂2t

[
CṼ

]
= VR

L + ∂t
[(

1
RC + ∂t

)
CVR

]
OR D s.t. ∂tĨD ↔ ∂2t

[
CṼ

]
and V ↔ VR

l○ Ṽ
L = VR

L + ∂t
[(

1
RC + ∂t

)
CVR

]
OR D s.t. ∂tĨD ↔ Ṽ

L and V ↔ VR

r○ ∂t

[
Ṽ
R

]
= VC

L + ∂t
[(

1
CR + ∂t

)
CVC

]
OR D s.t. ∂tĨD ↔ ∂t

[
Ṽ
R

]
and V ↔ VC

D ∂tĨ = V
L + ∂t

[(
1
RC + ∂t

)
CV

]

(69)

Accordingly, LRC circuits of type B (with a parallel shunt about a series) controls the
series current like a sourced type A LRC circuit; similarly, LRC circuits of type C (with a
series over a sub-parallel shunt) control the sub-voltage like a particularly sourced type D
LRC circuits. Further, it is immediate to infer that exchanging C↔ L in B-type circuits is
a symmetry if stationary current sources are also exchanged for wave-like current sources;
also, exchanging C↔ L in C-type circuits is a symmetry if wave-like voltage sources are ex-
changed for stationary sources. Note also that the r-circuits are dual to first order sources,
as are type-A and type-D.
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This can similarly be understood the various limit duals, summarized (with (x, y, z) ∈
{R,C−1, L}) as:

lim
x→∞

D = lim
x→0

C x (70)

lim
x/∼y→∞

C x = lim
y→0

A = lim
y→∞

B y (71)

lim
x/∼y→0

B x = lim
y /∼w→0

C x (72)

lim
x,y→0

A = lim
y→∞

B w = lim
(x,y)→(0,∞)

C x (73)

This limits are summarized in Figure 2.1, where the closed loops present the accumulation
domain-dualities.

Figure 3: Some LRC Subunit limit directed identities
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Then the solutions may be grouped as (AB)(DC) and tabulated (in the s-domain) as:

A I[s] =
s(L−1Ṽ [s]−α)−(β+RL−1α−L−1Ṽ [0])

s̃2+ω2 s.t.
ζ = R

L α = I[0]

ω =
√
ζ2 − 1

LC β = L−1∂t (LI) [0]

B

c○ IR[s] =
Ĩ[s]
CL

−(α(s+RL−1)+β)
s̃2+ω2 α = IR[0] β = L−1∂t (LIR) [0]

l○ IC [s] =
s2Ĩ[s]+sκ−(α(s+RL−1)+β−γ)

s̃2+ω2 α = IC [0] β = L−1∂t (LIC) [0]
κ = Ĩ[0]

γ = ˙̃I[0]

r○ IC [s] =
sR
L
Ĩ[s]−(α(s+RL−1)+β−R

L
κ)

s̃2+ω2 α = IC [0] β = L−1∂t (LIC) [0] κ = Ĩ[0]

D V [s] =
sC−1Ĩ[s]−(α(s+ 1

CR)+β−C−1Ĩ[0])
s̃2+ω2 s.t.

ζ = 1
CR α = V [0]

ω =
√
ζ2 − 1

LC β = C−1∂t (CV ) [0]

C

c○ VR[s] =
s2Ṽ [s]+sκ−(α(s+ 1

CR)+β−γ)
s̃2+ω2 α = VR[0] β = C−1∂t (CVR) [0]

κ = Ṽ [0]

γ = ˙̃V [0]

l○ VR[s] =
Ṽ [s]
CL

−(α(s+ 1
CR)+β)

s̃2+ω2 α = VR[0] β = C−1∂t (CVR) [0]

r○ VC [s] =
s
Ṽ [s]
CR

−(α(s+ 1
CR)+β−

κ
CR)

s̃2+ω2 α = VC [0] β = C−1∂t (CVC) [0] κ = Ṽ [0]

(74)

In these cases, the transfer functions53 may be given as:

HA,D[s] ∼
s

s̃2 + ω2
⇒ HA,D[t] ∼ e−ζt

(
cosωt− ζ

ω
sinωt

)
(75)

HBc,Cl [s] ∼
1

s̃2 + ω2
⇒ HBl,Cc [t] ∼ e−ζt

sin(tω)

ω
(76)

HBl,Cc [s] ∼
s2

s̃2 + ω2
⇒ HBl,Cc [t] ∼ δ[t]− 2ζe−ζt

(
cos(tω)−

(
sinh ln

ζ

ω

)
sin(tω)

)
(77)

:= δ[t]− 2ζh̄B,C [t] (78)

By the convolution theorem the final states may be represented (using χA = CRL−1 and
χD = 1

CR) as:

A,D = αe−ζt
(
cosωt+

β
α + χ− ζ

ω
sinωt

)
+

∞∫

0

dτHA,D[τ ]Ṽ [t− τ ](79)

B l○,C c○ − Ṽ [t] = (α+ κ)e−ζt
(
cos(tω) +

β − γ − ζκ
α+ κ

sin(ωt)

ω

)
− 2ζ

∞∫

0

dτh̄B,C [τ ]Ṽ [t− τ ](80)

In fact, (80) directly characterizes “Bl/Cc" duality as between powered-phasor/loss-less
attenuator responses; physically, this can be considered a rudimentary expression of quasi-

53The linear transfer function in the s-domain is defined, for an input signal x[t] and an output signal
y[t], as H[s] := L{y}

L{x}
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dualization/Cooper-pairing, and can be seen by recognizing (80) as a time ordered, aymp-
totically matched, universal current/amplitude/0-point shifting symmetry. Indeed, com-
paring (79) to (80) shows that the (ζ, ω) → (0, 0)-limiting characteristics of either {H, h̄}
are captured by each-other so long as the limits are ordered: ζi > ωi ∀{ζ, ω} → {0ζ , 0ω},
or that the system’s fine-balance about the critical point uniformly quicker than the sys-
tem’s large balance. Indeed, note that the opposite ordering, ζ < ω combined with a rigid
(asymptotically large) time shift t→ t̃+ π

2ω pushes h̄B,C into the same form as HA,D (while
simultaneously changing the asymptotic rescaling ζ → ω).

Focusing on the A/D archetypes, these two circuits can be seen as V − I dual circuits
(as can Br and Cr), in that the A-global current has the same transient response to an
external potential as the D-global potential does to and external current. Note that both
T-functions are square positive in the low resonance and short time/low resistance limit,
but that the natural response is not necessarily square54.
For conciseness, consider the type-A equations and directly expand the source types using
the general expansions Ṽ [s] =

∑
αi[s] (s+ si)

ki and βi = L−1αi:

A I[s] =
i

2




(ζ+iω)(Ṽ0−Lα)−(β−α)−2iβ−ω(s̃−ζ)(s̃−iω)ki
ω(s̃+iω)

− (ζ−iω)(Ṽ0−Lα)−(β−α)+2iβ+ω(s̃−ζ)(s̃+iω)ki
ω(s̃−iω)


+

s̃n/∈{±iω}∑

kn ̸=0

βns (s̃+ s̃n)
kn

s̃2 + ω2
(81)

Or, labeling the non-fundamental modes as I∞
Ṽ1

, by the convolution theorem55:

A I[t] =

∫
dτ
ie−ζτ

2ω

(
α+[t− τ ]eiωτ − α−[t− τ ]e−iωτ + ωζ sinωτ Ĩ∞

Ṽ
[t− τ ]

)
(82)

54 lim
ω→0

HA,D[t] ∼ (1− ζt)2, but this only holds for In[t] iff β = −αχ; this, in the A-type, implies that

− 1√
LC
∂t(LI)[0] → I[0]. Then, naming the integral of I, rescaling the time by L, F =

∫
d[τ ]I[ τ

L
], and re-

membering that the system is one dimensional, this exact square condition can be interpreted as saying the
initial current is a current flux wave in (number) units of the fundamental frequency, −1√

LC

(
∂2
t F
)
[0] ∼ I[0].

Returning: A ∼ (1− ζt)2 ⋆
[
αδtτ +

∫
dτ [·] Ṽ [t− τ ]

]
. Finally, measuring this response near the crit-

ical time, t ∼ ζ−1 in this limit is can be argued that A → −2 ⟨
∮
∞
du

u∫
0

dk ⟨
∫
dτV [τ ]ζ⟩

k
[k]⟩

∞
∼

−2
∮
∞

ζ−1∞∫
0

dk̃ ⟨
∫
dτV [τ ]⟩

k̃ζ−1 [kζ
−1] = −2

∮
∞

ζ−1∞∫
0

dk̃ ⟨
∫ ∫
E⟩
k̃∞ [k̃∞], where E is the electromotive force.

This can be interpreted as saying that in the nearly critically damped, nearly frictionless accumulation
domain the rate of change of A-type currents can be understood as proportional to the cumulative mean
electromotive flux across late times, or that the circuit-current has a memory time-scale set by ζ−1(∼ ∞,
hence the kept relative scales of infinity); dually, only divergent early time EMF signals correlate with late
time currents. Indeed, the minimal convergence conditions can be found as a condition on the mean of
EMF flux ⟨

∫ ∫
E⟩
u
[u] ∼ u−2; then, the maximal production of late time currents can be seen to approx-

imately accumulate near the (asymptotic) critical time lim
t→ζ−1∼∞

IA[t] ∼ −2ζ ln(t−ζ−1)
t

(and suppressed

by ζ). That is, past hidden voltage perturbations may be visible as late time current (waveform) per-
turbations in small observation windows near the critical time. Immediately, the A − D duality may be
applied, showing that late time, type-D voltages should, minimally, run as time-log averaged current signals
with (suppressed) peaks near the critical time. In fact, this will all prove useful towards interpreting the
penultimate construction of this paper, the five dimensional, log-flux magnetosphere in a single spinning
Myers-Perry background.

55and naming α±[s] := (ζ ± iω)(Ṽ0 − Lα)− (β − α)− 2iβ−ω (s̃− ζ) (s̃∓ iω)ki
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Note that if β−[s] = −β+[s] then ᾱ+ = α− and the first terms form a natural optical
pair, ∼ 2iIm[∗]; immediately, the existence of current free times imply Im[α+[t−τ ]eiωt]

Im[eiωt]
=

iζω
2 Ĩ

∞
Ṽ
[t−τ ]. Or, current free times I[t0] = 0 can be supported by (entirely imaginary) non-

fundamental sources iff they are proportional to the fundamental source currents modulo
the free, fundamental sources. Note that, in the essentially critically damped case (ω→̂0),
the LHS acquires a regular pole which must be matched by an overall scaling in Ĩ∞

Ṽ
∼ ω−2;

then, the divergent states of ζ maybe understood as dimensional accumulations of this
scaling factor, lim

ζ→∞
Ĩ∞
Ṽ
∼ ω−3 and lim

ζ→0
Ĩ∞
Ṽ
∼ ω−1.56

Following the previous footnotes, consider the essentially critical, essentially friction free

(ζ → 0), type-D late time solution form; then, 0 ∼ ω± = ±
√

1− ω2
0
ζ2

, or that ω2
0 ∼

aζ2 + bζ4 + c[ζ4] (such that (a, b, c[x]) ∼ (1, b, cx1+ϵ))57:

δṼ [t]
∣∣∣
t−1∼ζ

=
2V0√
1− ω2

0
ζ2

ζ−2δ
[
t̃− ζ−1

]
(85)

Because the accumulation domain is asymptotically far in the future, this leads to an
interesting Bohr-Sommerfield type quantization of the asymptotic phase using ω̃ := ζ−1

t

(derived from mean harmonic dispersion/Heisenberg matching, ∆ω∆t ∼ 1
2 ) and ω± =

56Indeed, comparing this with a previous footnote shows that imposing this source symmetry and induced
scaling to the previous asymptotic current yields lim

t→ζ−1∼∞
IA[t] ≈ −2 ζω

ln(t−ζ−1)
t

= −2 1√
1−ω2

0
ζ2

ln(t−ζ−1)
t

,

showing that the (essentially critical, essentially loss-less) late time current envelope is Lorentzian
and depends on the relative (phase space) accumulation sub-domains (ζ, ω0;ω[ζ, ω0]) → (ϵ, δ;µ) ∼
(0, 0; 0). So, for example, if the capacitor is slightly unstable (sources breaks in criticality infinites-
simally more often) compared to the resistor, this amounts to the relative density of sub-critical in-
teractions ω0

ζ
→ ϵ

δ
. Finally, note that one representation of the delta function is given as δ[x] =

lim
x→ϵ→0

ϵ
π(x2+ϵ2)

, and that ∂τ
ln(t−τ)

t
= 1

t(t−τ) ≡ 1

t̃2τ̃2(t̃−2+τ̃−2)
=

πδ
τ̃−1 [t̃−1]

t̃2τ̃
=

∑
τ̃0∼∞∼ζ−1

πτ̃20 δ[t̃−τ̃0]
t̃2τ̃

(such that t̃ = t + τ
2

and τ̃ = 2iτ); then lim
t→ζ−1∼∞

IA[t] ≈ iπ√
1−ω0

ζ2

∮
τ̃0∼∞∼ζ−1

d [ln τ ]
τ̃20 δ[t̃−τ̃0]

t̃2
=

iπ√
1−ω0

ζ2

(
τ̃20 δ[t̃−τ̃0]

t̃2
ln τ
∣∣
τ̃0∼∞∼ζ−1 −

∮
τ̃0∼∞∼ζ−1

dζ ln ζ
ζ2
∂τ
[
τ̃20 δ[t̃−τ̃0]

t̃2

])
∼ iπ√

1−ω0
ζ2

[
τ̃20 δ[t̃−τ̃0]

t̃2
ln ζ
] ∣∣
τ̃0∼∞∼ζ−1 ≈

−iπ ln ζC∗δ[t−ζ−1]√
1−ω2

0
ζ2

= −iπζ−2δ[t−ζ−1]√
1−ω2

0
ζ2

, where C∗ is a dimensional factor running from the (delta functional)

evaluation over the one dimensional subspace τ̃0 ∼ ∞ (the boundary scale of the critical neighborhoods,
or the change in circumference per unit neighborhood): C ∼ ∂ζ l[ζ]∫

dζl[ζ]
= ζ−2

ln ζ
, where l[ζ] = 2πζ−1.

57Keeping in line with the previous spirit, let the late time parameter ζ serve as a perturbation index of
an extended measure space R∗/{ω0, ζ;ω±[ω0, ζ]}; then, expanding produces

ζ−2

√
1− a ∼

∞∑

n=0

(
1
2

n

)
ζ−1

(
bζ2 + cζ4+δ

1− a

)n
(83)

⇒ 1

2b∗
(
ζ−2

ω±
; b, c, c∗[x]) =

(
2b∗ζ

−2

√
ζ2 − 4b∗

; ζ−2 , ζ−5 , x0
)

δ = 1 c∗ [x] = −2b∗[x] (84)

Note that letting b∗ = − 3
4
ζ2 leads to (ω±; b, c) =

(
1
6!
ζ; 3

4
, 3
4
ζ−3

)
, and c∗ [x] = − 3

√
x

2
= −∂x 3

2
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Figure 4: Asymptotic projective family densities, ∂ζ l[ζ]∫
dζl[ζ]

= ζ−2

ln ζ embedded in a. C∗ and

b. R∗ ⋉R

±
√

1− ω2
0
ζ2

:

δṼ [ω]
∣∣∣
∼ −1

ζ ∞
=

2V0√
1− ω2

0
ζ2

ζ−2δ [ω̃ − ω̃±] (86)

From the bulk perspective this may be interpreted as a formally divergent, uniformly mea-
sured source voltage at a specific asymptotic frequency. Note that the LHS is measure
projected, indicating that this only properly shelled in the asymptotic geometry; deduc-
tively, this response-potential represents an d = 0 gauge (an index) of the asymptotic
phase-topology over earliest (ω−) and latest time (ω+) sources.

Critically, the perturbative (voltage) amplitude of either pole is suppressed by the distance
between the frequency poles.58, which allows this representation to characterize the criti-

58showing, for example, that R → 0 implies a narrow response band 1
V0
δṼ [∗] ∼ iLCδ[ω̂ ± i] (with

ω̂ :=
√
LCω̃). Meanwhile C → 0 implies δṼ → 0 unless ω →∞ (a.k.a., pure inductors uniformly annihilate

time-ordered voltage deformations, effectively projecting into DC current phases). This perturbation limit

may be explored by letting ω̃ ∼ ω̃C
√

L
C

, C ∼ Ĩ[ω]

ωRṼ [ω]
, P̃ [ω] := Ṽ 2[ω]

R
and P̃0[ω] := Ĩ[ω]V0 from where it can

be shown that relative voltage perturbations run as ωR δP̃ [ω]

P̃0[ω]
∼ −iL

2
δ [Rω̂C ± 2i].

From here there are two possible ways to interpret the action of the system, which will be termed “in-to-out"
or “out-to-in", depending on whether the canonical 0−Voltage (measurement) surface is supported inside or
outside the local circuit. Considering first the “in-to-out" case, let δP̃ represent the energy (interactively)
stored by in some local fields and P̃0 represent the energy dissipated/absorbed by the system; then it is
immediate that:

Qi/o[ω] ∼
iL

R
δ [Rω̂C ± 2i] (87)
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cally damped case, 4L
R2C

= 1, as a frequency agnostic step-functional (shown by integrating

both sides by
∮
Cα dα

∫
dωeiαω s.t. α =

√
1− 4L

R2C
∼ 0)

It’s possible to arrive at a similar equation of motion using a variable resistor, capacitor,
and a current source; then I − I∗ = CV̇ and defining Ṽ := V − V∗ it can be shown that

V̈ − ∂t [lnR]
(
∂t − ∂t

[
ln Ṙ

])
V =

˙̃V

Ṙ
∂t [lnR] (91)

Note that the zeros of R act as poles (sources) of this equation, representing the emergent
LC circuit (purely oscillating modes).
The common envelope on the lower derivative pieces guarantees a uniform kernel OPE
iff the source voltage is continuous59. A number of immediate interesting limits may be
produced60, but an operator comparison may be made with the LRC circuit, producing
the following classifiers of the instability point (by letting L∂t = ∂τ ):

∂τR ∼ R2 ∧ ∂τ

[
1

L
∂τR

]
=
R

C
⇒∂τL=0 R =

√
2L

C
(92)

For the “out-to-in" case let δP̃ represent the energy dissipated/absorbed by the system and (remembering
V0 is an arbitrary amplitude, this final U(1) d.o.f. may be used to) define P̃0 as the energy stored (in some
local field); then, the LHS can be rewritten using the circuit’s Q-factor, Q = ω P̃0

δP̃
, the Q-factor of the bare

inductor, QL[ω] := ωL
R

, as well as the non-perturbative impedance, |Zmax| = Q2
LR giving:

ω3
o/i ∼

−iQL[ω]Q[ω]

2
δ [Rω̂C ± 2i] ⇒ Q[ω]

∣∣
ω̂C=∓ 2i

R
=

∫
dω̂C

ω3
o/i

|Zmax|
RQL

(88)

Finally, if the local Q-factor is assumed to be a thermodynamic partition of the global impedance(-
functional), then it is reasonable to deduct the non-perturbative extension into the full frequency compactifi-
cation under some Plankian-type measurement (gauge):

∫
dω̂C []̇→ σ

∫
dωo/i[∗] and |Zmax|

RQL
∼
(
e−βωoi − 1

)
,

which then immediately grants an analogy between the non-perturbative Q-factor and the Stephan-
Boltzmann Law:

Q[ω]
∣∣
ωC=∓ 2i

R
=
π4

15
σβ−4 ∼i/o σ̃

(
R

L

)4

(89)

where the final identification was made by comparing the second “Plankian gauge" condition to (87) (at
first order), a.k.a. β ∼ iL

R
. Lastly, this lets the Q-operator (87) be rewritten in an interactive picture as

some boundary mediated interaction in the response (open) topology:

OQ ∼ eiQi/oβ = e−δ[Rω̂C±2i] ∼ e
∫
Θ′[∗] (90)

This is immediately recognizable as the photoelectric effect.
59actually, a represented compact group, by the Peter-Weyl theorem. Note the written form: V̈ −

∂t [lnR]
[
∂t − R̈−Ṙ ˙̃V V−1

Ṙ

]
V = 0

60Firstly, Ṙ → 0 implies ω2V̄ [ω] = F
[

˙̃V
R

]
. More generally, R → 0 points represent source poles; most

generally, non-continuous resistance profiles, Ṙ, R̈→∞, also present as phase-sources. Secondly, R̈ = −R
gives V̈ − ∂t lnR

[
∂t − 1− ˙̃V

CV Ṙ

]
V = 0, which shows the (outer) inhomogeneous current-flow as a fixed

source over the (inner) voltaic conductor. Note that, generally, the poles will remain regular if Ṙ → K ,
where Ṙ =

∫
R̈ ∼∈ k[t]

t−t∗ ∼ 2πk′[∗], which gives k[t] ∼ Kt + b s.t. (K, b) ̸= (1,−t0); from here it can be
deduced that − b

K
= t0 − t20t10

t12
presents as the L-integrator’s finite time domain. This should be read as

a Diophantine-like construction of parasitic charge states.
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Still, the (phase) stationary identification is not the only one. Notice that the leftmost
identification is well solved by any τ -constant infinitesimal, ϵ s.t. [ϵ2] ∼ [0]. Then, consid-
ering [τ − τ∗] to be some canonical 0-form anti-derivative operation, the equations can be
closed with R ∼ τ − τ∗ and L ∼ (τ − τ∗)−1 ∼ C.61

This in turn lets the inhomogeneous component keep the degree of the operator the same
if ˙̃V ∼ C̃

(τ−τ∗) ; OR

˙̃V ∼ C̃

τ − τ∗
∼ C̃L ⇒ ∂τ Ṽ ∼ C̃L2 ⇒ Ṽ [τ ] ∼

∫

τ
C̃L2 (93)

This is to say that the frequency states of the inductor (a.k.a., perturbation integrator) are
dual to the inhomogeneous voltages; this is commonly known as a “phasor effect". Note,

61this may seem strange, but indeed considering R ∼ e∆ s.t. ∂∆ ∼ τ − τ∗ gives the result. Reflecting,
this is simply the skin-displacement dual formulation of the equations of motion, with the anti-derivative
bounded in some (1-graded) local neighborhood representing the skin of the inductor’s restorative current.
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letting qe represent units of charge-to-mass, presents the units of the integrand as62:

[
C̃L2

]
· [s] =

[
kg q−1

e

]3 [m4 s kg−1
]
= [s] ·

[
ρmq3e
c

]−1

(102)

62Interestingly, this may be used to bootstrap into an analogy with the Friedmann-Robertson-Walker
(FRW) type manifolds, which have a supporting matter equation of state determined by p = wρ ρ ∼
a−3(w+1) (then, the bootstrap follows the (w, a) ∼ (0, qe) phase curve). Examining the FRW Cosmological
model:

ds2 = dt2 + a(t)2
(

dr2

1− kr2 + r2
(
dθ2 + sin2 θdϕ2)

)
(94)

⇒ H2[a; t] = ρtot
3M2

P
− k

a2
+ Λ

3
ä[t] = a[t]

(
H2 + k

a2
− 4ρtot+3ptot

6M2
p

)
(95)

It is naively interesting to compare these equations of motion to (92), which produce the following model
overlap constraints (defining ρvac =M2

pΛ):

Zk[a; t] :=
√
k cosh

1

2
ln

k

a4
∼H 1

6M2
P

(ρtot + ρvac) C ∼K
3M2

p

ρvac

1

1− ρtot+3ptot
2ρvac

(96)

In fact, Fourier transforming a[·] against k, F [a[·], k; ∗] ∼
∫
dkeika[·] (being careful to define the twist

conditions at k = 0) the left equation can be shown equal to a radiation density like profile (w ∼ 1
3
) under

some (possibly trivial) group emdedding of the spectral action (Fak ∼H H):

Fak [Zk[a]] = −ρrad ⇒ 6M2
P ρrad +H [ρtot + ρvac] ∼ 0 (97)

Then, comparing the next set of equations leads to the inference that ∂τ
[
1
L
∂τa
]
∼ a

C
∼K

ρvac− ρtot+3ptot
2

3M2
P

a[t] =w= 1
3

ρvac−ρtot
3M2

p
.

Or, generally using the Friedmann energy conservation equation, ρ̇tot + 3H (ρtot + ptot) = 0, and rescaling
τ → t̃ =M−1

p τ :

3∂t̃

[
1

L
∂t̃a[t]

]
∼
(
ρvac − ρtot − ρ̇totH

−1

2

)
a[t] ≡

∫
dt

[(
ρ̇vac +

3ṗtot
2

)
a+ (ρvac + ρtot) ȧ

]
(98)

⇒ 3LM2
p ä[t] = (ρtot + ρvac) a[t] +

∫
dt a[t]

(
3w

2
− 1

)
ρ̇tot (99)

Note that w = 2
3

eliminates the smeared (mnemonic) charge uniformly, which corresponds to ρ ∼ a−5,
which could deductively be thought of as a complex k = 1 embedding invariant of d = 4 (or, dually, a
D = 5 higher dimensional spacelike curvature invariant). In the case of the former, the RHS of (99) remains
smeared (and the effective inductance is heuristically sensitive); in the case of the latter the solution basis
of (99) is no longer distributed “at the cost" of finding the partition in (97) to actually be a (relatively

prime) sub-modular partition, Fak[Zk[a]] ∼w= 2
3
ρ

4
5
tot. Indeed, this construction will prove deeply consistent

with the central results of this paper.
A more cavalier suggestion is to pick w = 1

5
, which produces:

2 · 7 · 34
53

1

a[t]

∫
a− (∂ ln ρ )2

[
18

5

∂ ln ρ̇

∂ ln ρ
− 1

]
=

(
3 +

3

5

)2

(ρtot + ρvac) (100)

Considering the partial derivative functional as over the tangent complete closure embedding, ∂ ∈ O[∗] ∼
M⊕I L [UI ]U , a k-rescaling the tangent space independent of the coordinate base scaling n- amounts to a
left-right (0-)dual rescaling of the measurement index, or {∂ → ∂t∂ξI , ρ → ξik

iρ}. In the w = 1
5

case, the
symmetric, circuit dual configuration implies (n, k) ∼ (5, 13) and the reduced ansatz:

7!

23
1

a[t]

∫
a =

(
52

3

)2

(∂ ln ρ) (∂ ln ρ̇) + (5 · 6)2 (ρtot + ρvac) (101)

This equation of state is very holographic: the measured self-similarity of the background acceleration (as a
superconducting duality), weighed as l = k−n eight independent degrees of freedom spherically constrained
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Using geometrized units [s] ∼g [kg] presents as an equivalence-connection; then, integrat-
ing over some small proper time t interval, the t−measured integrand’s units appear as a
volume density of the ∼g connection over the unit charge/mass ratio, mediated by the flat
∼g connection over a Euclidean bundle.63

Summarily, while the capacitor represents a first order integrator (a line-charge integra-
tor), the inductor presents as an integrator (anti-differentiator) of the resistance form factor
and, dually, the inhomogeneous current stabilizer forms accumulate as (outer) capacitance
shells of the (positive definite) L-measure (viewed as a local, d = 0 dimensional topology
governed by recent memory τ∗).

Importantly, the virial theorem may be used to qualify some large-N limit of subunits with
globally thermalized boundary conditions; in particular, if the phases are almost every-
where quasi-stable (periodic) than the large-N limit will support quasi-stable (periodic)
degrees of freedom almost everywhere 64. Critically, the converse is also (always) true (up
to some equivalence sets): it is always possible to bootstrap using the (any isolated subsets
of) quasi-stable (periodic) thermodynamic parameter(s) 65. Note that this says nothing
about quasi-periodic circuit paths(/geodesics), which may lose stability (decay/feedback)
in their Virial compactification.

N [l]l2 ∼ l!, is dual to the sum of a dimensional (density) contact fluctuation n2σ2 ∼ n2
(

n
n−2

)2
and an

(n-)index double trace weight n2(n+ 1)2 = 4

(
n∑
k=1

k

)2

.

63further, note that the units of
[

Ṽ

C̃L2

]
∼
[
kgm2s−2A−2

]
=
[

σq
qm/Q

]
are in units of surface-charge density

per mass-to-charge ratio, leading to the inference that the anti-differentiation is over a small, skin like
topology (in the phase configuration domain) of fundamental interactions. This conceptually rounds back
to the physical configuration of the inductor (as a volume boundary winding gauge). Note the analogy is
well directed to (102) as a volume (or 3−)density (over a flat 4-measure mediated by the mass to proper
time exchange).

64For example, a static graph of non-interacting (magnetically shielded) LC circuits will exhibit only the
fundamental mode; alternatively, a magnetically interacting graph (of LC circuits) also supports modes
based on the (static) unit distribution.

Finally, a graph of LC-LCR subunits must also support a (boundary mode) degree of freedom descendant
from the LC-LCR regulatory interaction itself.

65This follows directly from Noether’s Second Theorem, with the exact divergence form fixed by the
nature of the quasi stability (or, the resulting fast-adiabatic response of the internal DoF); therein, this can
also be seen as a manifestation of the Second Law of Thermodynamics. Lastly, the global divergence mode of
the virial extension can be seen directly as a propogator between the sub-unit regulator to boundary domain
modes by analytically extending the 2nd LoT (which represents time/spacial phase-distributions throughout
the graph, a.k.a. global Fourier distibutions, or top-down topology measure-distributions/uniformities.
This is also a clean point of contact with the Second Isomorphism Theorem.
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Figure 5: Some Examples of n-Uniform LRC Junctures. Note that the embedding schemes are exact iff
{L(n)} → {0} ← {R(n)}, which is a strong topological measure in the sense that Q(n)

L → Q
(n)
R . A slightly

deeper understanding of this can be found by lifting the isolated, LRC sub-circuits into a neighborhood of
interactions (depicted here as a d = 1 site ordering) mediated by either the L orR component. Because there
are no magnetic monopoles, the discharge frequency of each (un-shielded) circuit leaks into the effective
inductance of some neighboring circuit; contrarily, in the case of a type A connection Kirchoff’s law of
circuit completion requires that there exists a “bare" (arbitrary) inner DC voltage gap, V∗, to mediate the
decaying perturbations induced by the variable resistors. Immediately, it can be concluded that effective
monopoles can be understood as interactive modes of the internally grounded states of a type A connection.
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2.2 Critical Stability Features in Euler-Lagrange Systems

In fact, this method of symmetry descent is a general feature of quasi-stable systems. This
section (and paper) will explore this idea in two ways fundamental ways.

Starting from a field formulation constrained under some equations of motion Eα, and
degrees of freedom δ{i}x(i)α, under an action principle minimization δIS = 0 = Eαδix(i)α+
Divi[x(i)α, δix(i)α] and the identity f ,a∇aδ(f(x⃗)) =

∑
f(x⃗i)=0

δ(x⃗− x⃗i):

Eαδix(i)α = −Divi[x(i)α, δix(i)α] ⇒
∫
δ[·; E(j)α ]E(j)α δijx

(i)α = −
∫
δ[·; E(j)α ]Divi[Ejα⃗;x(i)α, δijx(i)α] (103)

Notably, consider an analytic curve: gk[∗]Divi[fj ; ·] +Divi[gk; ∗]fj [·] = dji [g[∗]fj [·]] 66. This
happens precisely when there exists an exact representation (over the coordinate (analytic)
space 67) of the adjoint extension, which can then be reduced to the above for some differ-
ential operator (of the Cn−2 class). This then allows the development of a dual pullback
(because the cohomology admits a trivial representation): d∗(i)j ∈ Cn−3.

∮ (
δ[∗; Ẽ(j)α ]Ẽ(j)α δijz

(i)α + dji

[
δ[∗; Ẽ(j)α ]Ẽj

])
=

∮
Ẽjα⃗[∗]Divi[δ[∗; Ẽ(j)α ]; z(i)α, δijz

(i)α] (104)

Then, taking the Fourier involution 68 and dropping the EOM-centered term:
∫
eiω̃(j)[∗]Ẽ(j)

α

∮
dji

[
δ[∗; Ẽ(j)α ]Ẽj

]
=

∫
eiω̃(j)[∗]Ẽ(j)

α

∮
Ẽjα⃗[∗]Divi[δ[∗; Ẽ(j)α ]; z(i)α, δijz

(i)α] (105)

⇒ i

∮ (
ω̃j(i)[∗]δ[∗; Ẽ

(j)
α ] + i

∫
eiω̃(j)[∗]Ẽ(j)

α Ẽjα⃗[∗]Divi[δ[∗; Ẽ(j)α ]; z(i)α, δijz
(i)α]

)
(106)

= −
∮ ∫

eiω̃(j)[∗]Ẽ(j)
α
∑

{∗}

Ẽ(j)α

d∗i Ẽ
(j)
α

δ∗ (107)

where d∗ was used as a proxy for the constraint envelope derivative. 69.
Two things are immediate: firstly, when the RHS is zero the LHS represents exactly the clas-
sical Ward identities [51]. Notably, this will hold unless d∗i Ẽ

(j)
α = 0; in turn, this puts strong

restrictions on the constraint tangent space, namely d∗i [·]dji [∗; ·]] = 0; or that d∗i [·] must be
functionally orthogonal to the adjoint flow of the canonical Green’s operator dji δ[∗, ·]. Then,
the existence of a non-trivial orthogonal operator outside an adjoint-protected Green’s pro-

66So that contour space represents an algebraic topology (in varietal measure). It is trivially possible to
embed the operator with a free-space dual copy; by the central extension theorem there exists a projective
representation iff the covering algebras have a non-empty common centralizer[62], Z(∪An) = ∩Z(An) ̸= {∅}

67The base measure always has a well defined extension through the canonical-pullback of the free-
projective push

68which has a guaranteed (sub)convergence on any measurable subset
69So, d∗Ẽ(j)α dji δ[∗, Ẽ

(j)
α ] =

∑

{∗
∣∣Ẽ(j)
α [∗]=0}

δ∗ where the shifted base-space delta function was written as δ∗[x] ≡

δ[x− ∗].
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jection requires that either: the field domain walls70 have non-adjoint boundary conditions,
or self-adjoint field domains are (ir)regularly punctured [63]. Choosing to work with real-
adjoint fields (as opposed to higher spin extensions [64]) leaves puncture-fields to source
the RHS.71

In either case, the constraint condition can be given as d∗Ẽ(j)α dji δ[∗, Ẽ
(j)
α ] =

k∑

{∗
∣∣Ẽ(j)
α [∗]=0}

c
(k)
∗ δ∗ =

0 (which follows essentially from the fundamental theorem of algebra). This can only hold if

each delta function is unsupported or in a canonical product state
k∑
c
(k)
∗ = 0⇒

kT∑
c
(kT )∗ =

−
kB∑
c
(kB)
∗ (+S0) :=

∑kT c̃
(kT )· (+S0); then, further dividing into in (Kernel; out of domain)

and out (of Kernel; in domain) gives:
kT∑

{out}

(
c
(k)T∗ − c̃(k)T∗

)
δ∗ = −

kT∑
{in}

(
c
(k)T∗ − c̃(k)T∗

)
δ∗ (+

∑
in,out

S
in/out
0 )

.
Importantly, the in/out designation represents a patch embedding relative to the con-
tour; remembering it can always adjointly descend from the free-embedding contour, gives
freedom in choosing the loop adjugant at the cost of algebraic complexity (if the embed-
ding is neither the canonical product nor a kT -local symmetrization). Ultimately, this
reflects choosing different kT vs kB, c vs c̃, and S0 and is pen-ultimately useful when the
resulting loop algebra characterizes a [·]-domain (geometric) residue (whereby this rela-
tion characterizes ALL det[∗; ·] in/out of the field couplings through the central extension
theorem). Notably, the actual splitting c vs c̃ depends on the support fields which run,
in-representation, to the local symmetries of the EOM and amount to (field) coordinate
(on-)shellings.

Particularly, because S0 represents a global center (representation) this immediately re-
quires the in-geometrized algebra match the out-geometrized algebra; when there is a
direct OPE mismatch then a global envelope on the c̃ is induced. For example, suppose a
dual-tangent in space of self-dual fields (kT ∈ Z2, or c̃ = −c) with an SL(2, R) geometriza-
tion; if additionally there is exactly one geometrized pole coutδout ∈ SL(2, R), the out

EOMs must be (in-representation) of Heun type and thus covered by the hypergeometrics
{F2, G2}. Dually, knowing the Kerr geometry has a conformal AdS3 (self-dual) peeling
symmetry cover [12] directly implies the existence of an SL(2, R) in-representation.72

In either case, denoting the LHS of 107 as W (the Ward term), and considering the saddle-
point approximation leads to:

70a.k.a., solutions are complete over the domain functional domain
71This can also be seen by examining the RHS of 107: if the EOM b.c. are not adjoint-propogated

then their tangent space does not has a dual pullback, meaning the RHS involves higher order (derivative)
moments at the same solution point (or, which pull out various moments through [·]′δ′[·] = δ). Notice this
moment develops in the tangent pullback, so it must be associated with a canonical winding number.

72Delving slightly further, when the extension has field-domain support (representing a field-continuous
winding) the coefficients may be canonically dualized, resulting in a smooth constraint form S0 → S∗[·]
representing an irregular singularity, which may then be further resolved at the level of the contour (loop)
into a boundary (sub-charged) field.
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W = −
∮ ∫

eiω̃(j)[∗]Ẽ(j)
α
∑

{∗}

∂2Ẽ(j)α

∂2d∗i Ẽ
(j)
α

δ∗ (108)

which expresses the globally embedded source terms as a series of correlator matchings
⟨∂2d∗iOW ⟩ = ⟨∂2O⟩ which makeup the soft/sub-leading theorems (formulated as a shadow-
extended algebraic cover of the renormalization group). The thermodynamic limit can
be accessed as the specific-measure of the index the circle winding number (as the β-
parameter73), which directly compares the sheet-variety with the specific-affine (parameter
per spacetime),

Accordingly, a second way to see emergent symmetries is succinct: if the system is adia-
batically (volume) stable74; then the low temperature, virial limit of the 2nd LoT reads:

⟨W ⟩ = −
∫
k
(i)
β δQ(i) = −

∮

T

∫
δQ∂T lnT = −

∮

T
S (109)

= −
∮ ∫

1

T

(
∂CV
∂V

)

T

dV = −
∮ ∫ (

∂2p

∂T 2

)

V

dV (110)

So. representing V = e∆[·] gives W = −
∮ ∫

e∆
(
∂2p
∂T 2

)
e∆
d·∆; let ∆, a scalar, have a dual

functional representation as d·∆ = µjd·N (j)[·] ⇒ ∆ =
∫
µ(j)d·N (j)[·]. Naming the integral

(of the conformal-volume constraint form) as a dual measure 75 gives: ∆ = κ(j)[∗]p(j) and:

W = −
∮ ∫

eκ(j)[∗]p
(j)

(
∂2p

∂T 2

)

e
κ(j)[∗]p(j)

µ(j)[·]d·N (j) (111)

Noting the 1st LoT (on each Volume slice) may be represented as dW
dT =

∑
i

(
∂S
∂µi

)
{µj ̸=i},T,V,Ṽ

dµi
dT

76

identifies:
73The association with the Fourier involution parameter iω and the thermodynamic parameter β is

made exact under the Wick rotation, which is a canonical (U(1)) convolution of the Fourier and Laplace
transform: Wθk [[∗](z); [·]] = [∗](θk(z))[·]. When [∗](z) ∈ {L}, θk = e

iπ
2 . The U(1) symmetry descends

in the product (topology) as Wθk ◦ Wθl = Wθk◦θl . This relationship is exactly captured by the Mellin
transform: Ms[f ] = [e−[·]]TLs[f ] = [e−[·]]TF−is[f ]

74Or, the system has a 1st LoT formulation as dW =
(
∂S
∂T

)
V
dT +

(
∂S
∂V

)
T
dV ; notice this doesn’t preclude

further interactions, so long as they may be expressed as: dV = ∂V

∂Ṽ
dṼ +

∑
i

(
∂S
∂µi

)
{µj ̸=i},T,V,Ṽ

dµ. Notice

(sub-)dynamic fields must be held at fixed V (from the constraint
(
∂S
∂T

)
V

) and Ṽ ; this is exactly then
requiring the “emergent" degrees of freedom have (a) conformal symmetry (in the volume parameter).

75So, int is considered as a measure of the function on µ(j) on the measure-basis ∈ {d·N (j)[·]}. Expanding
over any covering set is allowed, namely: it is possible to expand the domain of the measure-dual basis (of
the volume-constraint flow d·∆) in terms of the classical, conformal trajectories (although the dual density’s
number-fields may need to be properly extended [·] → [∗] to render the basis E(j) linearly independent).
Here, consider the analytic cover basis to be implicitly maximally extended basis (in the weakest topology)
or, heuristically, in the Zarinski basis of the shell-group.

76which then runs to an adiabatic constraint form: dµk
dT

= − ∂µk
∂S

∑
i̸=k

(
∂S
∂µi

)
{µj ̸=i},T,V,Ṽ

dµi
dT
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−
∫
eκ(j)[∗]p

(j)

(
∂2p

∂T 2

)

e
κ(j)[∗]p(j)

µ(j)[·]d·N (j) =
∑

i

dµ

dT

(
∂S

∂µi

)

{µj ̸=i},T,V,Ṽ
(112)

and (113)∮
δκ(j)[∗]e

−κ(j)[∗]p(j)
∫
eκ(j)[∗]p

(j)

(
∂2p

∂T 2

)

e
κ(j)[∗]p(j)

µ(j)[·]d·N (j) (114)

=

∫ (
∂2p

∂T 2

)

ep
(j) ̸=∞

µ(j)[·]d·N (j)
∣∣∣
κ(j)[·]=0

=

∮
δκ(j)[∗]e

−κ(j)[∗]p(j)
∑

i

dµi
dT

(
∂S

∂µi

)

{µj ̸=i},T,V,Ṽ

=

∮ ∑

i

δκ(j)[∗]
dµi
dT

(
eκ(j)[∗]p

(j) ∂µi
∂S

)−1

{µj ̸=i},T,V,Ṽ
(115)

It is important to note that this OPE puts δ in a distribution basis about a (real) coordinate
constraint basis d·N (j)[·]. Note the (internal) entropy is volume scale independent this
implies 0 =

∫
∂Sµ(j)d·N (j)[·] (which characterizes the internal constraints µ(S) as extremal

along every spacetime-distributed coordinate basis).77 In the T-dual measure-space [∗] this
can be represented as :

=

∮ ∑

i

δκ(j)[∗](p
(i)d∗κ(j)[∗])

dµi
dT

(
d∗eκ(j)[∗]p

(j) ∂µi
∂S

)−1

{µj ̸=i},T,V,Ṽ
(116)

=

∮
δ∗
∑

i

p(i)
dµi
dT

(
d∗eκ(j)[∗]p

(j) ∂∗µi
∂∗S

)−1

{µj ̸=i},T,V,Ṽ
(117)

and backtracking: ∂SV = V ∂S∆ ⇒ V ∂V S = (∂S∆)−1, as well as the dispersion relation

pi =
δi
(j)

∆
∂·∆
∂· ln∆

78 yields:

= −
∮

∂S ln∆

V ∂· ln∆
δ∗
∑

i

∑

k ̸=i
∂·

[
∆

(
∂µi
∂µk

)

{µk ̸=i},T,V,Ṽ

dµk
dT

](
d∗eκ(j)[µ̃i[∗]]p

(j)
)−1

{µj ̸=i},T,V,Ṽ
(118)

Both and the internal heat dispersion and the external spectral flow must be stable (in the
adiabatic limit) so the ratio of the derivatives are pushed to second order (saddled). Finally,
remembering the measure weight may be interpreted as a Lie-dual derivative operation
eκ(j)[µ̃[∗]p

(j)] = dµ̃i
[
κ(j)[∗]p(j)

]
, combining everything, and [∗]-contour closing to the R real

77So, pulling back using
∮
δf [·]e

−f [·]G = dGδe−f[·]G identifies d∗Gf = e−f [∗]G as an inverse Lie propagator
(a.k.a., a Lie integral). This can be seen by noting the LHS contour represents a (smooth) contour inter-
polation of f (or, it is dualized under the proper functional projector:

∮
[·]
f([∗] − [·]))[...]

∣∣
[∗]→[∗]−[·]), while

the RHS represents the motion of the large (divergent) G-actions (which, because f is assumed smooth, is
(up to class) fixed; a.k.a. the divergences are G-indexed). So expanding the RHS, dual projecting the LHS
onto f, then applying dG to both yields: dGf [·] = ef [·]Gδ·

∣∣
1

(f[·]G)
=0

, which provides the final result. Indeed,

in this case applying another integral on the LHS can be directly collapsed to represent a measure of the
asymptotically divergent functional map f [·]G.

78As well as ∂·
[(

∂µi
∂µk

)
{µk ̸=i},T,V,Ṽ

dµk
dT

]
= 0, which follows from the internal parameters holding an

external conformal index V. ∂S ln∆
V ∂· ln∆

→ 1 for exactly the same reason
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domain in the almost (everywhere) imaginative (a.k.a., Wick distributed, or ∥ → ik) sense:

∫
dΩ∗,·W = −

∮

T

∫
eik(j)[·]p

(j)
δ·
∑

i

∑

k ̸=i
∂2·

[
∆

(
∂µi
∂µk

)

{µk ̸=i},T,V,Ṽ

dµk
dT

](
∂2· dµ̃i

[
ik(j)[·]p(j)

])−1

{µj ̸=i},T,V,Ṽ
(119)

Directly comparing with the particle physics picture imagines the shadowed tree dynamics
as a second order (variety) of internal diagrams (ideals with possibly continuous index)
over the classical Lie-moment [65]. Critically,

i∂·k(j)[µi[·]]p(j) = Ẽµi =
dµ(j)

dT
∆

(
∂µi
∂µ(j)

)

{µ(j)̸=i},T,V,Ṽ
(120)

gives produces the absolutely visible79 spectral decomposition ∈ dΩ∗,·W = −
∮
T

∫
eik(j)[·]p

(j)
δ·

of the interactive in-shells80. Letting the middle operator act on an exact momentum family
(equivalently, keeping only the kinetic terms in some interactive branch), give a character-
ization of “fake Symmetrization under Uniformity"81 as:

⟨p| Ẽµi |∆i⟩ = i ⟨p(j)| δi(j)∂·k[µi[·]] |pi⟩ (121)

⇔ i ⟨δi| k[µi[·]] |pi⟩ =
∫
d[·]∂p(j) ⟨p|

dµ(j)

dT

(
∂µi
∂µ(j)

)
∆ |∆i⟩ (122)

(123)

Then, for example, letting the uniform dimensions tower over some differential operator
D as ∆−n(i) |∆i⟩ = D |∆i⟩ while simultaneously stabilizing the function field basis k[F[·]]
using (canonical) coordinate extensions produces:

⟨δi| k[µi[·]] |pi⟩ = −
1

2π

∮

C[·]
d[∗]∂p(j) ⟨p|

dµ(j)

dT
∆1−n(i)

(
∂µi
∂µ(j)

)
D |∆i⟩ (124)

which drives the expectation that almost nowhere supported conformal symmetries reflect
in-envelopes on the spectrum.82.
This construction also endows the internally scaled propagator with the top-induced sym-
metry form; in particular, if only one internal leg exists (in measure) then the remaining
legs must have an induced residue symmetry on loop level, 83 In fact, assuming ∆1−n(i)

79un-shadowed, or exactly/uniquely represented
80note that, the inverse relation is second order, absolutely visible decompositions could be expected to

emerge point- and line-wise (in the affine sense) even out of Fock-gauges. In the both cases, the membrane-
of-emergence wave equations acquire an additional, hidden, matching degree of freedom amounting resulting
from the disconnected boundary sub-regulators:

∫
0+
∂− |in⟩ (usually assumed trivial/canonical) boundary

conditions
∫
∞− ∂+ ⟨out|. Note the trivial matching constraint is 1−1 with assuming the existence of a real

affine field-characterization.
81Or, hidden in-deconvolution singular fixed point representations; this motivates the cavalier attitude

towards operating modular center of mass translations.
82And, since everything was formulated as coordinate measures, provides a quick connection, generically,

between the soft theorems, the RT-theorems, and the second LoT.
83the splining operator ∂p(j)

[
⟨p| dµj

dT

]
accumulates towards an in-boundary mode (a projected operator).
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is a (µ, p(j) commutative operator (eigenfunction) along some closed connected cut in the
extended domain then this can be thought of as a (left regulated) Mellin transformation of
the internal(ly weighted) symmetric propagator. Indeed, assuming only the affinely regu-
lated portion of the operator p(u)-flows in the out measure as a conformal OPE (known as
the Heisenberg Picture of the conformal phase transition) gives

⟨δi| k[µi[·]] |pi⟩ = −
1

2π

∫
d∆∆1−n(i)

∮

C[Nk]
dNk[∆] ⟨dχ

∣∣D(j)
i ∆i⟩ = F̃ [χ,∆i] (125)

In particular, the Heisenburg relation can be characterized by saying that F̃ is not invertable
on the fundamental strip domain; then, the functional inside the contour integration do-
main must be multivalued.

2.3 Critical Phenomena in Gravitational Systems

A critical feature of classical, emergent (partially uniform Lagrangian-density) symmetries
displayed above was the existence (quasi-)exact (family of) measure(s), or the 0−form
constraint embedding ∆ (↪−→ {∆(i)}). Reflectively, this raises two immediate questions
about complexity, namely:

a) what, if any, are the local and universal aspects of the family {∆(i)}? (126)

b) can this structure be generatively compactified into a less complex topology? (127)

Naively both questions are computationally complex and unclear. Still, reflecting on the
tangent constraint of the measurement space d.∆ = µjd.N

(j), the fundamental theo-
rem of calculus (d2. = 0) immediately lets the symmetry space be sub-probed using a
gauge dynamic symmetry extension, ∆ 7→ ∆ +

∑
(k)

∮
γ(k). [∗] d[∗]d.G(k)[∗; ·]84 By the Central

Extension theorem it can be shown (see section 4) that the free topological embedding
space is always functionally dense, leading to the (very) optimistic idea that studing the
physics/representation theory of topological embeddings may be strictly sufficient to (un-
derstand) study both a) and b) from first principles.
Collectively, whatever the extended symmetry representation space, [∗], is it is algorith-
mically immediate to index the family of co-kernel operators relative to the sub-dynamic
measure space already represented, (x̃⊕. U , ∗) ↪−→

(
M.,T(MN⃗ [·])

)
⊙. M̃∗, where ⊙. rep-

resents some general family of constraint involutions. Generally, Green’s theorem may be
used to show that co-extensions along either the sub-measure space or it’s tangent repre-
sentation produce (pointwise) weighed shift symmetries in either as:

∆→ ∆+
∑
k

lim
∗→·
G(k)γ∗ [∗, ·] d.∆→ µjd.N

(j) − ⟨G(k)d2.N (j)⟩Γk + ⟨d.
(
d.N

(j)G(k)
)
⟩
Γk (128)

84intuitively, this represents the functional flow of Stokes theorem as a geometric sub-space (or, an
embedding) symmetry of topology, generally.
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In turn, both of these symmetries may be considered over their effective representations
which, by the convolution construction above and the general freedom of tangent space
representation theory, respectively, gives:

V

V∗
7→∗ ∏

k

e
− lim

·→∗
G(k)[∗,·]

d.∆
∗ − ⟨d.[d.N (j)G(k)]⟩Γk. ↔

∗ d.∆− ⟨G(k)d2.N (j)⟩Γk. (129)

Intuitively, the leftmost relations decipher the relative thermodynamic volume partition as
an emergent (functionally measured) OPE envelope; simultaneously, the rightmost relations
maybe understood as a cohomology constraint on the ∗-extension that compactly minimizes
the difference between functional shifts of the (·, ∗)(, or, the measurement vs extended
measurement) dispersions.
In fact, defining T (j)(k) := d.N

(j)G(k), this “rightmost" duality can be directly understood
in the case of sub-exact symmetries to say that the mean dispersion of T is an exact
extended symmetry iff G(k) represents a family of conformally exact harmonic weights, up
to uniformity. Stronger yet, considering these to be matter type symmetry connections,
everything to a Wald-type action gives:

δS̃∆ = d.∆− d.∆∗ ⇒ δSWald − δS̃∆=̂∗ ⟨d.T (j)(k)⟩Γk. (130)

Accordingly, the algorithmic closure of the hidden structures of measurement symmetries,
(G⃗, N⃗), can be fully explored by considering the embedding algebra of the observation
space, G(k)[∗, ·] ↪−→ G(k)[N (j); ·]. This can be considered the definition a non-matter, hid-
den conformal symmetries generally; further, when the loop-algebra Γk is closed over the
measurement topology the RHS is analytically exact and, using Wald’s hypothesis and
applying Noether’s second theorem, can be identified (up to uniformity) with the classical
gravitational action RHS ≡̂ δSWald. Thus, it may be deduced that classical gravity emerges
as a renormalization feature between conformal blocks or, as an n−pt OPE symmetry of
a fully quantum field theory. Similarly, it may be inferred that the Wald action minimally
implies a projective duality between gravitational degeneracy and entanglement (as confor-
mal OPEs); this can be recognized as a statement of the ER= EPR conjecture (1306.05333).

is black holes are essentially defined by the existence of a distributed Green’s function (the
“event horizon") which has a well established conformal measure symmetry (a.k.a., the
AdS3 ∂ϕ-peeling of the Kerr spacetime85).

On this side of the event pullback, the strongest interactive support is the weakest out-
residue: black holes quantitatively shadow the strong-G interaction by functionally IR-
flowing all UV interactions [66]. Put another way, exactly almost in-states are almost
exactly low energy null-out-states; this is the 1st law of black hole thermodynamics . When
applied to metric modes gµν , the Penrose completion theorem guarantees any quantum

85which exhibits a conformally thermalized string spectrum, patched in-Poincare representations and
has surface modes defined J± to have a proper, continuous indexing basis {∂ϕ} of a conformal bosonic
(super) string (depending on whether the pullback algebra is extended {[·]} or not = {[∗]}) [12].
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theory of gravity to have a completely IR regulation conformally matched to some UV
boundary spectrum. In turn, Gravity is recast as a dual-force representing the IR regu-
lator field of the in-distribution dressed under an UV regulated out interaction (in affine
measure/time). So, every extremely UV mass distribution is recast as an internal propoga-
tor amongst black holes representing the Wilson-kernel quantizations discretely shelled
about distributive spacetime sets (representing the classical out-scattering geometries).

The Penrose theorems can be extended to dynamical BH systems with the Love symmetry
algebra [52], whereby the tidal locking symmetry represents an exact (super)charged IR
shadow (in the sense that it has a ladder of out-operators that exactly close each successive
shell under a (super) charge algebra with zero central charge and operators along the in/out
null-current generators). This represents a so called “second quantization" representation
of gravity: rather than worry about it’s standalone quantization, it’s quantization under
a universal cover algebra (in the stereographic boundary) of IR bootstrapping modes rep-
resent UV decay states with different relative in modes (spectral shadows). In this sense,
the Unruh effect may be understood as an out-time-spin OPE profile dictated by strong-G
(shadow) charging of the (conformally) dual fields (a.k.a., IR dispersion-gauged residue
fields), and classically blackbody in profile. This is for exactly the same reason the nature
of the inside of the cavity in the falling black hole thought experiment is irrelevant: spheri-
cal harmonics exactly cover the Fock Ladder geometry of the out-mode (in all four covering
topologies, with smooth atlas) as well as the closed in-scattering perturbations. So, every
(distributed) extreme UV in-mode “falls into itself" in the sense that it has some number
of (affine-)decay (distribution) extensions along the horizon state of the BH it can (Wilson
increasingly) in/out propagate along through to the out-(distribution)channel.

Similarly, the quantum blackbody calculation reveals UV emergent adsorption modes (clas-
sically engineered, they access a backscattering surface area that is more fine-grained) ex-
actly because the internal boundary conditions (the spacetime scattering state blackbody)
have a dissipative charge algebra (the thermal surface modes) that is exact over the vol-
ume bounded modes (the free-propogator (harmonic) modes). Indeed, the opposite effect
results as the black body is accelerated, as the lower (observed) volume/spacetime density
of the QFT represents a corresponding increase in the observed surface/volume ratio and
the blackbody glows brighter (taking GR shift effects into account) a.k.a. emits radiation;
dually, the increasingly accelerated constraint modes of the black body increasingly cover
the free internal modes (through the accelerated/spacetime-constrained propagator) and
decreasingly many time-surface modes may be interpreted as zero-energy (and, the vol-
ume/boundary propagator envelopes to the trivial junction, these modes run to matched
boundary condition envelopes). Accordingly, the speed of light limit may be recast as
time-thermalized internal reflection against a 2D compact, a.k.a. harmonically expand-
able, family of affine rays: “black hole-QFT system glows at the end of affine time").

Finally, tumbling the accelerating blackbody shows the radiation must become polarized
(a.k.a., must frame-inductively acquire the spin symmetry), under the classic “No-hair
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Theorem" formulation of Stokes theorem, transverse to the blackbody’s (surface)spin-
acceleration domain: da,J [·] ∼ (Pai∇i + J Jδ̄)[·], where each form factor hold the in-
ternal (sub)symmetries. Then, the global embedding residue is canonically extended to
reflect this propagator, which in turn pulls back to a spin-momentum spectral decompo-
sition; because there are no other boundary interactions (global spacetime is here flat),
this pulls back to exactly two copies of the classical SO(2) algebra (from the relative ori-
entation of the boundary/bulk ˆa− J) which canonically reduces to the polarization alge-
bra SU(2). Repeating with uniform deformation-modes on the surface immediately leads
to a (momentum-transfer) (sided) SO(3)) double-copied bulk representation, Sp(1, 2) ∼
SL(2,R) ⋉SO(1) SL(2,R); employing any optical theorem gives an immediate motivation
for celestial holography as a uniform embedding of the (canonical free-)bulk, extended
little-indexing (z, z−1) and the extended-index residue-algebra of canonically adjoint quasi-
thermalization fields.[65]

This gives rise to an interesting interpretation of the flat spacetime graviational propagator:
mass-momentum exchanges of blackbody modes (or accelerating OPE-distributions) canon-
ically separate into two orthogonal mass polarizations and two orthogonal spin-polarizations
(in the out-representation). In fact, this can be pushed even further using weak inertial
equivalence mext ∼ mint: then, consider a free, (infinitely) indexed product topology of
the stationary black body, s, with exactly one product (p-)index representing a black body
(temporarily) on a (a, J) massive-spinning black hole’s north (or south) event-horizon,
and another free, (infinitely) indexed product of (a, J) black holes, b. Under a free time
(operator-)extension the p−black body will fall into the black hole, meaning p1 ∼ b1, and
that the black body index is in-Uniformity, s ∼ s∗1, iff it is optical: s ∼∗ s∗.86

The physical picture is clear. Consider an object undergoing N → ∞ interactions about
a black hole in such a manner that the N + kN interaction is always more energetic87.;
then there always exists a (dual) family of orbital-geodesics such that the observed (family
dualized) energy density is LN · f(kN ) where LN is strictly dependent on the field and
f [·] is strictly dependent on the black hole.88 Qualitatively, everywhere indexed divergent
accumulation points can always be measure-indexed by their lowest mode (“the longest
divergent cycle"). Then, in the free-product distribution, the out-family(-patch) topology

86Operating with qualitatively hard charges gives the time forward index, b1, a p−induction: B1 ∼∗ p[B].
Then, the weak gravity conjecture is seen as stipulating: s ∼ s∗ ⇔ b ∼∗ p∗[b∗] [23], or that matter(-
indexed) black hole charge dualities should (almost) always descend to (over-leading) in-gauged measure
dualities (a.k.a., crossing relations). Letting p[B] be trivial (the canonical pullback) then gives the (trivially)
bootstrapped crossing relations: (s, b) ∼ (s1, b1), (s, b) ∼∗ (s∗, b). The same construction with opposite
matter charge (a.k.a., a black body on the globally oriented (thermalized) south pole) gives the c.c.

87In-spiraling orbital-scattering is the classical example where here we generalize to allow some family of
classically pumping states {N + 1, ...}

88The proof is straightforward: using the canonical product to populate a family of orbital geodesics,
consider the population indexed by {N, kN}, (family-patch) spacetime coordinates, and orbital parameters.
Considering any internal spin-chain descent g it is always possible to find an (family-patch) in-state-geodesic
with orbital energy −gcd({kNi}, g): immediately near the event horizon every spin modes acquires (family-
patch) negative-energy support as it’s spin/orbital-modes have increasing support on the horizon’s in-
geometrization.

52



represents an IR(-patch) regularization exactly because of the enhanced internal scattering
of the loop-regularization and increasingly-near orbital modes: more energetic modes are
then simply displaced by different affine (mode) distances, or across different echo distri-
butions.
Principally, this leads directly to the central idea behind the 0th law of black hole thermo-
dynamics: near(-patch) event horizon networks (patch-)radiate to their lowest out-Ward
mode. Therein, localized fields do not have a volume-stationary (covering) basis unless
the entire spacetime has a locally conformal propagator (a.k.a., AdS/dS representations).
Instead, as some increasingly (affine accumulated, cover) UV dense spin-orbit family is
(patch-)space populated (while a series of out-time fast IR modes are counter, or “in"-
representation, excited) across an increasing number of modes. Eventually, the field’s
lowest sequence (in the sense of first divergent, time-spin self interaction) loop distribution
can be embedded in the distribution; therein the in distribution is out quasi-compactified
to the IR tabled flow of the most massive mode(s) 89.

2.4 Holography

The canonical example of duality in classical BH physics is the Kerr-Taub-Nut double cover
wherein the Lie-algebra generators of the Kerr (spinor-)bulk geometry are exactly covered
twice under the Taub-NUT charge algebra (when the product state, the so called Kerr-
Taub-NUT action, descends adjointly through a U(1) charge-gauge of the SU(2)⋉ SO(3)

(cover)algebra to : ∼ (U(1), SL(2,C) ⋉ SL(2,C)). Then, the system is double covered in
the sense that if both of the EM curvature tensors descend from a Kerr action (a.k.a., if
the Wald matter term is the action’s U(1)-charge dual pair) then the resultant Kerr-Taub-
NUT generators lift to (either sided) Kerr action [69] [70]. Pulling one side back to (a.k.a.,
representing either one-sided OPE as) it’s bulk charged state gives a kernal operator on
the local (a.k.a., on the topologically symmetrized) normal projector; because S2 shells
the (ma, m̄

a) almost everywhere this kernal operator is almost nowhere inhomogeneous 90.
Then, this gives a global operator in the sense that it is fixed by the non-S2-measurable
points of this kernel’s operator basis (OPE); there are exactly two closed, non-measureable
d=2 out-varieties: the outer-measure topology AND the inner domain wall (a.k.a., the
event horizon’s spacetime-orthogonal pair) normal.

Therein all geodesically stable propogators satisfy the Carter conservation flow: CD =

KabDaDb :=
(
Σl(anb) + r2gab

)
DaDb.The proof is trivial, given an operator which con-

89dually, the “farthest range field" at the compactification (penetration) range. This gives a G-dual
formulation of the fundamental forces in terms of their (distributed) IR flow propogators [67]: the free-
conformal distribution characterizes their out self-interaction strength, which is (patch-)topologically dual
to a (distributed, spontaneous) de-excitation into a spin(-interaction) tidally bound trapped mode (a.k.a.,
a quasi-normal mode with distribution-induced population inversion). Put more dramatically, particles
which (patch-)cross measure in infinitesimal event horizon neighborhoods always represent affine lengths
longer than the mean-free path of their conformal duals. Such as, black hole geometries represent emergent
(regulator-fixed) UV/IR glassy-propagator (membrane)-modes with a fixed limiting envelope [68].

90When considered as an operator on geodesic-families.
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serves the time-spin basis (la, nb) and the top conformal moment. 91. Double-cover repre-
sentations necessarily involve a Lie-group (extended)cover of the dual (spin-polarization)
basis adjointly meeting (inductively pairing to) a (doubly-)extended Lie algebra with a
well defined (extension-)residue charge gauge. 92 In the former example, the thermaliza-
tion volumes 93, which represent the conformally (index-)scaled metric symmetries r2gµν
of in-domain covers, acquire an out (spin-)charge induction (symmetrically projected) on
the polarization basis (a.k.a., super rotation)

In fact, this formulation runs exactly from the asymptotic (classically the Weyl) symmetry
gauges, which conserve the Penrose scalars, as a (classical dual-charge) representation (in-
gauge) as spinor fields (a.k.a. the NP formalism).94 Generically, the spinor formalism relies
on the central embedding theorem (a.k.a., the FTA) exactly twice: once on the spacetime’s
Lie-group and once on the affine-domain’s Lie-algebra. The second point is critical: Pen-
rose diagrams don’t just compactify the spacetime, they necessarily (smoothly) connect in
to out time across retarded/advanced time representations95. Although each connection
is canonical and continuous almost everywhere (in-representation) it is nowhere smooth
(under the canonically glued representation, a.k.a. the free atlas) in the free out-projection
(owing from the extended (copy) charges in the free domain); instead, the out-projector acts
on the in gluing (free-)topology to fold the (free, null) algebra into a (sub-)compactification
which then has a canonical projection into either in/out96.

In fact, the realization that finite algebras always have a topological extension (un-unique
up the finite residue sub-charge (product) algebra) has universally immediate implica-
tions. This is classically realized under amplitude renormalization techniques whereby in-

91For example, D ∼ f [∇, δ, δ̄], where f [...] is even allowed to have {∇r, r−k} dependence (so long as
they sub-leadingly cancel as they pull through the Kab operator. This is essentially the mechanism of the
subleading/soft(algebraic) theorems ). Also notable is N = 4 (super)gravity which is (counter-)measure
dual (a.k.a., in-gauged) to N = 4 SYM (which, in turn has a scalar-YM residue field given exactly by a
single spin (polarization basis) gauge) [71]) and gives another representation of the same generative crossing
symmetry effect universal in free-extension/max-projection models.

92In fact, the central extension theorem immediately implies that every finite dimensional simple Lie
algebra has only trivial (U(1)-junctured) extensions

93typically the unmeasurable, but canonically regularized; a.k.a., the largest mass-charge index cover
(modes)

94In particular, for all C metrics a canonical spatial (spin patch-)vector is given by ma =

1√
2R

(√
f(ζ)∂aζ + i√

f(ζ)
∂aϕ

)
and mam̄

a = −1 for some in group index a specifically constructed so that

a ≡ maδ̄m̄
a ∼ − ∂ζ ln f [ζ]

4
√
2R

. Further, δ ≡ ma∇a ∼ δ̄ because δψ ∼
√
f(ζ)√
2R

∂ζψ
95Which, heuristically, acts as an absolute value time-junction between the (patched-)null sub-cover

spaces. Of course, it is exactly the non-differentiability, in-uniformity, of the absolute value junction that
makes advanted/retarded coordinates ubiquitous in physics (especially involving globally compact theories,
like EM). In fact, letting sign[θ] instead be represented as iθ = θa and −iθ = aθ shows that absolute-
junctures are universal to all optical theories.

96Then, under the spinor involution, out →SL(2,C) in → in∗ →SL∗(2,C) out
∗, the sub-algebras acquire

a global U(1) (index) charge which may be out indexed to ±1. Or, bulk slice indexing with spinor sub-
representations always extends the representation’s slice space by a (globally generative) form factor; in
d = 4 Minkowski geometries, this is exactly the quaternic extension required by the [a, iθ] = 2iθ field
extension which smoothly extends the absolute value function (in the a-ultra-coarse grained sense), and
leads to the Klein-informatics of BH thermodynamics [8]
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topological out-extensions are continuously (affine-)extended along a strong global measure
mode (classically given by rescaled time, under the little-group, a.k.a. mass-spin renormal-
ization, gauge) [72] towards resonances (convergent sub-sequences). At tree (quantum
mechanical) level fields with unitary time evolution (a.k.a., Hamiltonian systems) mea-
surement profiles (or equivalently, amplitudes) may always be specified by a 3rd and/or
4th order envelope recursion, manifest as an in-gauging with [∗]2∂Ψ (dispersion) and Ψ4

(massive) modes [72]. This can clearly be seen by (topologically) pulling the global U(1)

gauge through the sub-measure (here the little group, so: µt →U(1) µt̃ ∼ eixt
t ) precisely

because the out-topology (here, the scattering amplitude) is helicity shelled (or h-pseudo-
continuously moded): ∼ {U(1)h}⋉ [·]. Therein the fundamental theorem of algebra guar-
antees that the family of convergent (minimal)covers have an upper bound on the minimal
bound (sub-convergent)representation:97 gives, for |h| ≤ 2 no more than four real terms.
Finally, the 2pt-propagator envelope may be used to fix the first two terms as well as their
relationship to the third/fourth term pair98 to render the representation (importantly, over
the helicity extended in-domain) exact under the real out-measure.

Figure 6: The Canonical Pull

The lesson here (as well as from string theory [73]) is that (sub-)indexed measure spaces
are quintessential constructs within every (non-simply represented) system(’s embedding

97|{[∗]}min|max ≤ h||Z2||Z2 ≡ 4h ∼ 2h̃, where h → 1
2
h̃ is the helicity-extension pullback (here simply at

tree level over C; loop Master equations are similar, but require networked extensions instead)
98where schematically, → σ[(CA,BD, (A,B))] → σC∗ [(D̃, (Ã, fC [Ã;B]))] → σC̃∗ [(D̃, (ÃD, fC [Ã;B]))] →

σC∗
f
[(D̄, (gB [ÃD(D̄); fC [Ã;B]], B̄))] shows how the amplitude may be (sub-convergently) forward-propagated

(and then re-gauged ∼ D) into a (functionally-)renormalized 4pt and a functionally B(-bare) uniform out
3pt-envelope, gB , under an in (sub-)enveloping run by the short (tree-diagram) sequence (a.k.a., the index-
gauge) 4pt amplitude and a (possibly running) free contact-form ÃD(D̃)
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within any relatively simple-represention); wherein this also includes every logically null ex-
tension99. This is just a rephrasing of the idea behind spectral stabilizer (thermodynamic)
limits100 and is generically descendant from the Jordan (Residue)-Completeness Theo-
rem101, which gives an upper bound on the minimal (sub-)representation extensions102,
thereby establishing a well established computability frame .

The universal nature of this construction descends directly from the axiom of choice and is
therein completely applicable to all systems, especially those with computational subsys-
tems[74] 103. Universally, non-efficient algorithms104 descend directly from efficient ones:
any algorithm which efficiently descends a (patch-wide) efficiency-networks is itself (patch-
wide) efficient. This is the central dogma of quantum error correction (and backward-
propagation in machine learning) and necessarily endows all computational networks with
entanglement features (viewed fundamentally as profile extensions of the Shanon, or sub-
disjoint, entropy). Critically, this means that every non-efficient algorithm may always
be efficiently improved by comparing an algorithm’s noise105 along backwards-scrambled
domain-chain 106 107.

In fact, re-examining the constructions above shows signs of a universal, strong, and distinct
pattern across mathematics, physics, and informatics: hidden, in-dynamical degrees of

99Again, up to an application of the axiom of choice on the extension family; herein the family of
“logically null extensions" will assumed to be well (sub-)indexed in the maximal (residue a.k.a., deduction)
cover space. This is also known as Contrapositive self-duality(/closure)

100in statistical mechanics exactly the density operator involution, in QFT this is the idea of gauge-
regulating off-shell propagators (which classically proven in QED as the Optical Theorems)

101A d=∞ extension of the Jordan Uniqueness theorems
102An important feature of the d=∞>N algebraic theories is that every (global) representation is centrally

extended , meaning especially that the canonical projections are charged (over R∗[·]). This is exactly how
Bouglibov induction works. Specifically, global cover algebra always contains a (directly independent, vector
space representation) of the shortest global co-cycle; when d = N the basis exchange operation (∼d=N Z2)
ensures the shortest global co-cycle is already in the algebra. If each (sub-)base expansion is indexed ê

Mi(k)

(k)j ,
then the shortest global co-cycle can be lower bounded in the product measure, which is upper-bounded by
the longest (k)ij kernel-modulus. Then, if every OPE is finite dimensional gcdk((k)ij) < ∞; if exactly one
OPE is infinite dimensional in every representation, ∀M∃!|(k)ij | <∞ then a unique field extension ϵ does
always exist, but ALWAYS with a dual index representing the extension’s maximal (universal cover basis-
)exchange symmetry: ∼ F/(ϵ, ϵ∗). Particularly, (ϵ, ϵ∗) ∼ ϵ iff the maximal exchange algebra is a (minimal)

universal cover basis (of the dual extension); or, an OPE of the form
(

Il [ϵ]l

[ϵ]−r −Ir

)
exists (for some real,

nilpotent [ϵ]) iff no sub-representation cover has a Z2 duality (or iff the OPE has completely anti-symmetric
extensions: ∼ M[i](k)). This is important because it specifically precludes analytic continuation into C[·],
instead requiring analytic continuation higher topological domains C ⋉ C. Noting that every semi-direct
product canonically induces a product group results in a canonical C2(k) OPE domain embedding which
completely motivates the spin/helicity basis across physics.

103including this dissertation itself; then, the categorically excessive use of footnotes can be seen as an
affie font-matching of the conformally shifted symmetries that have proven concretely algorithmic.

104An algorithm is here regarded as a (sub-)noded in-network of out-networks
105a.k.a., the out-smooth domain decomposition of the longer than polynomial-time complexity walls
106Notice this construction completely captures the classical the null hypothesis formulation of the Scien-

tific Method (as it should)
107and with the further corollary that the rate of efficiency improvement is (effectively) bounded by

the Markov (domain-chain mean thermalization [75]) measure-envelope of the ascent path. Classi-
cally/heuristically this is a quantum generalization of the H-theorem.
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freedom are out(-residue) measureable iff they are out unmeasurable almost everywhere108.
This leads exactly to the central idea of this dissertation: although no black hole is in-
measure every black hole is out−(shadow-able). This principle feature, understood through
the ideas depicted above, will thread evenly throughout and represents the central idea of
this paper.

108or, iff the in-projector maps are smooth and continuous. Therein this may be understood exactly
as a (dual) formulation of the Cauchy Completeness theorem, where higher order polynomials are to be
understood as canonical products of canonical factor forms: p[·] = eqi[·]

σi Each in-state may be (contour-
descendantly) paired with an out-measure state up to a globally reduced (top) algebra(ic index fixed by the
embedding’s contour-juncture. This is known as Reiz’s theorem, and is also exactly Runge’s approximation
scheme).
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3 The Bulk of iT

Finally, everything should be in place to examine a few quintessential examples. The ex-
act power in the deep connection between QFT regulatory modes and SM volume-internal
symmetries came from the inclusion of sub-surface polarization modes in the statistical
partition function. Then the cover of the sub-surface partition-modes was algebraically
extended (under the Lie-integral measure) so that the pullback (through the EOM sym-
metries)1 gave a valid dispersion over the domain topology (or, distributed family of local
propagators ∂ with internal wave-guiding a.k.a., as a distribution over sub-dimensional
particle thermodynamic pictures) at loop level.
The cleanest test of the quantum (distributional)-geometric lensing effect can be quickly
formulated in self-dual, classical 4D gravity with a minimally coupled, self-dual spin-0
field (whereby the spin-orbital coupling is globally-exact). Therein, because any time-
like codimension-2 distributed family of the null in-states form a basis both for the in(-
extended) patch and for the kernal of the strong G out modes2, the measured (image)
basis of every strong G is it’s IR dual flowed residue operator3 Explicitly this means that
unrelatively thermalized (patch-) states never radiate gravitationally (under minimal, self-
dual auxillary fields); dually, classical gravitational modes always (patch-)relatively radiate
thermally. Consider any massless KG field with a fixed metric, displaying a bulk EOM:

∇µ [gµν∇νΨ] = 0 (1)

This always has a unique free-enveloping limit iff gµν is invertible (a.k.a., if there exists
a mass-spin residue parameterization of the locally, or affinely, shifted geometry), which
is reflected in a (mass-spin geometrization shift) field representation where all geometric
features are considered partial-wave (a.k.a., free-adiabatic) fixed:

gµν
(
Ψ,µν − Γλ([µν])Ψ,λ + Γσλ[(µΓ

λ
ν)]σΨ

)
= 0 (2)

In particular, this limit gives a (slow-)curvature-moment effective mass and a connection-
moment dispersion: so, expectantly, effective masses (run from) area moments and disper-
sions run from the longest mean-free path4.

In deriving this formula the field was assumed to have a completely sub-leading, first order
nilpotent (sub-)index : ∇µ∇νΨ→ ∇µ∇νΨ(λ) = Ψ(λ),µν+Γ

(σ)
ν(λ)Ψ(σ),µ+ΓσµνΨ(λ),σ+(Γ

(σ)
ν(λ),µ+

ΓσµνΓ
(σ)
σ(λ))Ψ(σ). Then, the result follows when5: gµν(λ)(Ψ(λ),µν + ΓσµνΨ(λ),σ) = gµν(Ψ,µν +

1Colloquially, “ if every field has a finite representation embedding within UNM then there exists a finite
representation in U

∏
M NM ", which is just to say the weak topological embedding always exists (up to a

representation class Axiom of Choice)[1].
2a.k.a., the regulated (distribution shadowed) modes
3Which is the canonical self/free (area/volume) juncture representation basis. Thus, the out-

representation is, in the QM sense, squeezed out of the in-representation.
4This can also be interpreted to mean that, generally, manifolds support (internally massless) scalar

fields under deflected (effective momentum and spin-mass interactions descending from connections) free
harmonic propagation

5Using [(...)] to indicate some combination of [...] and/or (...) depending on the representation’s sub-
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Γλ([µν])Ψλ) and gµν(λ)((Γ
(σ)
ν(λ),µ + ΓσµνΓ

(σ)
σ(λ))Ψ(σ) + Γ

(σ)
ν(λ)Ψ(σ),µ) = Γσλ([µΓ

λ
ν])σΨ. This may be

clearly understood when gµν(λ)∂µ(Γ
(σ)
ν(λ)Ψ(σ)) = 0 and gµν(λ)ΓσµνΓ

(σ)
σ(λ)Ψ(σ) = Γσλ([µΓ

λ
ν])σΨ

as a linearized spin-connection, either junctionally (symmetric) or [anti-symmetric], on a
complete family Ψ ∼ {Ψ(λ)}λ (a.k.a., distribution) of out-curvature, in-torsion weighted
(dual) sub-fields. In that sense, this can be seen exactly subleading dual to the harmonic
gauge representation of gravitational astronomy which classically results by using another
free(-spinor) connection internally.6

Importantly, the first representation constraint shows that the globally expanded junction
chirality is fixed as a dual-decomposition of the out-derivative push on an in-stationary
(out-compact) family. Taking ∂(λ)Ψ(σ) = 0 and Γ

(σ)
µν Ψ(σ) ∼ ΓσµνΨσ moves the constraint in

terms of a pushed family of in-fixed, out-indexed spin-measurement modes gµν(λ)∂µ∇(λ)Ψν =

0; this family may immediately be generalized to include any (in−to-out)mixed null spin
flow : Ψ(λ),νµ = Lµν,(λ) such that gµν(λ)Lµν,(λ) = 0. Lastly, a dual inner(-field family) metric
exists (out-of representation) iff L(λ)(σ),µ is well defined, or iff the quasi-stationary family Ψν

has a complete, second order (free-in-)derivative OPE on the representation basis. Then,
the dual metric g̃ is defined such that: (g̃(τ)(σ)j , gµλ,(γ))⋉A (L(ρ)(σ),j , gλν,(γ)) ∼ δ(τ)(ρ) ⊗M δµν

In particular, in/out torsion free networks can therein always be represented by a dual
boost-network with an geometrization-shear quantization, meaning it should always be
possible to (sub-patch) represent the in/out functional basis with a spin-orbital indexed
family of geometries; when the functional (free-product) covering patch regulator has a
lowest UV/IR dual cover represented by the gravitational mode then the (hidden) free-
cover modes may become excited. 7 As such, the strong G-out measure-quantization is

algebra
6Practical observations use a |λ|-minimal field fitting to gauge observations: when the out-time compact,

(λ)-covered high-G interaction has strong support (on a in-/out topological strip domain) the in-harmonic
linear gauge constraints will (compactly) precess in the representation cover topology, or (Ain/out ∼ Tλ⋉CI
Tin/out). Then, using (the increasingly huge [2] number of) solutions from numerical representations,
the (in/out-compactified) observation’s best-fit topology will be compactly covered by some λC(I) sub-
indexing family of the interaction. It should be noted that the deepest in-spiral numerical solutions rely on
quasi-circular (harmonic internal-state momentum propagator) descent, which explains LIGO’s resolution
of the in- and out− masses of merger events despite not having strict analytic control at the (in-/out
(sub-)compactified) collision-event; instead, “chirped"-resolution basis are used to strongly-linearize under
a (flowed) relaxation grid enhancement near contact conditions, which canonically represent transient-
dynamics (in-emergent out-multiplets). Symbolically: Iδ0 ∼ C−1(T⌋) ∼δt B(ωTt;It), shows how the always
(time-)forward condition leads to a basis extension of in-time ordered, out-modes to cover the in-contact
OPEs.

7As seen shortly, this is intuitively why the graviton becomes dually enhanced at 4pt [3]: the gauged-
kernal propagator superficially acquires a UV (counter-balanced) black hole state with a {t, ∂ϕ}-almost
everywhere fixed population inversion as a (patch residue) mode between the up/down helicity gauges
[4]. In effect, four gravitons can support a surface trapped distribution throughout any (G-)time quan-
tization by inductively polarizing to the observer’s (geodesic charge). Resultantly, time should be taken
interactively and re-interpreted as the weak IR (dual)-residue of the gravitational (or possibly some mixed
interactive IR-residue of the soft-charged out mass-moment) 4pt, a.k.a. the holographically propogated
super charge of the largest (patch-)domain cover mode of the (massive) in-states. In this sense lattice
renormalization in QCD fix observations to internal gauge dynamics on a spectral grid (which represent
the universal IR fixed point of strong QCD interactions as discretized degrees of freedom a.k.a. lattice
propagation) may also be understood as a global particle (top-mass) course graining of the g-QED floating
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exactly shadowed by the in-fields’ strongest, longest orbital locking mode because the near
horizon locking modes have divergently long quasi-stability residues in the UV (which pro-
mote many, rapid shallow emission paths over the almost nowhere short, deep spectral
completion set).

Particularly, considering Boyer-Linquist type coordinates, which (globally patch-)cover the
measureable in/out domain, there should exist a (universal) solution cover of dispersion
free (exactly massive) modes which self-radiatively fix the geodesic (sub-enveloped) stability
(at the self-dual level)8. Importantly, this term is descendant from the locally fixed (non-
partial wave) terms in the curvature tensor (as seen by the second anti-commutator term
above). This then represents the free-propogator as a bulk-to-bulk thermalization residue
with particle imprints to residing in the (membrane)surface-bulk junction states; because
the eternal modes of almost every kernel state is null-covering (on the event horizon), every
imprint covering is eternally kernel-scattered9 to it’s IR limit as the high energy compactifi-
cation accesses an increasingly exact number of forward shadowed black hole modes (a.k.a.,
future Love locking resonances ). Put another way, event-horizon convergent families rep-
resent forward-scattered (dually, backward-absorbed) sub-enveloping modes.

As a primary example, a fixed Kerr background in Boyer-Lindquist is G-dually a (system)
4D global cover of exactly (super)charged shadow modes. Therein, stationary out-modes
are exactly the smallest dual in family of (patch-shadowed) descendants which form an
out basis. Through the usual squeeze theorem from QM, the out dual-representative basis
form a basis over the in-states iff the spacetime dispersion is an exact group-mode (a.k.a., a
thermalization squeeze represents a fundamental spectral mode). This is classically known
as shift, or amplitude, squeezing. Otherwise the (QM) system is said to be lapse, or phase,
squeezed (representing the typically quoted quasi-paradoxical squeezed measure modes).
Self-dual (uncharged) KG Kerr out modes are exactly split between these two squeezing
modes 10 which are ultimately responsible for superradiance and/or echo effects.

Manifestly, event horizons represent extensions of short-multiplets into their longest representation-
chains; this is shown by recognizing a long-in OPE of the canonical out-basis functions in

point, as seen by recent techniques in votex renormalization [5], [6], and adaptive polarization gauging’s
recent progress in resolving the muon’s anomalous magnetic moment [7]. All these examples show how
(sub-)lattice (hyper-)geometries can be used to refine renormalization techniques and naturally introduce a
lattice-free (off-shell) mass residue (polarization) moment (characterizing the sub-spectral renormalization
branch).
Finally, considering the recent realizations of CCFT/MHV dualities between the regularized color-
divergence (network-patched) residues and a sub-sub leading symmetry extension of the Bondi gauge [8],
reinterpreting time as a maximally dual bare cover-charge (a.k.a., a global stabilizer domain) patched-
adjointly towards a space domain opens the door to understanding enhanced regulation techniques as
mean-field Celestial group dispersion.

8Indeed, these are known as a geodesic’s intrinsic mass and spin, {Mγ , Jγ , which is indeed conserved (to
within gauge measure) in (patch-)complete spacetimes; equivalently, the in-domain adjointly parameterizes
the out cover canonically under the fundamental theorem of algebra: [out]/[in] ∼ in⋉U(1) out.

9Or, the UV-IR flow is exactly t-regulated
10because the bifurcation geodesics cleanly split the spacetime into a 1+1-adjoint propogator and an S2

(bound) orbital decay charge[9]
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black hole geometries, which can be seen explicitly at the classical saddle level. This
realization relieves essentially all of the tension between in/out sub-geometric scattering
in high-G amplitudes by providing a canonical basis extension of the out-modes entirely
descendant from the in-algebra. Using the canonical descendant framework in celestial
holography shows that the problem may, generally, be reduced to scalar and vector gauge
modes; therein, classically dualizing these modes amounts to establishing a covering topol-
ogy of the G-interactive saddle-space.

To that end, this classical effect is straightforward to explicitly find for the real Klein-
Gordon field because the OPE extension is exactly descendant from the thermalization
network; formally, this will be realized as recognizing the extended Green’s function presents
an OPE (sub-)basis with a universal index algebra representing the thermal embedding.
Importantly, the thermal embedding is seemingly always uniform except exactly in the
d = 4 black holes Schwarzchild/Kerr/KN [10], which instead give an out-indexed algebraic
connection between the gravitational (sub-)indexing.

Now consider some exact geometries.

3.1 Monodromy Forms

Consider any smooth(-enough) second order ODE; under Picard’s lemma [11], the solution
basis is always complete (meaning a smooth interloping in basis can always be found to
minimally-cover the out-modes11):

(∂2r + p[r]∂r + q[r])R[r] = 0

R[r ∼ rj ] =
∑
i
ρij(r − rj)σj+i

⇒

σj(σj − 1 + pj0) + qj0 = 0

where:
pj0 ≡ lim

r→rj
(r − rj)p[r]

qj0 ≡ lim
r→rj

(r − rj)2q[r]

(3)

11Up to an exact integer shift residue in the solutions σj ∈ {α(+)
j , α

(−)
j }; importantly, if these fun-

damental modes differ by an exact integer the second polynomial basis must instead be log-enveloped

as
∑
ρ
(+)
ij (r − rj)σ

(+)
j +i log[r − rj ]. This extension of the polynomial basis represents the two-recursion

matching conditions requiring dual support almost everywhere (a.k.a., fusing along the Z-chain) canon-
ically required after σ(+)

j − σ
(−)
j = n differentiations/integrations and gives a natural interpretation to

generalized (sub-)base extensions as representing different recursive (index-)winding forms of canonically
non-orthogonal covers.
So, generalizing, Polylogarithms represent higher (winding-)moments in the matched topology, as exem-

plified by Lin(eµ) =
n−1∑
k=0

Zn−k(−µ)µ
k

k!
, where Zn[z] = 1

n−1)!

∞∫
x

tn−1

e1−1
dt are the incomplete zeta functions

(a.k.a., the Debye spectral inversion function), clearly representing quasi-bounded (recursion enveloped)
phase dispersion conditions. This is exactly the idea in solid-state OPE representations, which recon-
struct construct partioned-representations from sub-enveloping dynamic matching. Critically then then
e[·] basis-extensions represent continuously extended (sub-enveloping, OPE recursion) boundary condi-
tions or, equivalently, boundary (sub-)domain emergent gauge algebras. This cuts exactly to the core of
this thesis, and it is important to recognize that is (again) simply a rephrasing of the Fundamental The-
orem of Algebra and, under the interpretation of the Fundamental Theorem of Algebra as a super-charge
extension (under mod lcd[·,∗] ), has an immediate interpretation as an extended soft-supercharge algebra.
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Importantly, presuming everything is analytic (enough) and pj0, qj0 are well (enough) be-
haved everywhere, the Cauchy Completeness Theorem gives an exact fixing on the funda-
mental exponents:

∑
(±),j

σ±j = 0. This holds iff every pole is regular, defined as having no

worse than first order poles: ∼ 1
z ∀z 12

Figure 1: The Kerr Contours

Note the dimension of the minimal out-cover basis is fixed (at d = 2) by the operator’s
interloper representation (a.k.a., minimal functor cover) while the (sub-)base dimensionality
is fixed by the iterative nilpotency relation (for each [in-]functor cover OPE; here 1 · 1 = 1

giving showing the existence of a d = 2 minimal (out-)embedding cover.13 In particular, the
12If the poles are higher order the constraint relationship is globally-functionalized the generalized identity

is
K∏
i=1

Mj = I) where {Mj} are the (d = 2 cover space) monodromy operators which represents the

homogeneous differential operator’s double cover of the null-ring 0 by the nilpotency of iteration, Dn = 0 =

Dk, and fixed point solution cover(-adjoint) measures, µ(⃗⃗0) = 0 implies µ(Bki [Ψ⃗i; k⃗]) has no support near
||k||2 = 0. Again, this is seen exactly dual to an extended Optical theorem.

13This also shows exactly how to interpret enhancements of the in-basis as split between (number) field
enhancements by non(-self)-adjoint in-boundary modes and a global winding kernal algebra descendant
from the maximal coverlet transition relation; again, this descendant algebra is Zn iff the (extended) OPE
is everywhere self-adjoint (by the fundamental theorem of algebra; then the spectrum may be well indexed
by some D(n) operators in-representation iff the extended OPE is self-adjoint). Non-adjoint operators, as
well as non-homogeneous operators, may be understood as distributed kernal-basis under dualized measure
weights [11] and represented by non-compact, infinite dimensional in-extensions,with definite classification
iff the maximal separation (charge) algebra is compact everywhere: Cmin[Cmax[T /K̄i]] ∼ Cmin[

∏
j ̸=i
Kj ]].

Then, non-homogeneous operators and (convexly isolated) the irregular poles may be understood as exactly
dual to some minimal charge extension of the irregular sub-algebra. Formally this may be understood as
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Fuchs relation [10] shows that sub-leading poles in q do not contribute to the (out-)group
symmetrization.

p(r) =
K∑
i=1

1−αi
(r−ri)

q(r) =
K∑
i=1

qi
(r−ri)

⇒

σj(σj + pj0 − 1) = 0

globally: σ(+)
j = αj gives:

K∑
i=1

αi = (K − 1)− α∞

(4)

(5)

So, noting that the constraint ring is canonically exchange-symmetric, this necessarily rep-
resents an extension basis of the minimal spectral (stabilizer) form that can always be
descended to a complete OPE. Qualitatively, fields with minimally-extended representa-
tions of the above form have out group dynamics categorically fixed by the maximal descent
of the in-momentum (residue) moments; such as, these represent gauge flow dynamics (in
the sense that they represent points of fixed (extended-family) group symmetries14 and can
be pulled back to a(n extended) cover-basis almost everywhere.
So, suppose a spacetime has a sector of global (continuous) symmetries (xT ; gT ) and a set
of (geodesic family-path) coordinates (xP ; gP ); then the curved Klein-Gordon OPE may
be expressed as:

DKG := ∇⋉g ∇ → (∂T ⋉gT ∂T )⊗D
(P )
KG

DKG[·] = 0 and [·] ∼ e±iA
(T )
µ xµ

(T ) [·]
⇒

D(P )
KG = 1√

|gP |
∂b(
√
|gP |gabP ∂a[·])

1√
|−g|

∂b[
√
| − g|gabP ∂a[·]] = −g

µν
T ∂µ∂ν [·]

D̄(P )
KG[·] + 1

2 [ln gT ],b g
ab
P ∂a[·] ∼ g

µν
T λ

(l)
µ λ

(n)
ν a(l)(n)[·]

(6)

In particular, the (path-like) projected KG operator covers the out−multiplet gµν(l)(n) exactly

iff there exists a formal envelope basis [·]→ f(·)[∗] such that D̄(P )
KG[∗] ∼ f(·)g

µν
T λ

(l)
µ λ

(n)
ν a(l)(n)[∗]

OR the charge states cover the (geometrically) mixed dispersion (in-measure): 1
2 [ln gT ],b g

ab
P ∂a[∗] ∼

gµνT λ
(l)
µ λ

(n)
ν b(l)(n)[∗] (also, some mixture thereof). Importantly, the envelope basis naturally

represents a field-charge extension while the covered dispersion matching state represents a
topological locking; accordingly, the appearance of both is a natural form a UV/IR mixing.
Throughout, consider metric ring-orderings (a.k.a., line element ordering) as indexing the
T/P sectors at the r := x

(1)
P -entry. So, consider the D = d dimensional Schwarzchild with

defining the (right-adjoint) relative motion of the irregular poles towards the (left-)co-domain, I(r + i) =
gLRL(r)[M ](r)[R(i)Mi] implies R(i)Mi = [L(r)Mr]

−1g−1
LR, universally categorizes the right OPE up to the

global co-kernel multiplet represented by stokes parameters.
14This is exactly how the Method of Images is used to classically resolve the conductive transport

(strong-E) problem in electromagnetism and can be generically recognized as the (dual) magnetic field.
The difference with strong-G is that the extension has complete coordinate support that (always) extends
the (functor-)interloper almost everywhere (representing a magnetized index, rather than a magnetized
coordinate).
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a probe path dimensionality dP = 115

ds2 = −∆ dt2 + r2 dΩ2
d−2 +

dr2

∆
⇒ [gT ] =

[
−∆

r2[Σ]

]
| − gT | = −∆r2df(ϕα)

[gP ] = [∆−1] ⇒ [ln |gT |],bgabp [],a = ∆∂r[ln[r
2d∆]][·],r

(7)

(8)

gives:
(
r2Σabλ(l)a λ

(m)
b a(l)(m) −

ω2

∆

)
[·] =

√
∆∂r

[√
∆[·],r

]
+

∆

2
∂r[ln[r

2(d−2)∆]],r[·],r (9)
(∑

KL −
ω2

∆

)
[·] = 1

rd−2
∂r[r

d−2∆∂r[·]] (10)

where16 ∆ = 1− 2M
rd−3 +

r2

L2 = (rd−3L2)−1
∏K−1
i=1 (r− ri), with K = d+1− ϵ; also, the a(l)(m)

algebra descends from the d− 2-dimensional spherical harmonic (functional) family as an
(in-coordinate) field extension from it’s canonical embedding in Rd−1,17 Further, consider
the d = 4 Kerr-AdS geometries (with path dimensionality dP = 2)

ds2 =
∆θ

Σ

(
sin2 θ

(
(r2 + a2)

Ξ
dϕ− adt

)2

− ∆

∆θ
(dt− a

Ξ
sin2 θdϕ)2

)
+

Σ

∆θ

(
∆θ

∆
dr2 + dθ2

)
(11)

where

∆θ = 1− a2

l2
cos2 θ, Ξ = 1− a2

l2
, Σ = r2 + a2 cos2 θ, (12)

∆ = (r2 + a2)(1 +
r2

L2
)− 2Mr =

1

L2

4∏

i=1

(r − ri) (13)

Using l2(∆θ−Ξ)
a2

= sin2 θ and r2 + a2 = Σ+ l2(∆θ − Ξ), and naming18:

γ2[r, cos θ] :=
Σ

∆θ
, Γ∆[r, θ] :=

∆

∆θ
, ωϕ[cos θ] =

l2(∆θ − Ξ)

aΞ
=
a sin2 θ

Ξ
(14)

H[r, cos θ] := Γ∆ − aΞωϕ , J [r, cos θ] = ωϕΣ , F [r, cos θ] :=

(
J

aΞωϕ
+ 2ωϕ

)
J (15)

yields:

ds2 =
1

γ2[Σ]

(
−H[ωϕ,Γ∆] (dt− ωϕ[cos θ]dϕ)2 − 2J [ωϕ,Σ]dtdϕ+ F [ωϕ, J ]dϕ

2
)
+ γ2[Σ]

[
Γ−1
∆ dr2 + dθ2

]
(16)

15meaning there are no convex embedding connections between it’s subdomains a.k.a., “the particle-shells
fall straight down/up to/from the source".

16with ϵ = 0 for d odd-dimensional spacetimes or ϵ = 1 for d even-dimensional spacetimes
17meaning they represent a field expansions over 1

r2
which preserve their (sub-global) projected sub-area

measures: (γα− 1
r2
) ∈ F; equivalently, F [z]→ J

(
F2d

1
r2d

)
. By the Second Isomorphism Theorem, the minimal

representation is canonically (sub-)separable (on-shell) s.t. r2Σabλ(l)
a λ

(m)
b a(l)(m) ∼

∑
KL because the free

Euclidean extension (γα − xα) ∈ F is clearly separable; in fact this is exactly the idea with Lagrangian
multipliers (in-representations) and Grassman variable (out-)extensions, and gives the final result.

18Where the in-domain has been specifically registered to the out-harmonic cover by inputting the path
coordinate as a (smooth) trigonometric push g̃[..., θ]→ g[..., cosθ].
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In particular19, defining χk := ln
[√

F
|−g|ωϕ

]
, note the relation:

H = Γ∆ +

√
aΞF

ωϕ
sinh ln

[√
aΞF

J

]
≡ Γ∆ +

√
aΞ| − g|eχk sinhχk (17)

It is also useful to consider the flat space time forms20, given by lim
l→∞
−d−1

l2
= lim

l→∞
Λ→ 0 :

∆ = r2 + a2 − 2Mr ≡
∏

±
(r − r±) (18)

γ̄2 := Σ , Γ̄∆[r, θ] := ∆ , ω̄ϕ[cos θ] = a sin2 θ J [r, cos θ] = ωϕΣ , (19)

H[r, cos θ] := ∆− a2 sin2 θ = Σ− 2Mr, F [r, cos θ] := sin2 θ
(
Σ+ 2a2 sin2 θ

)
Σ (20)

Then, following the procedure as in Schwarzchild:

[gT ] =
H
γ2

[
−1 − J

H + ωϕ
− J
H + ωϕ

F
H − ω2

ϕ

]
| − gT | = ∆∆θωϕ

a ≡ ∆J
aΞγ2

|gP | = Jγ2

ωϕ∆

;

√
| − g| = J√

aΞωϕ√
|−gT |
gP

= ∆
γ2

√
ωϕ
aΞ

[gP ]
−1 = 1

γ2

[
Γ∆

1

]
⇒ [ln |gnT |],bgabp [·],a = 1

γ2

(
[ln∆],rΓ∆δ

b
r + [lnωϕ∆θ],θδ

b
θ

)
[·],b

(21)

Noting that the global symmetry sector is already (in-representation) separated21, (sub-
19Note the sub-functionalizations in the form above shows exactly how the physical functionals,
{ωϕ,Σ,∆θ,∆} envelope one another. For example, ωϕ is r-uniform (representing the metric’s canoni-
cal and global spin projection measure a.k.a., the black hole’s (AdS-)uniform steridian angular momentum
flux: [Ω]

[sr] =
[
[A→a2 sin2 θ]

[(
√
a)2→aΞ]

]
), and enters (functionally-)everywhere in the T-symmetry sector, but nowhere

in the P(ath)-sector. Instead, the P-sector is/(has an in-representation with fixed, non-uniform poles)
determined by ∆θ

∆
; in-representation, the P/T sectors are inversely weighted (in the direct sense) by a

similar ratio Σ
∆θ

; point-wise, these are the exclusive points where ∆θ enters. Σ, in-turn, only enters as a
(direct) coupling in J = ωϕΣ, which itself (along with ωϕ) functionalizes F . Remembering that the T-sector
can always be KG-dualized into second order, (dim-T )-multinomials under global wave-gauge fixing, this
immediately gives the sense of a (sub)-spectral tower (built from ideals I < ωϕ,Σ, J >); in fact, despite the
non-(sub)uniformity in the P-poles, note that δ → 0 uniformly descends < H >→< ωϕ > which makes the
above intuition of a (sub)-spectral tower exact. Critically, this final connection gives a very clear idea of
what is meant by the concept of “emergence": sometimes fixed-point, P(ath sub-)symmetry breaking may
be in-(direct-)correspondence with a (P-directed) global (out-)T gauge.
Intuitively, this has a clear picture. Imagine an excessively cascading ocean wave. During the tumbling
phase high frequencies can’t propogate without relatively huge amplitudes because of the air gaps sup-
planting skin-skin bubble transmissions; accordingly, these transmission states must also be relatively low
frequency (at scale) because these channels walls are also relatively closed (for long periods relative to
the fastest propogators). Only low frequencies may traverse both the time and space gaps; dually, high
frequency symmetries are hidden in the foam. Alternatively, in the lossy limit, low frequencies will al-
most always be shadowed by higher frequency interactions; in particular, edge reflection(/backreaction) is
generically chaotic. Empirically this is can be shown by the empirical/analytic work of [12] on the water
duality between BH dynamics and (near-skin resolved) water-votex dualities, which follow exactly from
their analytic KG (near-fixed) P-modes resolving otherwise (partial-pressure gauged) s(kin)-modes.

20Notice Σ−∆ = 2Mr−aωϕ shows Σ and ∆ represent linear crossing relations between (r, ωphi); indeed,
Σ−∆ = 0 ⇒ r[θ]

2M
∼
(
a sin θ
2M

)2
< 1 shows that the (Σ,∆)-level forms always lie behind the thermodynamic

horizon, and that black hole mass-spin linear mixing relations can be represented as defect-propagators
under the Cauchy(-thermodynamic)-density state duality [10] [13]

21in-field, as opposed to the sub-ordering of spherical embeddings in higher dimensional spherical har-
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)separability is left to the (sub-)functional forms; the KG equation here reads22:

D̄effKG[·] =
( √

∆∂r(
√
∆∂r[∗]) + ∆,r

2 ∂r[∗]
+
√
∆θ∂θ(

√
∆θ∂θ[∗]) + ∂θ(∆θωϕ)

ωϕ
∂θ[∗]

)
=
a
√
Ξ

ωϕ∆
λ⃗T ·

[
F −Hω2

ϕ J − ωϕH
J − ωϕH −H

]
⃗λT [∗] (22)

=
a
√
Ξ

∆
λ⃗T ·

[
Σ2

aΞ + (2Σ−H)ωϕ Σ−H
Σ−H − H

ωϕ

]
⃗λT [∗] (23)

Importantly, this shows that the effective KG equation’s separability index is, in this case,
simply a direct (ωϕ,∆) idealization: the separability condition descends exactly to a T-out
(“eigenomial") functional division condition23.

In fact, it is clear that, near the zeros of ∆, all the RHS T-functions are directly divisible by
ωϕ, < H, J, F > |∆→0 ⊂< ω; Σ > and further that the (accumulation extended sub-ring)
Σ dependence comes exactly from J: < H, J, F > |∆→0∩ < Σ >=< H/Σ, F/J > |∆→0∪ <
ωϕ(= J/Σ) >. Then, by Hilbert’s Nullenstantz (and noting that < ωϕ∆ >=< ωϕ >< ∆ >,
as well as that H

ωϕ∆
= 1

ωϕ∆ϕ
+ aΞ

∆ is [sub-]ring separated), the RHS is divisible by ωϕ∆ iff
< Σ/∆ > is not a formal ring extension, which it is and as such there should be poles;
still, applying the same reasoning to the residue ring shows that the RHS is algebraically
(sub-index (r, θ) separable) iff < Σ/∆ > ∩ < ∆ >⊂< ωϕ, Σ̄[∆, θ] >, for some Σ̄ functional
field extension, which it is 24.

monics
22Where the T/P-separated KG form relation was (equivariantly) re-scaled to be in their fully separated

form: {DKG = 0} ≡ RKG → R̄KG := [
√
∆∆θgP ]RKG. In the massless case, this is just multiplying (here

in the canonical real-number Field sense) to clear a denominator; but considering some non-homogeneous
mass contribution, this dual co-set may itself only exist up to some particular massive spectrum indexing,
which (assuming it exists) in turn would manifest as a characteristic mass (spectral-family) dispersion
envelope sourced by the (mass-adjoint, sub-separated) KG-null kernel. Deductively, massive source/black
hole thermal separability is possible iff the massive sub-field has a strongly-determined null-representation
with a P-exact T (hyper)-plet mode. In this simplified case, the formal schematic would read: RmIKG →
R̄mIKG := [mI ]T · ([√∆∆θgP ]RKG).
In fact, Holography can be principally phrased as the converse formulation: when can (gravitational) T-
symmetries be represented by some (closed, exact) family of matter charge(d current residues)? One of the
clearest applications of this is the AdS3/CFT2 quantum mechanical correspondence, whereby the (Path-
)asymptotic T-degeneracies of empty AdS3 spacetime may be actually shown to be 1−1 with the spectrum
of a family of d = 2 conformal fields (because the above onto relationship is into, and thus equivariantly
invertible—although the size of the family is montrously large [14]). Therein, thermalization modes in this
spacetime may be considered to have an asymptotically emergent quantized point (or, as the emergence of
a conformal symmetry-quantization of the T-out field residues in the P fixed-point gauging).

23And explains the interpretation of ωϕ as representing an angular radiative sub-weighting
24And can be seen by noting that ∆ + 2M

√
Σ+ a(Ξωϕ − a) = (Σ + aΞωϕ)

(
Ξ +

Σ+aΞωϕ
l2

)
shows that

Σ,∆, ωϕ cannot all be simultaneously (functionally) zero (for allM,a > 0). For example, {∆ = 0}∧{Σ = 0}
(representing the Kerr spacetime’s origin in the ultra-low mass/spin limit) formally induces: 4M2ωϕ =

(aΞ)3
(ωϕ
l2

)2 ( l2
a
+ ωϕ

)2
. Using Hawking’s formula, and considering the thermal entropy as a spin density

4M2ωϕ ∼ S(sp)[ωϕ] and the (a-uniform envelope) as a space(/spin)-like volume density (aΞ)3 ∼ V̄ (a)

(sp) casts

this similarly to a 4pt (scalar-)spin connection between l-modes A = |ωϕ
l2

>: S(sp)[ω] ∼ V̄
(a)

(sp)|| < A ><

ωϕ >< (aA)−1 + 1 > ||2 [15][16].
Somewhat similarly, (∆, ωϕ) → (0, 0), now representing the (angular-)North/South near-horizon form,
induces the contact degeneracy S(L)[Σ] = Σ2

(
Ξ + Σ

l2

)2, which can be seen as a linear shift in the dual
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Indeed, it can be shown that the result may be separated under global T-eigenvalues
λ⃗T = (ω,m) as: [18]:

[·]→ e(ω+
a
l2
m)t+mϕS[r]R[r] ⇒ (24)






1√
ωϕ
∂θ[
√
ωϕ∆θ∂θ]− am2∆θ

Ξωϕ
+ ω2a(a− Ξωϕ)

∂r[∆∂r] +
∑
i

(r2i+a
2)2

∆,r|r=ri
(ω−Ωim)2

r−ri − l2Ξω2 + (1− Ξ)m2]


−

(
−Kl

Kl

)
⊙

(
S[θ]

R[r]

)
= 0⃗ (25)

Using ∆θ = Ξ(1+
aωϕ
l2

) shows the top (S[θ]−) spectrum is Bessel-like25 and therefore always
gives a well defined spherical spectral basis: {Kl} ⊂ {a(l)(n).

Resultantly, the KG equation can be equivariantly reduced to it’s (spectrally-patched)
radial ansatz:

(
∂r[∆∂r] +

∑

i

(r2i + a2)2

∆,r|r=ri
(ω − Ωim)2

r − ri
− l2Ξω2 + (1− Ξ)m2 −Kl

)
R = 0 (26)

This is exactly a d = 1 dimensional, second order ordinary differential equation which is
always solvable by Picard’s Lemma.

3.2 Fuch’s Relational Form

Letting

αi =
(r2i + a2)(ω − Ωim)

∆,r|r=ri
∧ ∆∗[Kl] = −l2Ξω2 + (1− Ξ)m2 −Kl (27)

where, Ωi =
a

r2i + a2

(
1 +

r2i
L2

)
(28)

response form at affine infnity (along l). Lastly, and most clearly, (Σ, ωϕ) → 0, representing the low-spin
origin (at any Mass), gives ∆ ∼ −2iaM , or a manifestation of the KTN duality of the Kerr spacetime’s
conformal shift symmetry[17]:

√
SM [a] ∼∗ ∆. Taking l2 → ∞ in each of the above constructions shows

the flat cases give, respectively: 1) a spin connection between 0-modes and a spin- pushed kernel tower
on the identity mode, 2) a 1 − 1 exact degeneracy in the response Σ response S(L)[·] = [·]2, 3) a limit
independent (l-uniform) r−kernel constraint that represents a universal in−envelope form (or, thinking in
terms of field extensions, as the minimal Γ → 0, a → 0 descent gauge resolution, in-uniformity; because
aM represents the black hole’s (classical scalar) angular momentum ). Finally idea can also been seen
generally manifested in Γ∆ = H− J√

ωϕ
eχk[ωϕ,J] sinhχk[ωϕ, J ], which shows how the functional division Γ∆

may be represented as an analytic (but non-uniform) {ωϕ, J}-ring extension of H
25alternatively monodromy techniques may be employed, exactly as exhibited for the R[r] out-form: note

the top equation is pole fixed, at p-order (a.k.a., derivative order), where it envelopes as ∂2
θ+Ξ(ω−1

ϕ + a
l2
)∂θ ∼

0. Using a
l2
∂ωϕ sin

2 θ = Ξ
l2

gives the sense that this may represent an affine connection to the full Bessel
branch; indeed, [18] shows an exact aω-perturbative spectral closure over the spherical harmonics.

67



the Kerr KG radial ansatz may be written:
(
∂r[∆∂r] +

∑

i

∆,r|r=riα2
i

r − ri
+∆∗[Kl]

)
R = 0 (29)

Considering analytic solutions, consider linearly sub-indexed26 solutions forms:

Rn∗ [r] =
∑

n=i∗∈N+

an(r − rn∗)σ[n] s.t. σ[n] = σ + n with
∆ =

∏
i∈{1,2,3,4}

(r − ri)

⇒ ∂r∆ =
∑
i

∏
j ̸=i

(r − rj)
(30)

giving: (31)

∆
∑

n=i∗∈N+

an


∂2r +

∑

i

1

r − ri


∂r +

∑

i

∆,r|r=riα2
i

(r − ri)
∏
j ̸=i

(r − rj)


+∆∗[Kl]


 (r − rn∗)σ[n] = 0

an immediate simplification can be made if we let the solution (function basis) index n∗

match the pole index i, giving:

∆
∑

n=i∗∈N+

an
∑

i





σ[n](σ[n]− 1) + σ[n] +

∆,r|r=riα2
i∏

j ̸=i
(ri − rj)


 (r − ri)σ[n]−2 +∆∗[Kl](r − ri)σ[n]


 = 0(32)

Remembering that the (out basis) index is lower bounded at σ[0] = σ, and that the poles
of ∆ are separated27 gives a bottom fixing form as:

σ(±)
n = ±iαn ⇒

∑

n(±)

σn = 0 (33)

∧ R
(±)
j = (r − rj)±iαj

∑

n=i∗∈N+

an(r − rj)n ≡ e±iαj ln(r−rj) (1 +O(r − rj)) (34)

Then, noticing ∂r[∆∂r[e−iαn ln∆R̃]] = e−iαn ln∆

(
∂r[∆∂rR̃]− 2

∑
n
iαn∂rR̃− ∆,rα2

n
∆

)
shows

that we can exactly shift out this degeneracy with:

R̃ = e
∑
n iαn ln(r−rn)R ⇒ σ̃n(σ̃n − 2iαn) = 0 ⇒ σ̃n ∈ {0, 2iα} (35)

Using,
∑
i
αi = 0 [10] shows that

∑
σn = 0 still.

Finally, noticing the divergent covering frequency as r → ∞ it’s important to check the
compactification of the far-field solution form. Transforming to coordinates r → 1

x , and

26In the sense that the functional basis projection is compact over R[r]
27So, correspondingly, lim

r→ri
f [Rn∗ [r]]→ lim r → rifi[Ri[r]]
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temporarily indexing the ∆-form by it’s polynomial interpolative index28, |I|. gives:

∆[ 1x ] =
1
x|I|
∏
i
(1− xri) , ∆[ 1x ],x = 1

x|I|+1

(
|I| − x∑

i
ri

)

∂ 1
x
= −x2∂x

∂ 1
x
[∆[ 1x ]∂ 1

x
] = x2∂x[x

−|I|+2
∏
i
(1− xri)∂x] = x−|I|+4

(
∂x[
∏
i
(1− xri)∂x] +

(−|I|+2)
∏
i
(1−xri)

x ∂x

)(36)

x4∆|I|




∂2x −
( ∑

i
ri

∏
i
(1−xri) +

|I|−2
x

)
∂x

+x
∑
i

∆,r|r=riα2
i

(1−rix)2
∏
j ̸=i

(1−xrj) +
∆∗[Kl]∏
i
(1−xri)


X = 0

Noticing the Qx-residues directly map to the ri-represented patches leads instead to con-
sider the (ri sub-)residue patch at x = 0, giving the Fuch’s relation:

X[x] =
∑

n

bnx
σx[n] ⇒ σx(σx + 1− |I|) = 0 (37)

28Given by the number of poles in the radial function under the canonical R[x]-free projective indexδ[·];
this gives a possible interesting connection to general residue minimization algorithms, whereby high
polynomial numerical boundary harmonic minimization (thermalization) integration methods may nec-
essarily introduce large conformal winding gauge fixings manifested in boundary decay fitting splines
(typically gauged by the Weyl mean free iso-constraint gauges (such as the globally harmonic ADM
gauge with fixed [relaxation cutoff]boundary conditions or Brown-York dispersion (resolution sub-volume,
max[S =

∫
t∗f [V ]e−f[V ] ] < µ) counter (Wilson-)cutoffs. This can exactly be manifest by the compacti-

fied waves in recent extremely high (frequency Fourier space) r-localiziation schemes under (hyper-core
threading — creating a lcmnthread, dsub−calls frequency basis enhancement) supercomputer simulations
[13]
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This gives the global form, and noticing29 |I| − 1 = 3 = d
2 + 1 (in d = 4) gives:

∑

n∈{i∗,x}
σn = |I| − 1 = 3 =

d

2
+ 1 ∧ X

(±)
0 = x({3,0})

∑

n=i∗∈N+

bnx
n (42)

Finally, it regularizing all the bottom forms to have flat exponents gives the following
forms[22]:

[
∂2r +

(
4∑

i=1

1− 2i α̃i
r − ri

)
∂r −

4∑

i

4∑

j ̸=i

α̃i(i+ α̃j)

(r − ri)(r − rj)

+

4∑

i=1

α̃2
i

(r − ri)2


 ∆′(ri)∏
j ̸=i

(r − rj)
− 1


+

∆∗

∆

]
R̃(r) = 0 (43)

and, defining: Q[r] =
∏
i
e−iα̃i ln[r−ri] ≡ x

−i∑
i
α̃i∏

eα̃i ln[1−rix]

[
x2∂x(x

2∆∂x)

x4∆Q
+ x−1

∑

i

α2
i∆,r|r→ri

(1− rix)x2∆
+

∆∗ −∑KL

x4∆

]
QR̃ = 0 (44)

⇒ (σ∞ + i
∑

i

α̃i)(σ∞ − 3 + i
∑

i

α̃i) = 0 ⇒
∑

i

α̃i +
∑

σ∞ =
d

2
+ 1 (45)

In the (flat) Kerr case, by using Σ+ aωϕ = ∆+2Mr, the (psudo-)source field is separable,

29In Schwarzchild, ∆[ 1
x
] = xϵ−3∏K−1

i (1 − rix), which shows that the ∞-index of d-dimensional AdS-
Schwarzschild alternates depending on the oddness/evenness of the dimensionality (a.k.a., whether-or-not
the Stokes dual defines a surface or a line): |I| = ϵ− 3. . Still, here the wave equation reads:

0 = xd−2+ϵ
∏

(1− rix)
(

1∏
(1− rix)

∂x[
∏

(1− rix)∂x[·]] + 1− ϵ− d
x

∂x[·] +
(

x2(1−ϵ)ω2

∏
(1− rix)2

− x−2(1+ϵ)∑KL∏
(1− rix)

))
X (38)

which gives the x = 1
r

Fuch’s (bottom crossing), d = 4, form:

r2i σ
2
i +

r2i ω
2

∆2
,r

= 0 ⇒ σi = ±i ω
∆,r

(39)

σ0(σ0 − (d+ ϵ)) = 0 ⇒ {σ(+)
0 , σ

(−)
0 } = {d+ ϵ, 0} = {K − 1, 0} (40)

This also shows that the spherical harmonics conformally propagate in higher dimensions (where every
tangent space representation always has a local d = 2k embedding structure which is canonically self-dual
[19]) when ϵ ̸= 0:

σϵ(σϵ − 1− d) =
∑

KL (41)

Still, because the spherical alegbra is free (in Schwarzschild), a basis may always be chosen s.t.
∑
KL = 0

(under advanced/retarded matchings).
More intuitively, this seems to indicate that, the thermodynamics in the self-dual sector can be well-
controlled enough to spectrally match both sides (and gives some insight into the sense that correlators in
d = 4, N = 4 Super-Yang-Mills algebraically reduce (in the long-chain limit) towards the counter (inter-)
propagating gravitational (super residue) charges [20] [21] < OK⃗L >∼ ||(ϕ1, ϕ2)||Md).
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without the affine ω,m connection (as in the AdS case):

D̄effKG[·] =
a

∆
λ⃗T ·

([
(∆+2Mr)2

a 2Mr

2Mr a

]
−∆

[
ωϕ

ω−1
ϕ

])
⃗λT [∗] (46)

Defining α̃± =
∆,r|r→r±
r2±+a2

(ω − Ω±m) and ∆∗[x] := ω2(x−2 + 2Mx−1 + 4M) results in the
radial ansatz:

[
∂r∆∂r +

∑

±
∆,r|r→r±

α̃2
±

r − r±
+∆∗

]
R = KLR (47)

Correspondingly, σ
(±)
i = ±iα̃i (48)

Then, the σ ∈ {0, 2iα̃i} basis form is given by:

[
∂2r +

( 2∑

i=1

1− 2iα̃i
r − ri

)
∂r −

2α̃+α̃− + i(α̃+ + α̃−)
∆̄

+
2∑

i=1,j ̸=i

α̃2
i

(r − ri)2
(ri − rj
r − rj

− 1
)
+

∆̄∗ −∑KL

∆̄

]
R̄(r) = 0 . (49)

Still in the {±α̃i} basis, x = 1
r -ansatz30:

[
∂x

[∏

±
(1− r±x)∂x

]
+ x−1

∑

±
∆,r|r→r±

α̃2
±

1− r±x
+ ω2x−2

(
(2M)2 +

2M

x
+ x−2

)]
X = KLX (50)

Here an irregular singularity develops simultaneous to a regular pole at x→ 0; considering
the {±iα̃i} letting31 X = eAX̃



∂x

[∏
±
(1− r±x)∂x

]
+ x−1

∑
±
∆,r|r→r±

α̃2
±

1−r±x + x−2ω2(4M2 + 2Mx−1)

+
∏
±
(1− r±x)

(
ω2x−4 +A,xx + (A,x)

2 + 2A,x∂x
)


 X̃ = KLX̃ (51)

Choosing A = −iω
x + lnx gives the indicial form (for the leading exponent of X̃) :

2ω(2Mω + iσx) = 0 ⇒ σx = −2iMω (52)

X1 = e
−iω
x x−2iMω+1(1 +O(x)) (53)

Finally, the the other linearly independent solution may be found by the Wronksian inver-
30Using ∆[ 1

x
] = x−2∏

±
(1− r±x).

31and noting ∂[Π∂[eA[·]]] = eA+lnΠ
[
∂[A∂A] + 2∂[A]∂ +Π−1∂[Π∂]

]
[·]
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sion method:

W [x] = (x2∆)−1

X2,x +
X1,x

X1
X2 = −W [x]

R1,x

⇒
X2,x − iω−t(1−2Mi)

x2
X2 ∼ − e

iω
x +(2iMω+1) ln x

(1−i(2Mω−x))(1−r+x)(1−r−x)
X2 = e

iω
x xB2 ⇒ B2 = 2iMω + 3 ∀ω ̸= 0

→ X1
X2

= e
−2iω
x

−(4iMω+2) lnx

(54)

and
∑

±
α̃i + λ∞ = 2 = |I| = d

2
+ 1− (|I| − 1) (55)

Correspondingly, the development of irregular poles (of the first kind) in the flat space limit
may be regarded as (single) index (OPE) shift (in the boundary residue form, a.k.a., in the
spectrally adjoint out-representation). In particular, the final line characterizes the “fake
monodromy" as a residue (winding power gap) between the (boundary) regularized index
measure32 of the radial pole fixing functional, ∆. Lastly, shifting the monomial form (fake
monodromies) works exactly before, giving the shifted basis:

X1 ∼ e
−iω
x X2 ∼ e

iω
x x4iMω+2 (56)

Next is provided a slightly different formalism (from [10]) to handle general (irregular)
singularities within a unified framework. Importantly, Picard’s Lemma shows that a critical
solution basis always exists to within the leading divergence modes (which can be used to
iteratively fix the sub-leading divergences)[11]. Generally, consider no real restrictions on
(p[·], q[·]) :

(
∂2r + p[r]∂r + q[r]

)
R = 0 (57)

Generically, let R = B[r]R̃[r] where B[r] =
∏
i
Ai; then, for some real rational polynomial

coefficients (which may, i = m) or may not i ∈ {s, r} share rational zeros) p ∼ L1
M1

=[∑
n=s

+
∑
n=m

]
Pn[r]

(rbn−rn)σ
(1)
n

, q ∼ L2
M2

=

[ ∑
k=m

+
∑
k=r

]
Qk[r]

(rbk−rk)σ
(2)
k

(where bi/k ∈ {1, 2} under the

Real Remainder theorem,

0 = B




∂2r R̃+

([∑
n=s

+
∑
n=m

]
Pn[r]

(rbn−rn)σ
(1)
n

+ 2∂r lnB

)
∂rR̃

([ ∑
k=m

+
∑
k=r

]
Qk[r]

(rbk−rk)σ
(2)
k

+ (∂r lnB)2 +
∑
i
∂2r lnAi

)
R̃


 (58)

This formulation shows the general idea of the algorithm: either Ai or Bi is first fixed
depending on whether qi or pi is (divergence) leading, then the other form is fixed to regu-
larize the other pole33. Clearly there is something special about {σ(1)i , σ

(2)
i } = {1, 2}, where

32Looking at the AdS analogue, d
2
+ 1− (|I| − 1) = 0→ δ|I|, gives λ∞ → δ|I| −

∑
±
α̃i.

33The classical physical realizations of the B − A orderings are the semi-classical WKB approximation
(or the Weinberg soft pole theorem), which selects a (formally infinite dimensional OPE) to (shadow-)fix

the transient momentum modes under Gi = − 1
2

[∑
n=s

+
∑
n=m

] ∫ Pn[r]

(rbn−rn)σ
(1)
n

; A−B ordered fixings can be

heuristically recognized as Optical Theorem/Ward Identity residue gauges, lnA−1
i ∼

∮
q + p2
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∂r lnB can match both p, q exactly34

Remembering the poles remain separated allows solutions to be (sub-)indexed by their
puncture patch group-index embedding: R̃ =

∑
j
R̃σj =

∑
j

∑
σj
aσj (r − rj)σj 35 So, letting

Ai also remain local to the poles36 Ai ≡ eGi := e
− Fi[r]

(rbi−ri)ki , first consider the solution form
local to any given pole, Rj =

∑
n=0

a
(j)
n (rbj − rj)σj+n, which may be rewritten 37 as::

−bjrbj−1(σj + n)(rbj − rj)n−1




r

(
(bj − 1)r +

(σj+n−1)bjr
bj−2

rbj−rj

)
(rbj − rj)kj

+(rbj − rj)kj−σ
(1)
j Pj [r] + 2

(
Fj,r − kjbjr

bj−1F [r]

rbj−rj

)


 (59)

=
(rbj − rj)kj−σ

(2)
j Qj [r] +

1

(rbj−rj)
kj

(
Fj,r − kjbjr

bj−1F [r]

rbj−rj

)2

+∂2rFj +
2bjkjr

bj−1

r−rj

(
Fj,r − kjbjr

bj−1F [r]

rbj−rj
+

(
r−1bj(2kjr

bj+rj)

rbj−rj
+ 1

r

)
Fj

) + subleading (60)

Noticing all the n-dependence sits on the LHS, this formulation gives a picture of the
general algorithm: letting F = h+ λg, g can be used to solve either

Λi = (rbj − rj)kj−σ
(1)
j Pj [r] + 2λi

(
gj,r −

kjbjr
bj−1g

rbj − rj

)
(61)

or Λi = (rbj − rj)kj−σ
(2)
j Qj [r] +

λ2i
(rbj − rj)kj

(
gj,r −

kjbjr
bj−1g

rbj − rj

)2

(62)

first depending on the stronger relative pole. Then, h may be used to solve the remaining
34And, if the sub-elements do exist, must be of the form lnAi ∼ f [r] ln[r − ri] for polynomials f ;

this is another formulation of the orthogonality of the log[·] and shows that the poles are regular iff a
[·] log[·] functional extension is complete. Otherwise, Ai will acquire a dominant power coupling, lnAi ∼
(r−ri)2−max{2σ(1)

i ,σ
(2)
i }, and a sub-dominant form-factor lnAi ∼ lnB−∑

j ̸=i
lnAj which controls the relative

dispersion of the orthogonal solution (form) covers at each pole
35e.g., there may exist a descendant global winding gauge which gives a non-trivial index embedding

σj = σ(j)
36and noting that ∂rGi = 1

(rbi−ri)ki

(
Fi,r − kibir

bi−1F [r]

rbi−ri

)
and that ∂2

rGi =

1
(rb−ri)k

(
∂2
rFi +

2bikir
bi−1

r−ri ∂rFi +
bikir

bi−2

(rb−ri)2
(
(1 + biki)r

bi + (bi − 1)ri
)
Fi
)

37where, for simplicity it was assumed the p, q poles have the same algebraic order, bj = b
(q)
j ; generally,

replace (rbj − rj)kj−σ
(2)
j Qj [r]→ (r

bj−rj)kjQj [r]

(r
b
(q)
j −rj)

σ
(2)
j
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equations38 by directly substituting into the P/Q into the h-constraint form.39 Specifically,
consider the more complicated (second) order of (out-gauge operations) solved. Next, let
gi represent the (λi sub-)linearized solution, so ∂2rλig ≡ 0;40 then, letting Q+G2 = Λi note
Q+(G+H)2 = Λi[1+

2G
Λi
H] +H2 then, “on the h-branch" the above equation reduces to:

∂2rhj − 2(σj + n)bjr
bj−1(rbj − rj)n−1hj,r +

2Gbjr
bj−1

rbj−rj

(
kj − (σj + n)(rbj − rj)n

)

+
2bjkjr

bj−1

rbj−1−rj

(
bjr

bj−1(σj+n)(r
bj−rj)n+r−1bj(2kjr

bj+rj)

rbj−rj
+ 1

r

)
hj

−bjrbj−1(σj + n)(rbj − rj)n−1




(rbj − rj)kj−σ
(1)
j Pj [r]

+r

(
(bj − 1)r +

(σj+n−1)bjr
bj−2

rbj−rj

)
(rbj − rj)kj




(65)

=

Λi − 2bjkjr
bj−1

r−rj

(
r−1bj(2kjr

bj+rj)

rbj−rj
+ 1

r

)
λigj

+ G̃

(rbj−rj)
kj
2

(
hj,r − kjbjr

bj−1h[r]

rbj−rj

)(
1
λi

(
1 + 2bjkjr

bj−1(r − ri)kj
)
+ 1

G̃

(
hj,r − kjbjr

bj−1h[r]

rbj−rj

)) (66)

Notice the pole in λi holds the “emergent winding element", as should be expected from a
Lagrangian functional.
Also, notice that all the terms on the LHS define a regular (non-homogeneous) ODE in h
(as an OPE of the polynommials G,P ), while the non-linear RHS explicitly involves the
constraint forms {λi,Λi} and the first derivative form H. Remembering that gj is at most
[·] log[·] divergent, while G is at most (r− ri)−1; in turn, this implies G̃−1 ∼ (rbj − rj)

k
2
−1,

38in fact, considering the enveloping used here it is immediate from the freedom in kj , and from the

Fundamental Theorem of Algebra, explicitly seen by choosing kj = max{σ{(1)}
j − 1,

σ
(2)
j

2
− 1}, so that the

above g-equations maybe added together and always solved as a positive power series in (r − ri) (or with
a first log branch extension: {h, g} ∈ {{1, (r − ri)}, {A(r − ri), (r − ri) ln(r − ri)}} )

39Note the alternative form of the second line by letting Λj → Λ̂j [r]

(r
bj−rj)kj

:

(rbj − rj)−
3
2

√√√√ Λ̂i(rbj − rj)− (rbj − rj)σ
(2)
j −1Qj [r]

λ2
i

= gj,r − kjbjr
bj−1g

rbj − rj
:= G ≡ G̃(rbj − rj)

kj
2

λi
(63)

Then, because Qj is the reduced polynomial, it has a stable lim
r→rj

limit and Λi may be selected to cancel

the bottom order and pull another half-power out; in this case, letting Λ̂i → λ2
i Λ̃ gives (the pushed) Λ̃i an

interpretations as a (weighted) residue of the Q-field :

Λ̃i =

∮

γ
(r)
/0

(rbj − rj)
σ
(2)
j

−1

bj Qj [r + rj ]

λ2
i

(64)

In particular, when σ
(2)
j = 2 this translates into a (linearly shifted) Q-moment. When σ

(2)
j > 2 this may

be interpreted as a higher order integral moment (in the global constraint form). Similarly, the cases
σ
(2)
j = {1, 0} gives Λ̃i the interpretation as a Q-charge density or a Q-current, respectfully.
40The interpretation being that λi ∼ C

|∂rg| represents a F-field expansion over the g-flow, seen explicitly
by making this substitution in the formula for Λ̃i above; this can also be seen by noticing that Λ̃i maybe
written as the exact derivative of a family of 1

λi
distributions, Λ̃i → ∂λiΓλi [Q, rj ; r] which have everywhere

convergent (0,M ] measure.

74



leading to the expectation that |h|deg ≥ −kj
2 .

Before unpacking everything, turning back to the LHS leads directly to considering solving
general ODE’s near regular poles. As explained in [10], these always reduce to a Fuch’s
relation. So, considering [∂2r +

τ
(j)
n

r
bj
j −rj

∂r +
κ2n

(r
bj
j −rj)2

+ B

r
bj
j −rj

+ C][
∑
an(r

bj
j − rj)στ+n] = 0;

further, defining χτ = 1−τ
2 gives the Fuch’s form:

σ2τ + (τn − 1)στ + κ2n = 0 ⇒ σ±τ = χτ


1∓

√
1−

(
κn
χτ

)2

 (67)

Notably, the solutions are always (sub-)dominately controlled by χτ := 1−2
2 in the sense

that 41:

{
σ±τ

∣∣∣∣∣

|χτ | → kn
|χτ | → ∞
|χτ | → 0

}
∼
{ {0, χτ}
{χτ}(2)
{χτ ∓ iκn}

}
(68)

where, τn ≡ −2σjbjrbj−1
j δ(n) reminds χn ≡ σjbjr

bj−1
j δ(n) + 1

2 , where σj is the rational
envelope (critical exponent) form of Rj and shows the clean connection between the over-

leading forms and sub-leading log-forms. In fact, σj ̸= 0 ⇒ Rj = e
σj(r

bi−ri)kj ln(r
bj−ri)

(rbi−ri)
kj R̃

shows these terms may be considered ultra kj-weighted contributions to Λi.
So, considering the form of the Fuch’s relation, pick {σj , n} = {−1

2 , 0}; further, move any
∼ (r

bj
j − rj)−2 divergent terms in the multiplier distribution Λi to the LHS as Λ̄i

(rbj−rj)2
=

Λ̂i = Λi − (Λd>−2 + Λd<−2) and use(/induct with) Picard’s lemma to close(/“gauge") the
LHS:

LHS = ∂2rhj + ∂rhi +
bjkjr

bj−2

rbj−rj

(
2Gr

(
1− 1

2kj

)
+ bj

(
rbj (1+4kj)+2rj

rbj−rj
+ 2

bj

)
hj

)
− Λ̂i

− bjr
bj−1

2 (rbj − rj)−1




(rbj − rj)kj−σ
(1)
j Pj [r]

+r

(
(bj − 1)r − bjr

bj−2

2(rbj−rj

)
(rbj − rj)kj




(69)

LHS ∼ 0 ⇒ στ = ±iκ0 ≡ ±i
√
kj κ̄[G,P, Λ̂j ; kj , rj ](70)

41Critically, the |χτ | → 0 case the sum of critical exponents is
∑
±
σ±
τ = 2χτ ; the coincidence with the

index-measure’s (| · |) non-differentiable (more specifically, the oriented tangent bundle ) point is not a
coincidence, and a direct manifestation of Axiom of Choice’s application in extending R[x] ⋉ R[x] → C[x]
smoothly. In fact, revisiting the entire construction thus far and noticing that τn = τδ[n] recasts this as a
proof of the uniformity of the harmonic completion cover over strictly measurable function sets, C[L2[O[·]]] ∼
C| dimO+ϵO

2
|[·], and may be seen as the canonical “emergence" of the ±i field extensions (in-between d = 0

and d = N differential forms), in each sub-domain, under the equivarience: [σ±
τ ]− χτ ] + (±i)kn ∼ 0. Note

the (positive definite) ϵO is well defined and may be non-zero only when the (finite) operator is odd (and,
further, always equal to 1 if the operator is finite dimensional; when the OPE is infinite dimensional, ϵ0
is either 0 a formal cardinal measure extension, representing extensions of the form i(ln i− π

2
)− e iπ2 ∼ 0)

which denote hyperfine extension fields.

75



Now, turning back to the non-linear (constraint form) RHS, G̃−1H ∼ (
kj
2 −2± ikj k̄); then,

it can be shown that a measurable λi may always be choosen to be sufficiently small, in
any representation, s.t. the second constraint is zero 42 Finally, note the worst case (in the
computational complexity case) is exactly kj = 0, which implies σ(1)j = 1 ∧ σ(2)j ≤ 4 and is
exactly the case when P [r] contributes to κ̄.

Unwinding everything, the full solution was R =
∏
i
e

hi+λigi

(r
bj
j

−rj)
kj ∑

j
(rbj − rj)

1
2 R̃j = Rj where

gi may be a log-type solution and h is strictly rational (and minimal). Then finally, λi ∼ H
G̃

represents the largest (oscillatory) dispersion of the constraint residue mode (the least G
reduces H-state)

Now with all the machinery of the full the KG-radial ansatz listed above may be quickly
analyzed. In the AdS-Kerr case, max{σ(1)j , σ

(2)
j } = {0(2)} and kj = 0; further, note pj =

∂r ln∆|r→rj =
1
r ) giving:

LHS = ∂2rhj + ∂rhi +
bjr

bj−1

rbj − rj

(
G+

bjr
bj−1

(rbj − rj)

(
1

4
− Pj

2

))
(71)

⇒ στ = ±ibjrbj−1

√√√√ G

bjr
bj−1
j

+
1

4
− Pj

2
− Λ̄i(

bjr
bj−1
j

)2 (72)

Turning to the Q-form, choosing Q to be constant, Qi = α2
i , implies G = gi,r = ±

√
Λi − α2;

letting Λi = α2 +
b2jr

2bj−2

16(rbj−rj)2
43 gives gi = −1

4 ln(rbj − rj) and:44

στ = ±2bjrbj−1
j

√
2(Pj − 1) +

1

4
(73)

Then, the constraint form may be rewritten:

G̃

λi
(rbj − rj)−στ ∼

√
8(Pj − 1) + 1 (74)

Using Pj = 1, bj = 1 gives:

στ = ±1 ⇒ G(r − rj)∓1 ∼ 1 (75)

42This follows from the Sturm-Picone comparison theorem, and noting, for small x, x2 ∼ k
3!

+ ∼kx
xk+2

This can also be noted by letting λi be Fourier measurable and noting that 1
r2

is harmonically measurable
(

∫
R/{− 1

N
, 1
N

}

1
r2
∼ 2N + δ[r]).

43Note, choosing the positive root implies G

bjr
bj−1

j

− 1
4
= 0

44Although this equation seems to have units for the top monodromy, this is an artifact of the parabolic
representation used in r − rj → rbj − rj ; then, [r] = [rbj ] and [1] = [∂rr] = [bjr

bj−1], giving the formal
definition of bj as an irrational unit [bj ] := [rbj−1]. Analogously, pure numbers may be given (log-)measure
units according to their sub-linear idealizations: [ln[r]]

[ln[r
1
n ]]

= [n], which is strictly descendant from the roots

of unity of a given length.
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Now, choosing a pole basis and adding across them all gives:

∑

i

λi ∼
∑

i

G̃i
r − ri

(76)

Finally, letting
∑
i
Λi =

∑
i
α2
i amounts to fixing 0 =

∑
i
Gi:

∑
G2
i ∼ 0 ⇒ ∂||G⃗||2i = 0 (77)

Then, by Green’s theorem, there must exist a functional s.t.:

λi ∼ δSi ∧
∑

i

δSi = 0 (78)

In fact, choosing Λi = 0 gives,

στ = ∓
√

1

2
± iαj ⇒ G(r − rj)

1√
2

√
1±2iαj ∼ 1√

2

√
1± 2iαj (79)

which shows G acting like a log-type OPE; then, using
∑
i
αi = 0 shows it has a fixed second

order norm:
∑

j

2G2
j (r − rj)

2√
2

√
1±2iαj ∼ 4 (80)

Finally, it’s linear λ derivative (or, it’s partial variety r−ri
λi

) acts like a psuedo-differential
field (at this order) iff λj ∼ 1± 2iαj , which can be seen by rewriting the first form:

G̃(r − rj)−1(r − rj)1+
1√
2

√
1±2iαj ∼ λj√

2

√
1± 2iαj (81)

Finally, because the global conservation form is at second order, λj represents a root of
the critical exponent; because G is double rooted, λj is exactly the root of the critical
exponent, meaning σ± = ±λ2j .

In the flat space (x-)case, σ{(1),(2)} = {0, 1} ⇒ kj = 1 taking advantage of the general
formulation, and noting p̄ = i

∑
α̃i choosing Λ∞ = ((2Mω)2 −∑

i
α̃2
i − p̄) + 2Mx+ 1 ≡ Q̄

gives:

LHS = ∂2xh∞ + ∂xh∞ + 1
1−rjx

(
G+

(
7

1−rjx

)
h∞
)
− Λ̂∞ − 1

2(r − rj)−2Pj [r]

≡ ∂2xh∞ + ∂xh∞ + 14h∞−i∑ α̃i
2(1−rjx)2 − Λ̂∞

(82)

Thus, it may be said that the scalar Kerr interaction, on the h−branch, is a “Bessel Con-
strained" fluid sourced relative to some dual (A)dS Kerr (partial wave/)thermalized inter-
action.
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3.3 Review: Ideal Magnetohydrodynamics in D=4

Despite having been studied since the onset of general relativity, black holes are still active
areas of research. Indeed, their hidden geometries (and field shadows) provide a unique
insight into physics, generally, that is seemingly only beginning. This paper considers
perhaps the simplest (higher) dimensional generalization of the Kerr black hole (in D=4
dimensions): the Myers-Perry black hole (a single spinning black hole in D=5 dimensions).
Hopefully continuing context will keep this motivation flowing throughout.
Therein, this section concludes by reviewing black hole thermodynamics and some basics
of ideal magnetohydordynamics; procedurally, the paper next examines some features of
theD = 5 geometry[2] and field equations in higher dimensions before establishing a per-
turbative framework (and sequentially performing a specific field perturbation). Finally,
the resulting family of solutions is examined and conclusions drawn.
In order to simplify dynamics this paper will not include matter dynamics explicitly, instead
using only (fixed-point) metric boost sources and vector gauge dynamics to perturb a single
black hole. Towards using well quantized theories to better understand less quantized ones,
it makes good hope to expect small, stable volumes of black hole phase space may be
quantizable in terms of relatively infinitessimal, distinct field perturbations: 45

S = SBH + Smatter ≈ SBH + SEM =

∫ √−g
(
R+

1

4
F 2 −A · J

)
, δS ≈ δSEM (83)

Indeed, under the gravitational saddling and FFE assumptions explained in section ABOVE,
the action S is extremized by curved solutions to Maxwell’s equations with a known field-

45for a review, see[6]
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tensor form and, in unit-less form given by46 :

ds2Kerr = −
(
1− rsr

Σ

)
dt2+

Σ

∆
dr2 +Σdθ2 +

(
r2 + a2 +

rsra
2

Σ
sin2 θ

)
sin2 θdϕ2 − 2rsra sin

2 θ

Σ
dtdϕ

δS = 0⇒ dF = 0 and FµνJ
µ = 0 where J = d ∗ F (84)

and, F = dΨϕ ∧ (dϕ−Ωdt) + I[r, θ]

√
−gT
gP

dr ∧ dθ (85)

constrained by
| − gT |gijφ,jηα∇iηα = −dI2

dφ ,

I(ri, θ) =
(rsri sin θ)

Σ [(Ω− ΩH)φ,θ]
∣∣∣
r→ri

(86)

Σ
dI2

dφ
= ηα

(
∆∂r

[
Ad[gT ]βαηβφ,r

]
+ sin θ∂θ

[
csc θAd[gT ]βαηβφ,θ

])
(87)

It’s interesting to note that, regardless of closure, picking a corotation form with uniform
length ηαη

α ≡ Λ − 1 pushes the stream equation to a sourced form of the P-operator
(acting on the magnetic flux coordinates) ∇i

[√−ggijφ,j
]
=

Fij
2(Λ−1)

dI
dφ ; in fact, if the RHS

were to match the T-source (symmetries) of the KG field then the thermal descendancy
would be exact (which is the exact idea of inner-flat space spinner, a.k.a. Penrose con-
nected, representations [30]) 47 As mentioned at the end of the FFE review, in D=4, a

46Following [23] and expressing everything in terms of the Schwarzschild equivalent radius rs = 2M ;

r± =M(1±
√

1− a2

M2 ) ∼ rs
(
1− 1

4
a2

M2

)
:= rs(1− α2

4
), which explains that α-parameter as a spin(-family)-

displacement (series-level) gauge from the Schwarzschild OPE and, in light of the results from [10], give
it the firm interpretation as the lowest order, thermodynamically stable boundary excitation. Indeed, this
interpretation then exactly deduces the Ψ(0) monopole-Schwarzschild state as a universal gravitational-EM
action symmetry (denoted δGb) in every IR completion gauge, which implies the monopole’s lack of existence
as locked into shadow states descending from quasi-massive (soft-representation weighted) graviton decay
[24].

Watching the completion of this construction will amplify this heuristic to understand the electric force
as a δGb duality as descending from strong-G quasi-stable spin-time modes (a.k.a, scattering iso-tuplets,
or Heisenberg representation connections: SL(2,R)

∣∣∣
U(1)⋉U(1)∼U(1)

[25]): electric charge separation (fields)

are then free to be interpreted as vector spacetime symmetries outside of gravitationally saddled (ther-
modynamically exact) vector-field (coordinate-gauged) interactions. More precisely, considering the global
representation nettings, quasi-classical E-fields are then considered G-boundary modal dualities under the

laws of black hole thermodynamics [26] relative to some r-local out-patch continuation [27]
Ψ

(0)
ϕ

Ψ(0)[θ]
∼ [1]dθ.

Finally, taking the cosmological thermalization pullback (or considering the Cosmological Relativity Hy-
pothesis) produces the hypothesis that an inflationary coupling to strong-gravity could be dual to out-
of-equillibrium Cauchy modes propagating along the quasi-topological states ascending from the event
horizon as SL(2,C) ⋉ SO(3). Indeed, this interpretation seems to also capture recent CCCH/SYM du-
alities [28] casting the graviton OPE as forming an asymptotic dual state of unthermalized quark-gluon
charges (a.k.a., in the non-perturbative deconfinement phase of QCD); pushing completely through, this
casts the loop-complete graviton as OPE descendant (under affinely compactified “spacetime-symmetry"
propogation/conservation) to the asympototic annihilator of the super-conformal stabilizer basis respon-
sible for the global boundary SU(N) charges in non-perturbative branch extensions of QCD. [21] This
circumstantially explains the BZ-monopole’s 7th order Field extensions, mentioned above, as manifest of a
duality constraint between the graviton propogator measure [29] and the contact OPE of three (electrically)
gauged doublets constrained under a linear hypercharge relation, giving 23 − 1 = 6 + 1 six matching, and
one natural regulator, relations towering directly above the double-soft completion (extension) states.

47Critically, this interpretation sets α2 ∼ δS =
∑
δSi, or that the electric field is the “square-root"
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canonical channel of energy extraction can be perturbatively closed at second order in the
spin length48, O(a2) ∼ O(α2), which is known as the Blandford-Znajeck model:

Ψϕ = Ψ
(0)
ϕ + α2Ψ

(1)
ϕ +O(α4) , rsΩ = αω(1) +O(α3) , rsI = αI(1) +O(α3) (88)

As shown in a footnote at the end of the FFE review, the Schwarzschild-limit OPE (over
a family of current-less, non-magnetically rotating fields) of the stream equation is

0 = r2∂r

[
(1− 2M

r
)φ,r

]
+ sin θ∂θ [csc θφ,θ] (89)

and admits a non-trivial family of scaled, radially invariant solutions [φ]θ ∼ [A + C cos θ]

(under sin-cos — a.k.a., canonical harmonic — duality). Worrying only about positive
quadrant, 49 0 < θ < π

2 , and considering lowest order modes fixed to the polar flux moment
Ψ(0)[0] = 0 selects the representative Ψ(0) = 1− cos θ. Then, considering the α-top Znajek
condition at the O(α3) horizon:

αrsI(ri, θ) = α2I(1) =
(2r2s sin θ)

1 + 2Mri sin
2 θ

[
(Ω(1) − 1)(1− α2

4
)(sin θ + α2Ψ

(1)
,θ )

] ∣∣∣
r→ri

(90)

∼ (2r2s sin θ)

1 + 2Mri sin
2 θ

[
(Ω(1) − 1)(sin θ − α2

(
Ψ

(1)
,θ −

sin θ

4

)] ∣∣∣
r→ri

(91)

⇒ Ψ(0)[θ] = 1− cos θ , Ω ∼ a

2M2
=

ΩH
2

(92)

of the thermal entropy residue of spinning black holes, which concretely fits with the KTN double cover
discussed above,

√
Kerr ∼ Spinning-Dyon (which is an asymptotic magnetic duality in C-extended elec-

tromagentism; see [31]). Because the 2nd LoT was invoked in both the KG and the BZ constructions,
assuming both fields are weakly saddled to gravity (under a Wald prescription) the canonical ther-
mal modes, (a.k.a., the thermodynamically fixed-gauge OPE eigenvalues) are algebraically dominated
by whichever thermodynamic state has the largest covering of the dual kernel modes (whatever radi-
calized algebra acts as the geometric bath [32]); because the massless, real KG equation is exactly mini-
mal and thermodynamically covering, it always acts as the fundamental thermodynamic gauge field [10]
(between the strong gravity bulk/asymptotic boundary). Therein the spacetime constants can be relation-
ally promoted to OPE geometrized units; then, the relations Ψϕ − Ψ

(0)
ϕ ∼ α2Ψ

(1)
ϕ display the magnetic

quadropole moment, [rsΩ−αΩ(1)] ∼ O(α3) ∼ [rsI −αI(1)] and the displacement current/direct current as
constraint(/perturbation-shadowed) relations descendant from higher order fields.

Importantly, here the reasoning has here been involuted through the 0th LoT to induce the optical
symmetries of classical celestial holography (rather than taking them as preferentially selected closure
symmetries) as T-stablized, asymptotically shadowed out-modes of black hole geometries; then, the S-
Matrix symmetries of QED can be considered (affinely) descendant from the T -stabilizer out modes of
strong (loop level) gravitational interactions. Radically (in the rigorous, idealized sense), this opens an
interpretation of the KTN double-copy holography as a self-shadowed basis constructed over (possibly Λ-
)thermalized vector doublets:

√
⊕
√
ΛK → (

√
Kerr →Spinning-Dyod). Then, the BZ monopole expansion

can be considered the asymptotic, strong gravity (O(α3)-shaddowed) dual to boundary-local weak electric
current symmetries; powerfully, this gives a description of local, weak electric charge separation as a small
amplitude transition between asymptotically small strong-gravity Mass-spin charge separation states, and
concretely fits with [27] .

48And best represented in active coordinates α := a
M

[23]
49or, equivalently, allowing discontinuous current sourcing streams to exist on the symmetric plane θ = π

2
,

which also happens to be an r-uniform subspace and thereby also the canonical gluing patch ∀ Z2 symmetric
solutions; as such, the negative current solution can always be glued into a global topology with net [0]-
discrete current propogation. This condition can be relaxed by giving the outer topology a weak current
flow, which amounts to promoting the monopole moment to a higher-order magnetic pole [23].
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Further, noticing that Ψ
(1)
,θ ∼ g[r, θ] sin θ implies a Znajek current elongation form I1 ∼

g∗[r, θ] sin θ and, remembering that algebraic residues of the form A+C cos θ reside in the
monopole solutions suggest that the n = 2 perturbation closure can be enveloped with:

Ψ(1) = f(r)
sin2 θ

2
, I = g(r) sin2 θ (93)

This can fully be justified by50 noticing that

Ad[gT ] ≡Kerr
rsr

∆+ rsr − aωϕ

[ ( rsωϕ
2

)2
ωϕ

ωϕ 1

]
+

[
(∆ + rsr) sin

2 θ

−1

]
(94)

Noting that the left division ring is second order in α (as ωϕ ∼ O(a)) implies,

Ad[gT ] ≡O(a3)
Kerr

rsr

∆+ rsr

[ ( rsωϕ
2

)2
ωϕ

ωϕ 1

]
+

[
(∆ + rsr) sin

2 θ

−(1 + αωϕ
r )

]
(95)

giving, under Ω = α
rs

Ad[gT ]αβηβ ≡O(a3)
Kerr

rsr

∆+ rsr

[
rs
2 α sin2 θ

1− rs
2 αΩsin2 θ

]
+

[
r2Ωsin2 θ

−(1 + αωϕ
r )

]
(96)

=
α

2
sin2 θ

(
rsr

∆+ rsr

[
rs
−α

]
+

[
2r2

rs

− rsα
r

])
− ∆

∆+ rsr

[
0

1

]
(97)

In particular, only the rightmost term can support an O(a2) field interaction, but this term
loses support on the horizon (as ∆ → 0). Then, asymptotic form-matching (and using
trigonometric duality sin2 θ cos θ ∼ x2dx) fully justifies the sin2 θ solution forms found
above to induce separability (at this order). Note ∆→ 0 gives a linear timelike eigenspace
Lastly, that the radial poles of the stream ODE, r ∈ {±a, 0,±ia cos θ}, are separated and
regular (p-type in η, q-type in ∇iI2), and this solution can always be solved under Picard’s
Lemma. The final step of a full solution monopole BZ construction is to solve the resulting
ODE51 for f, g; instead of continuing with known calculations, this part of the algorithm
will be exhibited in the next section for the d = 5 case.

3.4 d = 5 Myers-Perry Metric

Generically across physics, higher dimensions are well represented by (inner) connections
between (adjointly bound) gauge fields; unifications between outer and inner morphisms
are exactly (product, or naturally) dual when the left adjoint product (kernel) admits a

50noticing that the only possible radical stems from the division (∆+rsr)
2−aωϕ∆

∆+rsr−aωϕ = ∆ + rsr +

α
rsωϕ

2
rsr

∆+rsr−aωϕ
51Usually by using critical regularity features of the radial ansatz to constrain the full functional class

to a bounded sub-domain that can be more easily (numerically) explored.
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right adjoint product (union of kernels52). This is the idea behind Wald Actions, whereby
auxiliary (gravitationally saddled) fields may produce enhanced (gravitationally fixed) field
multiplets of propagators (globally complete transition modals) which may then be used as
a basis OPE (with a possible co-kernel action, a.k.a., counter-propogator) for a(n ideally
out-measure analytic) OPE of the functional determinate (of some fully quantized gravi-
tational action). Either way, Noether’s theorem applied to the F trivial fields53 shows the
number of diffeomorphic degrees of freedom form a (convex) category of Lie Groups (or
that they are compact under simple group representations under the weakest, or globally
discrete, n ≤ d sub-topological representations).54

The first extra dimensional black hole solution was a D = 5 static, aximsymmetric solution
found by Tangherlini in 1965(14) and nearly 20 years later it was generalized to a spinning
solutions by Myers-Perry(10). In general higher dimensional black holes can exist in anyD ≥
5 (the n-dimensional static, axisymmetric metrics were exhibited in the above sections).
Disregarding the Reiner-Norstrom (charged) extensions, the largest difference in higher
dimensions is the existence of additional angular invariants (momenta) which translates
into a richer event horizon geometry and more subtle thermodynamics and light tracing.
Indeed, in D = d dimensions there are N = ⌊d−1

2 ⌋ planes of rotation [36]55, which amounts
to promoting the spin current (det-adjoint) coupling forms from a strictly vector gauge into
a higher spin transition form.
Still, black holes in D = 5 exhibit a number of interesting similarities56 to D = 4 that make

52where the right adjoint representation canonically includes all left normal subgroups, and also must
close (by group axiom) the LR-group algebra (which, precisely means it must support the co-kernel of the L-
adjoint operator cover, in measure space known as a “Grossencharacter"); in finite algebras, this realization
leads exactly to the Galois extension algorithm and to the classification of the finite groups (through the
central representations of the classical Lie algebras). In the generic infinite dimensional (gauge) group
case, under the Selberg classification (specifically so called first and second Selberg conjectures, and their
relationship to Artin’s conjecture [33]), the right dual algebras can always be found by maximally extending
the Dirichlet kernel OPE [33]). It is important to note that, so far as the author is aware, the topology
must be normal, or (mostly convex) T2.5+, and thus the OPEs must be, at worst (on-shell) adjointly (GLn)
vector-gauged, aside from possible “corner/non-archimedian defects" in the Weil compactifications over
the Froebinius, sub-topological accumulation space representations, known as Satake parameterizations in
Artin-Takagi class field theory [33]) so that the infinite union closes in the open-dualized (finite intersection)
representation . In fact, it is a remarkable result of the Artin Completion dualities that su(2) and su(1, 1)
group algebras are almost always dense when the system is Generally Rationalized (GR) [34]

53applied to the canonical trace OPE (at Field fixed point(s)) and/or functorially using the anomalous
cusp dimensional measure

54Accordingly, the higher dimensional (most often quoted d = 26 or d = 12) embedding dimensions
of string theory can be understood as the maximum number of maximally reduced free scalar gauge
degeneracies in the global cover (which depends on the number of closed string propogation modes). In the
completely closed spectrum, each (oriented) subspace is affinely oriented, giving “Spherical Variety" (SV)
conjecture of d = 4! + 2 = 26 dimensions (a more rigorous (charge-grained) on along the Virasoro chain
can found in [35] ).

55In fact these solutions were later generalized further (by Emperan and Real) to the D = 5 (doubly-
and dipole-) spinning-ring solutions (which have a direct connection to scatting modes in non-perturbative
string theory(7)) by tuning the gauged dyiad sources to excite the hidden U(1)N cocycles (to their unstable
limits).(9)

56Using the L/R projective representation of empty d = 5 space symmetry groups, SO(4) ∼ C2⋉SO(3)×
SO(3) →

(
SO(3)⋉{L,R} SU(2)

)(2), the essential idea (moving forward) is to notice that this (projective)
homomorphism results in a spinning-vector gauge; so, by adding a global spin-cut current (a.k.a., a spinning
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these solutions an appealing start to extending the Blandford-Znajek process into higher
dimension. 57

To that end, this section will focus on D = 5 Myers Perry BH with only one of the angular
momentum turned on (b=0)(10):

ds2MP =
1

Σ

[
−H[dt− ωϕdϕ]2 − 2Jdϕdt+ Fdϕ2

]
+ r2 cos2 θdφ2 +Σ[

dr2

∆
+ dθ2] (98)

with: ωϕ = a sin2 θ J = Σωϕ F = Σ
J

a
H = Σ−m = ∆− aωϕ (99)

where here58, Σ[r, θ] = a2 cos2 θ + r2, ∆[r] = a2 − m + r2, and Σ + aωϕ = ∆ + m. In
particular, note three primary differences between this metric and Kerr. Firstly, and most
obviously, the extra dimension seems to sit between the T and P sectors. Although it may
be instuctive to push it into the toroidal sector (to compare with later results), because
it represents a uniquely global d = 1 spacelike dimension it’s easiest to here treat it as a
separate source to push on the Kerr-ascending symmetry form.

Secondly, the coordinate envelope J matches the Kerr analogue, but F
J = Σ

a represents

black hole), the hypothesis is that some vector gauge field may strongly couple to the weak BH dynamics
in the entire spacetime and provide a spin-energy decay channel, as in the d = 4 case. In fact, ideally
a simple higher dimensional black hole geometry could be constructed that would exactly capture a flat
space (ramification) SO(4) → SO(3)(L) × U(1)(R) R-unitary gauge. Constricting the d = 5 black hole to
spin in a single direction (in compact affine-time) promotes one (background induced) spin gauge contact
form to an independent local U(1) fixing; then, a natural hypothesis may be that this local symmetry
contact form, ∼ U(1) × SO(3) may be gauged to produce ∼ SU(2), which may then be represented by
weak monopole (a.k.a., an almost everywhere force-free, vector gauge field) symmetry breaking and pulled
back onto SO(3) (on the global “cover gauge").
In the d = 3 case, SO(3) ∼ Z2 ⋉(L) SU(2) × SU(2); then, the double cover constructions show the Kerr
geometry’s null geometry exactly captures the reflection extended spin algebra, and the (0 < θ < π

2
)

monopole (or globally spin-fluxing, current fixed) gluing basis fixes the a-only decay channels (while other
solution basis may be constructed using different current-balancing distributions; for example, the monopole
support is I ∼ r−2 while the BZ parabolic form is I ∼ 1

r
supported [37] ). Further, this shows that, in

the d = 5 case, there should be solutions with constant U(1)-gauges (e.g., no φ̂-directed magnetic flux)
corresponding to direct lower dimensional analogues; considering the quaternion embedding of SO(3) gives
the Hamilton Cayley formula, x′i + y′j + z′k = (a + bi + cj + dk)(xi + yj + zk)(a − bi − cj − dk) where
unitary matricies may be given by U = aI + icσx + ibσy + idσz, which shows that it is a strong hypothesis
that a restricted RHS (the d = 5 single spinning background) may lead to a restricted LHS (the projected
leg from a Kerr double-copy action), a.k.a a holographic partitional functional.

57In fact, comparing (??) and (??) directly shows they look functionally identical if we naively map
m → rsr, dψ2 → 0 while holding m. Although crude, this feature of the two metrics gives a heuristic
picture of the embedding of Kerr into MP black holes (and will prove deep): rs[r] ∼ m

r
, or, the Kerr

radial coordinate is a mass scaling (asymptotically scaling) coordinate in MP. This gives a clear motivation
to studying higher dimensional black holes: they may represent conformal phase curves (dynamics) in
D=4 dimensions.In fact, this provides provides an easy contextualization for holography in general: the
idea behind the AdS-CFT correspondence is to find higher-dimensional states which descend to exact
dynamical systems in lower dimensions (a “holographic" representation of gravitational phase space); in
this case, the “identification" requires that the apparent horizon shrink as the rKerr coordinate is advanced:
rs → rs[r] =

m
r

. This superficially looks like the black hole is evaporating (and, considering 1
r

as a Poisson
random variable and m a diffusion length, this gives some idea of the connections to Large-N limits (t’Hooft
limits) in string theory)(11) .

58Notice that [m] = [l2] has the same units as r2; also, the extra coordinate in this representation is
(vector) directly orthogonal g̃T ⊗ g̃φ ⊗ g̃P ∼ g̃T ⊗

(
F [·]δ̃φ ⊗ g̃P

)
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a(n affine/lapse-like) shift by +2ωϕ from the Kerr-analogous ratio59; then, ds2T |H=0 =

−2Jdϕ
Σ (dt − F

2J dϕ) shows that this manifests as a continuous, radially independent time-
advance, τMP ∼ τKerr+ωϕ∆t, in the relative ergosphere (time-spin Path) gauging γ[t, ϕ; r, θ]
γµ∇µγν |H[γr[·],γθ[∗]]=0 = 0 (this can equivalently be seen, by absorbing this term, as an
asymmetric splitting of the perfect square over H). In total, this gives the idea that d = 5

single-spinning MP decay channels may asymptotically resemble Kerr decay modes under
a strong interactive coupling (shadow gauge) at the ergosphere.
Lastly, and perhaps most importantly, the poles of ∆ are exactly sign symmetric, Z×

2 :

r± = ±
√
m− a2 ≡ ±√m

√
1− a2

m , or
∑
±
r± = 0 (which, in this final sense, is a property it

shares with AdS-Kerr).

rMP
i = {±

√
m− a2} ⇒

r0 =
√
m

α = α√
m

SO: rMP
+

r0
=
√
1− α2

(100)

The outer MP event geometry (S2 × S1) resembles the event geometry in Kerr (S2) (with
an independent U(1) Killing space)60. In particular, both have exactly one thermodynamic

59Considering that the spacetimes’ velocities and classical defects are functionally identical,
{ωKerrϕ ,ΣKerr}[a, θ] ≡ {ωb=0

ϕ ,Σb=0}[a, θ], the difference FKerr
JKerr

− Fb=0
Jb=0

= 2ωϕ is a sensible (affinely pro-
jected, dφ ∼ 0) relative lapse measure between the embeddings.

60It’s particularly interesting to note the discussion following eq. 3.34 in [38], which casts the curvature
singularity at r = 0 with two slightly different forms depending on whether one, or both spin parameters, are
non-zero. As shown in[38], in the case of one vanishing spin functional it naively appears that O(r{−1,−2})
matching forms, {α,Z}, may be found (in Kerr-Schild type coordinates) which produce a smooth metric
almost everywhere, except the exact singularity r = 0, leading to the idea that the curvature singularity
may be resolved as a limiting form. Instead, the singularity can be shown to have been displaced into the
index as a conical constraint on the accumulation topology (manifest as r coordinate-form measure, ∼ grt
dependence in the light-orthogonalization ): requiring the singularity be smoothly embedded then requires
the accumulation-weighted metric 3.38b, and descends the singularity-smooth sub-cover measure to an
infinite r-affine index (a.k.a., divergent proper distance), which is always strictly less than the distance
to the conical convergence. In fact these covering conditions provide a direct connection to the footnote
above hypothesizing the (single-spinning) d = 5 monopole as a strong-G induction basis of an ulta-fast
resonance (manifest as a thermalized ergosurface bound-multiplet outmode): starting from an asymptot-
ically far topology, reconstructing increasingly near-singularity features is always a r+ ≥ rmin truncation
process (the Quantum Extremal Surface extension of the singularity theorems). Still, using thermody-
namic arguments [10], or also by considering conformal phase domain-weighted extensions of the free space
propogator, the so-called “Replica Trick" [39], or also by considering recent simulations in numerical rela-
tivity [13], it can be inferred that dynamic black hole event horizons can, under the right circumstances,
produce long shadows in the fast spectral modes (such as, for example, when a (distribution of) nearly
maximally antipodally spinning black hole(s) collide[s] with a significantly more massive BH; numerical
simulations/observations [13] indeed show a surface relative shockwave dispersion with a relatively quick
ringdown time, as would be therein deduced under the Thermodynamics/Observation (T/O) hypothesis).
Then, the complete light-surface thermalization phase, mentioned in the same footnote (and below), may
represent an extended form of Cosmic Censorship, whereby strongly destabilized black hole topologies may
be indexed by their (probe/observation/Wald-field) out-regulated, outer-light-surface matched, d = 5, φ̂-
gauged, gluing boundary OPE sub-charges. In the case of a completely thermalized transition coarsing,
this would naively correspond to the L/R product volume, S2

TR×TL .
Further intriguingly, this product gauge state seems to share many of the properties recently implicated in

planar thermal Hall effects in quantum spin-liquids, particularly [40] newly found the antisymmetric thermal
Hall responses above and below the gauge degeneracy phase, particularly as it compares to the over/under
spinning of the ramified electric light gauging in single spinning MP 3.9. The matter-dual states specifically
indicate a bosonic edge mode (coupled to a Berry curvature, indeed reminiscent of STR⊗TL in a conformal
product gauge), rather than a fermionic excitation; looking back to the initial discussion of the stream
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scale which regulates the degeneracy of the coordinate singularity, r+|α→±1 = r−|α→±1. In
fact the extremal MP horizons additionally converge on the degenerate horizon onto the
curvature singularity (see section 3.2(10)) r0 = 0 and, further, it can be shown that the
Kruskal-like continuance towards the curvature singularity is timelike, meaning tangent
space of the degenerate horizon is spacelike.61 As such, the single spinning d = 5 MP black
hole can be embedded in a Penrose diagram resembling a Schwarschild geometry (with two
distinct horizons rH ∈ {0, r+}) with an angular momentum, and a (u, v)-entire analytic
continuance in the |u| > v in/out patched sense; see [38] eq 3.59.62, r±

r0
=
√
1− α2 ∼

equation, specifically the interpretation of the cap current I as an ultra-fast co-rotation form symmetrically
weighed on a large sub-spectral average (of some iso-shelling of Higgs forms), shows a consistent deductive
trend. This also gives a canonical interpretation of the gluing patch — here, as in Kerr, a d = 1 closed
surface (although, the single spining MP is topologically relaxed to converge within any Sφ × [∗] gauged
modal) — induced φ̂-charges as out-relative inertial modes (or, in/out membrane transition charges), or
as the (purely) harmonic charging of a bulk-cutoff dynamics. Backstepping again, now anticipating the
KTN-representation, a d = 5 monopole solution should then correspond, under bulk-boundary descents,
to a (Berry-dual) QED-loop corrected analogue to the Coloumb gauge (shown below as a correspondence
to the Wichmann-Kroll potential), and, under boundary-boundary transitions, to a thermal shadow fixing
(shown by the light-surface frequency residue fixing at spacelike, globally T-symmetric infinity).

61In fact, this is exactly the jumping off point to construct the D=5 black-ring solutions: space-like
degeneracies in the metric-kernel can be “ balanced " by spacelike singular-points (known as the Inverse
Scattering Method) to cover extended domains with previously negative mass asymptotics . The (boosted)
event horizons of the black rings have enhanced symmetries that produce interesting asymptotic states
which, in particular, that have interesting contact points with non-perturbative string theory (7) [41].
Again, it’s important to note that the original Meyers and Perry constructions of higher dimensional
black holes specifically concerned completely axisymmetric solutions to control the loop residue lengths
(densely on the time branch); further, families of d = 5 black holes can generically be categorized by
the shape of the maximally extended (closed) rational curves on the inner-thermalized(/dual) topologies:
the dual Betti measure of the KK-instatons (closed in the light protected inner domain). The initial
ISM solutions were found by closing the open loop topology (closed rational time-curves) pointwise in the
global affine closure (to guarantee their convex exclusions from the out-domain), but recent works [42]
show that this condition can be relaxed using a(ny) light-graded (sub-horizon/inner) asymptotic boundary
algebra. In d = 5 and building on the ISM loop algebra, the author’s used the super-symmetric (affinely
flat, ground-harmonic, ⟨n = 0; k = 2|⋆-)dual closure of the spacelike rational-loop algebra, C̄ISM ∼∗ SO(4),
as a complete (ISM twisted) projector space for the (linearized) Kaluza-Klein spectral form to generate
an infinite class of multi-axisymmetric (indexes) over S3 ⋉s≤k−1 T

n+k−2-punctured bulks; better yet, they
reversed the scheme to (counter-)compactify the rationally separated loop (instanton) sector of the strongly
interactive(/Coloumb) branch (in the brane-topology). Functionally, this can be understood in the context
of the general holonomy OPE of [34], which strongly motivates the resultant (separated) event horizon
topologies {S1 × S2, L(p, q), S3} as functor descent leg-forms of {su(2n), gln|n,

√
gl1|1 ⋉ su(2)} .

62There, notice the induced decay tail on the pullback as r ∼ [r+] when B > r+ (bottom page 330) is a
natural hallmark of sub-harmonic topological emergence (principally shown under the classical 0th LoT’s
equivariant fixing to the measurement scaled µ[N ; ·] log-variance: [β]· ∼ ∂∗ lnW [∗; ·]) and naturally points
towards a Mellin-extension of the Fourier kernel decouplet used to thermalize empty spacetime, which
exactly motivates the conformal coordinates of [43]. Understanding the Mellin-form itself as a(n affinely
indexed, ln-pushed) functional extension of the Fourier modal, the Fourier transform of the β-thermalization
domains may be thought of as a Mellin flow (along the principal branch) in constraint (phase) space: using
Artin’s L-function measure (which is universally possible) F [β]W [−s] ∼ M[−∂∗]W (−is). Of course, this
is just a reformulation of wave/particle duality in classical Quantum Mechanics, as was explored in the
section above ??. In fact, this idea can be directly seen from the Mellin-action on the projector basis
monomials: M[eix] = e

iπs
2 Γ(s)); more naively still, the sub-leading/soft dualities may be inferred from the

formula M[e−(ln x)2 ] =
√
πe

s2

4 , which conveys (counter-propogating) entropies with log-squared measures
(and directly independent co-domain forms) as (constraint) pushed Gaussian envelopes.[44] [45], [38]

Then 63. Further accordingly, the ergosphere comparison needs just compare to either representation of
the radial poles to analyze the ordered-splitting forms [42]. Under the “affine time is affine quantumness"
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1− α2

2 − α4

8 + ...; also, the ZAVO frame (e.g., the ergosphere surface [45] [23]) is given by

0 = H ⇒ r
(erg)
±
r0

= ±
√
1− α2 cos2 θ ∼ 1−α2 cos2 θ

2 −α4 cos4 θ
8 +.... Putting everything together,

and further conjoining the AdS thermodynamic balancing of [10], tends the suggestion that
single spinning MP black holes may be able to produce strong-gravitation solutions under
ergosphere/event horizon vector shadowed (or, gauge transition-weight matched) forms;
under the strong/weak → soft/hard charge mixing of the w1+∞ (residue) algebra, this
may be expected to be manifest as a bulk-boundary magnetic flux (an ergosphere gauged
scattering-angle [46]) 64.
So, following the procedure as in Kerr/Schwarzchild and supposing the usual solution form,
[·]→ eiλαx

α
[∗] the KG equation can be written:

[gT ] =
H
Σ

[
−1 − J

H + ωϕ
− J
H + ωϕ

F
H − ω2

ϕ

]
| − gT | = ∆ωϕ

a ≡ ∆J
aΣ

|gP | = Σ2

∆ ≡ ΣJ
ωϕ∆

;

√
|−g|
|gφ| =

J√
aωϕ
≡ Σsin θ√

|−gT |
gP

= ∆
Σ

√
ωϕ
a ≡ ∆sin θ

Σ

[gφ]
−1 = [r−2 sec2 θ]

[gP ]
−1 = 1

Σ

[
∆

1

]
gαβT⊗[φ]λαλβ = 1

|−g|∂j
[
r sin θ cos θ(∆δijrr + δijθθ)∂j [∗]

]
(101)

This leads to:
[
(r−1 tan θ)−1

∆
Ad[gT ]

αβ(Σλα)(Σλβ) + r−1 tan θ||Σλφ||2
]

(102)

=
1

r
∂r [r∆∂r[∗]] +

1

sin θ cos θ
∂θ [sin θ cos θ∂θ[∗]] (103)

with
Σ ≡ H +m

∆ ≡ H + aωϕ
gives

Σ2

∆
Ad[gT ] =

H +m

H + aωϕ

[
(H +m)2

ωϕ
a −Hω2

ϕ mωϕ
mωϕ −H

]
(104)

⇒ Σ2

∆
Ad[gT ]

∣∣∣∣
H∼0

∼ r20

[
r20
α2

r0
α

r0
α 0

]
(105)

In fact, taking each (metric)pole as an optical term and noticing that H → 0 makes the

this is the qG-interactve dual form of the antipodal matching condition (which concretely fits under an
R(eduction)-entanglement picture).

64or an ergosphere local (t, ϕ) transition matching form; because the ergosphere is not a closed energy sur-
face (it is not the closed union of geodesics[47]), ωϕ relative shift between the ergo-gauging in MPa and Kerr
represents a strictly electric gauging of the Kerr sub-dynamics, representing an opening to understanding
fast-transition processes in black hole dynamics through higher dimensionally gaugued iso-linear transition
forms across the outer-stabilization net. In particular, this gives the higher dimensional monopole solu-
tion exhibited below the clean interpretation as a stabilized (quasi-/partial-)basis OPE for outer-gauged
transition dynamics (or, fast gravitational stabilizer modes under degeneracy-gauged OPE normalization
weights, a.k.a., the membrane conformal phase regulator basis of the decay dynamics). [42]
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adjoint source “look" flat (and advanced) immediately leads to the ansatz:

⇒ 1

r
∂r [r∆∂r[∗]] +

1

sin θ cos θ
∂θ [sin θ cos θ∂θ[∗]] (106)

∼ r20




r20
α2

r0
α

r0
α 0

im2
√

1− m
r2




(a)(b)


λt
λϕ
λφ




(a)


λt
λϕ
λφ




(b)

(107)

(under the appropriate, canonical transpose on the group eigenspace). Note, in this limit,
there is no well defined λφ functional inverse at the horizon.65

Indeed, the r−1 tan θ terms seems to ruin the thermal separability 66 even when despite the
nice RHS (a.k.a., P-descendant differential guide); still, the Adjugant matrix, under the (P-
separated) relevant physical (rational) product weight seems to be only θ dependent on the
ergosurface67, indicating that the descent forms may split into thermalization bands across
some field mediated action at the ergo-surface. The implication of a closed surface topology,
with an open geodesic compactification, in the quasi-separated KG equations above (the
formal eigen-character extended representation thermalization spectrum discussed above)
immediately signals a vector gauge out (in-surface-charged) dynamic.
To that end, the d = 5 stream equation is constructed following the analogous procedures
of d = 4: adding a spacetime-saddled electromagnetic field, the clearest difference between
d = 4 and single-spinning d = 5 is the additional (space-like) Killing field, dψ; consequen-
tially, the electromagnetic field has two canonical magnetic field vectors (together which
form the field’s magnetic bi-vector) which naturally reduce over the spacetime into some
U(1) L-adjoint local gauge. This axial charge freedom when one spin is turned off will
prove thermodynamically pivotal.

65And also that the upper left sector separates in the α → 0 sub-accumulation. Also, note that H → 0
⇒ Σ → m, which can be used to derive the above (and shows this is a candidate for a gravitationally
mass-actionable pole expansion form factor)

66more precisely, the strictly KG auxillary/scalar-thermodynamically parameterized
67Indeed, noticing that the matrix row reduces to I⊕−I ∈ C2 (an element of the central compactification,

or minimal topological cover index, of SO(4) ∼ C2 ⋉ SO(3) × SU(2)), lends specific interest to finding
(Σ-scaled) field extension functors, (Σλφ)[∗̂; ∗] which pull back, under some canonically induced (and
reduced, by construction) sub-field measure to a splitting basis form for the LHS (composed of the {I, σz}-
orthogonal spin operators, roughly: ∼ f(r−1 tan θ, α−1)[σx ± iσy]). Instructively, (r−1 tan θ)−2 ∼ r2

αωϕ
(1−

r
(erg)
±
r0

) ≡(erg) −
1+ H

r20

+αω̂ϕ−α2

∆
r20

− H
r20

(1− r
(erg)
±
r0

) shows that the functoral part of the splitting field extension should

be considered a parabolic linearization over the interaction-mean displacement field between the ergo-
sphere and the outer-event horizon. Putting everything together (including the dimensional-descendant,
ergosphere emergent orbital coupling gauge mentioned above) leads to the deduction that an auxillary
field with (α-)differentially-exact coupling between the event-horizon and the ergosphere could possibly be
supported by d = 5 (monopole) transition forms along the in/out gluing domains of perturbatively split
ergosphere moments (between the ergosphere and the outer LS), thereby realizing the earlier deduction of
an ergosphere Lφ-closure gauge iff the inner modes can be conformally regulated. As will be shown in [46],
the monopole solution’s light-surface-to-φ-surface OPE directly matches the Kerr conformal temperature,
showing that it represents a strong candidate for hyperdimensional elongation representations of vector-
gauged scattering OPEs in strongly self interacting, spin-colinear gravity decay processes; further, the
off-shell decay pressure of the (point-shadowed-OPE) monopole form will nearly match the Wichmann-
Kroll potential (which, fittingly, represents the asymptotic form of the Uehling loop correction to the
Coloumb potential in QED [48] )
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Jumping to the final EM form factor, the symmetry arguments leading to the field con-
structions stay the same68, leading to field forms:

dF = 0 d ⋆ F = J := ⋆j F ∧ F = 0 (108)

F = dΨϕ ∧ (dϕ− ωϕdt) + dΨψ ∧ (dψ − ωψdt) + I[r, θ]

√
−gT
gP

dr ∧ dθ (109)

Still, before probing the full gravitational pole it is productive to explore a few toy models
built from asymptotic representations.

3.5 Asymptotically Flat Space

To illustrate the effect of the dimensional extension, it is convenient to first examine
Maxwell’s equations in the softest extension of local Minkowski representations: d = 4

asymptotically flat spacetime. These coordinates are adapted to (affinely) large spaced
measurements69 and given by (advanced coordinate u and retarded coordinate v70):

u = t− r
v = t+ r

x1 =
r(z+z̄)
1+zz̄

x2 = − ir(z−z̄)
1+zz̄ x3 =

r(1−zz̄)
1+zz̄

(110)

(111)

(112)

⇒ ds2adv/ret = −du2a/r ∓ 2dua/rdr + 2r2γzz̄dzdz̄ (113)

γzz̄ =
(1 + zz̄)2

2
(114)

68This is where the direct independence of the extended coordinate ψ̂ is fundamentally important (to
ensure there is almost always a n = 4 < d sub-domain directly dual to the emergent magnetic guide,
⋆ ∧µ̸=ψ dxµ ∼ dψ). Directly, the Levi-Cevita density separates into an (normal ordered) form over ψ:
ϵI ∼ ϵĪψgψ(ψ); once again, the force free condition FabJa = 0⇒ F[cdFab]J

b = 0, so if J is unsupported along
dψ (corresponding to a d = 2 extension of the lower dimensional sub-current orthognalization argument
[45], with extended corollary that the d = 1 → 2 surfaces be orthogonal to dψ, e.g. j ∼ A +

∑
i

bi ∧ dψ,

where A is hodge-closed outside of dψ ) then degeneracy, F ∧ F = 0, again implies the field is force free.
Finally, noting coordinate index ordering ambiguity gives the {ϕ, ψ}-index symmetric form of F.

69Compared to some local, ∆s2 = ηµν∆x
µ
0
xµ∆xν0

xν ) under the usual coordinate ring, ∆y0y = y − y0
70which can also be indexed by the orientation of the “∓" symbol
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Then71 Then, using coordinate-indexed δ notation Maxwell’s equations read:

Jµ = γzz̄

(
δµu
[
∂r
[
r2Fur

]
∓ [γzz̄] ∂zFrz̄

]
+ δµr

[
∓∂r

[
r2Fur

]
+ r2Fur,u ∓ [γzz̄ ]

2 ∂zFuz̄

]

∓ [γzz̄ ]
2r2

δµz
[
r2∂r [Fz̄u + Fz̄r] + r2Fz̄r,u ∓ ∂z [[γzz̄]Fz̄z]

]
)
(115)

where,
Jµ√
| − g|

= δµu [∓jr]− δµr [ju ± jr] +
(1 + zz̄)2

4r2
(δµz [jz̄] + δµz̄ [jz]) (116)

and ∇ ·A = 0 implies: r2Ar,u +
[
r2As

]
,r
= ∓γzz̄Az̄,z (117)

⇒
[
r2Fur

]
,s
=
[
r2Au,r +

[
r2As

]
,r

]
,s
± [γzz̄]Az̄,zs

± [[γzz̄]Fur],z = r2Ar,uz +
[
r2As,z

]
,r
± [γzz̄]Az,zz̄

(118)

Then,72 this can be used to quickly gauge the “covariant" current:

⇒ Jµ =

δµu
[
∂r

[
r2Au,r +

[
r2As

]
,r

]
∓ [γzz̄]Ar,zz̄

]

+δµr
[
∂s

[
r2Au,r +

[
r2As

]
,r

]
∓ [γzz̄] (Au,zz̄ ∓Az̄,zr)

]

± [γzz̄ ]
2r2

δµz
[
r2 (2Az,ur ∓Az,rr) + 2rAs,z ± [[γzz̄]Az,z̄],z

] (119)

Note “lowering" electromagnetic currents restores symmetry between the δµu and δµr sectors;
dually, “raising" the current induces a ∂r → ∂s with a uniform weight “displacement" current
Juγ = [γzz̄]Az̄,zr , or: T[Mu] → T[M∫ ] ⊕ ∂r

∮
dΓγ

A⃗γ . A quick way to resolve this current
is to use the r-tangent of the Lorenz gauge (on the [γ]-sector), yielding:

Jr =
[
r2Au,r +

[
r2As

]
,r

]
,s
∓
([
r2Ar,u

]
,r
+
[
r2As

]
,rr

+
[
γzz̄
]
Au,zz̄

)
(120)

At this point the selection of sources is simply analytic and closed; but, following the
first fundamental ethos of functional analysis: there always exists relative phase catego-
rizations based on spectral decompositions. In particular, the strongest (over topologi-
cally representable maps) universal (toplogical) algebra is almost always well defined along
some U(k)[∗; ·] × Gk[∗, ·] representation decomposition [49]); considering the advantages
of Feynman representation of time-like (a-priori time-like ordered) operators (namely the
completeness of in/out-convolution decompositions [50]), and the natural identification of
vacuum Maxwells’ equations with the geodesic waves 73. In particular, noticing that ob-

71note, in the previous footnote’s displacement notation: ua/r = ∆±r[t] and 1
r
(x1,−ix2, x3) =

1
∆−||z||[1]

(∆−z̄[z],∆z̄[z],∆||z||[1])
72Note, defining ζ = z − z̄ shows that ±

[[
γzz̄
]
Fur
]
,ζ

= r2Ar,uζ +
[
r2As,ζ

]
,r

73This can be clearly seen by analyzing the T 1
1 representation of Maxwell’s equations, namely defining

Fµβ := gαµFαβ ≡ ∇µAβ −∇βAµ:

Jµ = ∂ν
[√−ggβνFµβ

]
= ∂ν

[√−ggβν (∇µAβ −∇βAµ)
]

∂λ
[
ϵµνωkg

βνFµβ
]
= 0 (121)

OR: ∂ν
[√−ggβν∇βAµ

]
= −Jµ − ∂ν

[√−g∇µAν
]

∂λ [ϵµνωk∇µAν ] = 0 (122)

Notice this is just the typical free-space gauge decomposition: the LHS of Maxwell’s equation look like
a curved spacetime wave (indexed along each coordinate µ); then, in principle the gauge (bulk-bulk and
bulk-boundary) may be chosen so that the RHS resembles an empty current with a gauge residue source.
When forumulated in the integral expressions/algebraic generators, this won’t require a redefinition of
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servable space appears to be smoothly measurable across large and small scales, a natural

idea is to expand the gauge functions as functions of r: Aν =
∑
k

A
(k)
ν [u,r;z,z̄]

rk
.74 In this

case, the Lorenz gauge condition (and defining the shorthand A(k)
s := A

(k)
u ∓A(k)

r ) may be
rewritten as:

∇µAµ = 0 ⇒ r2Ar,u + ∂r
[
r2(Au ∓Ar)

]
= ∓γzz̄Az̄,z (124)

(125)

0 =
∑

k≥0

A
(k)
r,u ± γzz̄A(k−2)

z,z̄ − (k − 3)A
(k−1)
s +A

(k)
s,r

rk−2
(126)

In particular75, note that k ≤ 0 represents a convergent series in r → 0 compact measures,
while k ≥ 0 corresponds to large-r convergent gauge measures. In both cases, note that
this expansion represents a constraint tree branched from the k∓ ∈ {0,∓1,∓2} residues.
Because this index symmetry are simply connected under a Z2 gauge gluing for simplicity
consider the k ≥ 0 case corresponding far, locally large metric gaugings. Then, these

the local Green basis: instead, it can strictly be realized as a convolution/functional basis expansion [15].
Indeed, considering the force free condition, Maxwell’s equations become:

Fµλ
(
∂ν
[√−ggβν∇βAµ

]
+ Jµ

)
= −Fµλ∂ν

[√
| − g|∇µAν

]
(123)

Then, if the RHS is 0 then the free wave analogy is precise; this holds for every leg on the global symmetry
sector, for example µ ∈ {t, ϕ, φ} in single spinning Myers Perry backgrounds. In particular, remember-
ing that F is anti-symmetric, this is the condition that the (differentiation) gauge field is transverse or
spacetime symmetric. When the creation/annihilation spectrum is weighted by the transverse (closed flow-
normal, bulk) normal, it may be computationally useful to include non-globalized symmetries. The classical
example of local broken symmetries is time delay responses, whereby local symmetry breaks (heuristics)
serve as integration constants for some (chaotic, quasi-open) sub-network (described classically above, and
experimentally first realized in studies of ferromagnetism [51]); perhaps the quintessential application is
the saddle point derivation of the Second Law of Thermodynamics/(Free-Energy/second quantization),
whereby (differential-flow) entropy is established as a universal identification of stability/instability as the
canonical involution parameter of the Free Energy (a.k.a., the Legendre fixed point representation of the
actionable shells.).

74Note that this representation may be considered a dressing, not simply an expansion, of the gauge
field because we parameterize each series term by a u, r functional. This is exactly a hyperfine convergent
sequence, in the parabolic sense.

75note that ∂rA(k)
µ = 0 represents a polynomial class gauge and produces the usual d = 4 AFS Lorenz

condition
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constraints can be superficially ordered76 as:

0⃗
(−2,4)

r−k =




r2

r

1

r−1

r−2

r−3

r−4







A
(0)
r,u +A

(0)
s,r

A
(1)
r,u + 2A

(0)
s +A

(1)
s,r

A
(2)
r,u ± γzz̄A(0)

z,z̄ +A
(1)
s +A

(2)
s,r

A
(3)
r,u ± γzz̄A(1)

z,z̄ +A
(3)
s,r

A
(4)
r,u ± γzz̄A(2)

z,z̄ −A(3)
s +A

(4)
s,r

A
(5)
r,u ± γzz̄A(3)

z,z̄ − 2A
(4)
s +A

(5)
s,r

A
(6)
r,u ± γzz̄A(4)

z,z̄ − 3A
(5)
s +A

(6)
s,r




(127)

Immediately, it can be seen that the lowest order r-partial derivative amounts to a correc-
tion on the u-integration bounds. Appropriately, A(0) may be considered as a “background"
gauge; stronger yet, this gives the functionally level gauge contact-term in each r-spline a
strictly Lie-dense representation. Then, considering the coefficients as derivative weights,
it is natural to consider the 0⃗−2,3

r−k sub-unit (because it is weight symmetric); in particular,
notice the terms that drop out at (−2) and (1) order, showing how A(0), A(3) naturally act
as partial wave anchors.

The critical, through “trivial", feature resides in the “squeezed" expansion about small
powers of r, which is represented by the symmetry of the constraint vector. This can
be immediately traced to the everywhere local77 r-polynomial class representation; indeed,
assuming that the “middle" z-gauges are (finite dimensional) polynomials in r, ∂rA

(1,2,4,5)
z,z̄ =

0, the Lorenz constraint can be reduced to two differential equations:

A(k)
r,u − (k − 3)A(k−1)

s ± γzz̄A(k−2)
z,z̄ = − ∂rG

(k+1)

(k − 1)(k − 2)
(128)

G(k) = ∂2rA
(k+1)
s + ∂u

[
(k − 2)A(k)

r +A(k+1)
r,r

]
(129)

Notice that the linearity of the LHS occurs exactly when G(k+1) is r-independent, and that
the (0), (3)-gauge levels may be linearized if:

0 =
∂r
2

(
∂2rA

(2)
s − ∂u

[
A(1)
r −A(2)

r,r

])
(130)

0 =
∂r
2

(
∂2rA

(5)
s + ∂u

[
A(4)
r +A(5)

r,r

])
(131)

In particular, the non-polynomial(/rightmost) terms in these equations can be solved equal
76Note, the “emergent matter" coupling under (k)→ (−k) would couple(/match) at, in the above vector

space projection, ±
[
A

(−2)
z,z̄ + 3γz,z̄A

(−1)
s A

(−1)
z,z̄ 0⃗5

]T

77Uniform tangent embedded, T
[
M[C[A(k); ∗]]

]
∼ Rk[A][∗]; this is another way to understand how the

fully functionalized generalization of the Cauchy formula reduces to it’s OPE version.

91



to zero with:

A(1)
r −A(2)

r,r = ef
(2)[u,z,z̄]+g(2)[r,z,z̄]−

∫ ∫
dud3k⃗[u]k2[u]Ã

(2)
s (132)

A(4)
r +A(5)

r,r = ef
(5)[u,z,z̄]+g(5)[r,z,z̄]+

∫ ∫
dud3k⃗[u]k2[u]Ã

(5)
s (133)

In the above, {f (j), g(i)} can be understood to formally include the lower bounded Fourier
moments of the second order differential connection. In particular, this formally induces:

1

2
e
− 1

2

(
f (5)+f (2)+g(5)+g(2)+

∫ ∫
dud3k⃗[u]k2[u](Ã

(5)
s −Ã(2)

s )
)
· (134)

·
((
A(4)
r +A(5)

r,r

)
e−

1
2
(f (5)−f (2)+g(5)−g(2)) ∓

(
A(1)
r −A(2)

r,r

)
e

1
2
(f (5)−f (2)+g(5)−g(2))

)
(135)

=

{
sinh

cosh

[
1

2

∫ ∫
dud3k⃗[u]k2[u](Ã(5)

s + Ã(2)
s )

]
(136)

Notably, the above equation represents a hidden(/emergent) twist symmetry in the non-
linear f (5) − f (2) + g(5) − g(2) → f (5) − f (2) + g(5) − g(2) + iπ

2 while keeping f (5) + f (2) +

g(5) + g(2) +
∫ ∫

dud3k⃗[u]k2[u](Ã
(5)
u − Ã(2)

u ) fixed.78

Note that this simply represents a full utilization of the residual trivial gauge symmetry,
here used to balance the < r >-ideal poles; further note that the hidden Z2 fixed point was
was found by imposing polynomial class restrictions on the A(1),(2);(4),(5)

{z,z̄} functionals while

keeping the other gauge-functionals (A(0);(3)
{z,z̄} and all A{u,r}) classes not-necessarily polyno-

mial in < r >. This can be considered a form of topological smearing (of divergence free
vector-functionals in this spacetime, generally) or as a non-linear functional class extension.
Indeed, looking back to the original metric −du2−2dudr+2r2γzz̄dzdz̄, parameterizing the

78Which, in turn, can be represented as a single twist in the order-(2) involution
(Fourier) boundary conditions, f (2) + g(2) → iπ

4
− 1

2

∫ ∫
dud3k⃗[u]k2[u](Ã

(5)
u − Ã

(2)
u ) ≡

1
8

(∞∫
0

∞∫
0

d∆dωω−i∆−1 − 4
∫ ∫

dud3k⃗[u]k2[u](Ã
(5)
u − Ã(2)

u )

)
. In particular, f (2) + g(2) →Z∓

2
0 may be

represented as a conformally twisted matching constraint:

∫ ∫
dud3k⃗[u]k2[u](Ã(5)

u − Ã(2)
u ) =

1

4

∞∫

0

∞∫

0

d∆dωω−i∆−1 (137)

which preserves a functional basis {S,C} constrained such that S2 + C2 = −1 (i.e., constrained on the
unit thermal circle). In this case, the LHS may be understood as an in/out decomposition of the notion
of a point particle (density-)functional into an in/out Brillouin moment (time-density-)functional between
the non-linear components of the electromagnetic field’s (2) and (5) order gauge-moments. In this sense
spacetime, as opposed to a measurement of spacetime, may be understood as an r(3)-order functional
constraint (which by construction matches the (1, 3) Minkowski constraint).
Critically, here the only difference between large and small gauges is the lexiographic ordering of the ± sign
switch of the constraint vector in 127, which can be understood as a conformally fixed (in/out) switching
between (Ã(5), Ã(2))⇔ (Ã(−2), Ã(−5)). Dually, systems which “appear" both big and small (or, have quasi-
stable modes in both regimes) must have components which appear very small to very small observers as
well as components which appear very large to very large observers; in fact, this makes heuristic sense, as
quasi-normal modes are O(1) dynamical features. Finally, this explains the role of thermodynamics in the
arrow of (cosmological) time as a consistency condition between isomorphic conformal decompositions of
vacuum unit-time under r(3)-order measurements.
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advanced/retarded sign switch as −2dudr → 2(−1)cdudr, the Lorenz condition can be
rewritten:

0 = γzz̄Az,z̄ + 2r2e−2icπ

(
1

r

[
1 +

r∂r
2

]
Ar + eicπ

(
Ar,u
2

+
1

r

[
1 +

r∂r
2

]
Au

))
(138)

An easy, heuristic way to understand the above is by strongly closing the non-linear dimen-
sions around small gauge functionals, or: Ã(5)

s ∼ Ã(2)
s . Then, the above formal constraint is

that Ã(2)
s is everywhere analytic (in u) over the non-analytic basis A(i)

r +∂rA
(i+1)
r ; when the

matching is stationary in r then this represents a direct decomposition of A(4)
r ∓A(1)

r into
A(2)-moments. It’s important to remember that this ran simply from the Lorenz gauge,
∇µAµ = 0, in asymptotically flat, d = 5 spacetime, and from excluding divergent field
contibutions; then, the small system bound naturally isolated points of < r >-linearity
from the non-< r >-linear expansions.
Remembering this lesson from the non-linear expansions, it is quick to return to the fully
linear case by setting G = f [u, z, z̄]; then, considering (k) < (2) to be spectral noise, the
Lorenz condition reduces to:

A
(k+2)
r,u − (k − 1)A

(k+1)
s ± γzz̄A(k)

z,z̄ = 0 k > 0 (139)

By assuming A
(1)
s = ∓A(1)

r = 0 the algebraic singularity (resulting from k ∼ 1) can be
isolated as u-like boundary conditions of the first two (z, z̄)-gauge fields.79

In fact, returning to Maxwell’s equations with the same generalization on the gauge ex-
pansion gives:

Jµ ±
[
γzz̄
]
δµ(a)∂

2
zz̄




Ar
Au

±1
2r2

∮
z∼za [γ

zz̄]Az,z̄




(a)

(140)

=

δµu

[
∑ A

(k)
s,rr+A

(k)
u,rr−(k−3)

(
2A

(k−1)
s,r −(k−4)A

(k−2)
s −(k−2)A

(k−2)
u

)
−2(k−2)A

(k−1)
u,r

rk−2

]

δµr

[
∑ A

(k)
u,rs+A

(k)
s,rs∓

(
A

(k)
s,rr+A

(k)
r,ur

)
+(k−3)

(
(k−2)A

(k−2)
u −(1∓1)(2A

(k−1)
s,r +A

(k−1)
r,u −(k−4)A

(k−2)
s )

)
−2(k−2)A

(k−1)
u,s

rk−2

]

± [γzz̄ ]
2r2

δµz

[
∑ A

(k)
z,sr+A

(k−1)
(s,z)

∓
(
(k−2)A

(k−2)
z −A(k−1)

z,r ±A(k−1)
z,s

)

rk−2

]
(141)

Or, isolating the non-linear contributions:

79A
(i)
r,u = γzz̄Az,z̄ s.t. i ∈ {2, 3}
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Jµ ±
[
γzz̄
]
δµa∂

2
zz̄




Ar
Au

±1
2r2

∮
z∼za [γ

zz̄]Az,z̄




(a)

− (142)




δµu

[
∑ (k−3)

(
(k−4)A

(k−2)
s +(k−2)A

(k−2)
u

)

rk−2

]

δµr

[
∑ (k−3)

(
(k−2)A

(k−2)
u +A

(k−1)
r,u −(k−4)A

(k−2)
s )

)
−2(k−2)A

(k−1)
u,u

rk−2

]

± [γzz̄ ]
2r2

δµz

[∑ A
(k−1)
s,z ∓(k−2)A

(k−2)
z

rk−2

]




(143)

=

δµu

[
∑ ∂r

(
A

(k)
s,r+A

(k)
u,r−2(k−3)A

(k−1)
s −2(k−2)A

(k−1)
u

)

rk−2

]

+δµr

[
∑ ∂r

(
2A

(k)
s,s+A

(k)
[u,s]

−2(k−3)(1∓1)A
(k−1)
s ±2(k−2)

(
A

(k−1)
u −A(k)

r,u

))

rk−2

] ± [γzz̄]

2r2
δµz


∑

∂r

(
A

(k)
z,s ±A(k−1)

z

)

rk−2


 (144)

For clarity, the linear contributions are in the top line, while the sub-linear contributions are
in the second equation. Note that the (k) functional cutoffs(/dimensional sourcing) at (2)

and (3), meaning that the series have natural dimensional regularizers (at sub-dimensions 2
and 3); also, note the final two terms in the sub-linear Jr current can be inductively closed
as a connection between the time integration bounds (of the unit-sublinear u-gauge field)
and the (scale) r-gauge field. In fact, this relation can be substituted into the linearized
gauge equations (δµr [] terms) to eliminate the Ar gauge field from the second line, leaving
a series in only the u and s gauge fields; critically, the s-contribution to the bulk current
is algebraically fixed to the kernel at k = 4, 3, while the (non-linear fixing) produces an
exactly algebraic relation at order k = 2.80

A similar analysis could be done for the u sector (to make direct contact with the divergence
winding explored above) but for brevity this section will conclude by analyzing the non-
linear constraints on the z, z̄ sector. Setting each order of the radial spline to zero amounts
to solving the following tower of differential equations:

A(k)
z,s ±A(k−1)

z = g(k)z [u, z, z̄] (145)

Here, gz amounts to an effectively projected kernel81. Then, differentially pushing each
80Note that the linear, covariant time current is always algebraically weighed (in the u, r sector), and

that it reduces exactly to A0
s, 0 and A2

r at the (k)-levels (2), (3), (4) respectfully; there is a clear similar
reduction in the z-equations at k = 2 Similarly, the r-equivalent linear equation reduces to A(1)

r,u + 2A
(0)
s

2A
(2)
u,u and 2A

(2)
u + ∂u

(
A

(3)
r − 4A

(3)
u

)
at (2), (3), (4).

81Seen by noting ∂sg(k)z = ∂ug
(k)
z , or ∂sg

(k)
z

∂ug
(k)
z

∼ 1
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splined closure relation independently and inducting produces the following identities:

g(k)z,uu − g(k−2)
z = ∂s

(
A(k)
z,ss −A(k−2)

z

)
±
(
A(k−1)
z,ss −A(k−3)

z

)
(146)

A(k+2)
z,ssss +A(k−2)

z = ∂u

[
g(k+2)
z,uu − g(k)z

]
±
(
g(k+1)
z,uu + g(k−1)

z

)
(147)

Then remembering that the giz operators always pull back against s to projection involu-
tions out of ∓r, and that the induction relation is second order, immediately leads to the
treatment of the (k)→ (k + 1) induction step as s-sublinear (on Az), or:

(∂s ± 1)
[
A(k)
z,ss −A(k−2)

z

]
= 0 ⇒ g(k)z,uu − g(k−2)

z = 0 (148)

Looking back to 147 and noticing the primary difference is between the signs within each
(sub-)ordering lends to the inference of the existence of an su2 closed tower operator on
the g−tower (operationalized over u), here denoted (and implying):

(∂u ±γ 1)
[
g(k+2)
z,uu − g(k)z

]
= 0 ⇒ A(k+2)

z,ssss +A(k−2)
z = 0 (149)

Looking back, indeed, the linear portion of the covariant current is symmetrically weighted
between (k) ∈ ([0, 4]) (here operationalized over z). Note +that the critical linear (z-gauge)
dimension is k = 2, which is also the lowest well defined (k ≤ 0) value of 149. One way to
interpret this is to say that non-linear, two point contacts may be used to close (in spin)
the electromagnetic four-point (on-(k)-shell) up to an order (−4) OPE, A(k)

z −A(k+4)
z . Note

that, for any finite k ≥ ktop cutoff this could be, optimistically, interpreted as the resonance
of a (spacetime emergent) Wilson-type operator.

3.6 Finite Symbolic Corrections

This can be shown by explicitly expanding the equations of motion into the functional
envelope of the independent degree of freedom, done here. Let some general metric be
decomposed as g = Â⊕ ĉ⊕ B̂:
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[g−1] =




[A−1]

c−1

[B−1]




√
|g| = √c

√
|A⊕B|

Then, defining:

[g4] := [A⊕B] ≡
[

[A]

[B]

](150)

⇒ Jµ = ∂ν

[√
| − g|gαµgαµFαβ

]
=
√
c




[
1 c−1 c−2

]
· ∂ν







R(0)

R(1)

R(2)




αµβν

Fαβ




+∂ν ln c
[
R0 −R(2)

]αµβν
Fαβ



(151)

(152)

where




R(0)

R(1)

R(2)




αµβν

:=
√
|g4|




[g4]⊗ [g4]

[g4]⊗ [δφφ] + [δφφ]⊗ [g4]

[δφφ]⊗ [δφφ]




αµβν

(153)

are defined as ratios of the c-functional 82. Then, the force free condition becomes:

0 = FµλJ
µ =
√
c


 Fµλ∂nu

[√
|g4|gαµ4 gβν4 Fαβ

]
+ Fµλ∂ν

[
R(1)αµβνFαβ +R(2)αµβνFαβ

]

+∂ν ln c
[
R0 −R(2)

]αµβν
FαβFµλ


(154)

OR, stripping out the c-dimensional (trace exact) contact: (155)
Fµλ√
|g4|

(
∂ν

[√
|g4|gαµ4 gβν4 Fαβ

]
+ ∂ν

[
R(1)αµβνFαβ

])
(156)

= (∂ν ln c)
[
gαµ4 gβν4 FαβFµλ

]
+ [δφφφφ]

αµβνFµλ

(
1√
|g4|

∂ν

[√
|g4|Fαβ

]
− (∂ν ln c)Fαβ

)
(157)

The rightmost term is uniformly zero by the anti-symmetry of F,83, giving finally:

Fµλ∂ν

[√
|g4|gαµ4 gβν4 Fαβ

]
+

√
|g4|
c

Fµλ

(
1√
|g4|

∂ν

[√
|g4|δ(αµφφ g

βν)Fαβ

]
− (∂νc)g

αµ
4 gβν4 Fαβ

)
= 0 (158)

This equation has a few interesting properties surrounding how it collapses to the g4 stream
equation (the leftmost term). First, note that the final term drops out when c is con-
stant (xν-independent) and that the second term drops when gβνFφβ is constant (0 or
xν-independent). Also, note only the first term remains when c → ∞.84. Note that the
first two terms dominate (on the constraint integral shells) where g4 is degenerate, while
the final term dominates when c is small and extremely non-stationary(/oscillatory). This

82Here, c was considered effectively constant at the level of Maxwell’s equations, but possibly non-
stationary at the force free conditional; this can be strongly interpreted as an asymptotic stability, as
opposed to invertibility, boundary condition. Note the symmetrization GL operation is between the T 1

1

operational pairs of indicies, R(1) ≡ [δφφ]
((αµ)g(βν)) := [δφφ]

αµgβν + [δφφ]
βνgαµ

83This term is kept here as a comparison point to higher trace-class gauge comparison
84While, conversely, as c→ 0,

Fµλ
(
∂ν
[
δ(αµφφ g

βν)Fαβ
]
− (∂νc)

√
|g4|gαµ4 gβν4 Fαβ

)
→ 0 (159)
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may also be applied to whatever gauge-constraint choice is made,
∮
ϵµνA

µ =
∮
ϵλν∇λAµ;

considering the Lorenz gauge85 and introducing a dot index to denote the canonical d = 4

subspace,

0 = ∇µAµ ⇒ ∂φ

[√
|g4|δλφAλ

]
= −∂µ̇

[√
c
√
|g4|gα̇µ̇Aα̇

]
(160)

and taking a naive (g4 functionally fixed) limit on c (161)

∂φ

[√
|g4|δλφAλ

]
=

{
−
√

|g4|
2 gµ̇α̇4 Aα̇∂µ̇ [ln c] c→ 0

√
c∂µ̇

[√
|g4|gµ̇α̇4 Aα̇

]
c→∞

(162)

In particular, notice that this (functionally fixed) gauge point, in both cases, presents as
a relative divergence in the φ- Lorenz gauge normalization (unless c is essentially patched
almost everywhere near → 0, in which case the RHS of the top line is uniformly zero).
Assuming that the spacetime is independent of the extended coordinate results in:

0 =

{
1
c

(
∂φ
[
δλφAλ

]
− 1

2g
µ̇α̇
4 Aα̇∂µ̇c

)
c→ 0

√
c
(

1√
c
∂φ
[
δλφAλ

]
+
√

1
|g4|∂µ̇

[√
|g4|gµ̇α̇4 Aα̇

])
c→∞

(163)

Implicitly, when c represents a very large point-rescaling over a hidden dimension with unit
sized gauge parameters the left term of the bottom limit drops out and gauge constraint
reduces to the projected d = 4 < 5 constraint form. Conversly, when c represents a very
small point-rescaling the gauge field over the represented hidden dimension is affixed to
the rate of descent of the accumulation 86. Note that if c rapidly oscillates as it decays this
can be considered a φ-pole momentum pole.
Comparing with the force free condition:

0 =

{
Fµλ

(
1√
|g4|
∂ν

[√
|g4|δ(αµφφ gβν)Fαβ

]
− (∂νc)g

αµ
4 gβν4 Fαβ

)
c→ 0

Fµλ

(
1√
|g4|
∂ν

[√
|g4|gαµ4 gβν4 Fαβ

]
− (∂ν ln c)g

αµ
4 gβν4 Fαβ

)
c→∞

(164)

Note that the effective source functional in the c→∞ case is exactly the same functional
effectively sourcing the Aλ Lorenz string in the c→ 0 limit. In the c→ 0 case the wave-like
part is entirely effervescent (has a φ index Fφα), and is weighed by the d = 4 projected
density against the c-velocity and the (4−)electromagentic (4-)density. In the c→∞ case
the system is, instead, represented by a massive mediation over the 4-interaction. Unifying

In the Myers-Perry metric, c = r2 cos2 θ, so these c-limits represent {c} → {∞, 0} ∼ {{r → ∞, θ/
→π

2
}, {{θ → π

2
}, {}}}. Note that, in the large r-limit:

∫
∂νγ

lim
r→∞

∂ν ln c→ 2
∫
γ

[dxν ] (ln cos θ)

85Noting ∇µAµ = 1√
|g|
∂µ
[√
|g|gµβAβ

]

86Meaning δλφAλ,φ = 1
2
A ·∇4c; in the above analysis, c was assumed locally flat, meaning this represents

a gradient of locally propogating Heaviside measure functionals. By the fundamental theorem of analysis,
this in-accumulation weight is always constructable for smooth functionals (over some arbitrarily large
cut-space embedding). Only in the entire embedding, or the everywhere uniform limit c → 0, does the
Gauss condition on small c directly imply Aφ,φ = 0
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the notation with the index lim
c→∞

c̃→ ln c and lim
c→0

c̃→ c(, including units) and adding dots

everywhere to denote the d = 4 projection indices in the definition of the stress tensor (in
a strictly d = 4 embedding):

F α̇µ̇Fα̇ν̇ =
gµ̇ν̇F

2

5
− µ0T emµ̇ν̇ − δλσφφ [gφφFσµ̇Fλν̇ ] (165)

Defining the lower dimensional stress tensors with dots as ḞαµḞαν :=
ġµν Ḟ 2

4 − µ̇0Ṫ emµν finds:

⇒ F α̇µ̇Fα̇ν̇ − ḞαµḞαν + δλσφφ [g
φφFσµ̇Fλν̇ ] +

gµ̇ν̇F
2

20
= (166)

gµ̇ν̇F
2 − ġµνḞ 2

4
−
(
µ0T

em
µ̇ν̇ − µ̇0Ṫ emµν

)
(167)

Note that Wick rotating φ produces a relatively electric index. Instead demanding that
the dot index operation and the dot functional operation match linearly on the level of the
stress tensor produces the matching constriant

δλσφφ [g
φφFσµ̇Fλν̇ ] = −

gµ̇ν̇F
2

20
(168)

which in turn implies: ⇒ 5

6
F α̇µ̇Fα̇ν̇=̇

gµ̇ν̇F
2

4
− µ̃0T emµ̇ν̇ (169)

where µ̃ := 5
6µ. Remember that this term is carried on the regulatory flow, ∂ν c̃, in the

equations of motion.
Then, this model predicts that d = 4 functionally sub-shelled (“dimensionally waveguided")
OPEs over d = 5 dimensions are characterized by a 5

6 reduction in the kinetic junction
(relative to the bulk conformal stress tensor). Or, supposing F 2 = 2

3µ0I
2:

F α̇µ̇Fα̇ν̇=̇µ0
(
gµ̇ν̇I2 − TEMµ̇ν̇

)
(170)

Then, this is the gradient tensor (contraction) on c̃; in either limit case, I can be considered
the bare kinetic regulator of the dimensional embedding, which can be understood in two
ways.
Looking at [46], it was noted that the power extracted from the vertical type solutions
was approximately δp ∼ .3 efficient, which can be compared to the δK ∼ .36 numerical
efficiency found for typical black hole jets; accordingly, the generalized process found in
[46] is strongly reflective of a kinetic embedding. Further, note that both F 2− µ̃I2 = − µ̃0

5 I2

and F 2−µ0I2 = −µ0
5 I2; further, ¯[15 , pK ] ∼ .28 can be directly compared to the critical phase

point identified in [52],
(
J
M

)
crit
∼ .286. Note that the final digit is exactly a unit scale shift

of the power-efficiency difference between Blankford-Znajek [37] jets and those discussed
in [46] δp−δk10 can be explained by a thermal current (log-type field) embedding form factor.
Intuitively, the full gravitational stabilizer “Love-locks" (on the kinetic electromagnetic
decay branch at this thermal cross section). 87

87Consider naively adding MP analogous properties to c̃. Such as, consider |g4| to be an analytically
measurable function of c, as well as some lapse(s) of c: |g4| ≡ g4[(c[xα − λIα ])I ]. For example, if g4 ≡
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Stronger yet, comparing the Kerr and Myers-Perry metrics in unitless coordinates (and
omitting the bars over the operators88 as a simple character redefinition):

ds2MP = −dt2 +Σ
(
dr2

∆ + (r0dθ)
2
)
+ (r2 + α2) sin2 θ(r0dϕ)

2 + r2 cos2 θdφ2 + 1
Σ (dt− αr0 sin θdθ)2

ds2Kerr = −dt2 +Σ
(
dr2

∆K
+ (rsdθ)

2
)
+ (r2 + α2) sin2 θ(rsdϕ)

2 + r
Σ (dt− αrs sin θdθ)2

(171)

Or, that, noting that ∆K [rs, α; r̄] = ∆[
√
2rsr̄, α; r̄]

89:

dδ2K := lim
rs→r0

[
ds2MP − ds2Kerr

]
= r̄2 cos2 θdφ2 +

1− r̄
Σ

(dt− αr0 sin θdθ)2 +Σdr̄2
(

1

∆
− 1

∆K

)
(172)

Then, the embedding/gluing topology can be understood from a number of different accu-
mulation regimes. Quickest, the differential measure is an exact functional in (two orthog-
onal coordinates) when r →∞, or lim

r̄→∞
dδ2K = lim

r̄→∞
r̄2 cos2 θdφ2; then:

lim
r→∞

r2d2δ2K = 2 lim
r→∞

(
d
[
r2
]

2
+ r2d ln[cos θ]

)
∧ dδ2K (173)

So, then

d2δ∞K := lim
r→∞

d2δ2K

∣∣∣∣∣
d ln[r2]∼−r2d ln[cos θ]

= lim
r→∞

r2d ln[cos θ] ∧ dδ2K (174)

And, moving a slash dual operation out from the inner product to remember that this is
an outer cohomology,

⟨/d2δ∞K , d2δ∞K ⟩ = lim
r→∞

r4 (d ln[cos θ])2 ⟨/dδ2K , dδ2K⟩ (175)

Then, the algebraic topology can be considered (point) closed at second order whenever
the RHS is 0.
Next, considering ∆K [rs, α; ∗]−∆[r0, α; ∗] = 2rs

(
r20
2rs
− r
)
, in limit90 this defines a unique

g4[r, cos θ] and [I]α = δθα
[
0 π

2

]
then g4[r, cos θ] + g4[r, sin θ] = g

(α)

4 (α) = r2 and c

g
(α)
4 (α)

= cos2 θ, or g4 ≡

f4

[
√
cI0 + cI1 ],

√
cI0

g
(α)
4 (α)

]
. For context, in single spinning MP, c = r2 cos2 θ, so lim

r→∞
lim
θ→π

2

cr;[θ θ−π
2
] =

[
0 lim

r→∞
r2
]
; in this case, this rigid shift indexing can exactly represent a delta function-like divergence

By adding a subindex of sub-rigid translations, [θ0, θ∞] = [0, π
2
] lim
θ→π

2

c[r, θ] = lim
i→∞

lim
j→i+1

lim
θi→θj

c[r; θi].

Indeed, in this system
√
|g4| = Σsin θ ≡ (r2 + a2c2

r2
) sin θ)→θ→π

2
r2 ≡ lim

θ→nπ
c2

88∆[1, α; r] = r2 + α2 − 1 and ∆K [1, α; r] = r2 + α2 − 2r
89or: lim

r0→rs
[∆[r0, a; r]−∆K [rs, a; r]] = 2rs

(
r − rs

2

)
.

90meaning ignoring stabilizer stability measures, formally excluded by ignoring limit-sequence contri-
butions of order < dr̄K ± dr̄0, dr̄K ∓ dr̄0 >. Notice that ∆[r0, α; r] − ∆K [r30, α; r] = −2r20

(
r − 1

2r0

)
=

(2r0)
3
2 sinh ln

√
2r0r shows that the continuous embedding limit can be understood as a volume-extrinsic

free-energy (out) constraint under a strongly-inverse net (in) scattering. Notably, the kernel constraint of
this difference is free when r0 →∞ and as well as when r0 → 0 converges faster than the absolute measura-
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limit coordinate r∗ =
r20
2rs
→ rs

2 ≡
r+α→0
4 at a quarter of the outer Schwarzschild radius of

a Kerr black hole of equivariant mass unit [53]. Note that at the distance r = r∗ the dr̄2

radial index is not included in the inexact differential dδ2K (the inverse of the embedding
metric is singular grrδ [r ∼ r∗] ∼ O((r−r∗)−1)). In fact, using the canonical natural number
indexing uniformity r̃ = r + 1 it can be shown that:

[
∆[1, α; r]∆K [1, α; r]

(r − 1)2 − (1− α2)

∣∣∣∣∣
r→r̃

− ∆[1, α; r̃]∆K [1, α; r̃]

(r̃ − 1)2 − (1− α2)

] ∣∣∣∣∣

r̃→r

= 0 (176)

Remembering that r = 1 presents as the mean distance between the outer horizon and
the first Cauchy surfaces, r̃ = 1 represents the mean curvature singularity, ˜̃r = 1 can
be considered an O(1) (orbitally-index field extension) deep bulk measure. Accordingly,
this relationship can be immediately recognized as an exactly constrained near-singularity
scattering mechanism under the continuous (topological) index contraction r → r.
Doing some numerology, notice that

1

6(22 + 1)− 1
=

1

137
=

1

6(22 + 2
3) + 1

(177)

“shows" the fine structure constant should be expected to emerge from a 6-charge, symmet-
ric embedding interloper between a volume-to-area measurement (considered from d = 4

spacetime) over 21+1 internally thermalized degrees of freedom. In fact, with α the fine
structure constant,

α−1 − 137 ∼ .035999084(21) ∼
(
1− 2.5443861(11)× 10−5

) pk
10

(178)

where pK is the energy extraction efficiency of a Kerr black hole under the collimated
Blandford-Znajek process. Intuitively, then, it may be hypothesized that the electromag-
netic field is dual to some (21pt) complex monodromy form (log-)regulated by an effective
Blandford-Znajek mechanism mediated by a black hole embedded interaction.

3.7 "Twisted Radar"

Still, the above limit ordering was mostly helpful in resolving the strongly in-gauged lim-
its of c (because c was taken to commute with the equations of motion). A less naive
limit would expect to preserve the group algebra across all sub-sequenced accumulation
points; typically, this effect is gauged in the adjoint algebra as a polarization decomposi-
tion. Typically of interest is the affinely parameterized geodesic paths, which in d = 4 AFS
coordinates are locally oriented as:

qµ4 = (1 + zz̄)

(
1,

z + z̄

1 + zz̄
, i
z − z̄
1 + zz̄

,
1− zz̄
1 + zz̄

)
(179)

bilty of the coordinate r; otherwise this difference kernel is a single valued field,
{
(r−x)−1 7→

(
1

2r0
− r
)−1 }
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An immediate higher dimensional extension of the is simply to add a 4-orthogonal direction,
x5; there is some ambiguity how the additional dimension is embedded. The most natural
extension is to simply include x5 into the Poincare charges, which amount to choosing
spherical coordinates over the space-like 4-volume. Such representations grant lightning
access to deep and beautiful physics [54]. This section will make a different selection, namely
a cylindrical construction (visualized as the product of a 3-sphere and an orthogonal line
element). Then, making the same definitions as above (so, leaving r continue representing
the 3-volume radius) gives

ds25 = dx25 − du2a/r ∓ 2dua/rdr + 2r2γzz̄dzdz̄ (180)

In particular, the flat R1,4 lightcone may be represented as:

qµ5 = (1 + zz̄)

(
cosβ[r, z, z̄],

z + z̄

1 + zz̄
, i
z − z̄
1 + zz̄

,
1− zz̄
1 + zz̄

cosβ[r, z, z̄], 0

)
+ 2
√
zz̄(0, 0, 0, 0, i sinβ[r, z, z̄]) (181)

In this context, the (cylindrical) extra dimension can be considered a (uniformly rigid) pro-
jection of an affine spin measurement that depends on the spin radius (as opposed to the
3-radius)91. Note that β[r, z, z̄] only need to respect antipodal conditions up to 2π(m− n)
modular relative sectors; accordingly, this shows a simple extension of lower dimensional
unitarity that is covered by a disconnected thermal patch topology.92

Considering the structure of ds25, note that the independent dimension is free and, is ex-
actly “square structured" like d = 2 Minkowski rectilinear coordinates, −dt2 + dz2; then,
it is immediate to wonder if the simply extended system, ds25, may represent a free, or
unconstrained, embedding of some R-process. In fact, starting with the typical asymptotic
coordinates of d = 4 spacetime ds2adv/ret, there is a natural pull-measure into a d = 4-closed,
analogous metric:

ds22 = ||ds+ idr||2C = dr2 − du2 ± 2dudr + r2γzz̄dzdz̄ (182)

In fact, starting from asymptotic coordinates in d = 4, consider two orthogonal vector
space expansions, x1, x2, such that one of them is guaranteed to complex x1 ∈ C; while

91Notice, zz̄ = x21+x
2
2; then, the d = 5 projection represents a conjunction between an affine spin rotation

(q0+q3) cosβ and a residual subdimensional area-weighed “conjunction parameter" iq5 = −(⃗04,
√
ζζ̄), where

ζ[z, β[r, z, z̄]] = z sinβ[r, z, z̄]. This representation is not typical, as it is seemingly more sensible to close
the group algebra exactly over the minimal charge representation functors (amounting to embedding the
extended spatial dimension in global spherical coordinates so the angular momentum charges form a simple
complex of the Poincare-algebra); still, it is chosen here to anticipate the target study: electromagnetism
near a single spinning Myers Perry black hole.

92In that respect, this can be seen as synonymous with F- and G-series compactifications in solid-state
mechanics [55] whereby stabilization (phase topologies/)points are locally supported by compact generating
functionals which guide the relative residue-weights of the modeled phase transition (say, the enhanced
resonance at ∆[x] ∼ 1 of the momentum eigenstates in a thermally locked bosonic condensate which can
be shown to loop-perturbatively close into the thermal contour under multi-phase locking throughout the
G-/F-series).
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the other is guaranteed to be integrable93, ⟨dx2|dx2⟩ = c[∗]2 ⟨dφ|dφ⟩ then, let x1 = iz1 this
embedding metric is:

ds26 = ds24 − dz21 + dx22 ⇒ ||ds6 + i
√
ddz1||2C = ds24 + (d− 1)dz21 + dx22 (183)

OR: ds̃26 = ||ds6 −
√
d+ 1dx1||2C = (d)dz21 + c2dφ2 + ds24 (184)

Then, suppose ddz21 → (d− 1)2dr2; then, the resultant is formally defined as:

ds̃25 → ||ds6 −
√
d+ 1dx1||2C = (d− 1)2dr2 + ds24 + c2dφ2 (185)

= ((d− 1)2 − 1)dr2 + ds22 + c2dφ2 (186)

Then, d = 1, c = 1 corresponds to a single, orthogonal (geometric) field expansion over flat
spacetime; d = 0 c = 0 corresponds to ds22.

Noticing the differing effective metrics of interest, the immediate choice is to naively func-
tionalize them and look for functional response forms, given by ds̃25 ∼ d̃[·]dr2+ds2+c[·]dφ2.
In particular, the metric is singular at (d̃, c) ∼ {(−1, c), (d̃, 0)}94; the stream equation can
be worked out in this, functionalized case to get a stronger sense of the embedding push,
but may be left for a future work. Instead the single spinning Myers-Perry geometry will
be next explored.

3.8 Single Spinning Meyers Perry (b = 0)

The clearest choice is to fix these coordinates towards the black hole’s angular momenta,
which shows the immediate advantage of the single spinning MP metric: the ψ−independence
of both the metric- and vector-gauge fields should allow solutions with a global fixing of this
gauge vector’s area-flux, Ψψ (or, ωψ = 0). Note that global invariants in general relativity
can be assumed to have a conformal (Weyl) interpretation; so, solutions with a constant
Ψψ should have an immediate thermodynamic connection.95

Regardless, note that Maxwell’s equations imply:

dF = 0 ⇒ 0 = Ψϕ
(1,0)ωϕ

(0,1) −Ψϕ
(0,1)ωϕ

(1,0) +Ψψ
(1,0)ωψ

(0,1) −Ψψ
(0,1)ωψ

(1,0) (187)

F ∧ F = 0 ⇒ 0 = Ψϕ
(1,0)Ψψ

(0,1) −Ψϕ
(0,1)Ψψ

(1,0) (188)
93Measurable and almost everywhere differentiable
94Further, note that

(
1√
2

[
−1 ∓1
∓1 −1

])−1

= 1√
2

[
−1 ∓1
∓1 −1

]
, so that, following the discussion about

divergent matrices above, (d̃, c) ∼ (1,∞) represents a “self-covariant" geometric limit.
95More generally, the extra-magnetic field can be thought of as the additional (space-sheet adjoint)

gauge freedom allowed across ψ-interaction modes (or, spacelike, embedded field-space topology); then,
reductively, solutions with Ψψ ∼ 1 represent (conformally connected) spacetime perturbations entirely
indexed by their Ψϕ distributions (a.k.a., exactly dilatonic states). The solutions presented will focus on
the Ψψ ∼ 1 case, but it may be interesting to try and qualify conformal subharmonics based on field-
coordinate drift velocity as well. See (??) for the Tangherlini drift conditions.
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while here, we note that, unlike D = 4, the degeneracy condition is not proportional
to the volume form (index mismatch): F ∧ F ̸ ∼ϵαβκγλ, and thus it does not generally
represent a seperability invariant on the field sheet (unlike in in D=4, where degeneracy
and magenetic dominance guarentee complete, seperable, space-like field sheet coordinates
with deterministic support[45] ). Still, if J , a n = 4-form, has the same 4-volume orientation
as F ∧ F , then this wedge indeed will represent a sheet invariant, F ∧ F ∧ ⋆J∼ϵ. This
again is where the single spinning geometry with Ψψ ∼ 1 becomes interesting: examining
(109), the constant Ψψ condition operationally guarantees that neither F ∧F nor the vector
current have functional legs on the dψ-form.96

Imposing the FFE conditions shows the intertwiner nature of the Ψψ coordinate in the
degeneracy frame. Explicitly, the toroidal sector FFE equations , jµFµν = 0, are:

jµF
µt = 0 = ωϕ

(
I(0,1)Ψϕ

(1,0)(r, θ)− I(1,0)Ψϕ
(0,1)

)
+ ωψ

(
I(0,1)Ψψ

(1,0) − I(1,0)Ψψ
(0,1)

)
(189)

jµF
µ{ϕ,ψ} = 0 = I(1,0)Ψψ

(0,1) − I(0,1)Ψψ
(1,0) (190)

Assuming seperability in the flux coordinates, an attempt can be made to functionally
satsify the above parabolically: with Ψϕ → Ψϕ[f(r, θ)] and Ψψ → Ψψ[g(r, θ)] (e.g., f → Aϕ
and g → Aψ), the above reduces to

dF = 0 =
(
f (1,0)ωϕ(0,1) − f (0,1)ωϕ(1,0)

)
Ψϕ′ +

(
g(1,0)ωψ(0,1) − g(0,1)ωψ(1,0)

)
Ψψ′ (191)

F ∧ F = 0 =
(
f (1,0)g(0,1) − f (0,1)g(1,0)

)
Ψϕ′Ψψ′ (192)

jµF
µt = 0 = ωϕ

(
I(0,1)f (1,0) − I(1,0)f (0,1)

)
Ψϕ′ + ωψ

(
I(0,1)g(1,0) − I(1,0)g(0,1)

)
Ψψ′ (193)

jµF
µ{ϕ,ψ} = 0 =

(
I(1,0){f, g}(0,1) − I(0,1){f, g}(1,0)

)
Ψ{ϕ, ψ}′ (194)

Note that (191) is satisfied if ωϕ → ωϕ[f [r, θ]] and ωψ → ωψ[g[r, θ]]. Letting the current
also depend seperably on the functions, I → I[f(r, θ), g(r, θ)] then all these equations are
automatically satisfied if f (1,0)g(0,1) − f (0,1)g(1,0) = 0. Summarily:

Ψϕ → Ψϕ[f(r, θ)] , Ψψ → Ψψ[g(r, θ)]

ωϕ → ωϕ[f(r, θ)] ωψ → ωψ[g(r, θ)] ⇒ dF = 0

I → I[f(r, θ), g(r, θ)], f (1,0)g(0,1) − f (0,1)g(1,0) = 0 jµF
µ{t,ϕ,ψ} = 0

(195)

In particular, a constant functionalization of either field-flux is always a toroidal solu-
tion: {f, g} ∈ R∗ ⇒ jµF

µ{t,ϕ,ψ} = 0. Single poloidal-coordinate functionals, {fθ(θ), gθ(θ)},
{fr(r), gr(r)} are also always toroidal solutions,as are their "cross-parameterizations", {f{r,θ}, g{θ,r}}.
In fact, although the remaining two force free conditions, jµFµ{r,θ} = 0, are in general
complicated functions of the metric, when the fluxes can be parameterized by a single

96This can be shown by tracking the unique term that disappears under the dΦψ → 0 condition through
Maxwell’s equations: Fψ = dΨψ ∧ dψ → 0 ⇒ dψα [∗d ∗ F ]α = 0. This also shows how the fixed-flux
condition can be tied to the emergence of ψ-independent(gauged) bulk invariants
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poloidal coordinate one of the equations of motion is uniformily 0:97

{f{r,θ}, g{r,θ}} ⇒ jµF
µ{θ,r} ≡ 0 (196)

This functionalized framework will help keep the perturbative frames conceptually rigid in
the next section.

3.9 Tangherlini Harmonics (α = 0)

The Tangherlini geometry can be taken as the non-spinning limit of a Myers-Perry type
metric [38]98:

ds2T = −(1− m

r2
)dt2 + r2 sin θ2dϕ2 + r2 cos θ2dψ2 +

r2

r2 −mdr2 + r2dθ2 (197)

It is critically useful the notice the hidden freedom of the ψ coordinate in this geome-
try: diffeomorphic symmetry automatically empowers this coordinate with enhanced func-
tional freedom that is a uniform symmetry of the other coordinates. Precisely, ψ →
ψ+

∮ i∈I
Xj [y⃗]∼x dy⃗f [X⃗] is an exact, global, continuous functional symmetry with a “Euclidean"-

type sub-constraint form; this is exactly the same proof as the Banach-Tarski paradox, and
this spacetime can be considered the physical manifestation of such.99 Accordingly, it may
be inferred that the Blandford-Znajek process in d = 5 may represent something uniquely
universal about fields (at the completely interacting, or “Feynman-loop" level)
As before, the perturbation scheme proceeds by solving for an operator (FFE tower-
)classification of the constrained field equation in this geometry in order to build a O(a0)-
order support and ramify-out a quasi-canonical family of solution forms, exactly like the
solution matched-form exclusion techniques in D = 4 [23]. Consider the following flux-
coordinate differential operators:

LϕΨϕ = −mΨϕ
(2,0) +

mΨϕ
(1,0)

r
+ r2Ψϕ

(2,0) + rΨϕ
(1,0) +Ψϕ

(0,2) − csc(θ) sec(θ)Ψϕ
(0,1)(198)

LψΨψ = −mΨψ
(2,0) +

mΨψ
(1,0)

r
+ r2Ψψ

(2,0) + rΨψ
(1,0) +Ψψ

(0,2) + csc(θ) sec(θ)Ψψ
(0,1)(199)

Without currents (I = 0) the above (193) - (194) shows that torodal FFE equations are
uniformily zero.

97This again can be immediately seen by tracking the “shadow" of the now 0 terms, ∂{r,θ}Ψϕ,ψdxr,θ ∧
η{ϕ,ψ}, under the EM current transform: ∗d∗ .

98In fact, one immediate volume-curve of interest can be immediately spotted in this metric: dψ2 → dϕ2

⇒ ds2T → −(1− m
r2
)dt2+ r2

r2−mdr
2+r2(dθ2+dϕ2). This metric looks similar to toroidal AdS and highlights

the advantage of combining the spacelike scalar degrees of freedom, χ{ϕ,ψ}, in higher dimensions.
99Essentially, although it is periodic, by the fundamental theorem of calculus (on bundle topologies)

this symmetry closes over the complete harmonic dual space (of Lesbeque measures), L2; this is usually
known as Green’s Theorem. As will become clear, this coordinate can be considered a universal (in-field)
Legendre multiplier, and makes d = 5 Tangherlini spacetime a natural, and universal, functional kernel of
(spin 1

2
)fields in conformally-curved d = 4 geometries. In some senses, this gives this spacetime an exact

connection to topology categorically [34] and represents a real manifestation of duality generally (or, as a
closed object-basis over the category of general relativity).
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3.9.1 Arbitrary Velocity Series

For complexity (in the functional base) non-constant velocity corrections are included here
(as the Q-operator) ω{ϕ,ψ} ∈ R[∗, ∗]; then the poloidal equations can be shown to reduce
to:

(
jµF

µ,{r,θ}) r4 −
((
H{r,θ}[r, θ]

)
LψΨψ +

(
G{r,θ}[r, θ]

)
LϕΨϕ

)

= K{r,θ}[r, θ]

(
ωϕδϕ[Ψϕ] + ωψδψ[Ψψ]−Q[L̄r(r, θ), L̄θ(r, θ); r]

)
(200)

where the variable-velocity contribution is given as

Q[x,y;r]
x(m−r2) = −

(
1− y

x(m−r2)

)
and L̄{r,θ} =

∑
k∈{ϕ,ψ}

Ψ
({1,0},{0,1})
k ω

({1,0},{0,1})
k (201)

and the static constraint variables are found as:

K{r,θ}[r, θ] = 2r4

r2−m
(
ωϕ∂{r,θ}Ψϕ+ωψ∂{r,θ}Ψψ

)

δψ[Ψψ] =
r2−2m

r Ψψ
(1,0) − tan θΨψ

(0,1) δϕ[Ψϕ] =
r2−2m

r Ψϕ
(1,0) + cot θΨϕ

(0,1)

(202)

While the {H,G} functions satisfy:

C⃗
ωϕ

:=
1

ωϕ




Ψϕ
(0,1) + sin2 θGθ[r, θ]

Ψψ
(0,1) + cos2 θHθ[r, θ]

Ψϕ
(1,0) + sin2 θGr[r, θ]

Ψψ
(1,0) + cos2 θHr[r, θ]


 =

cos2 θ

2




tan2 θKθ

ωψ
ωϕ
Kθ

tan2 θKr

ωψ
ωϕ
Kr


 (203)

In particular, the RHS is a set of constraints exactly similar to the Q-push functionals as-
sociated to the non-static sources, {L̄{r,θ}}; in fact, this can be made exact as an functional
integral100

1− m
r2

2r2
K{r,θ} =

∑

k∈{ϕ,ψ}
Ψ

({1,0},{0,1})
k ωk ≡

∮

{γr,γθ}
dX

{r,θ}
∂Ψ L̄{r,θ} (204)

where the final notation denotes performing the coordinate gluing (cut-integration) along
flat bundles of Ψ{ϕ,ψ}; this is identical to keeping (functional-)boundary terms (which here,
additionally and critically, separate along their coordinate forms, {dr, dθ}). In fact, this
is very remarkable! Looking back, C⃗

ωϕ cos2 θ
heuristically resembles an su(2) index around

the globally symmetric planes (θ ∼ {π2 , 0}) and, on the RHS, the functionally symmetric
velocity points (

ωϕ
ωψ
∼ ±∞); this happens exactly to be the non-rational (non-separable,

over R) sub-domains of the continuous curve limits, [θ(λ), (ωϕ[λϕ], ωψ[λψ])] ∼ {0,∞}. This
is immediately reminescent of Airy curves, because is the topological generalization of this
(open-type) solution basis (descending from higher dimensional accumulation residues).

100By the Froebineous theorem and the (coordinate-)exact differtiability of ω{ϕ,ψ}
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Considered as coordinates this type of separability is canonical(/trivial) from the Jacobi-
form (which is exactly the point of real Analysis). But the separability here (also) happens
in function space (on the canonical real evaluation of the field); functional topology is uni-
versally closed, meaning that functional duals can be constructed for any ZFC embedded
diffeomorphic completion [49]. This remarkable fact can be seen manifestly (from a physics
perspective) in [34], and is absolutely relevant here.
In fact, applying these lessons above and constraining sub-functionals to level sets of
coordinate-stationary magnetic fluxes, this push can immediately capture the universal
branch of su(2); stronger yet, realizing the extra space coordinate as a global, continu-
ous, functional symmetry index enhances the sub-functionals to SU(2)-exact gauge fields.
Under Noether’s theorem [56], this exactly represents a conserved charge in functional
topology, known as a functional index[57]. This is universal, and is shockingly strong be-
cause this represents an absolute (gauge) duality between analysis and topological physics,
and acts as a strong indication of the results to follow.
So, noting that the functional-gauge is algebraically enveloped (on the complete rational
branch, or over the natural scalar form) as cos2 θdφ2 = (cos2 θ,< Di∧k∂kii Xi

k >); taking the
classic categorization of the measure branch [57] seriously here immediately stipulates the
existence of a measure continuance to (cos2 θ,< · >) → (< · >)sec2 θ, which immediately
motivates the combined symbolic geography:

M[B̄, z̄
z
; r, y] :=

(1− m
r2
)B̄

zy2
; M[C⃗, ω⃗; r, cos θ] := (1− m

r2
)C⃗

ωϕ cos2 θ
≡
∮

{γr,γθ}
dX

{r,θ}
∂Ψ L̄{r,θ} (205)

noting the nπ
2

∣∣∣
n∈N

divergent terms in Lϕ,ψ represent mirror-frozen dual pairs on a (com-

pactified) functional regulation-matching surface (the embedded axisymmetric planar cut),
the (mirror-symmetrized) extended (static) constraint topology [34] can be naturally mo-
tivated as an antisymmetric index rational over(/projective onto) the axisymmetric axis
in-cohomolgy: cos2 θC̃ =: C⃗. By mixing constraints in the regulating topology and (point-
wise orthogonally) pulling off mixed families from the divergent plane, rationally unwinding
cos θ = y gives:

⇒ DθM[C⃗, ω⃗; r, cos θ]
∣∣∣
dC̄∧dω⃗

= Dθ
∣∣∣
dC̄∧dω⃗

∮

{γr,γθ}
dX

{r,θ}
∂Ψ L̄{r,θ} = −2(1−

m
r2
)C⃗dy

ωϕy3

∣∣∣∣∣
y[θ]=cos2 θ

(206)

Amazingly (but unsurprising from the universal corner residue frames of [58]]101), flux-
frequency-gauged Tangherlini (deformed-)loops pulled of the mirror plane produce a k

y2

Weinberg pole across the entire entanglement plane, where the sign and magnitude of k
can vary based on the loop mirror cohort-gluing, the field frequency, and the radial index
(now regarded as an entanglement internal, point index).
In particular, letting (non-)classicality be defined by sign determinancy of sign∀(C̄ ·d.y) > 0

or ∃“ " < 0 this family-bundled deflection in the d = 4 pull space mimics Newtonian gravity
101Here, the index “tugs" medium sized (considered as all 0 < β < ... < ∞, β-graded) scalar fields into

aymptotically rational sub-bundles over Cantor fields, {±∞} ← {∞,∞αi
βi

}i, at the divergent features.
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and electromagnetism in one swoop: letting sign(1− m
r2
) sign(ωϕ) > 0 gives a (consistently

signed) graviton-like sub-shell, while sign(C̄ · dy⃗ωϕ) > 0 gives a (± signed) electromagnetic
like sub-shell (on the asymptotic, corner-pulled compactification domain). Critically, these
choices only sign-exchange the ωφ

ωϕ
index features as a mirror, or T, duality. Pushing further,

this result produces a full c(ontour-)loop Newtonian (off-shell) expansion of the mirror cut
produce the master equations:

DθM
∣∣∣
dC̄∧dω̄

= −kdr
r3

∣∣∣
Cdy
y3

=ωϕ
dz
z3

dz
z3

= dr
kr(r2−m)

≡−τdr
(

1
r−α−

r+α

r2−m

) (207)

where the rational pole parameters are algebraically fixed as: 1
kτ = α2 +m and m−τ

τ = α2;
considering (k,m) fixed parameter points, these represent two equations fixed about the
synthetic τ -derivative at (α, τ) ∼ (α, 0). So, the constraint form can be clinically prescribed
as:

DθM
∣∣∣
dC̄∧dω̄

= −kdr
r3

∣∣∣
Cdy
y3

=ωϕ
dz
z3

; δτm=α2 , 1
τk

=α2+m=
∮
δ dδδτm

ln(
1−α

r√
1−m

r2

)− 1
2τz2

=Vz−
√
α2

m
tan−1[ r√

m
]

(208)

Pulling off the tangent branch and regarding α2 as a τ (synthetically-)exact symmetry im-
mediately identifies α as the (synthetically-)dual scalar index, traditionally understood as a
Kac-Moody current [15] resulting from “un-twisting" the T-dual continuous null-current.102

Under the harmonic Ward identity over a θ-wound state:

< DθM
∣∣∣
dC̄∧dω̄

O >= − 1

2r2
< kO >

∣∣∣
k= 1

τ(α2+m)

(209)

Choosing classical units over entanglement charge shows that the effective theory over
the sub algebra separates strongly from the quantum critical point (at exactly the Planck

102This can be seen precisely by remembering the global functional gauge allows a continous index to
be formed around the every divergent neighborhood. In particular, the 1

z2
poles are forced to match the

winding divergence (conical form) as
√
m → 0 up to ln(1 − α

r
) corrections, which exactly presents α as

1-loop cutoff parameter on the multiparticle, or Foch, branch of the SU(2)-exact theory. Note this is
classical, and represents an exact shift in the classical phase-space saddles by a T-balanced multiparticle
divergence index, α[z,m] connecting the higher dimensional mass to the lower dimensional, holographically
thermalized classical fields by connecting the regulation index at r →∞ across the integration constant and
the τ → 0 (synthetic-)poles, Vz + 1

2τz2
. This is universal and exact by the Cauchy Completeness theorem,

and can formally be used to construct the stereographic push-out z ← (z, z̄) over the (τ, α; z)-harmonic
plane.
More excitedly, considering the (r, θ) shape of the index shows it tesselates the ZFC completion as a
degree four twister and, deductively, should represent the T-dual formulation of the (< 8, 2 >∼F (4),
Fuch-gauged) monodromic-index of black hole thermodynamics (on the closed string branch). Intuitively
then, it should be expected that the monopole solution in d = 5 black hole spacetimes captures the
non-perturbative (loop-exact) behavior of d = 4 black holes on the interactive thermal branch (or, as a
complete gravitational propagator)! Indeed, shockingly, this will (shortly) be used to continuously produce
the spinning-dyon2 ∼Kerr asymptotic symmetry [17].
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vacuum shear)

[k] =

[
G
1

4πϵ0

]
W ≡ [G]

[
1

µ0ρℏ
4πl2ℏ

]
W (210)

In fact, remembering this index emerged from a black hole driven magnetic field with both
a free coordinate gauge symmetry as well as an index-coupled SU(2)-gauge connection
makes is a natural probe of therally asympototic (k) = d− 1 spacetimes on some complete
functional shelling by closing warped sub-geometric gaps as mixed hyper-connected spin
diagrams.103

In particular, this descent algebra closes across the desired d = 4 phase diagram iff it closes
across a single, (k∞)uniformly connected (set of) points. Then, the action probe here could
be considered an asymptotic SU(2) harmonic coupling form between k = 4 dimensional
actions designed to capture a regulated SU(2)-loop harmonics [34]; in particular, it will be
shown to exploit the measurable divergence on the θ → π

2 -symmetry plane as an enhanced
asymptotic light(-shelled) probe.
It could also be inferred that this classical probe represents a distributed connection be-
tween hard-soft degrees of freedom under asymptotically point-compact, smooth regulation.
This guarantees that the divergent index points will always asymptotically dominate (at
the synthetic level) by enforcing connection between the synthetic descent and the emer-
gent (shadow) propogators. This is critical to understand the spin gap closure defined in
spinning d = 5 geometry, which will emerge as a connected point (localized) measure of
classical mass-entanglement spin in k = 4 as a (mass-polarized) Lamar radiating electron,
also known as a classical muon impact parameter. In fact, this spin connection will happen
at a universally symmetric configuration point at exactly the strongest indexed measure
and be uniformly enforced as a Bloch-thermalization patch stabilizer on a radial (entangle-
ment)gauge regulator; thus indeed, this class of (functionally descendant) black holes will
be shown classically dual to point-acceleration emission of (spacetime corrections to) ra-
dially confined entanglement-patches (as E-Wickert corrections/Lamar radiation by using
stationary, asymptotically separated gauge probes).

As has been remarked repeatedly, the Cauchy completeness on the functional kernel space
103In fact, this unification scale can be used to solve infer the uniqueness of the 55-degree latitude “rush-

to-the-poles" [59] during the solar cycle’s magnetic flip as the maximal mean deflection angle of weakly
convenctive columnar flow that can be cross stabilized (in fully interactive background); indeed, this is al-
most exactly twice the Weinberg angle. Put another way, as the sun’s magnetic poles flip the wide-latitude
convective border vortices can counter resonate at exactly twice the unification level; this can qualitatively
be understood as a mixing complex (crossing stabilizer resonance) between the flat asymptotic W-gauge and
the colored (sub-spinning) Higgs partitions [60]. Then, considering plasma in non-interacting k = 4 back-
grounds to be the fully shielded gravitational out state over d = 5, or QED measures in flat spacetime exactly
infers < θmaxS >δt=140 years≈ 54.25 ∼ 54.32 ≈ [Wθ]NIST2018 ; note, naively

|<θmaxS >−[Wθ ]NIST2018
|

54.285
∼ 1

103
, or

that this error (very roughly) scales as a digit per space (a.k.a., coordinate) dimension, which is exactly
the expected size of the virial error with a (correct) 0th order (classically unified) constraint parameter-
ization(/virial expansion, which should be an expected representation of time-ordered solar diagramatics
because of the natural, [Gµν , Fmn] counterbalancing nature of the sun and the Z∆t∼11 years

2 symmetry of
this dynamic phase point).
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guarantees this charge index has spectral control within every neighborhood; in turn, this
shows that the above unification yields a strongly separated quantum curve index that
cannot be effectively effectively suppressed in dy

y3
(or dr

r3
) without ignoring quantum gravity

corrections. Because the entire point is to capture a strongly quantum partition weight in all
phase volumes (Ψ{r,θ}, (r, θ)), this is a good thing as renormalization flow is automatically
captured under:

< DθM
∣∣∣
dC̄∧dω̄

O >= − 1

2r2
< WO >

∣∣∣
 G

1
4πϵ0


=

[
1

τ(α2+m)

]
=[1]

(211)

In fact, the final unitless condition can be presented as d ln τ
dτ =

∮
δ dδδτm, which amounts

to stipulating that the d = 5 mass-defect parameter be exact; this can always be made
(synthetically) true by applying the Cauchy completeness(/extension) theorem(s) over the
scalar field supports, F[∗].
Finally (and yet again), noting that the index is functionally strong exactly where classic
fields are continuously regulated (under Green’s theorem) gives this crossing relation weight
exactly on the classical, d = 4 Harmonically weighted legs (which here are interacting on
the shadowed Coloumb branch). Expectantly, on the weak-mass/charge (classical) shells:

< DθM
∣∣∣
dC̄∧dω̄

O >
∣∣∣
[k]=[GMdm

Wdw
1

4πϵ
Qdq
Wdw

]

1
2
<QO>=Wdw

=
[GMdm Qdq

4πϵ ]

r2
(212)

Thus, the classical contact fall-offs of both classical gravity and electromagnetism have
been unified by a topological index, as promised. Accordingly, it can be said that (as non-
perturbative string theory amplitudes) classical mass distributions are weakly Z0-mediated,
while classical charge distributions are W±-mediated. In fact remembering that in classical
QED the W± exchange charge sits on the Coulomb form of SU(2)⋉U(2)eγ)) spontaneous
symmetry breaking brings confidence.104

This framework is very strong, and the push-pull framework merits further elaboration.
Instead of forcing the gauge of general relativity into the exact harmonic basis of d = k, or
vice versa, this (synthetically gauged) topology allows both to meet on equally functional
footings.105 The radial form of these contact surfaces, namely those usually probed in

104Indeed, the emergence of Newtonian- and electrostatic- force distributions were here unified as broken
index exchanges in a Schwarzschild background (with a diffeomorphic, continuous gauge index, in-shell)
by stripping the enhanced soft data into a complete (infinite dimensional) index; then, a uniform, corner
symmetry was found to exist as a classical [0,±]-index between the static force-types ( separated from each
other by quantum criticality and the Fc → 0 limit on in/out entanglement pairs) [34]. Considering the
discussion above ]?? regarding the Higg’s potential’s appearance on the light-surface of the stream equation
(in curved spacetime), the model of off-shell mediation is given a strong, topological image (as a universal
interaction branch)

105As Dr. John Wheeler quoted, “Space-time tells matter how to move; matter tells spacetime how to .
. . curve. ". The posterior framework described here can be understood as the exact same quote under
the dual meanings of tell, namely as the act of mistaken signification, such as in poker: "John tells by...";
such as, the quote may be quantized as “Changes in spacetime are either within or with-out changes of
matter; changes of matter are either with-in or with-out . . . changes with-in or with-out curvature".
Accordingly, gravitational waves are as much of an observationally-inductive effect as a spacetime/matter-
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r-subspace (like those performed by Newton and Maxwell/Tesla themselves) can be under-
stood as a strong string deformation (entanglement deflection) between asympotitic quasi-
stationary configuration domains (causal diamonds) [62] supported by causally shielded
d = 5 masses under null-weak SL(2,R)-asympototic probes. Put another way, space is
the soft charge that “leaks" out of string field theory. This also gives an explanation for
the classical direction of time as a boundary bifircated sub-symmetry of magnetic (spin)
currents at their maximally entangled, minimally confined global winding edge phases. Or,
deconstructively time is exactly the wholes between the moments of the days of the years:
time is the maximally convex functional-index of consistent measures, (and, accordingly,
measurement of entropy is exactly the convex dual of the measurement of consistency).
Now motivated by the strong predictive loop dynamics of the L{ϕ,φ} off-shell index sym-
metries it is time to rewind fully to the ω⃗-stationary(/level-set) on-shell solution types.

As L{ϕ,ψ}[Ψ{ϕ,ψ}] are the only top 2nd-order operators, setting the RHS of 200 equal to 0
gives poloidal subspace conditions for the exact decomposition of (on-shell) vacuum solu-
tions into force-free propogating modes:

K{r,θ}[r, θ]

(
ωϕδϕ[Ψϕ] + ωψδψ[Ψψ]−Q[L̄r, L̄θ]

)
= 0 ⇒ L{ϕ,ψ}[Ψ{ϕ,ψ}] = 0⇔̂

(
jµF

µ,{r,θ}) r4 = 0 (213)

Ignoring the kernal of K106, the other decomposition condition can be separated as:

0 = r2−2m
r

(
ωϕΨ

(1,0)
ϕ + ωψΨ

(1,0)
ψ

)
+ cot θ

(
ωϕΨ

(0,1)
ϕ − ωψ tan θ2Ψ(0,1)

ψ

)
(214)

⇒
{
λ r
r2−2m

= ωϕΨ
(1,0)
ϕ + ωψΨ

(1,0)
ψ ,

−λ tan θ = ωϕΨ
(0,1)
ϕ − ωψ tan θ2Ψ(0,1)

ψ

or:

ωϕωφΨ
(1,0)
ψ Ψ

(0,1)
ψ = rλ2 cot θ

r2−2m{
Ψ

(1,0)
ψ = rλ̄

r2−2m

Ψ
(0,1)
ψ = λ̂ cot θ

∣∣∣∣∣

λ̄=λA ; ωϕλ̂A=ωφλC

AB=C

(215)

Note107 the constraint forms represent three equations in seven variables and thus the kernel
is n = 4 dimensional; accordingly, the constraints represent an exact connection between co-
ordinate derivatives of the magnetic-φ flux and entanglement patch (geometrized) synthetic

sourced induction; in fact, this is immediately clear from the gauge freedom of d = 4 spacetimes, and
provides a precise understanding of the Harmonic gauge’s uniqueness away from the final inspiral [61].
Further, considering the natural role warped topologies played in reconstructing the full, loop complete
classical potentials it may be clear why the harmonic gauge is troublesome exactly on contact: in the
low-separation charge limit functional harmonic probes strongly gauge to their canonical charge duals (as
a form of loop-level UV/IR mixing) [2]. Again, this is textbook from an analysis point of view: the metric
is diffeomorphically closed over the entire branch because δφ is a uniform, continuous global symmetry
in every (t, ϕ, θ, r) neighborhood. Thus vacuum polarized emission probes must be dual to field spectra
in the semiclassical limit; accordingly, magnetic conditions should amount to the virial completion of the
semi-classical turning points, a.k.a. the mean field displacement kernel, or bulk force-kernel. This can
clearly be understood in the knotted context of [34]

106Considering the kernal of K{r,θ}: K{r,θ} ≡ 0 ⇒ ∂{r,θ}Ψϕ= −
ωψ∂{r,θ}Ψψ

ωϕ
. In fact, K remains a

seperability-envelope even when the field velocity is non-constant; this enhances the idea of the Ψψ flux as
a sheet level-gauge condition: it can be used to solve exactly one of the FFE and, considering (109), can be
seen as exactly the condition eliminating one of the Maxwell tensor’s time legs: Kr,θ = 0⇒ δν(t)δ

µ
(a)Fµν = 0.

107Ψφ = d2 ln sin θ implies λ → λ̃ = λ − ωφ, showing this solution type amounts to a(n on shell, sub-
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multipliers108. These give subharmonic matching conditions 109 on the harmonic solutions
(213). Critically, ωϕ ∼

√
λ
∣∣∣
λ∼0

leaves ωφ unconstrained and Ψφ fixed as a patch-boundary
integration constant (where ωϕ acts as a Lagrangian multiplier between ultra-weak (Heavy-
side) functional covers with a strict radial index (µ[∗, ·]N ∗· [B] ∼ H[r∗, r·] ). This formally
qualifies the Ψφ field as a su(2) gauged index over the d = 4 projective T-mirror plane.
Note that ωψ = λ = ωϕ

∣∣∣
λ=0

are always harmonically seperable (they universally solve the

sublevel conditions (215)) up to the free quantum algebra, O[Ψ{ϕ,φ}ω
{{2,0},{2,0}}
{ϕ,φ} ].

Indeed, general relativity is constructed, axiomatically, as a bundle topology functional
(“Einstein’s Equations": Gµν = 0), which amounts to the existence of a Euclidean sub-
dimensional projector on the dimensional indexing topology (in every bound measure set)
as well as a global braiding functional (on connective shell) that is itself indexed (“Time,
Energy, Mass, Curvature, etx..."). Critically this exists at the level of the index selector,
{σ} ∈ Coor, and is an exact manfestation of diffeomorphic symmetries strongly coupling
with local decidable features; then, the Ψφ gauge can be considered a compactified par-
tial(/decidability) index towards general relativity.
So, recapping, weakly coupling this T-measure gauge into a pointwise separated SU(2)

)spectral shift. Specifically, choosing Ψφ = 1 + d1 ln[sin θ] produces:

ΨθΨr,r =
r

r2 − 2m

(
d1ωφ
ωϕ

− Ψθ,θΨr
tan θ

)
=̂

r

r2 − 2m

(
d1ωφ
ωϕ

− ∂xΨθ[x]
∣∣∣
x→ln cos θ

Ψr

)
(216)

Then, taking the d1ωφ → 0 accumulation can be seen as allowing the emergence of a separated tower
solution ∂xΨθ [x]

Ψθ [x]

∣∣∣
x→ln cos θ

= C, which can be solved with the analytic form Ψθ[x] = eC(1+xD), which

produces a raw amplitude shift in Ψr; then Ψ
(0)
ϕ = 1+ c1 ln cos θ can indeed be seen as the lowest matching

spline.
Specifically, demanding the ψ-flux exactly represent an exact I± index in the sense that

∫
d[·]eΨψ [∗] =∮

γI
d[·] sin(θ[·]);

108Or, that ω2
φΨ

(1,0)
ψ Ψ

(0,1)
ψ = λ̄λ̂

C
ωϕ

r cot θ
r2−m . In fact, letting C be quantized in units of ωφ exactly displays this

as a Berry-gauge connection across the RHS poles and exactly shows the quantum spectrum as uniformally
confined to the classical ground state by an infinite dimensional(/ continuously loop-indexed) symmetry
current carrying the spacetime-orthogonal magnetic flux. This may be regarded as the quantum gravity
equivalent to Maxwell’s Displacement current in electromagnetism, presented here as the canonical quan-
tization (functor-)residues over spacelike-orthogonally extended Schwarzschild (Tangherlini) background
fields; critically, because everything is iff, this shows the U(1) gauged entanglement network that closes
around the anti-symmetrix coordinate (index: it continually catches the sign of the proper polar axis,
θ ∼ 0) as dI = cos θdφ

109In fact, seperability of (214) is exactly the condition that at least one of the set of seperated prod-
ucts have a uniform envelope:, {Ψϕ,Ψψ} → {frfθ, grgθ} → f{r,θ}{f{r,θ}, g{r,θ}}, solutions are sums of
seperated product decompositions: Ψ⃗ → ∑

ϕ

∑
ψ

cϕψU
ϕψ
{r,θ}{S{θ,r}, T {θ,r}} . Noting that the FFE har-

monic operators have the same radial form shows the impetus to first classify the r-independent so-
lutions: globally r-separated fields have a unique decomposition as harmonically separated solutions
Ψ⃗ → Ua{Sa(b)(θ), T a(c)(θ)} (written here in some solution basis, {Tϕ(b), T

ψ
(c)}), showing that continuous

parity symmetries, or U-symmetries, are naturally identified with r-functional inflection points, in the lead-
ing effective amplitude. Over the Lie algebra representation, this gives a in-squeezed interpretation of the
soft theorem: every exact field is closed, so every continuous field extension is loop closed on the func-
tional tangent plane [56] as a rational, topological block expansion of the field parameters. Effectively, the
spinning-dyon2 ∼ Kerr weak IR duality in perturbativive, self-dual (here static) gravity has been enhanced
to a symplectic cut in the open rational compactification.
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spectral dual with strong k = 4 spacelike confinement which strongly identified it as a
quantum Gravity interaction(/as an exact partition probe of the gravitational propaga-
tor). This can be quickly noted by seeing the constant velocity fields as an emergent (r, θ)
patched connection across the φ Lagrangian constraint; or Ψψ = d0 ln sin θ and ∂θΨϕ = 0

yielding:

ωψd0 =
r2 − 2m

r
ωϕΨ

(1,0)
ϕ (217)

and an exact connection between the fixed-velocity, partial amplitude and the radial gauge
flow by monotonicity (up to globally fixed, relative velocity signs). This equation clearly
represents an r-pointwise defect in the (Ψφ)-dual current along the radial gauge branch
that is uniformly suppressed at the r ∼

√
2rs (relativity) juncture; there any index scale,

ωψd0, can only reflect quantum perturbations (pointwise).
Further, on the symmetric plane θ ∼ π

2 the LHS represents the bare Ψφ gauge flux, which
is never a local index unless it represents a (first order) phase connection. This can dually
be seen by noting the r → ∞ limit is asympotically ordered towards the RHS r-gauge
localization(/affine normalization/sign). Restoring the dressed contacts (on classical ϕ-
shells) on this symmetric point gives

0 = Kθ
(
ωψΨψ +Q[L̄r, L̄θ]

)
=̂Kθ (ωψΨψ +Q[0,Ψφ∂rωφ]) (218)

=
2r4

r2 −m (ωϕ∂θΨϕ+ωψΨψ)ωψΨψ (1 + ∂r lnωφ) (219)

Critically110, the radial dimensional analysis at either (the Horizon r ∼ rH or Harmonic
r2 → ∞) regulation junctures runs as ∼r→√

2m 4mr and ∼r→∞ 2
3∂r

3 meaning the d = 5

mass index must exactly correspond to a radial gauge decay mode on the r2 >> 2m

symmetric branch domain under a spontaneously constrained r-residue locking (spacelike
squeezed annihilator).
Accordingly, the diffeomorphically suppressed r-current may be carried across r-junctures
as phase gaps in the semiclassical turning points (also known as phase deficit angles)[63]
by mixing the UV suppressed ωψ interactions as a tower of IR flowed mixing modes with
the semiclassical angular turning point (a.k.a., the scattering angle). Conversely, this iden-
tifies the 2rs << r << ∞ r-features along the symmetric plane with towers of broken
symmetries as a discrete set of contact impulses in the ψ-frequency partitionable domain.
This is completely restored (as the φ-Coloumb branch) by realizing that towers of Ψφ

over the λ → 0 ψ-sub-phase allow a partial wave connection across the tangent branch:

cot θ
∂Ψϕ[r0,θ]

∂Ψφ[r0,n[r0] ln cos θ] =
1

n[r0]
∂θΨϕ[r0,θ]

∂y0Ψφ[r0,y0[θ]]

∣∣∣∣∣
y0[θ]=−n[r0] ln sin θ

. Thus, Ψϕ may be carried over

their symmetric tangent curves as r-defective impulse shifts in the asympotically regulated
λ→ 0 solutions.
Applying topological optical theorems [34] [64] [57] at these junctures at the scale of quan-
tumness (or, on a complete quantum block, Ψψ ∼ 1) shows that the dual gauge, Ψϕ, can

110remembering that 1 + Q[x,y;r]

x(m−r2) = − y
x(m−r2)
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be considered a fully corrected quantum Gravity probe iff it can be constructably closed
over the classical equations of motion. By scaling arguments on d0, closed radial solutions
must be represented by this partition in conformal weight; thus, it should be expected that
the running behavior of the symmetric plane will capture the conformal dimensionality
(size of the asymptotic Bloch/phase sphere) at the correctly shelled asymptotic juncture
(as a regularization for scalar asymptotic ∞) under contact with a stability constraint (or,
uniformly, a connection between the asymptotic measurement domain and the near horizon
Znajek flow).

3.9.2 Tangherlini OPE

So, returning to the classical equations of motion111:

{
Lϕ[Ψϕ]

Lφ[Ψφ]
=

{
r∂r

[
r2−m
r r∂rΨϕ

]
+ tan θ∂θ [cot θ∂θΨϕ] = 0

r∂r

[
r2−m
r r∂rΨψ

]
+ cot θ∂θ [tan θ∂θΨϕ] = 0

(220)

⇒ Fk(x) =

{ x2F1[1− k
2 , 1 +

k
2 ; 2;x]

G2,0
2,2

(
1− k

2 , 1 +
k
2

0, 1

∣∣∣x
)

; (221)

then, Ψϕ = 1−
∞∑
l=0

clRl(r)T
ϕ
l (θ), Ψφ = 1−

∞∑
n=0

dnRn(r)T
ϕ
n (θ) (222)

where Rl(r) = Fl(
r2

m ) , T
{ϕ,ψ}
l = Fn({cos2 θ, sin2 θ}) (223)

s.t.

{
λ r
r2−2m

= ωϕΨ
(1,0)
ϕ + ωψΨ

(1,0)
ψ ,

−λ tan θ = ωϕΨ
(0,1)
ϕ − ωψ tan θ2Ψ(0,1)

ψ

(224)

Critically, the function Fk[x] represents a linear-involution with the typical hypergeometric
series (with a strongly matched Meijer completion 112). The stabilizer constraints may be
given as:

mλ

2
= (r2 − 2m)∂zFl[z] (225)

·dlωϕ cos2 θ
(
cl
dl

2F1[1−
k

2
, 1 +

k

2
; 2;x]− ωφ tan

2 θ

ωϕ
2F1[1−

k

2
, 1 +

k

2
; 2;x]

) ∣∣∣∣∣

z= r2

m

x=cos2 θ , y=sin2 θ

(226)

−λ = dlωϕFl[z] cos
2 θ (227)

·




cl
dl

(
2F1[1− k

2 , 1 +
k
2 ; 2; y] + x

(1− k
2
)(1+ k

2
)

2 2F1[2− k
2 , 2 +

k
2 ; 2;x]

)

−ωφy
ωϕx

(
2F1[1− k

2 , 1 +
k
2 ; 2; y] + y

(1− k
2
)(1+ k

2
)

2 2F1[2− k
2 , 2 +

k
2 ; 2; y]

)




∣∣∣∣∣

z= r2

m

x=cos2 θ , y=sin2 θ

(228)

111Remembering F = dΨϕ ∧ (dϕ− ωϕdt) + dΨψ ∧ (dψ − ωψdt) + I[r, θ]
√
−gT

gP
dr ∧ dθ

112that, only by being careful about the sense of confluent continuance, will be ignorable; keeping these
irrational bulk gauges is another, more involved way to track in the index crossing. Again, the technique here
to to leverage the free algebra embedding for as long as possible (all the way into the final scalar/measure
index).
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Now, the juncture r2 = 2m displays clear importance, as does r →∞ [23]; analyzing these
pushes on the stabilizer measure gives interesting forms on the sub-spectral forms at these
r-points. Starting at r ∼

√
2m will prove advantageous; there, because the radial generator

has split relative to the (r2−m) enveloping pole (∀m ̸= 0), the first sub-constraint sharply
reduces:

mλ ∼ 0 (229)

0 = mclωϕx∂yFk[y]Fl[z] ·
[
∂xFk[x]

∂yFk[y]
− tan2 θ

dlωφ
clωϕ

] ∣∣∣∣∣

z=2

x=cos2 θ , y=sin2 θ

(230)

There is one clear way to solve this equation, and one (pair of complexly extended) con-
fluenced way(s); first, a global solution may always be generated entirely by setting both
the dispersive flow and the entanglement gauge identically to 0: (dl, ωϕ) ∼ (0, 0), which
amounts to an everywhere continuous and (symmetrically) smooth field solution. But,
recognizing this system as a pair of coupled, spontaneously broken symmetries realizes
that there must be a confluent field redefinition along some strongly symmetric sub-field
continuance; looking at the symmetric measure planes {θ} ∈ {0, π2 } yields the constraint:

dlωφ

[
(1− k

2 )l(1 +
k
2 )l

(2)l
+

(1− k
2 )(1 +

k
2 )(2− k

2 )l(2 +
k
2 )l

2(2)l

]
= 0 (231)

Then, as the sub-shelled 2-pt (mean-correlators) form a modular group over the entangle-
ment phase, it can be shown that the boundary patch continuance could be covered by a
k2 = 24-dimensional crossing operator113; or:

dlωφ
(1− k

2 )l(1 +
k
2 )l

(1− k
2 )l+1(1 +

k
2 )l+1

= dlωφ ⇒ −1 =
(2− k

2 )(2 +
k
2 )

2
(232)

⇒ k2 = 24 (233)

This can be seen as exactly the renormalziation
∞∑
n = − 1

12 ; then, this could be considered
a measure of the p-adic group measure on the Meijer branch, or saturated soft-spectral
flow density (over the dual measure spectral topology, R3), or the measure space of a 2-pt
string at the critical dimension k2 = dc − 2.
Even better, this is iff and shows a strong connection to modulii stabilization in IIA/M-
theory fermionic (Kahler-dimensionalized) regularization as a point of matched renor-
malization balancing between black holes/QED/open-string cohomologies (exhibited by
1
12

(
k√
2

)2
= 1=̂o.s.l.

∑
n). Further, this is a (classical level) duality iff the passing branch

can always be constructble exactly as a 21-pt⋉R3 measured correction (from the sub-
indexed (r, θ) g-loop quadratic folation density used to sub-parameterize the classical uni-
fication juncture described above). Indeed, the existence of such a stabilizer will be con-

113which exactly matches the number of colored Higgs branches over the proton’s minimal stabilizer under
the recently observed anomalous W boson mass anomaly [60]; this begins to complete the promise of a
Higgs colored fermi crystalization of fully interactive QED
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structed uniformly (as a maximal cover of the local stabilizer space extension towards the
proper U(1) G-spectral embedding form) in a subsequent chapter.
Finally, the r → ∞ equation cannot be solved non-trivially unless ∂zFk[z] →

∣∣∣
r2→m∞

0m

which cannot happen (without Meijer-control) at the harmonic radial boundary; still, re-
membering the diffeomorphic gauge symmetry can here act as a free (continuous) affine
connection between the dϕ-regulatory surface and the cos2 θ-projected sub-regulator den-
sities, it’s exactly sufficient to consider some divergent N∞ regulatory connection which
cuts off the radial gauge constraints at large r (explicitly seen by the λ→ λ−ωϕ displayed
on the φ-log branch.). This justifies the association with the hyperdimensional embedding
as a dimensionally confluent regulation mixing symmetry (or, a broken symmetry measure
density; or, as UV/IR mixing measure, here in the SL(2,R)×U(1)-spin blocking.).
Finally, it can be shown that the 0-mode solutions of L{ϕ,ψ} meet the constant frequency
separibility conditions generally:

{
Ψϕ
θ = c1 − c0 log cos θ

Ψψ
θ = d1 +

c0ωϕ
ωφ

log sin θ
and

{
Ψϕ
r = c1 − c0 log

(
1− r2

m

)

Ψψ
r = d1 +

c0ωϕ
ωφ

log
(
1− r2

m

)) (234)

With these 0-mode solutions in mind114, the next step is to analyze a specific perturbation.
As mentioned above, the exactly similar radial forms of the L{ϕ,ψ} operators canonically
lead to considering radially independent solutions at 0-order which may then generate
{r, θ}-seperable ansatz at O(α2) order. Consider the monopole-type partition states:

Ψ
(0)
ϕ = 1− c1 log(cos θ) , Ψ

(0)
ψ = 1− d2 log(sin θ) (235)

Noting that c2
c1
∼ −ωϕ

ωφ
gives a precise sense in which the field “tree-trunks" mix exactly at

the level of the longest dimensionalized velocity “gauge-branches" (as a feature of inductive
closure). Considering the discussion above predicated on the existence of a (bulk mediated)
IR-cutoff (so that the constraints may be modularly matched/the complete algebra is not
assumed totally decidable), this crossing perturbation should exactly represent by p-adic,
p∞, regulatory crossing features (with enhanced global algebraic symmetries); such as the
Ψφ field should be perturbatively stable (up to a possible r-renormalization surface).
Turning to the field equations (84), the constant frequencies guarantee dF = 0; then, the
degeneracy [45] condition reads:

F ∧ F = 2d2α
2 cot2 θ∂rΨ

(1)
ϕ

(
dϕ ∧ dφ ∧ dr ∧ dθ
+ α√

m
dt ∧ (ω

(1)
φ dϕ− ω(1)

ϕ dφ) ∧ dr ∧ dθ

)
(236)

Critically, the last line is peels off as a higher order correction, while the first term remains
as the magnetic dominance degree on this perturbative shell. In fact, regardless of being
met115, at O(α2) the degeneracy constraint is always only dual to time and, again, is closed

114Properly, Ψψ-constant (d0 = 0 = dψ) solutions must be trivial (in the Tangherlini geometry). Still, this
is not out of line with expectations: it may be that higher α-order Ψϕ modes can single-handedly “balance
" the angular momentum (chemical potential) dissipation (diffusion) under a proper seperability ansatz.
See (215).

115or, of the result being everywhere magnetic/globally determinate
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iff there exists a consistent harmonic compactiication (at r∞ )116

Notefully, this may be met three ways: a field redefinition d2 → 0, amounting to pushing Ψ

to higher α orders, or with asympotically flat field regularization, lim
r→∞

∂rΨ
(1)
ϕ → 0, or with

geometric framing, θ → π
2 . In fact, as discussed above, all of these features can be found in

the solution forest of AFS, here representing quasi-symmetrized T-shells at varying in/out
scatting ratios, which can be seen by exploring the higher harmonics of the solution trees
discussed above.
Accordingly, the constraint tree has been limited to finding a second order algebraic tree
pclosure (at this gauge point):

ΨMP
ϕ = Ψ

(0)
ϕ + α2Ψ

(1)
ϕ +O(α4), r0ω

MP
ϕ = αω(1) +O(α3), r0I

MP = αI(1) +O(α3) (238)

r0ω
MP
ψ = O(α3) , ΨMP

ψ = Ψ
(0)
ψ +O(α4) (239)

Note that
√
mωψ = O(α3) asks that the entanglement crossing flow be, additionally, mass[-

action] saddled (on each solution neighborhood). The FFE constraints read:

jµF
µ,{t,r} = O(α3) , jµF

µ,ϕ = c1α
sec θ∂rI

r3
, jµF

µ,ψ = −d2α
csc2(θ)∂rI

mr3
(240)

Immediately, the current must be radially independent117. This leaves a single (stream)
equation jµF

µ,ϕ = 0, ∂rI = 0. Assuming separability in the perturbative ϕ-flux and the
current, I, and considering out-radial gauge fluxes changes second order (and in the k = 4

116Then, it can be shown that the degeneracy condition flows as:

d ⋆ F ∧ F = 2d2α
2 cot2 θ∂rΨ

(1)
ϕ

[
−2 sec2 θdθ + ∂r ln

[
∂rΨ

(1)
ϕ

]
dr
]
∧
[
dt+

α

r0

(
ω(1)
φ dφ− ω(1)

ϕ dϕ
)]

(237)

By Stoke’s theorem (or Carton’s little formula), the
∫
dφ(·, ⋆) constraint flow is uniformly zero iff the

above is zero; critically, the geometric support drops out of the angular term, meaning that, outside
of the d2 → 0 limit, radial confinement renormalization must be expected at second order, ∂2

rΨ
(1)
ϕ =̂0.

This exactly amounts to a (shell-)frequency matching at large volumes and high frequencies, which is
exactly a Wilsonian-type field regulation. Notably, this is the proper point of contact with field redefinition
techniques, where pushing a U(1)-connected branch over the p(1)ϕ will result in the broken winding potential
gradient along the r-branch. Rather than pursue the k → k + 1 inductive closure, the proof will instead
continue as an extension induction with a complete closure {∂k < ∂k+1} ∧ {kr < kr+1 ∼ k1}; this
section will instead prove a condition about this state’s local forward differentiability and then close the
constructive loop at the highest connected out-point to produce the final PO21 ⋉

√
SU(2)2 × R2

∗ ⋊ U(1),
where the first L-adjoint product represents a prime spin idealization over the spectral pullback, which is
(effectively) pushed over the residual (spin) coordinate gauge on the RHS. It should be noted that this
is exactly the decomposition type expect from this classical Berry-contacted construction, and that this
bi-partite symmetrization matching lets the strongest of the topologically extended spin-rationalization
theorems be applied [34].

117or asymptotically r-sublinear: x2∂xI → 0
∣∣∣
x= 1

r

⇒ I[r] ∼ rα
′−1
∣∣∣
α′>0

(looking like a Post-Newtonian

potential constraint, as expected); this again shows a bridge to effective field theory
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space) gives: Ψ
(1)
ϕ = f(r)g(θ), I(r, θ) = IrI(θ), leaving:

− 4r4
(
I(θ)2

)′

c1mr2 (m− r2) d[sin2 θ]
= (241)

+
∂[sin 2θ]

(
m3 − 2m

2

c1
r2( c3c1 + d2c3

c21
) + r6c23(1 +

d2
c1
)2
)
−
(
m3 − 2c3m

2r2 + (1 + d22)c
2
3r

6
)

m
c1
r2 (m− r2)

+f(r)g(θ)

(
(2 csc 2θg′(θ)− g′′(θ))

g(θ)
+

(
r
(
m− r2

)
f ′′(r)−

(
r2 +m

)
f ′(r)

)

rf(r)

)

Noticing the abundance of trigonometric functions, and that g(θ) = sin2 θ = T ϕ(4)(θ) is
an r-dependent solution higher on the functional tower, making separability justified as
a perturbation inference.118 Then, it can be shown that requiring uniform separability
requires an (almost everywhere) unique set of choices119. In fact, using the fundamental
theorem of algebra on the (AB − C)-rule in (hypergeometric)PDE analysis120 allows an
immediate deduction on the mininimal functional as I =

√
c4 − c5 sin4 θ. Finally, choosing

d2 ∼ 0 amounts to looking for an exact 1−1 conformally matched phase point between the
regulatory p∞ extensions and the usual, r → ∞ harmonic compactification (as a scaling
dimension on the dual gauge magnetification). The resulting analytic ansatz is121:

f ′′(r)−
(
m+ r2

)
f ′(r)

r3 −mr +
4f(r)

m− r2 −
c21(4

(
c23r

6 − 2c3m
2r2 +m3

)
− λr4)

c1mr2 (m− r2)2
= 0 (242)

Note that the singular point of (242) is at the perturbatively stable (unspinning) horizon,
r =

√
m, which only matches the coordinate singularity when α = 0; thus, it should be

considered to control an independent set of integration constants (“shadow constants") rep-
resenting the primary idealized interloping between the confluent matching modes. As seen
shortly, it will be meaningful to select these constants so to be running cutoffs(/shadow
fluxes) in the p∞ regime.

118Notably, this is functionally the same O(α2), Ψϕ θ-product decomposition as in Kerr.
119Unless θ ∼ π

2
, in which case this equation can be reduced to a modular matched (polynomial amplitude

patch) unwinding as an r-point rescaled gθ-flow:

0 ∼nπ 2
(
I(θ)2

)′
+ c1m

(
m− r2

)
f(r)

r2
g′(θ)

∣∣∣∣∣
θ∼π

2

⇒
f(r) = 2A

1− m
r2

g(θ) = I(θ)2−B
c1mA

This is the modular equivalence of the stream equation, a.k.a., an entanglement stream equation (eSe);
note that A can be chosen to fix a value of f(rA) = 1; then, in fact, r 1

4
=
√
2m, implying that the radial

juncture (identified above) indeed behaves like a(n exact) weak gravitational propagator under a Hawking
radiative (bulk) connection, as expected.

120and that cosθ sin3 θ = 1
8
(2 sin 2θ− sin 4θ); renormalizing the current amplitude to the source mass-shell

gives c5 ∼ ±c21, and positivity towards the perturbation stable horizon as m→ 0 decides upon the + choice,
which in turn keeps the source pole positive (when moved to the RHS). Accordingly, this normalization
amounts to the out-coordinitization, or a (−, +⃗) type orientation (on the pull/in space); in fact, it will
be shown that the other orientation indeed presents as as a scattering parameter (or, as generating a
(+,−,−,−) pull space).

121Defining an amplitude scaled parameter c21λ[c1] := c5
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Denoting the (in-homogeneous) integration constants as {C1, C2} gives the following radial
contact potential at the Tangherlini stable (mass-absolute) horizon (with exactly suggestive
out-branched Fr geometric couplings):

f(r) =
C2 − 2c1m(1 + ln r2)

2m
(243)

+c21(4m(−1 + c3)
2 + λ)




ln[−m+r]
4c1m2

(
m+ r2 ln(

√
−m+ r2))

)

+ r2

4c1m2

(
(1 + iπ − lnm) ln

(
r2

m

)
− 2Li[1− r2

m ]− ln r2 lnm
)

(244)

+
r2

c1m2




mc212Li[1− r2

m ]

+ ln[
√
−m+ r2]

(
mc1(2c1(m ln r2

m − 1 + 2c
3
2
3 cosh ln

√
c3
2 )− C2

)

+ ln
√
r




iπc21λ− 2c1C2
c21m
2

(
ln r + 1 + iπ − 2c3(1− iπ

√
c3
2 sinh(ln

√
c3
2 ))
)

(
1
4 + (−1 + c3)

2
)
π2

6 + 1
4 (1− iπ)

+c21m(C1 + c23 − iπ(1 + 2c
3
2
3 cosh ln

√
c3
2 ))







(245)

At this point, the problem has been sufficiently collapsed towards this radial string (d = 5

stream) equation to give latitude towards the integration constants(/field regulation); since
this perturbation was selected at a unit index dimensionalization d2 ≡ 0, it can be seen that
corrections to the field cannot effect the degeneracy condition, amounting to the selection
of uniformly stable crossing junctures.122

So, hoping to extract pr∞ extensions with some clear embedding of the usual harmonic
measure, ∞, categorically relies on a field regulation; having pushed the stream-form into
the r-axis, this symbolically amounts to a Λpr cutoff form, or a far field integration cut-
off/counter propogator in r. Particular, these terms can be considered emergent counter
radiators amounting from a classically squeezed measurement; such as, the divergent cor-
rection (stripped off) is exactly a spontaneously broken index that was separated from this
measure by d2 = 0. Notice that is exactly consistent with the kinectic-holography argu-
ments made in the section above 165
Considering the T-horizon stability as (uniformly) necessary (and otherwise uncorrectable

122Considering the uniform uniqueness of Lesbesque measurable sets is only given up to the maximal real
harmonic embedding, the discussion above shows this perturbation to have a strong stability criteria on
the r-shell that can be p∞ relaxed by involuting the Meijer ghost constraint (basis) with differing harmonic
regularization points (equivalently, across differing Wilson cutoffs). This is easier here because of the
symmetric θ ∼ π

2
index, which always identifies these cutoffs with some set of hyperfine continuances (or,

p∞ extended fields). This can be tracked by noting the polylogarithm induction formula, i+1Li[z] =
t∫
0

iLi[t]
t

;

equivalently sLi[e
2πim
p ] = p−s

p∑
k=1

e
2πimk
p ζ(s, k

p
), and ζ(s, k

p
) =

∞∑
n=0

1
(n+a)s
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with the (Lϕφ contacts) finds the ansatz:

lim
r→√

m
f(r)→ mC1 + c1

(
−(1− π(π6 − i))(1− c3(2 + c3))− 2c3

(
1− c3

(
iπ
24 − 1

))

3 ln 2(9c3 + (1 + c3 + c23) ln 2)

)
(246)

+C2

1 + ln 2√
m

2m
+ c1 lnm

(
iπ − ln

√
2− 7

8(c3 − 1)2 lnm

−2c3((1 + iπ + ln
√
2)− 3c3

8 (1 + 4iπ
3 + 2

3 ln 2))

)
(247)

+
c1 ln(r −

√
m)

2




C2
mc1

+ λ
2m + 3(c23 +

2
3 ln 2 (c3 − 1)2)

−(2− (1− c3)2) lnm+ λ
2m ln(2

√
m)

+((1− c3)2 + λ
4m) ln(r −√m)


 (248)

Regardless, there exists freedom in how to choose the integration constants (C1, C2), but
not enough latitude to guarantee this solution be well defined on the T-stable horizon
(which instead fixes λ = c5

c21
), a very general expection. Still, C2 can be seen as connected

the T-stable free parameters to the asymptotic states123, which (combined with the ultra
large slow renormalization) presents as an asymptotic scaling form(242); taking the simplest
branch matching constant in each case yields124:

f ∈ R∗[r] ⇒
c5 → −c21(−1 + c3)

2

C1 → c1(α1 + 2ic23β)

C2 = 4c1m(( c32 + 1)2 − (1 + ln r0))

(249)

f [r] = −c1




2 ln r + ir2c23(π + 2mβ)

− r2

m


 m

(
α̃1 + lnm

1
m

)
+
(
1− m

r2

)
c
3
2
3 cosh ln

√
c3
2

2Li[1− r2

m ] + ln[−1 + r2

m ]
(
ln r2

m + ln m
r2

)




 (250)

Then125, by direct inspection, the imaginary portion of the constant can be clearly related to
it’s square renormalizability as a rolling mass phase. For now, consider the (asymptotically)
single patched phase legs designated by126 β = − 1

2m ; accordingly, this should be expected

123And can be seen as a reduction from the lim
r→√

m
ln
√
−m+ r2 ln r2

m
branch ambiguity that is, here,

resolved by the two-polylogarithm; generally, this can be collapsed to a single U(1)-interloping phase by
the appropriate choice of C2, as seen shortly.

124and where the ridiculous final term is meant as a reminder of the polylogarithm’s base-2 connection to
the fundamental idealization form

125the final term in the last line can be seen as a simple reminder that this closure is nice because the
field is a propogating logarithmic scalar field and thus exactly closes it’s (harmonic moment) poles over the
log-branches.

126It can be shown that lim
r→∞

f [r] =
c1r

2(−6+12c3−π2+6mα+3ic23(π+2mβ)−3(lnm)2+6c23 ln r)
6m

, and lim
r→r0

f [r] =

c1
2

(
−2 + 2mα+ ic23(i+ π + 2mβ) + (c23 − lnm) lnm

)
, so that β = −1

2m
eliminates the complex compo-

nents at both limits. Further, ∆∞
r0 [f ] :=

lim
r→r0

f [r]

r20
−

lim
r→∞ f [r]

r2
=

c1

(
π2−3c3(4+c3)+3c23 ln

r20
r2

)

6r20
; note, at

the monopole Znajek point, ∆∞
r0 [f ]

∣∣∣
c3=

1
2

= c1
6r20

(
π2 − 33

22
+ 3

4
ln

r20
r2

)
. Then, using a choice for c1 ex-

plained below (with J the spin of the black hole), ∆∞
r0 [f ]

∣∣∣
c3=

1
2

= iJ
24r30I[

π
2
]

(
π2 − 33

22
+ 3

4
ln

r20
r2

)
=

−iJ
24r30I[

π
2
]

(
33

22
− 3

4
ln

[
r20e

4π2

3
−ln r2

])
. Because f represents the only r-stable perturbation function, this
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to calculate the longest non-thermal mode emerging from this perturbation (known as a
von-Neumann instability of this perturbation shell).
Next, Re[C1] gains the interpretation as the shifted bare mass (as r → √m), α̃1 = α1 +

lnm
2
m . Note that in the large mass limit, α̃1 ∼ α1. Further, note that lim

r→∞
f(r) =

lim
r→∞

r2

r20

(
lim
y→r0

f(y)− π2 + c23

(
c1√
c3
cosh

√
c3
2 + 3 log r2

r20

))
; in particular, this shows exactly

what would be expected in a conformal loop, namely that scale invariant running127 ( rr0 ∼

1) gives:
[
lim
r→r0

− lim
r∼r0→∞

]
f(r) = −π2 + c1c

3
2
3 cosh

√
c3
2 . Thus, it should be expected that

c3 tunes the effective tension between a horizon focalized string dynamically attached to a
large, continuously scaling open string. In this (AdS-CFT friendly) version of the peeling
setup it is immediate that c3 represents a Bloch defect state and, accordingly over k = 4,
a (continuous, squeezed) thermal connection to the gravitationally partitioned vacuum.
Recollecting everything, the soft magnetic form factor displays as:

ΨMP
ψ = 1 , ωMP

ψ = 0

ωMP
ϕ =

α

r0
c3 , IMP = αc1(c3 − 1)

√
c∗4 + sin4(θ) (251)

ΨMP
ϕ = 1− c1 log

(
rα

2 sin2 θ cos θ
)

(252)

+c1
α2r2 sin θ2

2m

(
2Li[1− r2

m
] +m

(
α̃1 + lnm

1
m

)
+
(
1− m

r2

)
c
3
2
3 cosh ln

√
c3
2

)
,

where the last line was rescaled as c∗4 =
−2c4

mc21(c3−1)2
.

3.10 Bulk Power Regulation

The equation for the total energy flux is [46]

P = −2(2π)2
∫

(ωϕ∂θΨϕ + ωψ∂θΨψ)Idθ (253)

the resultant integrand for the perturbative solution becomes:

dP

dθ
= −2(2π)2c21c3(1− c3)

a2

m2

√
c∗4 − sin θ4

(
tan θ +

α2

2m
cos θ sin θ

dP (2)

dθ

)
(254)

where,

dP (2)

dθ
= −c3m(4 + c3) + 2r2

(
2c3 +mα1 − 1 + log(m

r2
)(m
r2
− log r2)

+ log r(c23 − log(r2)) + Li2(1− r2

m )

)
(255)

conformally centralized limit operator is a proper r-operator on the entire perturbation; considering every-
thing unitless as partition measures (and the J-envelope as the sector selection), 32

22
represents a sorting

density from the three degree of freedom configuration space to a two degree of freedom space while the
second term represents −3

4
-weight degrees of freedom running from a ln r defect in Gaussian partitions of

the event horizon r0.[53]
127or, under p∞ extension that is strongly additive to (all the harmonic numbers; a.k.a., the total loop

operator scale) both limr→∞ r2

r0
→ lim

p→∞
λpr

2+p

λpr
2
0+p
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The value of c∗4 is then immediately fixed by the only divergent term in the domain of
integration, lim

θ→π
2

tan(θ) ⇒ c∗4 = 1, which requires the current profile to uniformly close as

θ → π
2 . Consequentially:

IMP = iαc1(c3 − 1)

√
1− sin4(θ) (256)

Performing the integration over θ ∈ [0, π2 ],

P

2
= −

π
2∫

0

dP

dθ
= −iα

2c21c3(1− c3)
4r0

(
(2 + π) +

α2P (2)

8r0

)
(257)

where, (258)
P (2)

2
=
π

8

dP (2)

dθ
(259)

Note that this is perfectly well defined at O(α2) order. Now, as noted above, there are two
distinct cut surfaces (the event horizon at the confluent matching surface); starting with
the far field, it should be expected that the far r−gauge may become membrane dynamic.
Accordingly, under the conformal hypothesis, some unitless adjoint radial coordinates, r =
Γ
√
m, must be exclusively relevant; then, if we choose

α1 =
c1
m

(
1− 2c3 +

1

2
lnα+

π2

6
+ ln r0

(
1−
√
2c3 ln Γ sinh ln

c3√
2

)
+

4χ[c3; Γ]

α2πΓ2
sinh ln

α2χ[c3; Γ]√
2 + π

)
(260)

where χ2[c3; Γ] := c
3
2
3 π cosh ln

√
c3
2

+ log Γ (261)

Now the corrected power is real and square measurable (and exactly one loop order
higher)128:

−PΓ

2
=
πα4c31c

5
3(1− c3)Γ2

16r0
(262)

It’s important to remember that the regulators exist in the f(r) integration domain, which
give them immediate extensions into the solution diffeomorphic dualities. Importantly, the
final term can be considered a loop-induction step by Fermi’s Golden rule iff Γ is interpreted
as a mass-tunneling branch (running both ways in the 1̄0⊙ 10 regulation topology), which
can be explored in a number of ways from even this classical string OPE129.
In fact, considering all the regulator structures pushed into the r∞ space gives wide birth

to this coordinate choice; so, U(1) rescaling as Γ ∼ e
−πc3

(
1+

c23
4

)
+i

(2+π)b3
α4 χ

(2+π)

α4

3 implies

128And resemble a mean field scattering defect (under the interactive picture) as c21PΓ

2mΓ2 =
πα4c51c

5
3(1−c3)

16r30
129note that, on the first continuous branch, χ ≡ πc3(1+ c3

2
), which makes the effective (massless) regulator

frame effectively super-rotational (again, on the lowest branch) at fixed (α, c3). By power scaling arguments
on the massive field Γ ∈ Fr0 = Rp⃗∞

R
√
m , or < Fr0 : Rp⃗∞ mod

√
m >=< Rp⃗∞ > by Hilbert’s Nullenstantz, or the

second isomorphism theorem (on the maximally decidibly partial logic algebraic extensions/completion)
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χ2[c3;χ3] = ln ei
b3(2+π)

α4 χ
(2+π)

α4

3 which gives α1 the form:

α1 =
c1
m

(
1− 2c3 + lnα+

π2

6
(263)

+ ln r0

(
1−
√
2c3

(
2 + π

α4
(lnχ3 + ib3 − πc3(1 +

c23
4
))

)
sinh ln

c3√
2

)
+

2
√
2 + π

α4πχ
2
√

2+π
α

3

(lnχ3 − 1)

)
(264)

Finally, shifting by a unit rescaling χ3 → χ̄3 = χ3e and coordinate field redefinining one

more time as χ̄3 → χ̃3 = χ̄
2(2+π)

α2

3 produces:

α1 =
c1
m




1− 2c3 +
1
2 lnα+ π2

6

+ ln r0

(
1−
√
2c3

(
2+π
α4 (1 + ib3 − πc3(1 + c23

4 ))
)
sinh ln c3√

2

)

+ e
− (2+π)

α4

πα2
ln χ̃3√
2+π

(
∂̃3(ln χ̃3)− π

√
2 + πe

(2+π)

α4 ln r
c23−2
0

)


 (265)

In particular, notice the appearance of an effective delta function around the unspinning
limit ∼α2∼0 δ(2 + π), which results from this naive calculation’s use of rescaling without
the exact bulk contact and is exactly trying to “square the circle" exactly into one copy of
the spin regulators; indeed, π = −2 ⇒ A

(−2)
⊙ [r] = (i

√
2r)2, or, defining the two-confluent

diagonal as r/⊙ =
√
2ir, A−2

⊙ [r] = r2/⊙ This is exactly as expected because this presciption
is very reductive130: effectively, this calculation truncates spacetime at some fixed radius
(implicitly, r > r0) and begins loop correcting at all orders (the in bulk), as seen by the
high variablility of this m3 partition (on the scale of the perturbation).
Typically this is a bad sign for power spectra because it signals an ill-defined vacuum state;
but, again, this is conceptually a diagnosis of the renormalization current of the vacuum
(which only ever needs to close up to it’s own renormalization field’s closure). In particular,
this example shows that spin-interactions in the conformal information measures yield well
defined corrections with a single field extension, namely pα ∼ {e

2+π

α4 : α ∈ (0, 1]}, that
represents a uniform loop at the next order. The claim is that a simple knot, representing
unification, descends deeply into a complex field of regulators and can only be uniformly
sorted at some higher order (specifically, under 2δ(= 24− 3 maximal convolutions) before
a time stable measurement emerges. Toward that, it has been shown that the log-type
solutions have a near horizon power partition that can indeed be interpreted as a classically
scattering object.
Alternatively, the current could be considered real and the field could be considered (a)
spinning (ghost) simply by defining c1 in terms of c5 (instead of vice versa). So, considering

130or, exactly as reductive as the section above
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the near horizon limit (and renaming c5 = bϕ, so c1 → i
c3−1

√
bϕ
m ):

dPH
dθ
≈ −bϕ

m

c3
√
m
√

1− sin(θ)4

4m2(1− c3)
(a2c23
m

(
π − 4mα

√
m

bϕ

1− c3
c3

)
sin(2θ)− 4i tan(θ)

)
(266)

⇒ P

2
=

π
2∫

0

dP

dθ
= − 1

16m

c3
(1− c3)

1√
mγ2

((
2α2π(1 +

2

π
)− iγ2

)2 − 2iγ3(1 +
2

π
)

)
(267)

given a loop rescaled parameter γ: α =
1

4π

√
bϕ
m

γ2

a4
γ ∈ R ∨ γ ∈ iR (268)

Let γ = −2
c3
(1 + 2

π ); in the above, a negative α corresponds to a completely imaginary loop
rescaling γ → ±iλ and a totally imaginally second order term O(iλ2), and a real O(±λ3).
In fact, we see that this parameterization has a "wedge" at the origin: {α} = {γ ∈
R} ∪ {iγ}|γ∈R, with a sign freedom in the λ subfield. Remembering that the initial reality
condition on α was to make the perturbative solution real on the horizon, we can introduce
a relaxation to this condition by allowing:

γ2 ≈ ϵ− 2πi
a2

m
(1 +

2

π
) where,

|ϵ| >> 2πα2(1 + 2
π ) ⇒ α >≈> 0

|ϵ| << 2πα2(1 + 2
π ) ⇒ α <≈< 0

(269)

giving131

P

2
≈ − 1

16

c3
(1− c3)

ϵ
mϵ√
mγ2

(
1− i

√
i

ϵ
(1 +

2

π
)

(
2π

ϵ

a2

m
(1 +

2

π
)− i

) 3
2

)
(270)

= − c1
16

√
c23

m2bϕ

ϵ2

γ2

(
1− i

√
i

ϵ
(1 +

2

π
)

(
2π

ϵ
α2(1 +

2

π
)− i

) 3
2

)
(271)

In fact, it can be readily shown that both limits of the "nearly-real" regularization schemes
produce a dominately real P . We note that epsilon has the same unitlessness as the
flux perturbation, and that ϵ

m have the units of a second-order frequency, [ ϵm ] = [ a
2

m2 ]

which was originally unperturberbed by the single spinning axis’ reflection symmetry
(ωMP = a

mω
(1) + O( a

3

m3 )). This fits the idea that the 5-d perturbation benefits from a
half-order fixing in the regulators that allows surprising control.

What’s left it to demonstrate this α2 splining does indeed inductively close over the linear
branch. This will be done two ways; firstly, it will be shown that the 0th solutions strongly
separate from the O(α3) perturbations 132) that it separates strongly from the O(α3=2+1)

131Note that the ϵ−critical scale is exactly the Goldstone re-angularization, or π → 2 ⇒ |ϵ| ∼critical 4πα
2

132(so they can be added as free correctives on each iteration towards a branch twining at <
O(αn+1, O(αn+2) >, which amounts to showing the inductive forward step ∂k ≤ ∂k+1 ∧ kr < kr+1;
then, showing that the divergently complex O(α2p)-spin corrections are indeed closed and complete over
a finite set of SU(N) stabilizers (shown shortly) amounts to estabilishing the (pF) group algebra must
have a modular representation. Further, because the induction (co-algebra) was adjointly framed, this
also closes the “knot index" hypothesis used to unify Newtonian Gravity and Classical Electromagnetism

123



interactions. Even better, it is possible to directly infer the largest possible U(N) state
(a.k.a., the thermal state), which will allow an exact construction of a pointwise matching
membrane (moving from out to in).

3.11 O(α3)-matching

This method has the clearest analogy to standard perturbative techniques. The monopole
construction has obvious limitations, notably that it involves an infinitessimal current sheet
which forces the seperability of the spacetime along θ = π

2 . Exactly as in classical elec-
tromagnetism, we may assume a leading order di-pole (α3) dependence on the (thermody-
namic) length:

ΨMP
ϕ = Ψ

(0)
ϕ + α3Ψ

(3)
ϕ +O(α4) (272)

while leaving the other perturbative seeds the same. Additionally, as mentioned in 3.3, far-
field perturbations should asymptotically stabilize the outer-light surface. Equivalently,
radial functionalizations ({f (3)r , g

(3)
r }) should have asymptotic units much longer than the

largest thermal length: r >> r0. Equivalently, this condition can be functionalized by
rescaling the radius into thermal units and demaning that infinitessimal coordinate flow be
larger than the fundamental phase-space unit: rα = r̄ >> αr0; then, the di-pole stream is
unable to “excite" the region inside the light surface. This thermally monomic smoothening
transform helps make the glueing procedure perturbatively analytic; it also acts as a way
to gauge how long the next smallest (field α−polynomial) induction co-cyle must be133.
Indeed, performing this coordinate transformation and considering radially functional cur-
rent distributions, it can be shown that the field equations reduce to:

jµF
µ,t = O(α7) , jµF

µ,ϕ = O(α7) , jµF
µ,ψ = 0 , jµF

µ,r = O(α7) (273)

and the final equation can be made O(α7) with:

θIr̄ → c1c3

√
±C2

1 +

(( r̄
α

)2
+ r20

)
sin4 θ >> C1c1c3

√
±1 + 2

r20
C2
1

sin4 θ (274)

It’s important to note the high degree of uniformity in the field equations, which shows
the Ψ

(0)
ϕ trunk can be readily deformed (in the perturbative spline sense) into functionally

large dipole moments with no constraints; moreove, this von Neumman propagation is
uniform over a minimal constraint on the asymptotic current (which represents exactly a

(pointwise) iff there is a freely deformable R(4)
∗ × R(4) subindex. Then, under the interpretation that

the ωϕ → −ωϕ Z2-symmetry represents charge duality (of the ultra weak gravitino), seen quickly from

∆
ωϕ
Z2
c

3
2
3 cosh ln

√
c3
2
→ −ic

3
2
3 cosh[ iπ

2
+ ln

√
c3
2
] and ∆

ωϕ
Z2

ΨMP
φ → −i c1c

3
2
3 α

2r2 sin2 θ

2r20
cosh[ iπ

2
+ ln

√
c3
2
]. It’s

also important to note that the asymptotic charge dual scales up equal and opposite to the corotation c3

solution Γ∗ ∼ e
πc3

(
1+

c23
4

)
+i

(2+π)b3
α4

χ∗
3

2+π

α4 . This exactly identifies this state as the dual measure (as given

above for the r → infty power matching) by the choice Γ2 ∼ χ
2(2+π)

α4

3 ; critically the signs of each power
profile (P, PΓ, PH) are exactly determined by the sign of −1 ≤ c3 ≤ 1.

133remembering the monopole solution was found to have a alternating (weakly confined) co-index( or
that it’s corrections UV/IR mixed as O(α±2n))
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monopole-type source).
Most importantly, as seen in [46], this current is nearly a function of the vertical field,

θIr̄[Φ
V
ϕ ∼ r2 sin2 θ] ∼

√
±1 + ΨV

ϕ

ω
T0
ϕ

, where ωT0ϕ is the Tangherlini Ψϕ-entire (Ψφ turned

off) vacuum velocity. Therefore, this completes the forward inductive proof iff Ψ̄
(ϕ)
r̄ is an

invertable function of
ΨV
ϕ

ω
T0
ϕ

(or both separately), as similar to what was mentioned above (is

to be expected with a forward closed induction); more critically the central index used here,
θ ∼ π

2 implies ωT0ϕ = sin−2 θ ∼ 1, so the pgluing used here is in fact exact on the symmetric
plane θ = π

2 . Then, the RHS represents a minimal aymptotic r-density condition on the
V-out field topography along the symmetric (indexing) plane or, dually, a V-constraint on
the maximally in-current.
Meaningfully, this perturbation has a uniform bound when the θIr̄ exceeds a critical value,
qualifying this regime as a “slip-stream" asymptotic state whereby strong resonances in
either scale can be excited through UV/IR (accordingly, out-to-in push-/in-to-out pull-
)mixing dualities (as considered by a harmonically fixed measure); accordingly, it can also
immediately be inferred that the extra field represents a confinement parameterization
between r-separated conformal blocks, which is consistent with it’s association as a sub-
partition above.
Still, this proof is brash and leaves the (closed) equations open at O(α8) without an absolute
stability analysis. To exactly control this method, higher order perturbative terms must
be [k,O(αk)]-added to ωr̄ and Ir̄ and new partionable functional basis can be decidedly
added to balance on the relatively stable O(αk) surfaces and exactly stabilize the O(αl>k)

corrections truncated at each grading [23]. Considering the solution gluing constraint
outlined in [46]:

I∞(Ψ∞) = ±ω∞
ϕ r sin θ cos θ∂θΨ

∞
ϕ ∧ I(1) ∼ i

√
1− 4e2χ sinh2 χ

∣∣∣
χ=ln cos θ

(275)

⇒ I(1)[χ] = −8r0e2χ sinh2 χ(1− ω(1)[χ]) (276)

This gives three ways to produce a zero current matching domain:

χ→ −∞
χ→ 0

ω(1)[χ]→ 1

⇐⇒

θ → (2n+1)π
2

χ→ inπ

ω(1)[χ]→ ω(1)[χϕ, χφ] = 2eχϕ+χφ cosh(χϕ − χφ)
∣∣∣∣∣

χϕ[θ]=χφ[θ+
π
2
]

χφ→̄0

(277)

In fact, considering the spin solution, the final condition is met for all χφ ∼ Ψ(0), while the
first implies that d2 cannot be strictly taken to zero non-trivially134. Put another way, d2 is
a convexly connected scalar field on the symmetric plane, θ = π

2 ! Or, the symmetric plane is
always magnetically protected because it acts as a continual current gap between different,
non-degenerate configurations! In this sense, noticing that the decay branches may be

134again unless θ ∼ (2n+1)π
2

in which case the condition is smoothly matched by the limit space regardless
of d2
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continually r-indexed along the free symmetric plane, the inclusion of an asymptotic r-cut
is more justified (exactly as the d = 5 analogue of the “spark gap" in [37]); the diference
here is the extra geometry, which produces different conformal towers in the well defined
function space.
In fact, because of this spacetime’s unique relationship to canonical measurements (spin,
SU(2)) across physics, there exists an even stronger (loop virial) closure of this boundary
matching.

3.12 Conformal Light Envelope Matching

In addition to classifying globally analytic field solutions (with decided uniformity bounds),
it is possible to classify field perturbations their functional effects on bulk quasi-invariants,
like the light surface (defined by F 2 = FabF

ab = 0), [45]). In d = 4, the value of this
invariant relies on the degeneracy condition representing an exact topological splitting
index, namelyF ∧ F = 0 ⇒ FabFcdv

cwd = 2F[acv
cF|b|d]wd, or F = α ∧ β s.t. αa ∼ Facv

c

and βb ∼ Fbcwc; then, the sign of F 2 determines whether both α and β are spacelike (+) or
if one of them is timelike (-). Accordingly, F 2 > 0 represents (almost) everywhere spacelike
boundary conditions directly orthogonal to the timelike current symmetry (by Fabjb = 0,
and are hence time decidable); dually, F 2 < 0 represents (almost) everywhere timelike
boundary conditions (which represent space decidability, as the fields near the electric
boundary contacts become strongly background ordered at the exact contact time).
Heuristically, it may then be expected that F 2 → 0 presents a razor of indecidibility. In fact,
because of the block separability of the Kerr metric, this allows strong statements about
field confinement in fully interactive, n-black-hole matching membranes [45]; in particular,
electric moments must always be surrounded (quasi-isolated) by magnetic stabilizers in
black holes many-body problems up to closed light surface crossings, which act as directed
causal-membranes between quasi-localized(/separated) electric sub-fields).

In k = 5, degeneracy of the vector gauge field is (generically) not as clear cut because
the field tensor’s self-wedge is not antisymmetrically onto the determinate symbol; that is,
unless θ ∼ π

2 , in which case the diffeomorphic structures allowed of φ → φ̃ gain access to
an entirely strong UV weight (at 1-loop, ∼ ∏

i
Fi[∗]gi[tan θ]). Critically, this means that

degeneracy, as a self-wedge measure of the vector-gauge tensor, has restored meaning as an
antisymmetric symbol (with a non-Jacobi weight). To be more precise, consider F 2 with
only 0th order, Ψϕ perturbations: f(r)→ 0 and c2 ∼ 0 :135

F 2 =
8c21

(
α2
(
α2c23 sin

2 θ
(
α2 + tan2 θ + r2

r20

)
+ c3 tan

2 θ
(
c3
r2

r20

(
α2 + r2

r20

)
− 2
)
− 1
)
+ sec2 θ

(
1− r2

r20

))

m2
(
−α2 + 1− r2

r20

)(
α2 cos 2θ + α2 + 2 r

2

r20

)2

In fact, the light surface has a very physical interpretation in terms of in-sheet scattering:
135Most precisely, c2 ∼ 1

∞
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Figure 2: In particular, note that, for both single spinning Meyers Perry and Kerr,
2π2TR = 1−α2

2α2 , but this is enhanced in Meyers Perry such that 1−α2

2α2 = S−S+

(4π2)2
(

J√
−2π2

)2 .

Enforcing S+S− = 4π2J2 requires U(1) extension, but then it can be shown that α ∼ 1√
2

represents a “Wick phased" stability point. In particular, notice that, at this spin rate, the
monopole Znajek spin parameter is exactly identified with its higher order, cZ3 = 1

2 = α2
0.

In the above diagram Gold corresponds to c3 → 1
2 , Blue to c3 → 1

2α2 , Green to c3 → 1+α2

2α2

and Purple to c3 → 1−α2

2α2
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it represents a holonomic sheet constraint. 136 In d=5, the toroidal (universal) sector is
d=3 dimensional; as such, it can be naively deduced to have some kind of CFT3 product
construction in a conformal representation and further, because this black hole only has a
single spin and the electromagnetic field has only a single velocity, we can dually naively
infer that the induced CFT3 has some exact momentum modes 137. Considering the modes
as independent but coupled, it would then be expected that they would be related by a
purely geometric term; then, expectantly

p2ψ =
g∂ϕϕ

g∂ψψ
p2ϕ = (r0ω tan θ)2 (278)

and, considering a far field, ψ-quantization of the light radius, we can consider: (279)

r̃ψLS

r
(ϕ)
LS

= p2ψ ⇒ rψLS ≡ r̃
ψ
LS = (r0ω tan θ)2rϕLS = r0{r0ω sec θ tan θ, r20ω

2 tan2 θ} (280)

This F 2
(0) = 0 equation is quadratic in r2; therefore, four radial light distances can be

immediately solved.138

Consider the lowest order values of the light surfaces (around small α = 0): F 2[r] = 0

⇒ r ∈ {±r(0)+ ,±r(0)− } ≈ r0{ csc θc3α
, 1}; critically, this is the light surface as measured in

the k = 5 out topology, which is exactly suppressed to d = 4 compact diffeomorphic
charges on the symmetric plane. Because a dimension is “squeezed out" of the accumu-
lation branch it is necessary to calculate the projective Jacobian139. Accordingly, more

136For example, in d=4, if we consider adding a small set of nearly massless charge carriers (so we can
regard the action as having a simple auxilary plasma term) then the light surfaces represent effective sheet
horizons: surfaces which particles are either forced to traverse or are unable to cross (depending on the
specifics of the particle spin states). Further, this example is nearly the same: although the toroidal sector
is here 3D, Ψψ is fixed to a constant almost everywhere so we may regard the sheet scattering as quasi-2D.
In fact, looking at the r-independent 0−mode solutions, this quasi-1+1 nature of these solutions can be
directly seen by examining (??) that either flux is uniformily constant at either boundary of this gluing
patch, Ψ

(0)
ϕ (θ = 0) = 1 = Ψ

(0)
ψ (θ = π

2
), and conversly divergent at the other boundary Ψ

(0)
ϕ (θ = π

2
) =

∞ = Ψ
(0)
ψ (θ = 0). Then, interestingly, these log solutions can be considered boundary sub-indexes of flux

singularities: (Ψϕ,Ψψ) ∼ (∞,R) = (Ψ
(0)
ϕ ,Ψ

(0)
ψ )|θ→0, (Ψϕ,Ψψ) ∼ (R,∞) = (Ψ

(0)
ϕ ,Ψ

(0)
ψ )|θ→π

2
!

137Induced by the representative algebra, HCFT3 → HS1
Lψ

×S2
L2
ϕ

. We note that the ϕ direction is canonical

from the line element: ds2 = ds2[t, ϕ, r, θ] + r2 cos θ2dθ2 has a natural submetric away from the global
boundaries, θ ∈ [0, π]. This induction is ultimately from the ISM construction of the black hole, which
endows a global space-like charge at θ = π

2
138Regardless of their exact profile, it can be shown that r+ > r− unless: |c3|α > | csc(θ)| ≥ 1. This is

exactly the condition that ωϕ ∼ O(1), which strictly violates our perturbative assumptions (by setting a
[non-carried] sub-scale on α). This gives the intuition that the observed interaction should “twist" out.

139This comes from the Wronskian method applied to the induced metric; note that, forall y′′ − b[x]y =
a[x]y′, a[x] = ∂ lnW ∼

√
K = ∂ ln gφφ = tan θ; noticing cos2 θ∂θ(β tan θd(φdφ)) = 2β sin2 θdφ2 →θ→π

2

2βdφ2 shows, by replacing a[x]y′ = tan θd[φdφ], the symmetric plane asymptotics should be linearly
rescaled by β tan2 θ, where β is the relevant modular parameter (when considered as topologically flowed

constraints along the dφ modular expansion). Then, notice lim
θ→π

2

r
(0)
−
r
(0)
+

= αc3 is a constant (and well defined

over α ∈ (0, 1)). Note that this is effectively what was done before (using tan2 π
2
∼ sec2 π

2
), but here it

was shown that this is the correct flow onto the compactified φ-patch. Then, all together, the complete
rescaling, (αc3 tan θ)2, is a projected θ ∼ π

2
juncture quantized in terms of the T-symmetric effective light(-

surface) spacing. Note that if this effect is included in the discussion C⃗ that this amounts to C⃗dq → C⃗(dq)3,
which explains the necessity of a strictly Euclidean d = 3 stabilized code subspace as a consistent contact
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relevant asymptotic radii should be tan2 θ rescaled around the symmetric plane to param-
eterize the divergent number of diffeomorphic symmetries suppressed on this plane; are
those which diverge ultra fast (in light-surface relevant units) on the symmetric plane
{±r+,±r−} ≈ r0αc3 tan θ{sec θ, αc3 tan θ} 140. In particular, note that there is in-
herent tension in between the small alpha, near-equatorial phase-volume accumulations,
α→0−−−→ r

(0)
±

θ→π
2←−−− which is exploitable as an interesting measure curve in the perturbative

solutions (because the light surface, naturally, captures the mass− spin stability as a con-
struct; accordingly, the naturally scaled (mass uniform) light unit is r0α = a the spin unit).

Then, requiring magnetic dominance across light stabilization sub-volumes acquires mean-
ing: (magnetic) stability requires the light field be diffusely positive definite (or, quasi-
determinate) across it’s surface contact, which is equivalent to providing the existence of
a pair of spacelike (measurement) legs (on the field tensor’s canonical measure dual, here
the rescaled light surface area). Turning the full, second order perturbation, the value of
F 2 across asymptotic light volumes should remain positive definite at least to within the
T-stability of the light surfaces (in order that the background is still T-like; also, so that
the operators Lϕ,φ have strong light support).

Indeed, this exploit is direct: let f(r) ̸= 0 and consider the resultant field scalar F 2. Instead
of solving the light kernel directly, consider the light-enveloping of the field scalar141, F 2

by weighing it with the f = 0 light-surface volume r(0)4+ near the thermalization point in
phase space α → 0 and the bulk-extended boundary accumulation space θ → π

2 . Then, it
can be shown that:

O(α3)
α→0−−−→ r4F 2

2

θ→π
2←−−−

r→rψ+

−−c
2
1 − c21α2 + 2c21c3α

2

(θ − π
2 )

2
= 2c21α

2−c3 + 1 + 2π2T 2
R

(θ − π
2 )

2
(281)

O(α8)
α→0−−−→

[
r4F 2

]
O(α2)

−
[
r4F 2

]
O(α4)

2

θ→π
2←−−−

r→rψ+

c23
(c4 + c5 + c21r

2
0(−1 + 2c3))α

4

r20(θ − π
2 )

6
(282)

and (283)

O(α8)
α→0−−−→ δ2θr

4F 2 θ→π
2←−−−

r→rψ+

1− 2α2

(
c3 −

1

2

)[
(α2 − χ2)(α2 + χ2)

χ4

]χθ=i 2n+1
2

√
αδθ

(284)

Note opposite c3 displacements around 1
2 represent n → n + 1. Here TR,L are, perhaps

surprisingly, the right temperature of the (α-analogous) Kerr Black holes. The Znajek
condition is found at the next order.142.

protocol.
140Or also, with (x = sin θ), {p, ± r−} ≈ Nl x

1−x2 {1, Nx}
141Here by pointwise weighing each leg of the field strength by the outer-light radius: Fab = S

(cd)
ab e(c)e(d) →

S
(cd)
ab (r

(0)
+ e(c))(r

(0)
+ e(d))

142Note that left right conformal temperatures are given as: TL/R =
r̄+±r̄−
4πα

[43], and that Kerr and
single spinning MP uniformly share a right conformal temperature; jumping to the final interpretation

immediately, 1−α2

2α2 = 2π2T 2
R =

T2
Rc

2
ϕ

6S+S−
=

24T2
RJ

2

S+S−
, which reminds that the “total (Bloch) sphere measure",

4π2, is a half-space phasal surface induction envelope.
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In fact, setting each angular spline to zero separately gives the combined condition:

0 <
−C̃2 + c21r

2
0(1 + 4π2T 2

R)

r20

∣∣∣∣∣

C̃2+c4+c5=0

⇒ 2πTR =
C̃

√
1−

(
c1r0
C̃

)2

c1r0
(285)

2πTKerrL =
C̃

c1r0
(286)

Starting from ssMP: r̄± = ±
√
1− α2 ⇒ TL = 0 ∧ TR =

√
1−α2

2πα
. Usually this is problematic from a CFT

dual perspective because of the central uniformities induced by the 0-field sector TL(TR, cϕ) ≡ (0) (e.g.,
the spin bootstrap of the monodromy technique works [43] exactly because TL ± TR ̸= TL ± TR); in turn,
this can be fixed by a single extension in the (on-shell) function space (notably, the canonical R→ C Wick
U(1)), S+ =

cϕ
3
(TL + iTR) and S− =

cϕ
3
(TL + iTR)

∗, but at the cost of the technique’s probing power
(because the largest continuous branch is necessarily “auto-correlated"). Effectively, the entire continuum
of symmetries was used to find a single, unique coordinate atlas [58])
Still, emergent symmetries are generic features of the isomorphism theorems and should be considered
always relevant towards the penultimate su[2] embedding (in-complexity). Note that, because of the
symmetry in the MP poles r̄0 ∼ ±

√
1− α2, TMP

L = 0, {±δTL} is always a T−balanced (functional)
branch. According to the embedding/measurement duality hypothesis threaded throughout, and noting
that the left Kerr temperature is also monovariate(TKL = 1+α2

2α2 ), it is natural to try and force the Left-Kerr
(LK) symmetry on the MP system as a regulatory(/geometrically shadowed) feature of strong MP-K-
interactions (on the electromagnetic field gauge probe).
So, define 1−α2

2α2 = S2

2π2J2 := 2δ; or 1
1+4δ

= α2 then, δ = 1 implies α = 1√
5
, while δ = 1

4
gives ∼ 1√

2
.

Note, δ = S2

J2

J2
Kerr

S2
Kerr

represents the relative phase quantization of the bulk over the boundary asymptotics

then c3 < 2 1+2δ
1+4δ

→δ→∞ 1. In fact, choosing δ = 1 (representing bulk-boundary parity) as well as the
flat Znajek connection (c3 = 1

2
) selects a unique black hole/probe configuration at the relative frequency

ωϕ ∼ 1

2
√

5
∼ .2236, which is relatively close to the Weinberg angle, Wθ ∼ .22290, as is optimistically

expected (at this point). Choosing σ = − 3
4

saturates the Znajek condition, c3 = 1
2

signifying that global
enforcement of the magnetospheric vacuum condition represents a squeezed system (quantized over a 1

4
-

BPS symmetry meaning, 3/4 of the spectrum is unstable/hidden by the constraint entropy, discussed
below, flowing below the quantization features). It’s important to reiterate that this was applied to the
full O(α3) perturbation with a constant field velocity; so, it could dually state that d = 5 bulk monopole
solutions are exactly bulk-cut stable with at least 4 “Kerr-baths" to decay between (over an adjoint octuplet,
4 × 3 − 4 = 8 basis of hidden modes) or, equivalently, their stabilizers exist as a single constraint among
four (spin)charges.
To see how this works functionalized over the probe field, hypothesize a Cardy relation: S± =

cϕ
3
(TL±TR).

Then it can be shown 1−α2

2α2 = − 18S+S−
c2
ϕ

, which can be continued in two ways depending on the hypothesis

(because this is a junction-graphed space). Consider S+S− = 4π2J2 a universal quantization feature of
black holes [43]; then, product entropy of ssMP is always negative, J ∈ iR, indicating the quantization
is a topological remnant (on the Coloumb branch), e.g. hole-type quantization/duality/emergent feature

indicating that this black hole is always interactive. Then, 1−α2

2α2 = 2
(

6J
cϕ

)2
gives the SO(6) entanglement

degrees asked for above.
Suppose instead the central charge is stable (canonically gauged), cϕ = 6J . Then 1−α2

2α2 = −S+S−
6π2J2 ∼

2
3

(
iS
2πJ

)2 , represents action on an entropy cone S →{k} e
(i+2k)π

2
+lnS . Better yet, combining both singles

out a unique bulk stabilization point, α2
<0> = 1

2
, which in turn induces F 2 ∼ −(c3 − 1) . It is also

exactly square tesselated above the (vacuum, d = 5) black hole frequency: α2
<0> − α2

Z = α2
Z In fact, this

exactly promotes the use of 1−α2

2α2 = TKerr
R TKerr

L as a micro-canonical ensemble (over asymptotically induced
thermal residues met by the splined monopole degeneracies) [45] [34][58]. Then, the gauged-pushes off the
junctured, d = 4 partition space properly represent partitionable domains in the product representation of
the bulk by considering them indexed by the (here, quasi-grouped and scale shifted) field velocity c3 − 1
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Pushing the expected conformal identities ACROSS the two systems yields:

S± =
cϕπ

2

3

(
TKerrL ± TR

) ∣∣∣
cϕ−12J=0

=
2JπC̃

c1r0


1±

√
1− c21r

2
0

C̃2


 (287)

This can be solved for the light, open parameter C̃:

C̃ =
c1r0πJ

S±

(
S2
±

4π2J2
+ 1

)
= c1r0 cosh ln

[
S±
2πJ

]
(288)

Or, conversly, as a condition between the magnetic flux on either side of the junction:

c+1 r0πJ

S+

(
S+

4π2J2
+ 1

)
=
c−1 r0πJ
S−

(
S−

4π2J2
+ 1

)
(289)

It is also possible to expand (287); then, using C̃ ∼ α−2 as a relative divergence guide,
expanding to second order, and solving the outer horizon for C̃:

C̃2 =
c1roS+
8πJ


1±

√
1 +

(
4πJ

S+

)2

 =

c1r
3
o

2J


1±

√
1 +

(
J

r20

)2

 (290)

To include the low spin branch, pick the bottom frame:

C̃σ2 =
c1
2

∞∑

n=1

(
1
2

n

)(−J2n−1

r4n−3
0

)
=
c1J

2r0

∞∑

n=0

(
1
2

n+ 1

)(
(iJ)2n

r4n0

)
∼0

c1J

4r0
(291)

⇒ c4 + c5 ∼0 −
c21J

2

4r20
⇒ c21 ∼

(iJ)2

16r20(c4 + c5)
=
−SKerr+ SKerr−
26π2r20(c4 + c5)

(292)

This can be interpreted using the method of images: a holographic Kerr horizon can be
used to thermally “split" the shell the radical-ideal algebra (to factor it) in such a way to
admit a quick (though non-canonical) su(2) embedding onto the phase domain. Finally,
returning to the bulk power regulated solution, approximate the loss of spin energy as:

−iPδI
2
∼ α2 (2 + π)SKerr+ SKerr− c3(1− c3)

26π2r20(c4 + c5)
=

(2 + π)SMP
+ c3(1− c3)

26π2r20(c4 + c5)
=

(2 + π)c3(1− c3)
16π(c4 + c5)

(293)

In the friction limit of [37], the bulk coefficient of (junctured-)fusion, −ik, is given by the
real coefficient of c3(1− c3), or:

iπk =
(2 + π)

16(c4 + c5)
=

(2 + π)c21r
2
0

J2
(294)

which represents the relative dissapation per current wave. Combining everything discussed
throughout this paper, the electromagnetic field solution above can be reinterpreted as a
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model for Hawking Radiation whereby a late-time entanglement wave dissipation mecha-
nism develops a quasi-continuous basis of out/in stabilizers (with radiative support), as
shown in the diagram below. Indeed, comparing to ?? shows that the spacetime response
form is fixed to an internally spring-like free energy (across continuous amplitudes),

F̃

[
χ = ic1,∆ =

J

r0

]
= (2 + π)χ2∂2∆ ln∆ (295)

Note this represents an expansion of the region between the inner and outer horizons, a
space which is asymptotically stable because of the geodesic convergence conditions; ac-
cordingly, in this diagram, the inner box is Wick rotated to produce a radial spectral map
which, from (closed domain) Noether conservation can be used to infer a strictly quasi-
stable scattering topology in the presence of a sea of massive (pion-type) decay resonances.
This can then be immediately interpreted as a future massively mediated spin-decay of
the scattering, in-falling neutral plasma. In this sense, the cold plasma acts as an “extra
dimensional decay medium" from the perspective of spin-fluid states between the (outer)
horizons by creating a natural cut-surface in the edge of the spectral chart based on the
emergent coupling from the black hole. Then, as the massive string is interactively spun
into the Future Curvature Singularity the original thermal scattering support acts as an
effective horizon during the flight of decay. At this point it is important to remember
the section on synthetic derivatives, most importantly that: the only difference between
the coordinate functions in the MP geometry and the Kerr geometry is mKr → mMP ,
there is a hidden switching symmetry in the gauge basis of the extra dimensional field,
Ψθ[θ] ∼ ln[cos θ] and Ψφ[θ] ∼ Ψθ[θ +

π
2 ].

A quick review of the inverse scattering method [65] and also the original construction of
the Myers-Perry solutions [38] shows that, functionally, these black holes were constructed
exactly by axiomatically extending the Hawking-Penrose Consistency conditions143 to gen-
eral dimensional, balanced configurations. Indeed, inverting all the dashed (interactive)
lines and treating them as solid (geodesic/charge) lines gives exactly these constructions.
Then, the black hole studied above can be see as confined to the upper diamond within the
inner spectral sheet during a Blandford-Znajek interaction. Indeed, this embedding can be
understood exactly in the context of the Love-embedding found in [66]

143Namely, for all interactions: Spacelike closure, spin-like closure (in time), and charge continuity (in
space-time). Or, also: the existence of a bound/trapped surface with no-particle interactions that can
destabilize the charges associated to the trapped surface (as dual resonances).
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Note, the θ → π
2 accumulation space always has a dominately negative scalar measure-

space extended from the source point, θ = π
2 , ⟨r2+|F 2 |r2+⟩ < 0 UNLESS there is an exactly

thermal gap between the synthetic range of c3 ∈ [−1, 1] and the (boundary complete) effec-
tive range, c3−1 ≤ 4π2T 2

R. In particular, this gives a strong, and interesting, logic juncture
between the phase curves: the entire symmetry plane θ = π

2 is magnetically stable iff either
A) c3 ≤ 1 and T 2

R ≥ −(c3 − 1) or B)144 c3 > 1 and TRTL < 0 and c3−1
4π2 := δc3 ≡ TLTR. In

particular, this exactly ties the positive partitionability of the Kerr Bloch sphere (at this
loop order, ∼ 1−α2

2α2 ) to the light barrier (Znajek) condition of the constant frequency field.
In fact, because everything is iff, demanding space-like closed (well) determinedness and
a positive Kerr conformal partition, TRTL > 0 is exactly that ωϕ < α and, the degree of
juncture back-induction is exactly the thermal weight.145 Indeed, the bulk Znajek condi-
tion at this order is c3 = 1

2 , which induces δc3 ∼ −1
8π2 and δc∗3 ∼ −3

8π2 dimensional reductions;
and, in fact, these deficit angles can be exactly explained as tessellation completion dimen-
sionalization induced from the topological string theory [53] by looking at thermalization
spectra of higher k = 5 black hole harmonics [43](particularly those with exactly SU(2)

sub-representations, as shown in the next section).

Indeed, perhaps most interesting is the demand that the field never allow a (degeneracy)
gap between the lightsurface, amounting to only allowing field couplings at the (effective)
speed of light(/the higher dimensional mass action); more precisely, F 2 = 0 and TLTR ≥ 0

⇒ ω
(1)
ϕ = α, which is twice the local Znajek frequency. This fixing can then be explained

as an SU(2) → SU(4) forward (inductive) matching surface that only matches decaying
waves 146 to the d = 4 thermalized (black hole) background.
Vice versa, considering a dually charged system (represented by c∗3 = −c3) in plus and
minus pairs F 2

+ ∼ 1⊙ + TrTL, F 2
− = 2cZ3 implies that the F 2

− (antisymmetric) light super-
position represents the ungapped TRTL phase space, while the F 2

+ symmetric light position
represents a continually gapped phase. Reflecting, this fully justifies the association of the
sign of c3 as a weak index of the gravitino (by matching the index groups onto their direct
algebraic symmetry break). This can again be run backwards, so that TRTL > 0 implies
that the light surface must become decoherent (as it involves higher harmonics of the 1

2

modes as ∼ 2n); or the local monopole field must bulk-speed up, or develop a kink, relative
to it’s cZ3 ∼ 1

2 locally coherent states when the projective thermalized background is non-
zero. Both of these techniques can rely on nk-dimensional harmonic decompositions(/field
expansions) in a finite, compact space, which can always be completed [49].
This provides a quick proof of connectedness outright, but will be more rigorously useful as
a proof that both the in and out junctures in this construct can always be SU(2) bridged

144Or, with δRc3 := α2δc3
T2
R

= 1
T2
L

145Then, considering c3 → −c3 as Gravitation to strong electromagentic duality, this reduces the thermal-
ization barrier to TRTL − 1

4π2 ∼ − |c3|
4π2 ; then, geometric k = 4 tesselations (LHS) become virially infected

with their lattice conformal dimensionalization (RHS), which is commonly known as the angle deficit in
unification holography. Remembering c5 ∼ −c21(−1 + c3)

2 shows how current’s axi-vector ascent profile is
thermally minimized (as a global angular flux).

146Specifically, again by Fermii’s golden rule, those existing in a Γ−1 ∼ ∂ωϕ ln δA

ωZ
ϕ

∼ 2
ωϕ
∼ 4, or as an

A∂tα≡0
mp ∼ [·]−4 off-Znajek shell resonance.
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into virially constructed, connected universes(/worldverse diagrams). 147

It should finally be noted that the monodromy technique produces exactly four (AdS-
separated) first order coordinate poles (in global, Boyer-Lindquist compactification), and
that the flat space residue produced a contact constant K = d − 1. Then considering a
single F 2 juncture between determinate field velocities and − < (1 + TRTL) >nk contacts;
picking a 3-juncture gives −3− < TRTL) >n3 . Further, if two of the junctures are across
∞flat this gives (for δSKerrAdS→Kerr = 0) 0 > c3−3−(< TRTL >13 −3) = c3− < TRTL >13 .
Picking the final contact as on the (flat) black hole gives < TδS >⊙< ∆ωϕ, which puts
a strain on the maximal coherence as a balance between Znajek monopole harmonics and
rescaled heat-decay charges. Again, the regulatory nature of this duality is clear: the
higher surface black hole can only decay, and remain continuously junctured, to the (outer)
harmonic membranes below the vacuum heat dispersion of the projected black hole. In fact,
this can be seen as an extension of the Second law of thermodynamics, or that the light
membrane discussed above couples, remarkably, to the vacuum as an emergent, second
order filtered decay channel which creates decoherent splitting at the d = 5 phase surface
as the monopole branch is forced to iteratively interact (coherently) in Znajek spinnors of
degree 2zn = 2<δM

2>
αr0

, which can be finally seen as a semiclassical quantization at loop
order (and, a fully realized quantum gravity prediction at tree level).
The following sections will expand on the emerging unification scheme by finishing some
existence proofs.
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4 2∞ Λ(nd) B(e)γ[⊙](nd)
4.1 Separability: Guided, Partially Accessible Boundary Channels

As was hinted above, then central dogma of topological indexing is to always flow laterally
under the weakest topological bridge and then comparatively recompactify the product
topology as a minimally closed residue (a.k.a., as the strongest topology in the conjoined
open dual, T ∗). Summarily, producing weak gauge symmetries with shelled equations of
motion under a strongly correlated index divergence put partial constraints on the maxi-
mally divergent measure topologies by producing poles within highly tuned measure spaces.
Effectively, this charges the relative measure algebra iff the bulk-to-boundary gauge junc-
ture is∼∗ R(2d)

∗ [x], which is only functionally (piecewise) possible as a 1+1 type II Neumann
U-exchange on the (running) measurability (sub)index [1]. Over d = 4 the totally relative
features could be expected to emerge as M∗ ⋉ (R4[x] ⋊ R4[x])=̂(r)R4r∗

[
M∗

(r)⋉̂
(r)R4[x]

]
,

which makes all of the subdual, emergent dimensional regularizations subject to topologi-
cal control under Gµν = 0.
The existence proof will proceed by using the classical asymptotic thermal duality, Kerr∂Kerr
= ∂dyon

2 , as a natural r−dual juncture; because the thermal partial wave domain of d = 4 is
asymptotically spinnor complete [2], the free descent of this SU(2)-closed magnetic gauge
field can be considered a strong crystallization feature in both spectral and string networks
[3] [4].
The Cauchy completeness on the functional kernel space guarantees this charge index has
spectral control within every neighborhood (in the sense that the gauged diffeomorphic cur-
rent gives analytic measure everywhere); this is different from usual gauge theories because
it specifically invokes that axiom of choice to guarantee the inverse map is (uniformly) onto
the domain set. But this collides with naive topology for the same reason the Banach-Tarski
construction is seemingly paradoxical: volume is a measurement, not an object. There, the
object can be simultaneously partitioned into symmetric, uniform number sub-measures
which can be brought into contact and both found, in the sense of the original measure,
equal to the original volume. This is resolved by noting that the algorithm amounts to
adding a new positive characterization towards the continuum, namely [0, R] ∼ R∞ (con-
versly, the new exclusion 0R ∼ [− 1

R , 0]), and continuing the original measure into it’s
hyperfine continuance. By accepting both indicators as decidable the hyperfine measure
of the original sphere can be shown to yield exactly one copy of the continuum measure
(this is exactly one by the R−Axiom of Choice invocation) and can be shown by placing

R-derivative statements surrounding each previous R[x] evaluation δij(x
j
(k) −

x
(k)i
0
R ). Be-

cause 0R is undecidable in the original continuum [5], it’s left to be checked against every
previous evaluations sectorially; by the same theorem (and decided extension) there are
exactly R∞ previously undecidable statements which can now be R-wise deciphered yield-
ing ||S3||R − ||S3

R||R = ||S3|| (or, the sphere measure is shelled by a difference between it’s
natural R-extended measure and an R−emergent topology of derived tautologies).
Thus, in the construction above it may be inferred that there are exactly (3 + 1)∞
quantum continuous degrees of freedom residing in the curve index (notably R3) and
the (weakest quasi-coordinate) measure is a piecewise-stepped, sequentially effective spec-
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tral flow (also known as the weak oscillatory measure): |OQ| ∼ [∆ij(C⃗[qij ],∇C⃗[xij −
qij ]),

1
1−θ[C⃗,q] , ([(y⃗0, dy⃗0), (y⃗1, dy⃗1], dy)]. As long as C⃗[q] is onto the complete curve (under

any in-boundary gluing) this is strong enough to hypothesis-categorize (disjoint, rational)
emergent defects of the quantum topology as a d − 2 = 3 embedding of τ = 1 one scalar
measure of quantumness(/chaos; here shown as the sub-relative continuum orientation).
It’s important to note that evaluating each subdomain requires the boundary splines to be
sub-deterministic, and so each check for quantumness here requires the spline index to be
expanded by a Euclidean four-plet, [(y⃗i, dy⃗i), (y⃗j , dy⃗j ], which critically specifies another set
of indices resulting in k = 6 six effective number (possible) quantum number expansions.
In fact, as will be seen below, by adding bulk spin to the metric topos this closed set will
naturally be enhanced to 4 · 3 = 12, with the canonical embedding index choice presenting
as a m = 2 dimensional gauge connection giving the full (orientable) k = 10 degrees of
freedom of d = 4 spacetime.
Picard’s theorem (always) closes (over bounds) with this construct, so (across each sub
curve), quantum measurements can be naturally seen to emerge as a conformal scalar
with two effective indicies (as sub-boundaries) and four spacelike indexed measurements:
M[dqij ; (y⃗, dy⃗)ij ]. Notably, at each local spline domain, because the axiom of choice was
invoked over [R]3[y; ·] at the quantum point-expansion the trace functional gluings must
be freely (trace)-gauged as SO(3)× SO(3) along the globally shelled quantum curve (pro-
jective/)correction ∼ qCP.
Still, by Picard’s lemma on 1+1 topologies, this is always deterministic (and solvable); this
can also be seen as the canonical emergent network implied by the Rice-Shapiro theorem,
which we state here for clarity[5]:

Theorem (Rice-Shapiro)
Suppose that A is a set of unary computable functions such that the set {x : ϕx ∈ A} is
recursively enumerable. Then, for any unary computable function f , f ∈ A iff there is a
finite function θ ⊂ f with θ ∈ A

Although this invocation of the axiom of choice immediately implies the R−sorting process
is always undecidable H[S3, S3

R], it is also exactly marginal to correlation kernels along
strongly R−dependent sub-universes [4] in the weakest topology (Heavyside/Manhattan
measure) because the quantum indicator functional can only be sequentially renormalized
“to within dq renormalization". This can also seen to be dual to disregarding all “double
checks/complexity-squared" statements x(k)i

R2 =̂0 by noting the application of the above to
the halting problem (and the decidability of the Axiom of Choice). Then, the choice

∫
· δ·=̂1

can be seen as dual to only measuring single, stringlike choice invocations “on top" (and
dually below, canonical from enforcing real coordinate closure ±R ∼ ±R), exactly as seen
above. In fact, the halting problem is indeed dual to the vertical line test, and the above
use of the delta function can be seen as immediate from applying the RS theorem to the
indication topology:

(Lemma) The sets {x : ϕx is total } and {x : ϕ̄x is total } are not recursively enumer-
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able, or the functional measure of the delta function is meaningful only up to the rela-
tive(/effective) facts(/determinacy).

Thus the closure of Einsteins equations is a consistency check, not an existence proof,
of the functional consistency of manifold embeddings of spacetime because it uniformally
descents from

(
(
gµν
2 δmn − δmµ δnν ) + Tµν

δmn

δtuRtu

)
Rmnδ

Mµν
=̂0 (as shown at the beginning this

paper). In particular, the Bianchi identity gives:

∇(k) × Tµν − Tµν∇(k) × δM
µν

= −
(
Gµν∇(k) × δM

µν
)

(1)

This quickly shows that classical, continuous (streams of) equations of motion are only
graded to the degree of their (spin-)functional separability. Indeed, this explains the Be-
lafante tensor as a functional(-boundary) gauge completion as well as recent dualities in
the Celestial Holography program (such as spontaneous-twistor-breaking/deconfinement-
phase-residues/quasi-T-string-descent pushes onto the ωk∞ asympototic algebras.
In fact, it is this functional curvature’s boundary convolution that mixes the coordinate
isometries to produce gauge-phased stream effects (1st Law of Thermodynamics/Spectral
Chern-Simon Phenomena/Soft-theorems) by assuming classical measurability(/decidability);
or, by choosing theories of physics with strong∼ N∞[x] dualized measures (a.k.a., a strongly
separated dual topologies, or absolute statements about nature). BUT, R[x] is dense over
Nk[x] ∀k, meaning functional differentiation is never complete as an entirely spectral phe-
nomena without a decidedly closed (conformal) harmonic mixing mode on the boundary
(topos). Indeed,

∫
f∂δ[eχx] =

∫

{χ⇒{k∞}k→{k∞}k∪χ∞}

e−χ [δ[eχx]∂f + fδ[x]] (2)

Although the second term is canonically defined(/constructed) by the first order sentences,
as χ→̃∞ becomes complex the second term is always a composition (involution) of first
order sentences against the statement continuum; the first term is always the composition
of derived (functionally canonical, tangent compactified) statements in the (field extended)
chi-topology. Thus it can only be normalized, in χ → ∞, if the statement f [x0] is inde-
pendent of χ→∞; this is just a rephrasing of the Halting problem.
Thus, all action principles are only well defined up until their measure embedding, which is
concretely undecidable (as a measure scale-prescription); just as in Noether’s second theo-
rem, the symmetry (here an action stabilizer) is only defined up to the functional degree of
actionability related to the (global) symmetry. This is uniformly true from the coordinate
embedding of every coordinate measured action, and can be seen from (the back of the
envelope) as ∂4S̃± ∼ ±1 ⇒ ∑

δS̃ = δ[
∫
dx4 −

∫
dx4] = δ[

∑∞±]. This always requires
a field extension to define; by the fundamental theorem of algebra C[z, z̄] is the minimal
smooth field extension.
In fact, this extra compactification represents the generalized (renormalized) Ward iden-
tity (and the minimal cover explains the Optical theorems); thus, choosing the func-
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tional embedding topology amounts to selecting an asymptotic algebraic probe (as a func-
tional 2-point measure embedding toward the functional leveling). This immediately ex-
plains the nature of unit-scale/renormalization/asymptotic-gauging as well as the quasi-
complete large (decidable) algebras they tend to produce: each functional topology is
usually gauged to the ⊗iR[xi] independently extended continuums, which is an extremely
constrictive topological embedding because it can never control correlated topological mix-
ings without (undecidable) measure-pointwise expansions that must be checked (by OPE-
conflation/effective probes/cut-continuance). By Godel’s incompleteness theorem (or the
Neukida-Uchida theorem), there always exists a decidable index (p-adic, or p∞) that can
be constructed to be partially exact and, by the lemma to the Rice-Shapiro theorem, this
partially exact index may be closed iff the inverse delta function is well defined (or, equiv-
alently, if the spectral flow has a defined topological index on the conformally crossing
branch; necessarily then, functionally complete symmetries must carry topological indices
covering their spectral decidability, or soft-OPE residue corrections, at the classical mea-
sure phase). Now the choice of a functionally independent, [R][∗]-type U(2)∗· ⋉ SU(2)

gauge connection is naturally motivated as a conformally soft functional field (measured
probe construct); thus, this can be considered a closed tower of gravitationally induced
B-loops pairs in a full string-field theory.
This gives the natural point of contact for amplitude constructions as already rigorously
strained under the classical d = 4(classical choice invocations/dimensional global folation
domains/minimal decidability domain) under the original bootstrap perfomed by Einstein.
Indeed, in all the cases of Brownian motion/Photoelectric effect/General relativity local
hidden degrees of freedom were (quasi-)periodically closed within hypothesis: Brownian
motion unifies local, bounded fluid-surface dissipation algebras as a (quasi-)universal unit-
charges (under the diffusion index), the Photoelectric effect unifies local, bounded vector
charge-surface dissipation algebras as a (quasi-integrated) indicator states, and General
Relativity unifies local, bounded gravity-light surfaces to within universal consistency (by
the Averaged Null Energy Condition, which is an only if statement promoted to iff for all
decidable boundary topologies [6]). In fact, all of the above are all only if statements that
can be shown to be consistent(/have a functional inverse) up to a universal measurement
(each in the form of an emergence/experiment/entanglement index); then, the extended
dimension can immediately seen as a dimensional contextualization field, or as a heuristic
memory/conformal stabilizer/junction-register.
Then, despite being at most partially complete, the R(1) sub-reference can be (quasi-
decidedly) regularized (most simply, under closed network probes); this is most effec-
tively/commonly done by truncating ∞ → n (background gauged)/∆x

∆p → 0(locally mea-
sured) IR/UV interactions. In Classic Computing language, these amount to run-time/overflow
(as methods of Algorithmic dual lattice regulation) and, in the final section of this paper,
the results thus far will be indeed prove dual to both quantum error correcting code and
quantum gravity shadow renormalization as an emergent unification moment in the (rela-
tively) dual completion modalities. Indeed, the identification of a universal entanglement
index as an SU(2)-gauge on the funcational coset topology is now immediately clear as
a way to keep the measurement topology, as a junction, in gauge as well: the functional
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pullback should never be extended beyond the axiomatic connection without boundary
(quantum/entanglement/gravitational) corrections because every (G-)global identifier is
only defined up to it’s largest defined set.1

Above all, this shows that measurement, as a functional symmetry2, contains quantum
contacts at every scale iff it contains quantum contacts at any scale. Equivalently, off x-
coordinatizations, x → x̃[y] = x0 + y always enhance the first term’s x-spectral moments
as a canonical spontaneous symmetry breaking feature (known as the Coulumb branch in
the product completion). In fact, construction of an extended history index, lnx ∼I ∂x is
always possible following from Noether’s second applied to the partial-universal difference
choice as a history index, δiτ∂δ; consistent laws of physics can thus be seen as those while
have a continuum matching, exactly pushed free index (replicatability/decidability/time)
. Indeed, this can be seen as the functional renormalization extension of Noether’s sec-
ond theorem, which could be considered “Noether’s Third theorem"; then, the index pro-
ceedings above can be summarized as third order quantization, whereby unification pro-
ceeds by maximally squeezing hidden degrees of freedom into measure dense consistency-
chains/bubble-flows/asymptotic-renormalizations. Of course, this is immediately true in
action: science, as a machine, is a partial-unification algorithm over a quasi-regulated,
bound sub-continuum of hidden degrees of freedom that is not universally decidable (the
electric field was, essentially, discovered 100 years after Newton’s death).

Most importantly, the above formulation is an axiomatic correction to all action principles
as a uniform soft symmetry breaking across the y−subshelled universe.

4.1.1 Euclidean sub-dimensionalization

Still, it is useful to note that the motivation of either is primarily a difference of coordinate,
or measure imposed, symmetries. Either measure minimizes the curvature density, but
each represents the curvature functional on different coordinate pullback topologies. Of
particular interest is when a divergence symmetry may be produced from some density
functional symmetry of the Euclidean and Minkowski actions, which may then be used
to construct an instanton and particle source interaction as a tower of on-shell Minkowski
solutions. For example, consider some function (density) as level sets of the instaton and
Minkowski Lagrangians as well as some overlap coordinate functions parameterized by the
E/M pullbacks:

f → f [LE [ĝ, R̂; x̂α̂], LM [g,R;xα]; x̂α̂ ⋊ xα] (3)

s.t. f [·, ∗, x̂α̂ ⋊ xα] = F [·, ∗]x̂xα̂α + hi[x̂
α̂, xα]N̂ i[x̂α̂] + ĥi[x̂

α̂, xα]N i[xα]

⇒ δf − δF [·, ∗]x̂xα̂α = (ĥi,α̂N
i + (hiN̂

i),α̂)δx̂
α̂ + (hi,αN̂

i + (ĥiN
i),α)δx

α

= ĥi,α̂hi,αN̂
iN i

(
(

1

hi,αN̂ i
+

(ln[hiN̂
i]),α̂

ĥi,α̂N i
)δx̂α̂ + (

1

ĥi,α̂N i
+

(ln[ĥiN
i])α

hi,αN̂ i
)δxα

)
(4)

1This is quickly seen by δ[x]
x

= ∂(ln x)
∂x

δ = ∂
(
ln x
∂x
δ
)
− (ln x)

∂x
∂δ, which procedurally graphs how (here

branched) bubble diagrams may take on non-zero modular flow near antiholomorphic generators (or, on
hyper-compact spectral moments).

2Of information
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Then, further simplifying by assuming the LHS is a divergence symmetry in the freely
induced topology R4xR3,1, which results in the following ansatz:

Dα⃗W
α⃗[·, ∗; x̂α̂ ⋊ xα]

ĥi,α̂hi,αN̂ iN i

+(1− 1
ĥi,α̂N i

)δx̂α̂

+(1− 1
hi,αN̂ i

)δxα
=

(
[1 +

(ln[hiN̂
i]),α̂

ĥi,α̂N i
]δx̂α̂ + [1 +

(ln[ĥiN
i])α

hi,αN̂ i
]δxα

)
(5)

Suppose the extended bulk-form ĥi,α̂hi,αN̂
iN i shares the symmetries of W α⃗ along some

bulk domain volume y⃗α⃗ (with dual parameterization), as well as presuming each sub-
coordinate spaces separately share symmetries with each sub-domain: (ĥi,α̂N

i, δx̂α̂) and
(hi,αN̂

i, δxα). Then, the LHS turns into:

∫
d2Dx


Dα⃗W

α⃗[·, ∗; x̂α̂ ⋊ xα]

ĥi,α̂hi,αN̂ iN i
+

(1− 1
ĥi,α̂N i

)δx̂α̂

(1− 1
hi,αN̂ i

)δxα


 (6)

=

∫
d2Dy ∂α∂α̂

[
Dα⃗W

α⃗
]
+ V

(
1 +

∫
dDŷα̂V̂ ∗δx̂α̂,α̂∫
dDyαV ∗δxα,α

)
(7)

Then, the RHS may be similarly given as:

= V +

∫
dDx̂

(
(ln[hiN̂

i]),α̂

ĥi,α̂N i

)
δx̂α̂ +

∫
dDx

(
(ln[ĥiN

i])α

hi,αN̂ i
)δxα

)
(8)

= V +

∫
dDx̂



(
δx̂α̂ ln[hiN̂

i]

ĥi,α̂N i

)

,α̂

− ln[hiN̂
i]

(
δx̂α̂

ĥi,α̂N i

)

,α̂


+ c.c. (9)

Combining everything, we find a set of “poor-girl’s" holographic interpretations of the
resultant minimization problem. Directly comparing LHS to RHS gives: the LHS volume
form and the RHS divergent terms as bulk/boundary sources:

∫
d2Dy

[
∂α∂α̂

[
Dα⃗W

α⃗
]
− V 2

(
δ[1− V̂ ∗]V̂ ∗δx̂α̂,α̂
δ[1− V ∗]V ∗δxα,α

)]
= (10)

∫
dDx̂



(
δx̂α̂ ln[hiN̂

i]

ĥi,α̂N i

)

,α̂

− ln[hiN̂
i]

(
δx̂α̂

ĥi,α̂N i

)

,α̂


+ c.c. (11)

Expanding the above into the y⃗ domain extends the tower of boundary (sub-domain)
perturbation waves/sub-domain sources through a δ[·] contact, while the effective mass
runs with the sub-volume dispersions. Dually, treating the volume form and the divergent
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ln[·] tower as sources,

⇒
∫
d2Dy

[
∂α∂α̂

[
Dα⃗W

α⃗
]]

+



∫
dDx̂


ln[hiN̂ i]

(
δx̂α̂

ĥi,α̂N i

)

,α̂


+ c.c.


 (12)

=

∫
d2Dy

[
V 2

(
δ[1− V̂ ∗]V̂ ∗δx̂α̂,α̂
δ[1− V ∗]V ∗δxα,α

)]
+

∫
dDx̂



(
δx̂α̂ ln[hiN̂

i]

ĥi,α̂N i

)

,α̂


+ c.c.

can be interpreted as a 1-loop correction to the free topology propagator descending to bulk-
(sub-)volume dispersion relations and a tower of sub-domain loop-order sources. Adding
the full dimensional contacts:

⇒
∫
d2Dy

[
∂α∂α̂

[
Dα⃗W

α⃗
]
+
(
δ[1− V̂ ∗]V̂ ∗ ln[hiN̂ i]δx̂α̂,α̂α̂ + c.c.

)]
(13)

=

∫
d2Dy

[
V 2

(
δ[1− V̂ ∗]V̂ ∗δx̂α̂,α̂
δ[1− V ∗]V ∗δxα,α

)
+ δ[1− V̂ ∗]V̂ ∗

(
δx̂α̂ ln[hiN̂

i]
)
,α̂α̂

+ c.c.

]

Particularly, Noether’s Second theorem connects each M/I-frame bulk source to a boundary
field generated by both the interaction measurement and the measurement interaction3

4.2 A Bundled, Charged Mostly Junctured Response

Moving into the Heisenburg/interactive-picture, the first step it to calculate the out-saddle
states, which amounts to solving the coordinate (second-)ordered L{ϕ,φ} free spectra; in
particular, (??)-(??) have hypergeometric functions as solutions. Note that Lϕ[Ψϕ] −
Lφ[Ψφ] · dr

∣∣∣
Ψϕ∼Ψφ

∼ Lϕ[Ψϕ] − Lφ[Ψφ] · dθ
∣∣∣
Ψϕ∼Ψφ

, which completely justifies the out(-

shelled) expansion as a continuous(ly flowed, broken) gauge symmetry with (a formally
divergent number of parameter connections); by Noether’s Second Theorem [7] this always
results in a Berry phase (of non-local, null-charge flow). This further quantitatively justifies
the Ward object used in , therein exactly designating the dual soft-vertex dispersion; a.k.a.,
thermally broken “shadow currents".
Additionally, the (static) constraint form may controlled by the master coordinate (mC)

equation: λ
(

1
r2−2m

(
∂rΨϕ
r

)−1
+ tan θ(∂θΨϕ)

−1

)
= ωϕ

∂rΨφ
∂θΨϕ

+ ωφ tan
2 θ

∂θΨφ
∂rΨϕ

. Associating

across the unbound, rational curve demands separation between the second terms (or,
congruently, forcing a point-radial juncture requires associating the first terms):

ωϕ∂rΨφ∼̂
λr

r2 − 2m

∂θΨϕ

∂rΨϕ
ωϕ∂θΨφ∼̂λ cot θ

∂rΨϕ

∂θΨϕ
(14)

Where it is important to note that the degeneracy (in the congruency) is up to the rational
curve: λ tan θ ∂rΨϕ∂θΨϕ

− ωφ tan2 θ∂θΨφ∼̂B ⊙r ∂rΨϕ. This is the critical juncture between the
“ Menon-Dermer" field types in d = 4 vs d = 5 and important for what follows.

3and pulling back to the saddle point representation is formally represented by the third isomorphism
theorem: (E/M)(M/I) ∼ (E/I)
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In d = 4, the second term on the RHS is absent, forcing the r-descendant congruency to
run at the conical (index branch/)singularity as Ψϕ ∼ csc θ; but here, there exists a second
order (algebraic) mirror dual connection that can be formed over the CP[∗]2 representation.
Concretely, the LHS may be closed if the multiplier is chosen s.t.

λ(0) =
ωϕ
∂rΨϕ

tan θ
∂θΨϕ

∂θΨφ
⇒ ωϕ tan θ

∂Ψϕ

∂Ψφ
∼̂Ψϕ (15)

Considering ∂Y δ[∗] = {∂Y, Y }[∗] and ∂ ln[∗] = ∂[∗]
[∗] :

λ(Y ) =
{∂Y, Y }
∂rΨϕ

∂Ψϕ

∂Ψφ

∣∣∣∣∣

Ψ
(φ;[0])
ϕ =(∂rΨϕ)

−1

Ψφ[Ψϕ]=ln[
Y †⊙Ψϕ⊙Y

Ψ
(φ;[0])
ϕ

[r0,θ0]
]

= [[Ψϕ, ∂Y ] , ∂Y ] (16)

≡ Y Y †∇2
†Ψϕ = Y /□YΨϕ := /□2

Ψϕ (17)

which4 serves as a formal definition of the continuous inner sheaf r-topos, or the maximally
sub boundary constraint operator (hence a “squared-square", or ∼ [·; ∗]2d[∗]" operator).
In this sense the second gauge field is a connection between the in-dual and out-tangent
bundle: it is able to exactly continue every field expansion state Y † ⊙Ψϕ across the entire
free in-tangent bundle.
Finally, by the Neukida-Uchida theorem strong compactifications always admit weak em-
beddings, meaning Ψϕ can always be critically (sub-)charged by Ψ

[Y,∂Y ]
φ -magnetic (domain-

)curves to keep the path integral separably truncated, and gauged, up to a Z ⊙ [∗] ∼
U(N → N∗)†[∗]) large common, running group centralizer! In fact because the only accu-
mulation is onto the functional λYI→̂∗

Iωϕ tan θ this is exactly marginal over n − 1 degrees
of freedom, or provides a [U(n)⊗ SU(2)]⋉G/G̃ connection over the open topology. Rec-
ognizing that the exact set of affine shifts of λ represents a symmetry of the gauge (across
the conical branch): φ → φ̃ +

∮
C̃i [qi[⋆]φi[∗; ·] + r0] =̂φ + 2πn implies it is exact under

ϕ→ ϕ̃+
∮
Ci [q̃i[⋆]ϕi[∗; ·] + r̃0] = ϕ+2πn. Then, (δϕ, δφ)0 = |δ·(ϕ, φ)|+

(∮
C̃i qi[⋆],

∮
Ci q̃i[⋆]

)
0
⊙

[φi[∗; ·], ϕi[∗; ·]]r0r̃0 .
Applying the axiom of choice (every function is parameterizable over the real line, or that

4remembering there are two continuous contractions, can be shown as {∂Y, Y } ⊙
∂
[
Y † ⊙Ψϕ ⊙ Y

]
=̂∂
[
Ψϕ ⊙ [Y Y †{∂Y, Y }]

]
= ∂Ψϕ ⊙ [Y Y †{∂Y, Y }] +

[
Ψϕ ⊙ ∂[Y 2{∂Y, Y }]

]
. Then,

using the Neukida-Uchida theorem (discussed shortly), it is exactly possible to consider [∗]† as coordinate
adjoint and the functional bracket as slashed su(2n) (conformally blocked gl(1|1)) exact iff ∂YΨϕ ∈ kerY 2

( ∈ kerY −1) or (here ignoring the superconformal branch):

∼̂ΨϕY /Y /∂∂[Y /Y ] + ( /Y )2(/∂Y )2 − /∂Y ∂Y /Y Y + Y /∂Y /Y ∂Y (18)

=̂Y /Y

[
/∂∂ + (−1)

kd
2
(
/∂Y
)2
]

(19)

It is interesting to note that this looks exactly like a kd Majorana fluid frame (continuous OPE) “ on the
in-mass (or light) shell". Then, ∂YΨϕ ∈ ⊕/∂2[∗]=0 |[∗]⟩ ⟨δ[∗, Y †]|, which formally qualifies turning points in
the adjoint pullback as the gluing frame for the topological sub-dynamics (or, that the decomposition is
exact and < ∂YΨϕ > =̃ ⟨[·]| |Y ⟩ ⟨ δ[Y, Y †]| |[·]⟩ = Y [·]UY /∂U /Y Y †[·]) is saturated as a continuously gauged
centralizer. This makes the qualification of the in-nner topology as (dual) squeezed rigorous (on the
SU(2)⋉ U(1)2 branch) by decomposing the unitary kernel OPE (heat kernel) as exact Y -modulii.
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CP2[x]⊂̂R3[x]); this is true iff, Z2[x] switching the projective curve index is (CP2-pointwise)
antisymmetric in the ⊂̂ congruence (Cauchy decomposition). But this is never true over
the plane (by Klein-closure), meaning that the ⊂̂ congruence cannot be injective; relax-
ing the pullback to within injectivity gives CP2[x]⊂̃R3[CP[x]]. The above arguments now
repeat on the oriented projective real-bundle (with “...symmetric..."), where it is now al-
ways pointwise true; applying the axiom of choice again, now over the rational curves
shows |R3[CP[x]]| ≥ |R2(R∗ ⋉ R)[x, x̃]|0≡̂|R4[x̃, x]|0 ∼ |CP[z]|2. Then, the boundary may
always be dual-tessellated (as a continuous gauge field) as ∂[CP2[·]] ∼ |CP[∗]|0∂R∗[·] up to
the boundary of the dual branch (because this closes the A.o.C. duality induction). This
is known as Stokes theorem in the open uniform limit and is exactly equivalent to the
Banach-Tsarski paradox; this is formally the same as the construction Ψ

(Y )
φ symmetry ex-

tension found above, and shows that the (Y )-folding can always be continuously squeezed
as a (YI , I] juncture (again, because of the global φ−diffeomorphic gauge symmetry and the
fundamental theorem of [d =∞]calculus. As such, this can be considered the Banach space
extension to Noether’s Second Theorem; or, given the universal existence of a U(1)-strong
connection in every (weakly-connected)topology and the strong decidability of the 3rd Law
of Thermodynamics/EFT-descent/Holographic techniques, Noether’s Third Theorem:

∮

δ∗Q

dδ

[
δQS −DQδ(d)·

]
=̂0 (20)

This generically puts the action principle on firmer ground by including saddle-delocalization/dimensional
regularization/shadow harmonics as a (quasi-)separable perturbative action symmetry. In
fact, an immediate lemma of this is the monodromy principle, which can be understood
from the example of precisely netted spectral flow, or Noether’s Zeroth:

∮

δ∗Q

dδδQS=̂0 iff
∮

δ∗Q

dδDQδ(d)·=̂0 (21)

Then, as in the case of the 0th Law of Thermodynamics/bootstrap-algorithm/conformal-
separability, the Q ∼∗ Q totally spectral cases exist as exactly separated and closed de-
pendency classes; as such, if constructed they always exists as (simple closed) connected
(dual) functor classes towards their (algorithmically-stepped) completion. Still, function
measure is properly δ∞-dimensional in the (quasi-)grouped completion and strong spec-
tral decidability is not uniformly computable; indeed, this relation may be understood
as a feature of totally Banach-actionable cusps and a precise definition of what is meant
by c-distributions/F-renormalization/duality-measures. Then, considering

∑
αKerr(Λ=0) =

δS∞ = 4Mω shows that, in flat diffoemorphically-gauged (d = 4) spacetimes with isolated
black holes [8] (punctured analysis) the action principle is minimally flowed by the harmonic
net geometrization over the maximally extended field completion, which is strongly topo-
logical by Reiz’s theorem; then, it must be said that every action is minimally shadowed
by black holes as a background radiative correction to the Wald contact (on the partially
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globalized quasinormal mode):
∮

δ∗Q

dδDQδ(d)·∼̂
∑

i∈Ū
4M(i)

(
ωi
2

+
δji
4Mj

)∮

δ∗Q

diiδ (22)

Importantly, this structure is iff for actionable principles in measurable-universes that ad-
mit virial emergence/non-renormalizability/black holes; thus, minimally bound structure
nettings in action principles over spacetime also always indicate a black hole (or, a closed
surface is the dual lattice crystalization flow-continuum). In this sense, the “third" and
“zeroth Noether’s identities" represent limit tests and measure tests (respectively) of (func-
tional) charge conservation well-definedness (exactly as the zeroth and third LoT operate).
If the topological dualization is also spectrally on shell, this is exactly the classical Optical
theorem; thus, the monodromy calculation in [9] can be seen as the correct 4-pt completion
to the gravitational vertex because it (constructively) closes the measurement on the de-
cidability shelling. This also characterizes the c-theorems/Callan-Snazek-Curve/AdS-CFT
as when the RHS (the patch regularization flow) is identically 0(/characterized by exact
analytic continuation),

∑
α = 0.

Crucially, this step used the uniqueness theorems of [8] on the separability of the stabilizer
states of d = 4 black holes to enforce the (cut) OPE at unification energies under an (r-
separated) uniform index push of the spectrum. Perhaps most critically, this structure is
directly reflective of what’s (explicitly) to come next: black holes exist universally as k = 4

regulatory features, universally. Thus, as a practical feature, harmonic compactification
in gravitating universes exists de facto, as an onto measure of it’s black hole asymptotic
shelling.

4.3 A Berry Corrected Directly Emergent Field (Grouping)

Noting the continued importance of modular matching conditions, consider the degree of
modularity to be a rough categorization of matter. It is a well known feature of the Stan-
dard Model (and string theory) that spin s ≤ 2 fields are (on shell) closed, as distinct
from higher spin fields5. It is also clear that systems involving “quantum strangeness"
and “black hole strangeness" are decreasingly understood, let alone “quantum black hole
strangeness". Still, the success of quantum mechanics [10] towards understanding quantum
strangeness and of black hole partial wave analysis towards understanding black holes [8]
are both remarkable miracles; indeed, the unification of General Relativity with classical
(out of equilibrium) thermodynamics represents deeply beautiful physics. This may be
naively and broadly, captured in the following phenomenology graph:

5Let ∫2 denote spins less than two. As argued above, this is a symplectic group feature of the minimal
extension into a spin 1

2
field. Summarily, polarons (p) are spin-projected photons (λ), photons are spin

projected (trivial-)gravitons (η). Note how callous this assessment is towards the categorization of spin-2
sub-junctures: considering the dual deconstruction of the stress and gravitational tensors performed in the
introduction, this can be considered considered a form of mass-mode mixing and simply a re-statement
of the mass-equivalence principle. Finally, the spin 3

2
(ν) field can be understood as the spin projection

of the ∫2 irreducible group closure relation, sketched (adjointly as) b ⊕ p ⊕ λ ⊕ γ ⊂ mod ∫2Ker[·] ∼
Ker[b(4)0 ⊕ p(2) 1

2
⊕ γ(1)2] ∩∗ Ker[b(4)0 ⊕ λ(1)1 ⊕ γ(1)2].
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Accordingly, consider three broad catergories of physics: Thermodynamics(/Regular Quan-
tum Networks), strange quantum networks (Qs) (including broadly black hole coupled
systems), and exactly quantum black holes Qbh. Keeping the adjointly measured basis
functors, and using cosmic censorship as a topological ordering (a.k.a., applying the Aver-
age Null Energy Condition), this can be translated into:

⟨S|S⟩ ∼ [⊗Sm] (⊗Smixed (⊗Sbh))
⊗∗ [⊗Smixed ⊗ Sbh]∗ (⊗S∗

m)
∗ =̃

[⊗Sm (⊗Smixed)] (⊗Sbh)
⊗∗ [⊗Smixed ⊗ Sbh]∗ (⊗Sbh)

(23)

In this case, the asterisk represents the functional constraints of the spacetime OPEs, which
can be naturally identified with an operator under the canonical embedding.6 Applying
the Zeroth Law, equivariantly identified with the Law of Monodromy Juncture Recursion
[9]:
∑

αi = δλ∞K = lim
l→∞

[K − 1− α∞] (24)

⇒ δL∗i = δλ∞i − αi = lim
r→∞

δr

[[
lim
α≡0

ln R̃φαi

]
− ln R̃φαi

]
:= lim

r→∞
(
/δr − δr

)
ln R̃φαi (25)

where δL∗i =
∑
j ̸=i

aj .

Immediately, r may be dually interpreted as a thermodynamic parameter, r ∼ βr, pa-
rameterized dual to the scalar probe φ7. Note that the case of δλ∗i → 0 (identified with
AdS and every black hole system except the unique, flat space d = 4 black hole triplet:
Schwarzschild, Kerr, RN), can be exactly identified with the Hawking’s First LobhT, while
λ∞i presents as an inexact differential (of sorts), again consistent with the first LoT as a
flat space heat kernel.
Note that λ∞i is localized exactly on the usually canonical integration space of harmonic
regulation:

lim
n→0+

lim
r→ 1

n

∪rVL
2
r[∗]∞ ∼ lim

n→0+
lim
r→ 1

n

∩rB∗[r[·]; (∗, ·)] (26)

6The RHS can be interpreted as saying that interactive states are comprised of massively-mixed fields
on black hole (geometrized) backgrounds measured against mixed background fields against on the same
(geometrized) background measure.

7and r has been generically designated as the largest commutative, continuous field index (with, in
general, whatever sub-index expansions are necessary) at the juncture. In the case of black hole cuts, this
is exactly the radial coordinate. In general bosonic string connections it is the largest interloping patch
extension index
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Here, the asterisk operation should be considered exactly as the canonical open/closed
duality in Topology. Note that 28 is equivalent to saying that all contours are directed
towards this boundary cut; note that the formulas[9]

lim
l→∞

α3,4 → −2Mω ± iLω, lim
l→∞

∑

i∈{3,4}
αi = −λ∞i (27)

gives an exact orientation across all sub-accumulation topologies.
Then, δλ∞i can be immediately associated, using Noether’s Second theorem, with a “regu-
latory gauge residue"8. Note that this is slightly different from Noether’s theorem itself, as
it is necessarily applied as a Field extension of the bounds of integration, {∞} ∼ ∂R∞[r],
meaning there never exist closed path sequences which closes every closed ball neighbor-
hood of ∞,

¬∃γ ∈ Γ[M] s.t.
∮

γ[∗]

∂
(
Nrn [·] ∩n N∞kn

[·]
)
∼
∮

γ[∗]

∂ (Nrn [·]) (28)

In fact, it can be immediately concluded that δλ∞i is uniformly Z+
2 -dualized by changing

the relative orientation of path integrating in neighborhoods of the boundary, ∂N∞ (to
be understood as groups on neighborhood families) by a simple twist accessed discretely
under L→ −L, and understood by moving δλ∞K between sides of the constraint as 9

∑(
αj −

δλ∞K
K

)
= 0 ⇒

∑

αj +

lim
l→∞

∑
i∈{3,4}

αi

K


 = 0 (29)

Dually, consider a twist constraint in the orientation of the complex, (A)dS sourced hori-
zons, visualized as an r ∼ 0 emergent, scalar spin index.10 Assigning stars to all the
operators, defining αi = −α∗

i for the complex neighborhoods, and summing the above
equations produces the topologically spun(/glued) identity:

∑

K⊕K∗

(
αj + α∗

j

)
= 0 (30)

8in the sense that it presents as a Klein-Gordon d = 1 projected rational constraint continuum, or an
r-path defect.

9Accordingly, the regulatory space at infinity should be considered as a proper field extension at the
group level, manifest as a path/Goldstone defect [11]; in fact, the Klein-Gordon solution basis acquires
a wavelike global phase (X0 = 1 + O(x) , X1 = e

−iω
x x−2iMω+1(1 + O(x))) envelope (a qausi-dynamic

stabilizer) which, as shown throughout this paper, is a hallmark of emergent hidden degrees of freedom (as
boundary gauge choices naturally connect to the equations of motion through Green’s Theorems). Because
this feature is isolated in both dimensional embedding measures [12] and the AdS embedding, it can be
considered a proper feature of emergence in black hole quantum mechanics and, re-examining the proof
above, formally associated with the third Law of Thermodynamics.

10Remembering that the spin 1
2

field’s purpose is exactly to operate as antisymmetric regulation of local
light geodesics (as discussed above), matter gauge functional ẽµ[σa[c ẽ

τ ]ν

d]b = ηµνηab. Then, thinking of the
Kerr-Taub-NUT duality [13] this is entirely natural.
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Denoting open rings as the boundary residue state and letting it’s ∗ conjugate denote the
twist pairing above, as well as letting the closed balls denote the fixed bulk monodromy
sums, this idea may be understood diagramatically as a dual splitting of contour integration:

Note that this is exactly an optical theory because the O(pen) interaction acts as a twist,
in measure, between the field and it’s dual Open state. This is also just Stoke’s Theorem
on the product state. In the above, consider the dual leg of the twisted basis to be a bound-
ary constraint gauge; further, consider the space-like vacuum hologram to be maximally
mixed (as a thermodynamic volume of βr). Inserting this “L" state into 23 reveals this as
a prescription for gravitational/matter mode mixing as a boundary residue of mixed-mode
shells.
Performing this mixed dual basis change on every mixed action in the Universe produces
the Supra-Gravitational Product (SGP) dual:

⟨S|S⟩ ∼
[
ST∗ ⊗ Sm

] (
S̄mixed ⊗ ∫bh∗

)
(Sbh) (31)

Notationally, S̄mixed denotes the time forward closed mixed holoform, induced by closing
the observable mixed radiation over its twisted extension, and the transpose T operation
denotes a pull straight from the spacetime (amounting to a measurement in-backreaction)
denoting the regulatory cut gauge running from δλ∞∗ . This can also be thought of as saddle
point approximating the mixed-mass action under local interactions, Sm(Smixed ⊗ [·]) In
fact, note that this formulation is locality agnostic: the pullback unambiguiously holds on
the harmonic cusp (in the non (A)dS limit), and every closed state in d = 4 and can be
de-convoluted continuously as such. On face, this broad lack of decidibility seems to only
accentuate a lack of information.
In fact, th virial limit of this regulatory scheme may be exploited thermodynamically
because the solution benefits from another problem: the arrow of time. Under the ANEC,
or cosmic censorship, the residue ∫bh∗ action can only exist as a strongly mixed operator,
or a Black Hole eigenstate. According with the central theorem of Analysis, this co-form
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may be considered functionally null (under the Transpose push), producing:

0 ∼
[(
I− ST∗

)
⊗ Sm

] (
S̄mixed

)
(Sbh) (32)

This is concretely the hallmark of both: the first terms of a continuous series (tree diagram),
and a modular operation. In fact, it is immediate to try and solve ST∗ functionally so as to
satisfy 32, which can be recognized as the monodromy condition:

IN ∼ (Sm ⊗ S∗)T (33)

Considering the actionable G-hologram is always present as a boundary kernel, and noting
that the adjoint algebra is universally embeddable under the central extension theorem
(Rice Shapiro Theorem), it may be expected from the (A)dS conjecture [14] that the
conformal center could be recovered as:

IT
−1

N ∼ Km ⊗K∗ (34)

Again, the generality of the characters seems to have lost too much detail to resolve the
adjoint boundary kernels.
Except that, again, the broad categorization is exactly this method’s strength, as the only
operations used were, dually, extremely narrow razors: the above amounts to taking a
picture of quantum foam, copying it without looking, and throwing one copy into a black
hole. Resultantly, the only things that can respond are the constraint parameters (CPs)
on the infalling matter and the CPs on the outfalling black hole. Considering the covering
topology must have support under the cover basis of the maximally mixed vacuum, this
must mean that the Transpose operation must directly invert a largest co-homology chain,
denoted11:

Iλ∗N ∼∗ [Om]
λ∗
λm ⊗

[
Obh

]
(35)

In fact, observationally and theoretically mass exists as a universal coupling constant.
Considering λ∞ = 4Mω, it is immediate that black hole state frequency eigenoperators
that scale with spacetime must (re)scale as ∼ M . In fact, considering all the Observables
in the universe to be either mixed or measured, there is an interesting phenomenological
fact that:

m
mbh

∼ 102

÷ ∼
(
me
mp

)2
∼ 10−7

m
m∗

∼ 109

(36)

where mbh
m is the total (current) black hole mass fraction of the universe, m∗

m is the total
(current) matter to anti-matter mass fraction (the baryonic imbalance ratio) of the uni-

11And giving a clear indication of how CPT symmetry should be thought of generally.
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verse, and mp
me

is the proton to electron mass ratio. Note that the square operation in the
electron/proton mass-ratio represents a line-dimensional OPE being lifted into an embed-
ding area functional, just as expected from a Hawking-type constraint.
It is also immediate that the black hole surface we used to twist against was arbitrary:
each vacuum bubble could also be twisted to preserve another inner-Cauchy constraint12.
Considering these twists as exactly dynamic onto universal gravitational mass-shellings [15]
immediately accesses:

{
λm ∼ lnm∗

λ∗ ∼ ln

[
mbh + 3m∗

(
me
mp

)2] ⇒ λ∗
λm
∼ 120 (37)

Then, this implies:

[
Iλ∗N
]−120

∼∗ [Om]⊗
[
Obh

]−120
=̃ [Om]⊗

[
Obh

]
(38)

where the final result comes from considering black hole constraint forms to be universally
conformally on-embedding-shell [12]. Tacitly, it could be expected that normal matter “in-
teracts with"(/is corrected by) with soft-black hole effects at an observed rate 10−120 lower
normal because the black hole auto-correlates across the legs of the interaction. As such
this has (seemingly) phenomenologically resolved the Cosmological Constant problem as
an auto-correlated shifting symmetry between conformal sectors in the global (presumably
AFS/Celestial) hologram.
Effectively, the cosmological constant (adjoint winding form) should be expected to inter-
act locally on a scale 120-orders of magnitude weaker than naively predicted because, as
is again formally hypothesized, there exists a hidden, 21pt winding OPE scaling running
with the globally hidden mass over the top black hole stabilizer kernels.
As the final proof of this paper, the existence of this 21pt state operator will be necessarily
proven the standard AFS Celestial Hologram.

4.4 Universally Stable Uniformities in Twist Protected Towers

For brevity, consider the results of [16, 17] to be assumed without proof but to be contex-
tualized as needed. The goal of this section is to show the existence of a 21pt stabilizer
degeneracy that is both gravitationally and matter exact.
Quickly, [17] shows the operationalized crossing symmetry group is degenerate over the
field crossing symmetry Z2 (shown by holding the dual momenta constraint across the Z2-
juncture in the discrete topology, e.g. the weakest-topological closure aka the "manhattan
measure" embedding). In particular, the paper shows the existence of hidden degeneracies
in the celestial S-matrix (calculated as the Z2-degree of the OPE cover) directly related to
the degree of the OPE.
In particular, considering an n-point fucntion, the paper shows that the degeneracy num-

12at the functional “cost" of making the computational mass basis everywhere unstable
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ber, or“the number of crossing channels allowed of a given point on the sphere", deg[n] is
given by:

deg[n] = 2n−1 − cake(n− 1) (39)

where,

cake(n− 1) =

(
n

3

)
+ n =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+

(
n− 1

3

)
(40)

The cake number13 is the "maximum number of regions into which a 3-dimensional cube
can be partitioned by exactly n planes". In particular, the first degeneracy exists at n = 4,
deg[4] = 1.
Quicker yet, [16] examines complexity in quantum information by applying universal fea-
tures of quantum error correcting code (e.g., stabilizer-state decomposition) to exact smaller
representations within a hypergraph embedding. In particular, by analyzing the low qubit
stabilizer graphs (i.e., completed Gate-state-decompostion), the paper finds an emergent
maximal number of verticies (representing available qubit states in hyper-embedded sub-
graphs). In particular, the authors prove the existence of a maximally complex subgraph
with 1152 vertices, g1152, which emerges in a D = 4-qubit system, and postulate that no
higher complex subgraphs should exist in any higher qubit systerm, noting that “[no] new
subgraph structures emerge beyond g1152."

Consider some emergent, independently coupled (thermalized) system with 2D dof cou-
pled to some large-n qubit system. Under the hypothesis[16], the most complex sub-
graph will have |g1152| + 2D vertices. Interestingly, 1152 is nearly a cake number, which
is a canonical degeneracy feature of quantum gravity under the hypothesis of [17]; in
fact, 1152 + 8 = cake(20), suggesting that an emergent classical splitting field (quantum-
thermalized dimensions) with D = 4 = d may be uniquely connected to celestial OPE
sub-densities in d = 4 spacetime. Combining with (39) and letting D = 4:

deg[(D + 3)(D − 1)] + |g1152|+ 2D = 2D(D+1) (41)

Interestingly, this seems to indicate a connection between an emergent D=4 classical space-
time14 and the mean-average of a qG invariant as well as a strong Quantum Information
(QI) invariant:

⇒ D = 2D(D+1)−1 − 1

2
(deg[V(D + V)] + |g1152|) (42)

where V = D− 1. We note the n = 4 = D is the minimal holographic degeneracy OPE. In
particular to D=4, D − 1 = V represents a triangulated space, or localization symmetry,
while D+V is it’s volumetric tesselation index, or its dynamical symmetrization.15 What’s
left is to interpret the triangulated tesselation index (functional) deg[V(D + V)]]=̂deg[21].

13(OEIS: A000125)
14considered as the difference in degrees of freedom of against some free topological embedding, 2D(D+1)−1

15Note that (D,V, D + V) ∼ (3, 4, 7) are all relatively co-prime.
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The deg function (39) calculates the dual degeneracy, the number of valid insertion
points on the dual nth OPE subregions that preserve the celestial S-matrix. Importantly,
it is shown in [17] that the (Z2 crossing-symmetry) excluded insertion points are exactly
those which can be graph-cut to completely isolate the in/out states (e.g., loop isolate the
in coordinates from the out functionals)16

Generally:

DFLC (V) = 2D + deg[V(D + V)] + |g1152| (43)

Looking for an interpretation to a [V(D + V)]-pt function, consider the qubit stabilizer state
as a singular-insertion OPE volume form with J±-dual thermalizations, D± = {−Λ0

±, µ
T T̄
± }.

Then, deg[V(D+V)] can be considered a a tesselated T-channel entanglement index between
[13] the product partitions:

D+ =
(
0, µT T̄+

)
, D− =

(
−Λ0

−, µ
T T̄
−
)

(44)

In the above, the product degree makes sense as a twisted index tesselation index (exactly
because (3, 4, 7) are all coprime: the boundary conditions have a primary splitting based
on the minimal celestial geometrized state in D=4 dimensions) between {in±, out±} bulk
initilizations:

deg[V(D + V)] = deg0±[D,V] ) (45)

More succinctly, say that “a space stable, maximally entangled state can be adiabatically
decomposed by a quantum-error correcting code into d=4 in/out classical degrees of free-
dom and a dual t-channel, entanglement". As recognized in [Freidel:2023ytq], cutoff
topologies uniformly characterize quasi-universal measures by use of continuum mechanics,
or under the partial ordering x → x∗[λ, ϵ] ∼ [λ−1, ϵ) ∼λ−1 [1, 2π). The axiom of choice
always lets this be understood as a functionally compact U(1)-field extension: intuitively,
topological neighborhoods are universally signified by background-null shockwave indexes
[19], [20].
Comparing the observation made at the end of Chapter 1 to (6) in [Freidel:2023ytq]:

21
[
kg−1m−4

]
≈ Λ0mec

2

h2
≡ 8πFN

[
M =

ρΛ
E∗
,m =

me

E∗
; r =

hc

E∗

]
↔(∗) ρ

m+
≤ N

m+V4
(46)

⇒(∗) 21
(
m+

4ρΛ

)[
kg−1m−4

]
=

1

4

ρ

ρΛ
≤ 2πFN

[
m+

E∗
,
me

E∗
,
hc

E∗

]
(47)

where m+/E∗ is an arbitrary mass/energy scale, Λ0 is the measured cosmological con-
16Interestingly, D(D + 1)− 1 = LC(V)− V ≡ FLC(V), where LC(i), the so-called “Lazy-Caterer" index

is equivalent to "the number of pieces formed when cutting a pancake with n-cuts", and also “ maximal
number of grandchildren of a binary vector of length n + 2"; particularly, LC(V) = 5 a binary vector
of length 5, and FC(V) = 2, and this may provide a cut-contact between 5-dimensional holography and
2-dimensional quantum-gravity fluids [18] and may be interesting to study in subsequent works.
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statnt, me is the electron mass, ρΛ is the vacuum energy density, FN is Newton’s scalar
gravitational force (density), and h, c are Planck’s constant, the speed of light. The final
condition may be recognized as a background loop-quantization of the energy density per
massive degree of freedom against a path-uniform force, or a topologically protected mon-
odromy charge [9]; intuitively (and observationally), this implies the existence of a 21− pt
degeneracy symmetry in a completely Euclidean sector of full quantum gravity.
It is now immediate to show that the U(1)D in/out compactification on the largest U(1)

quantum annealed in/out free juncture is exactly:

2D = 2D(D+1) −
(
degqG [(D + V)V] + |g1152|

)
(48)

Thus, in/out spacetime may be understood as a fully realized microcanonical ensemble in
quantum gravity (under a typical Wald prescription); further, this exactly resolves the ar-
row of time [21]. Note that (D+V)V = 21, as indeed originally prescribed; note here it may
be interpreted directly as an su(2) harmonic gauge duality or, dually, a O(6)-constrained
t’Hooft anomaly in the freely gauged, critical bosonic phase limit → U(1)26.

At first glance, the force-density scale/winding invariant seems un-physical; critically, at
second glace this is actually necessary for a strictly emergent, and never univariate, symme-
try. Indeed, this information symmetry can be unraveled by the central scale observations
using monodromies[9], the observed anti-matter, black hole, and total masses m∗,mbh,m,
electron-to-proton energy ratio [15], and the interaction bath degeneracy space/microcanonical
free-energy ρ−1

hidden:

1) δrS
+
d=4,/Kerr-AdS = −

|I|=3∑
i ̸=+

αi 2) m∗
mbh
∼ 1

3
m2
e

m2
p
∼ 10−7.0049 3) ρ−1

hidden ∼ 10
m
mbh

−3 log
m2
e

3m2
p (49)

∼ 10121.0147 (50)

By mass-energy equivalence and remembering that the quantization is over the spectral
dual, F∗

K
[
|∂Ψ± imΨ|2

]
, this may be directly considered the dispersion extended (shadow-

pushed) embedding of N ∼ l2

l2P
∼ 103ρ−1

hidden found in [Freidel:2023ytq]. This immedi-
ately suggests that the cosmological constant can be understood as a volume-gross phase-
fractionalization of the vacuum thermalization bath over the local black hole polarization
shells, as suggested by the t’Hooft state (asymptotic compactification) U(N) ↪−→ U(1)N

represented above; indeed, as shown above and below, the background field method lets a
family direct bulk bootstrap into the maximally mixed T -exchange sub-stabilizer of fully
unified interactions.

This leads to the immediate interpretation of d = 4 spacetime as a thermally tessellated (in
the Neumann sense[1]) graviton degeneracy (decay channel) mediated with an everywhere
exact D = 4 qubit interaction-gate. This exactly establishes this edge unified formulation
of gravity as the holographic extension of the ADM formulation of smooth SU(2) (which
is naturally formulated as a dual string theory). Note that this exactly explains why the
Weak force is ∼ 1024 times stronger than gravity: this is the (faster) rate at which grav-
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ity thermally anneals relative to electricity. Alternatively, the weak force represents the
thermodynamic work available from the emergent gravitational destabilization. In fact,
this immediately resolves the arrow of time as a hole-type interaction of gravitons (who
lose local QI stabilizer support at 21pt and are "quantum corrected out" of local density
interactions mod21).

Inserting this understanding throughout the paper proves consistent; in particular, “con-
necting the dots" between this and the previous section lets the following (t, r)-Wick rotated
T(essellation)-propagator be drawn immediately, which shows that the monodromy con-
straint is iff-dual towards EP=EPR:

Then, the proofs in this paper can be formally motivated as having constructively built a
model of EP=EPR through an admixture of black hole dynamics, quantum network sta-
bilization, and duality flow, generally; rigorous persuit of these ideas led, eventually, to a
firm unwinding of hidden aspects of reality, dark matter, and time.
[22] What’s left is to listen for signatures of this information decay in nature.

4.5 Beyond A Fully Realized Quantum Gravity Prediction at all Tree
Levels; Or, How I Learned to Stop Worrying about the Semiclassical
Limit and Love the Loop

What’s left is to study the information interaction of Wilson-loop quantization networks.
This will be done by universally compactifying the O(α2) magnetospheric solution trunks
into both QCD and super-string theory (as holographically central dual interaction). Holographically,
the conformal compactification of black hole topologies acts as coarse stringy-tomographies
of spacetime shadows [23] and, deductively, it is universally true that sub-lattice wind-
ing symmetries can be tremendously efficient computationally. This paper has explored

159



the d = 5 single spinning Meyers-Perry black hole vector monopole as a t’Hooft light-
condensate[24], or a U(1)-twisted lift OPE (F-index) of a half conformal background topol-
ogy (cϕ, cψ) = (6Jϕ, 0). Indeed, the d = 5 log-type solutions of [25] may be geomet-
rically indexed as light towers over the asymptotic F 2 measure (splines), allowing the
interpretation of these monopole states as internally SU(2)-massive contacts over a Kerr-
thermalization (bath). As mentioned above superficially mimics coupling flow QCD and,
indeed, this decay channel has a direct interpretation over the Gell-Mann-Oakes-Renner
relation as a Hawking-dual quantization condition over a light-Brownian monodromy state
Sk =

∫
dδi(k)α

i(k) = Ψk.

The proof will close the quantum algebra by null compactification of the bottom-up and
top-down exclusion domains; operationally is equivalent to the existence of a holograph-
ically extended S-matrix (acting on interacting topologies). Because the UV sector is
(information-uniformly) closed at loop level under gravitational decoherence, the virial
loop calculation is UV complete and IR free. In this case, this emergent disordering of UV
operators present as either a time-ordered defect of asymptotically co-linear (field trans-
verse) cutoffs, or, imposing (T-symmetric) Feynman rules on some su(2) emergent vertex
presents a renormalized vertex (over the well ordering index, trace algebra, and measure
(I, C⃗I , ϕ̃I)). In this sense, the mechanics properly mimic matrix mechanics distributions
between every scale.

Accordingly, return to the first, classic circuit model of information transport studied as a
Gedankenexperiment. There, the universal information of state was regarded as a universe
undergoing slow-shock acceleration, which was found response dual to a Hubble equation
of state p = 1

5ρ;
17 hypothesizing the universal nature of the black hole hologram in g-

interactions, the dual algebra may be inferred as pulled to some su(2) dual weak axial
current(/Coulomb branch) algebra.18

17Note, this derivation uniformly applies to the stress tensor embedding performed in section 3.4.1; in
particular, the usual geodesic trace density, gµν

4
, was exactly gravitational loop-traced to 1

5
there, gµν

4
→̂ gµν

5
.

There it was considered a non-linear kinetic duality under the guise of nullity; here, it will be regarded as
a background information juncture. In particular, this will simultaneously rigorously prove the analytic
derivation of the

(
J
M

)
crit

[12] there.
18Indeed, the weight-space dispersion analysis in [26] can be immediately viewed topologically (or in

Wilson’s sense) as a twisted algebraic extension of the volume form onto a soft, spin protected interaction
(with information dual lattice momentum ξ−1):

D1
KL =

∫
d3J

(
wa[J ]e

wa[J]+w
∗
a[J]
) 3e−xmax

P(x)

xmax∫

−∞

P(y)dy =
e−3x

1 + ξx
(51)

Further, the resulting vertical acceleration envelope, ∂α1,pulsar

(
f(z)+ ∂Φ

∂z
α1,pulsar

)
= 0 shows an interesting con-

nection to the transverse momentum independence of deep-inelastic scattering of nuclei under the natural
kinetic identification f(z)

z
+ ∂Φ

∂ ln z
= q2, where q2 is the spacelike holographic spin-momentum over the soft

background interactions.
Tracking the example/analogy, the imagined kinematics of an epoch-ancient (quasi-)ejected galactic

cluster interacting with a future-epoch colliding extragalactic cluster can be quickly considered dual to
enhanced e+e− production in co-linear QCD distributions. In hypothesis then, a categorization of the
hidden symmetries of extragalactic streams may present as kinetic-invariants of (a sub-family of) dual halo
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Accepting the branched conformal duality, this may be represented by excluding the lifted
monodromy chain onto the geodesic vertex; considering the attractor Lagrangian found in
[27] this may be loop quantized using abstract nonsense as:

{γµ, γν}ZνZ̄µ→̂γZν γZ̄µ ⇒ {
(
ZZ̄
)2
, γZτ } →

x̄ȳz̄∑

xyz

CxyzI γZIx γZIy γZIz ←
x̄ȳz̄∑

xyz

C̃xyzI ZIxZ
I
yZ

I
z (52)

⇒ {L, Zτ} ⊙ {Z}3 ̸= {∅} (53)

Physically, this may be resolved as a double copy(/toric code) symmetry into a 2− pt-dual
compactification scheme for extremely early time regulators, in Wilson’s sense, of (rela-
tively) late time OPE representations. In fact, this symmetry can be exactly represented
as a code-area symmetry (a Hawking-type free information) by realizing:

V (ϕ)− V (ϕ∗) ∼
∑

I

CIi

(
ϕi√
6α

)3

=

(∑

I

ϕ̃I√
6α

)2

(54)

Indeed, the final identity presents this renormalization bath as a field ordered area-duality
point between volume complete inflation scales and a sub-inflation mean-free measure
states. Critically, as always, the measure states generally provide an interesting (0 − pt)
contact between the central representation states which may be bootstrapped into centrally
shelled dual algebras (modals).
This can be quickly exhibited by considering a d = 5 electromagnetic field strength such
that one of the angular gauge fields is kinematically unimportant in the bulk but quasi-
freely constrained (in the modular sense) in neighborhoods of θ = π

2 ; adding dots to index
the k = 4 kinematic subspace and anticipating an index rotation in the asymptitic algebra
allows a direct comparison to (37) [28], a single supersymmetric bosonic and fermionic
degree of freedom, in the accumulation space θ ∈ [π2 − ϵ, π2 + ϵ]:

F 2 = Fµ̇ν̇F
µ̇ν̇ +

1

2

(
Faτ̇F

aτ̇ − Faτ̇F τ̇a
)

↔∗ 2Q̂2 = q̂2 + p̂2 + [γ̂, η̂] (55)

The primary difference is that the duality present above uses asymptotic black hole algebras
in lieu of supersymmetry partners, which can be holographically contextualized in terms of
the experiment described in [29] (specifically figure 6) by interpreting the ωχ{0,1} transitions,
respectfully, as the r →∞ asymptotic decay of a k = 4 Kerr scalar probe and the r →∞,
F 2-thermalized decay of a single spinning Meyers-Perry magnetospheric ln-probe. Then,
under hypothesis, the rightmost identity in (??) may be understood as the kinematic
Cardy-dual of the central ∆-transition in figure 6 [29].
Immediately, using Noether’s 0th theorem at the renormalization potential uniformly com-
pactifies the generalized su(2) dual measure into an |I|-dense norm space of measurements.
Similarly, under the free hologram entropic measurements and the observed-flow of time

distributions; further, the high energy (ejection) initial conditions, as a galaxy wide-cross section, may be
kinematically approachable as a background-field screen of strictly quasi-galactic interactions. Analyzing
extreme-precision photometry, specifically pulsar timing measurements, to directly measure quasi-Galactic
partial-wave accelerations may present a direct conformal bootstrap of the celestial hologram.
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are canonically dual and, accordingly, any time-parameterized action representation may be
re-initialized under it’s properly thermalized, super-gravity pair at precisely the renormal-
ization point.19 This may be formally understood as preparing twists of supersymmetric
Bell-pairs above/on/under the central QED vacuum foam/decoherence/gravitational-back-
propagator: e−e+↔̂∗γ.

This directly implies the (0k, 0l)-magnetospherically complete Tangherlini state can be in-
terpreted as the ground state probe of a directly junctured quantum information/chaos/quantum-
gravity interaction. Indeed, at O(α0)-order,

∂θe
Ψ

(c1)
θ = eΨ

(c1)
φ [−θ] ∂θe

Ψ
(d1)
φ = eΨ

(d1)
θ [θ] (56)

directly identifies a variant of superpair symmetry over strictly Boltzmann-prepared duals.
Immediately, Ψφ may be identified as an internal (ghost) field that parameterizes the flat
partition over magnetically separated, gravitationally warped internal partitions; together
this represents a quantum gravity extension of the usual notion of harmonic conjugation.
This can be recognized as a transverse sub-partition tree-level expansion of the gravitational
loop algebra by presenting the measurement-basis in [30] as:

ky
kT

=
1

kT

kT∫

0

dkT e
−Ψ

(1)
θ

kz
kT

=
1

kT

kT∫

0

dkT e
−Ψ

(1)
φ k2T = ⟨

∫
e−Ψ

(1)
ϕ |
∫
e−Ψ

(1)
φ ⟩

2
(57)

(
dky[−θ]
dkx[θ]

)
=

(
e−Ψ

(1)
θ [−θ] kT e

−Ψ
(1)
φ [θ]

e−Ψ
(1)
φ [θ] −kT e−Ψ

(1)
θ [θ]

)(
dkT
dθ

)
(58)

This explicitly identifies the super-null solution, Ψφ ≡ 1, as covering a uniformly PT-
protected state (on the S1 normalized channel, c1 ≡ 1); this can be explicitly shown by
row-reducing the metric at this spectral point

[s∗]ȧb =

(
k−1
T 1

0 −kT
(
eΨ

(1)
θ [−θ] + e−Ψ

(1)
θ [θ]

)
)

(59)

Interpretively, this is continuous functor (free field theory) formulation of either: 1) the
double-scaled limit of either SYK, 2) the Kerr-Taub-NUT limit of general relativity, or
3) a (kT ) little-scaled z-spin OPE chain operator20. This may be immediately recognized

19Again, by formally evoking the Banach-Tarski theorem on the renormalization-point (sometimes de-
noted 0q-point) transverse modes

20Note this representation may be (quasi-trivially) closed (onto a Hamiltonian) over semi-direct open
states Λ(1)

σx [a
iσi] = b(k)P

(k)
1 P

(k)∗
σx [aiσi] = b(k)a

i [σi]
(1) , which exactly identifies this as an extended Coloumb

branch OPE. Applying standard harmonic regularization across across the kT → ∞ surface immediately
recognizes a form of subleading crossing symmetry running from the measurement transverse (kT ∼ 1 right-
fixed), transpose algebra PT2 . Intuitively, and following the Rice-Shapiro theorem, this puts emergent
crossing symmetry in 1 − 1 correspondence, as a holographic information theory, with an interactively
centralized gravitational hologram (and Noether’s 0th theorem). Collaboratively, the definite ordering I in
(54) may be prescriptively reduced to a square definite measure space that can be softly-completed into
the totally symmetric, few auxillary field limit ϕi→̃ (ϕ, ∗).
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as a candidate superdual representation of holographic QCD [30], now phrased over a full
gravitational interaction.

4.5.1 2×2 GUE

As shown in Chapter 3 the d = 5 log-type solutions of [25] may be geometrically indexed
as light towers over the asymptotic F 2 measurement splines, allowing the interpretation
of these monopole states as internally massive contacts over a Kerr-thermalization (bath).
Importantly, the boundary decay channel used to juncture the out-to-in Kerr-bath and the
in-to-out U(1)-probe has a direct interpretation over the Gell-Mann-Oakes-Renner relation
and (4.3-4.6) in [31] 21. Comparing to the gF2 degeneracy razor developed in Chapter 3 to
the universal renormalization point of the GMOR phase directly[31]:

(
δrψ+

)4
F 2 →θ→π

2

c21
F2
π

(
F 2
π+

T2
R
F2
π

)
− C̃2

r20

(θ−π
2
)6

⇒gF 2 iπα2k = (2 + π)c21

M4
πF

2
π = 2m∆Σ ⇒QCD iπ

(
gF 2

η

)2
Nf = ζqt ,

(60)

This seems to characterize the spacetime response of the log-solution studied in [25] as
dual to a t’Hooft discritization of QCD interactions [31] over a meson-type background
of black hole shell states; intuitively, it appears as if the log magnetosphere pushes off
the black hole’s (half Kerr-)conformal thermalization into a full, asymptotic su(2) Cardy
quantization.
As outlined repeatedly, this effect can be understood exactly as the holographic extension
of the Berry phase in a curved TFT (over a magnetospheric juncture) and can exactly
compactified by a virial, modular bootstrap. Indeed the background field formulation
can be directly co-joined with the notation of large quantum systems[32] by expressing
the time-gauge over the symmetric potential Ā := Aϕ + Aφ (or the gravitational ground
state, this implies d1 ∼ c1). by Noether’s 0th law, the canonical vacuum information
may be almost everywhere directly comparing to the J = L

2 , J± = 0 exact case (12) in
[32] shows a superficial dualization of the hidden velocity ωφ as an anomalous incoming
Doppler-like envelope on the continuum ghost velocity partitioned over the largest spin-
sector representation22:

∂αA
MP
t =̂ (ωϕ + ωφ) Ā,α

d1 ∼ c1
⇒ ωφ =

1− f
1− 2f

∂fA
MP
t

∂f ⟨SA⟩

∣∣∣∣∣

f∼sin2 θ

(61)

Then, the emergent field velocity ωφ can be naively interpreted as an (anti-spinning) an-
nealed information probe at twice the local group velocity, precisely as predicted (from the
Cardy dual information theory) at the end of Chapter 3.
Note the development of a Cherenkov cone between θ ∈ [π3 ,

2π
3 ] [33], which can be thought of

21mixing models with massive shell coordinates ∆Σ :=M2
πΣ and F−2

π =̂2π, ζqt =
−iNfχqt

2F2
π

22Which, at J = L
2
, is exactly consistent with a T-symmetric ER = EPR duality
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as a topological bosonic emission (a.k.a., as a Euclidean-like projected propagator).23 Con-
sistently, it was properly shown in Section 4.2 that the separation index λ between the tree(-
trunk) elements (Ψϕ,Ψφ) may be extended as an exact fourth order, Y -functor iff the Y ex-
tension satisfies the (Majorana) Dirac connection; or, λ→ /□2

Ψϕ⇔
(
∂ /∂ + (−1)kd

(
/∂Y
)2)

Y /Y .
This categorically establishes the Majorana-Dirac momentum near λ = 0 as a relevant
unitary flow iff the gravitational OPE is relevant; intuitively, this captures the celestial
hologram well. Applying Noether’s 3rd to the index λ, it may be said that relatively new
gravitons spontaneously error-correct leptons (as information superpairs) from relatively
old gravitons; accordingly, this process may be understood as a quantum gravity T-channel
reformulation of the classical gravitational memory effect.
Note that the standard deviation found in the appendix [32] can be log-dualized as a thermal
product partition σ2

L =
WθWφ

4 = eΨθ eΨφ

4 , which properly identifies this as a Hawking-dual
quantization condition over the light-Brownian monodromy state Sk =

∫
dδi(k)α

i(k) = Ψk.
Again applying Noether’s 0th, this gravitational TFT gate (gTFTg) necessarily accords a
(hidden) central monodromy cut.

Then, the d1 → 0 limit may be categorically recast as a little scaling of the central holo-
graphic (super) algebra; towards the U(1)-gauge probe, the measurement space may be
parametrically compactified over U(1)

k
n subbase representation-states, which may be uni-

formly compactified in U(1)∞ (as a p-adic parametric duality). Then Noether’s 3rd im-
plies only absolutely branch-uniform interactions propogate far on the Tangherlini-lifted
Coloumb branch,

(
ΨT
θ ,Ψ

T
φ

)
; this amounts to propogating a central family of 2-pt regulators

with strictly non-affine ln center between the background-bulk null in topology and the
canonical harmonic out surface. Physically, this represents a functor regulated analytic
continuation model of gravitationally mediated RG flow.
Indeed, considering the d1 ≡ 0 O

(
α2
)

perturbative solutions of d = 5 single spinning
Myers-Perry exhibited above, including only contributions which are in the top-ordered
phase identifies the first order quantum-phase shift ΨMP

ϕ −ΨMP ∗
ϕ ∼̂c1 ln

(
rα

2 sin2 θ
)

as the
quantum foam analogue of Krishnan coordinate duality of black holes. Here, it can be in-
terpreted as a holographic renormalization duality, or an information point-pressure 24. In
particular, this identifies a natural IR length in (61) L[α;(r,f)]

2 ∼̂rα2f [32]; naturally α2 iden-
tifies the O(α3) minimal monopole perturbation scale and rα

2 represents the maximally

complex inverse discretization of large distance measures r ← s
β[s]

α2 (and is symmetrically
locked (in,out) at θ ∼ (π2 , 0) respectively). Finally, identifying the renormalized variance
with the r−subleading emergent entropy produces a scale-protected 0-form rectilinear area
law, which closes the proof of Hawking-Wilson loop completion: Sσ2 ∼ W ∗

θWφ

4 .

Indeed, this light-Brownian Hawking quantization may be compared to an induced Ginibre

23Considering that lim
r→∞

ds2MP
r2

→ dθ2 + cos2 θdφ2, this can be considered the spherical analogue of

cylindrical AdS-NHEK holography [34] (with the uniform critical NHEK angle functionally lifted into an
OPE emergent Cherenkov TFT).

24Which here, taking advantage of the holographic code, has the same dimensionality as area((5 − 1)
−2)=2 and the lowest idempotent variety
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ensemble by modularly gauging σ2G = Sσ2 (2.17) as [35] at the scalar Hawking juncture, to
produce a shielded (vertex re-summed) [36] approximation of Wigner’s surmise for 2 × 2

GUE vertices, as (1) in [37]: Comparing at the scalar Hawking juncture, πβ2[Ā]
4 := Ā,

produces a shielded (vertex re-summed) approximation of Wigner’s surmise for 2× 2 GUE
vertices, as (1) in [37]:

W (eΨϕz, eΨφ z̄)−W (z, z̄)∼̂0 ⇔(∗) Ḡ(z) :=
1

2
e−

Ā
2 |z|∼̂1

4

√
αGĀ

2(Sσ2 − 1)
(62)

⇒ 82

π
Ḡ(z)2 =

32β2e
−4β2

π

π2(1− 4e
−4β2

π )
(63)

. Reflecting, the construction above defines a finite-T loop radiative correction. Compared
to (1.20) in [38], Sσ2 [Ψφ; Ψϕ]− 1 ∼ c(cJ)∞ [Ψφ; Ψϕ, 1, 0]; immediately, this can be considered
the dual bootstrap of [36]. Note that the large N limit, S2

σ → 0 can be induced by three
accumulations: θ ∼ {0, π2 } for c1 > 0 (β ∈ R) and r →∞ for c1 < 0 (β ∈ iR)[24].
In fact, it is s immediate to match (1.34) in [38] to a second order spline condition found
above; defining τ−2 = |k|2

2πβ and matching orders produces a product compactification gauge
bridged by the probe field velocity c3 between the thermal winding states and an (annealed)
perturbation F[∗] extension χ:

δ2θr
4F 2

θ→π
2−−−→

r→rφ+

= 1− 2α2
(
c3 − 1

2

) [α4−χ4

χ4

]χ[θ]=δθ√αin+1
2

∼̂(∗) 1
Q

∫
R2

(ρOCP
(1),∞(r;Q)− 1)eik·rdr

=̂(∗) 1− τ−4

3

[
β
4 − 1

2

]

⇒(∗) χ2|k|2
2πβα2 =

√
12α2(c3− 1

2
)

(
1
2
+

δ4
θ

2α2

)

β
4
− 1

2

(64)

Again, note that c3 ∼ β
4 represents: 1) a Brownian-Hawking duality configuration over

the largest sub-conformal field windings, 2) the only θ-independent perturbation scale s.t.
β → 2 is finite, and 3) the only configuration s.t. the bulk Znajek crystallization is non-zero
|k|2

c3∼ 1
2

/≡0. All of these are characteristics of t’Hooft anomalies, and directly descendant
from the interpretation of time and entropy as homotopic representation pairs, s∗∼̂t.

Categorically, it may be said that information symmetries, as a net of gauged-probes,
represent a continuous, holographic, time-dual, second order 0−pt phase transition, in a
fully quantum interaction of everything; but as the bulk is canonically regulated out of the
t’Hooft phase of the Hawking-Brownian condensate, the central no-go theorem of demands
that the measure topology never shrink. This is a holographic criteria, so it must here hold
in the flat, affine index parameterization[21]. This necessitates the existence of a directed,
0-form symmetry over the classically emergent sub-graph network: time.25

25As a corollary, energy is classical iff it is time-exact, in the holographically exact sense, which may be
seen as a derivation of Hamiltonian mechanics from continuum mechanics.
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4.6 Topological Super String Theory

Interactions that are precisely quasi-Kerr (in conformal sense) present as a way to study
classically complete loop-algebras in asymptotically strong gravity. Starting back in d = 4

Boyer-Lindquist coordinates, introduce some hidden vector sub-base26 [13]

ds2 = −(1− 2Mr

ρ2
)dt2 + (r2 + a2 +

2a2Mr sin2 θ

ρ2
) sin2 θdϕ2 − 4aMr sin2 θ

ρ2
dϕdt+

ρ2

∆
dr2 + ρ2dθ2(65)

let

tR = αϕ+ βt dt = γdtR−αdtL
γβ−αδ

⇒
tL = γϕ+ δt dϕ = δdtR−βdtL

αδ−γβ

r (66)

such that:

β = −1
2(γ(Ω+ − Ω−) + α(Ω+ +Ω−))

δ = −1
2(α(Ω+ − Ω−) + γ(Ω+ +Ω−))

⇒ α = −2β + (Ω− − Ω+)γ

Ω+ +Ω−
(67)

⇒ gµν =




α2gtt+2αβgtϕ−β2gϕϕ
g2tϕ+gttgϕϕ

αγgtt+(αδ+βγ)gtϕ−βδgϕϕ
g2tϕ+gttgϕϕ

αγgtt+(αδ+βγ)gtϕ−βδgϕϕ
g2tϕ+gttgϕϕ

γ2gtt+2γδgtϕ−δ2gϕϕ
g2tϕ+gttgϕϕ

grr

gθθ




(68)

Assuming the typical massless Klein-Gordon ansatz, Ψ = e−i(ωRtR+ωLtL)R[r]S[θ], it can be
shown that:

λa4Θ[θ] = ∂2Θ[θ] + cot[θ]∂Θ[θ] + Θ
(
a2

2 (δωL − βωR)2 cos[2θ] + (γωL − αωR)2 csc2[θ]
)

(69)

R′′[r] + ∆′
∆ R

′[r]− λa4

∆ R[r] =

−R[r]
∆2

(
γ2 a2

M2

(
(M2 − a2)ω2

R + 2
√
M2 − a2(M − r)ωLωR +

(a4+a2r(2M+3r)+2(4M4−8M3r+r4))ω2
L

8M2

)

+γβ a
M

(
4
√
M2 − a2(a2 −Mr)ω2

R + (a4+2r4+a2(2M−3r)(4M−r))ωRωL
2M +

√
M2−a2(a4−8M3r+2r4+a2r(2M+3r))ω2

L
2M2

)

−β2
((

9
2a

4 + r4 + a2(−7Mr + 3
2r

2)
)
ω2
R + (a4+2r4+3a2r(−2M+r))

√
M2−a2ωLωR

M − (a−M)(a+M)(a4+2r4+a2r(2M+3r))ω2
L

2M2

))

Proceeding to the canonical harmonic boundary, r → 1/x:

−λΘ[θ] = Θ′′[θ] + cot[θ]Θ′[θ] + Θ[θ]
(a2
2

cos[2θ](βωR + δωL)
2 − csc[θ]2(αωR + γωL)

2
)

(70)

26a.k.a., a d=2 vector space operator ring expansion (ORE)
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0 = X ′′[x] +X ′[x]
(
d(x2∆[ 1

x
])

x2∆[ 1
x
]

)
− λ X[x]

x4∆[ 1
x
]

+ X[x]

x8∆2[ 1
x
]

(
ω2
L(2a

2x4γ + 8aMx3γδ + (2 + a4x4 + a2x2(3 + 2Mx))δ2)

+ωLωR(2ax
3(axα+ 2Mβ)γ + 2βδ + ax2(4Mxα+ a(3 + 2Mx+ a2x2)β)δ)

+ω2
R(2a

2x4α2 + 8aMx2αβ + (2 + a4x4 + a2x2(3 + 2Mx))β2)))
)

Noting that lim
x→0

x2∆[ 1x ] = 1, it can be shown that the most divergent term is (δωL+βωR)
2

x4
,

and that there is no term ∝ x−3. Thus, choosing

δ = −βωR
ωL

(71)

reduces the above equations as:

−λΘ[θ] = Θ′′[θ] + cot[θ]Θ′[θ]−Θ[θ]
(
csc[θ]2(αωR + γωL)

2
)

(72)

−λ X[x]

x4∆[ 1x ]
= X ′′[x] +X ′[x]

(d(x2∆[ 1x ])

x2∆[ 1x ]

)
+
a2(γωL + αωR)

2

x4∆2[ 1x ]
(73)

Then, elongating the thermal constraint to finite r-coordinates:

λa4Θ[θ] = Θ′′[θ] + cot[θ]Θ′[θ] + Θ[θ]
(
2a2β2ωR cos[2θ] + (γωL − αωR)2 csc2[θ]

)
(74)

0 = R′′[r] + ∆′
∆ R

′[r]− λa4

∆ R[r]

+R[r]
∆2

(
ω2
La

2γ2 − 2ωLωRa
(
aα+ 4Mrβ

)
γ + ω2

R

(
a2α2 + 8aMrαβ + 2(a4 + 2r4 + a2r(2M + 3r))

)))

Furthermore, we may ask that det[Λ] = 1, in which case:−β−1 = γ
α + ωL

ωR
. This formally

understands beta, the d = 1+ 1 ring representation, as the tL = 0-fixed, right holographic
tR-dual entropy, to be negative when the RHS is positive; formally, this is dual to neg-
ative string tension OPEs in string theory. Accordingly, left-null-encoded eternal Kerr
represent negative temperature algorithmmic shocks unless a RHS term is always negative;
but, choosing αγ < 0 forces the code nullity onto a d = 1 subbase element which must
be strongly27 balanced by ωL[∗]

ωR[∗] . This is the typical starting point of closed black hole
thermodynamics.
But, free to consider quasi-conformal interactions, it is immediate to consider the metric
and the probe field as necessarily joined in the interaction; then, the canonical decay
of non-linear electromagnetism into Kluza-Klein interactions may be loop quantized as a
formulation of regulated 1stlaw of thermodynamic densities:

γ

α
=
∣∣∣ωL
ωR

∣∣∣− β−1 ⇒
∫ [

β
∣∣∣ωL
ωR

∣∣∣− 1

]
−
∫
β
[γ
α

]
=̂0 (75)

27subadditively
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then, the quantization formally proceeds over the holographically null measure spaces, 0̂ 28.
Gauging this subfield, under the canonical TFT prescription and recognizing the hidden,
toric symmetry descending from ωR = −ωL immediately leads to the consideration of a
Tangherlini geometry under a U(1), time-orthogonal gauge-perturbation, which was indeed
the primary field construction of this paper.

4.6.1 IIA∗ Toric Code Networks

It may be wondered what new field/measurement dualities may be constructed against
the gravitational central index, amounting to studying wormhole excitations. In fact,
the classical field theory constructions in Chapter 2 exactly parallel the thermodynamic
constructions in [39] and [40]. This allows a direct dualization of the locally measured time
and the hidden conformal information flow (a continuous quantum annealing process) as a
utilization duality over emergent su(2) complexity (a.k.a., Heisenberg information) which
can be abstractly compared to (116) in [40] :

⟨δi| k[µ⃗[·]] |pi⟩ = − 1

2π

∫
d∆∆1−n(i)

∮

C[Nk]

d
[
N

(j)
(k,∆)

]
⟨dχ|D(j)

i ∆i⟩ (76)

↔(∗) 1

2

∫
∂. ln z(β) =

1

2π

∫
ż[β](2π)

d+1
2 md−1

∫

Σ0

volgS(x⃗)k d−1
2
βm2

√
|g00| (116)

Remindfully, the classical toy model of information specfied a Hubble tension D0 param-
eterized as a∼̂ρ 1

5 functional; considering a fluid model of inflation [39], it is useful to
holographically juncture information between pure superconductivity and essentially fluid
backgrounds. Again, using the modular bootstrap29 over slowly accelerating code algebras
leads to the identification of c2

c1
∼ 2

3 in (78)30 and, leaving geodesic measurement gravi-
tationally defect free, [39] dually categorizes this as an (ordinally 5-point) linear partition
OPE of strong inflation time interactions:

w∗ =
2

3
⇒qi a[t] ∼ e

(ρtot+ρvac)t

3LM2
p ↔(∗) ρ

∣∣∣ c2
c1

∼ 2
3

=
K

a5

(
1

(V0 − β
a3
)
2
3

− α

aKV 2
0

)
(77)

⇒a>>{β,α} a[t] ∼
(
K̃ρ−1

) 1
5 (78)

⇒(∗) ∂. ln ρ ∼(∗)
qi ρ̇e

5(ρtot+ρvac)t

3LM2
p (79)

Interpretively, the model scales as a holographic duality between information spaces d = 5

and topological Chern-Simons fields k = 3, meaning that, at fixed specific information, the
3rd LoT implies implies such a decay channel quasi-perturbatively not forbidden (at loop
level).
Note this categorically emerges over the 6−point slow pole, represented [39] as N =

28Or, shells of ghost dynamics, as represented above (and below)
29The Friedman equation runs as ∂ ln a ∼ H[t]
30−2V 2 c2

c1
T = PV shows this is ratio is the volume-square the quasi-factorization algebra of the normal-

ized number density nR in the ideal gas state

168



6 ln
(
tf
tt

)
, as can be inferred from some the existence of some O(6) simple glueing sym-

metry 31. Indeed, measuring under the 3rd law over some scrambled, pair, of volume
confined measurements yields an exact bond dimension of 6 on the nullifier code loop32.
Returning the classical information bulk model, w−1 = 5, examining (3.1) in [27] exactly
reveals a natural, discrete number symmetry running from the CMB’s descent through a
toric code-symmetry; dually, this this is how the fine structure constant was earlier cal-
culated (to five orders of magnitude) using black hole decay, which can now be promoted
to a model of Dark Matter decay, or a gauge theory for Dark Energy. On the topological
side, the duality can be (IR) understood directly from the synthetic-parameterization anal-
ysis performed in Chapter 333 as a mean-free squeezing of background tCherenkov Bosonic
shock states. Further, this universe is homogeneously stringy as can be seen from the 5

14

density scalings in (11)[42]) runs exactly as
√
mDM ∼ Λ

5
28 ; in fact, it will be shown that

the IR 2pt decay channel runs as tnowlmeso ∼ Λ− 3
4 .34

Indeed, the IR kinematics [43] can be exactly traced to information dualities in the regula-
tory subspace; applying the 1st law, and considering the measurement to be purely chaotic35

leads to the interpretation that this pure IR state represents an informationally-bare charge
of time. So, integrating the first law and D0 symmetrizing the heat measure-basis results
in:

SC = S − lnA−1 = Q ⇒ sGC :=

∫
SC ∼

∫ [√
mDM − tnowlmeso

]
→̂28

33
t
1
4 − 1

4
t
33
28 (80)

These results are depicted in 1; note that the curve peaks exactly at one unit of specific
chaos.
Further, this function parameterizes the interval [0,

(
33
7

) 14
13 ], which is slightly, but definitely,

less than the minimal bond unification-continuum [0, 6].36

31indeed, above it was inferred from the quasi-conformal, weak asymptotic shadowing of the solution
towers found in [25], or as an information emergent or background emanent duality). In fact, this can be
understood as the thermally-light compactification (a splined representation) of the project outlined in the
second footnote(2) in [41]

32Note, this is exactly a bond-space, or code-phase space, area calculation is the code is D3/(code-volume)
bonded and a volume area calculation when the code is D2(/code-area) bonded; then, 6 is the minimal
code state that covers both subcodes by the 3rd.

33interpreting d = 5 mass as a space-slow, ∼ M
r

, k = 4 continuous-information decay channel.
34So, the square-root of fundamental mass-unit uncovered in the single spinning MP black hole can

be regarded as a central signature of d = 5 information symmetries (and a principal expression of non-
factorizable TFTs) because it M-centrally relates to the unified central core (under r-measurement).

35Meaning no light information is extracted, only heavy-particles.
36it may be interesting to note, from a number theory dual perspective, that 2e−

(
33
7

) 14
13 ≈ .125064 ∼ 1

5
,

which was essentially associated with the code partition weight density and that 6 −
(
33
7

) 14
13 ≈ π

5
+ π

50
−

.00264961. After these two steps, the simple 1
10
p modular weight decomposition stops accumulating; taken

together which seems to hint at a second-order, circle-regulatory modulus ascending from an exactly half-
partial-harmonic dual measure (as a finite difference mean error partition of the loop residue basis of
measures).
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Figure 1: Specific Chaos of Asymptotic Spacetime

4.6.2 IIb Shadow Streams

In looking to generalize the black hole juncture phase, it important to remember that the
topological sector exists as a (6cϕ, 0) partially (half) Cardy theory. Using the double copy
procedure, (S+, 0) → (S+, S

+) exactly leads to the conclusion that the background infor-
mation (fields) of this qG TFT are 1

4 -BPS (which where continuously compactified into the
space of qCFTs by the O(1) information probe-field of Hawking condensation performed
there).

In particular, see [44] for a geometric review of 1
4 -BPS exact diagramatics and [45] for clas-

sical intuition of 1
4 -BPS states; for a more recent approach using supersymmetric dressed

states see [46]. Since the L/R SL(2) algebras are smoothly descendant under R → ∞,
the decompactification enforced by the R−1 string limit represents a strong phase defect
point (see section 3 of [45] for a charged, extremal representation of emergent momentum
transfer, there under a IIB/IIA duality and here under a strict S1 decompactification of
the z-scalar Fourier index); in fact, [46] results exactly from relaxing the supersymmetric
basis covers of [44] into dressed states that represent 1

4 -BPS shadow (insertion) modes. In
particular, see section 3 and appendix B of [46] for a construction of the dressed modes, as
well as [47] for a discussion of the Cardy sector relevance into the stringy regime (consistent
with the monodromy/horizon approach).

In fact, using the modular Hamiltonian shadowing displayed in (4.23) of [46] and applying
the monodromy CFT2 hypothesis of this paper shows that the defect (dyonic) correlator in a
IIB 1

4 -BPS state should be expected to grow as product of the thermalization circles, e.g. as

∼ S+S− (see sections 2.2 and 2.3 of [47]). Using the result
∏
S
(BKBS)
±∏
S
(DSBR
±

= 1
4

(
J
(DSBR)
ϕ

J
(BKBS)
ϕ

)2

shows

that the conformally ordered flat string expectation value decays into a doubly spinning
vacuum expectation value (VEV) as ∼ δt−

3
4

BKBS , where δtBKBS is the flat string Page time;
correspondingly (using Fourier duality) all but 1

4 of the freely quantized bulk-stationary
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modes are broken (in modular, or conformal, time). Note this is consistent with the idea
that it is the lowest broken mode of the highest weight operators that survive conformal
interactions.

Combining everything with the unwinding of the pz momentum-sector as R → ∞ gives
a direct physical picture: keeping the S(1)

ψ sub-compactification cuts in the R → ∞ lets
us interpret the boosted Kerr black string as exact operator insertions onto the scattering
dressings extending from neighborhoods of either cut topology. Then, (topology, measure)-
basis rays inside the event horizon are free to conformally decay into (causally protected)
in/out modes relative to either horizon; particularly, families of outgoing null geodesics
neighboring the event horizon can either remain neighboring the event horizon for all affine
time or acquire in/out weights relative to the inner horizon, iff cosmological censorship is
not violated. So, across the Fourier integration domain of the Kerr black string there is
an inherent ambiguity in the parameterization of the cut-dual volume form (in the near
horizon limit) that descends from how we complete the topology; classically this extension
results in the characterization of the d = 4 Kerr curvature singularity as a "ring", which
dually descends from the KTN spinning dyon representation of the solution gauges. Partic-
ularly, the monopoles remain isolated near the boundary (on shell) in those constructions
and the ring-degeneracy remains isolated from the event horizon; interestingly, the Kerr
string seems to add an electrically co-linear magnetic gauge by shadowing (adding degen-
eracy to) the radially quantized shadow insertions of the black string as it extends across
z ∈ (−∞,∞) in the global cover. Thus, this represents a new way to construct 1

4 -BPS
states outside of the supersymmetry (thermal) sector, and can rigorously and beautifully
summarized column 2 Table 2 and section 5.4 in [46] under the in/out scattering topology
of [17].

In fact, as was discussed in [48], there do indeed exist degenerate, fully conformal projec-
tive phase limits from the black rings in higher dimensions37; exploring the accumulation
quantizations of these measure topologies may provide further insights into other open
problems subsub(...)leading corrections/number theoretic/string field theory information-
metric state pairs.

37Using the notation of [48], it is critical to note that the small z-winding number limit, n → 0, is
uniformly enveloped in the monodromy under exactly one dual limit, that of a small boost parameter,
σ → 0; this allows the direct identification between the string boost parameter and the (decompactified)
asymptotic z-linear string momentum, S(1)

ψ∗[pz ] ∼ S
(1)
σ . Equivalently, the string boost momentum is ther-

modynamically conjugate to the z-projected scalar partitions; this can be compared with the full-doubling
spinning monodromies, where the phase envelope λ → mu < 1 conformally shadows exactly one of the
thermodynamic modes, {λ→ µ} ∼α± {n→ 0}. Finally, noting that (the physically open) limit µ→ λ→ 1

constructs an unboosted cosmological brane (r+ → R) and represents the unique limit such that αbrane
± → 0

(uniformly in (ν; (ω, n,m))), the 3rd LoT may be invoked to strongly motivate the thermodynamic unique-
ness of this S(1) × S(2) (pseudo-direct) radial decomposition. Note this reasoning can also be compared to
an earlier arguement in Chapter 3; for example, the charged black string z-scattering wavenumber is irrel-
evant (uniformly 0) iff cσc

3
γ = 0 = sσs

3
γ , representing a double limit (or, a d = 2 phase domain) extension

of the reasoning above. See the end of section 4 in [49], as well as section 4 of [50], for further discussions
of this application of Smarr’s Law.
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In fact the 2×2 GUE/gravitational-propogator duality established above can be used to
strongly quantize the preparation in Chapter 3 as a type IIB polarization experiment in
quantum gravity, formally dual to a Stern-Gerhlact experiment over chiral Kaluza-Klein
excitation of the gravitational bath. See [51].
In particular, remember that the scalar (top-radial) solution-basis at each horizon is fully
given as (1L/R,Ψ

(iα±)), the 0th LoT hypothesis is exactly that the gravitational interac-
tion sits within the modualar central flow, exactly squeezing the conformal dual scalar
OPEs fibrating the canonical edge SO(4) F2-pairing (a.k.a, under a SU(2)L⋉ quiver).
Critically, note that the GUE compactification (on the normalized, symmetric Wigner
hologram) of the 2-pt OPE necessary share the mean weights of 8 free Gaussian modes;
because the coded quiver is SU(2)L prepared, this is canonically the standard quantiza-
tion over a Clifford Charge group38. Canonically, this can be made exact by performing
n-measurements/making n-copies/preparing an n-dense holographic(/measurement) bath,
and propagating each prepared Gaussian back in a 1/n-uniform envelope; here, using the
modular crossing gauge across the symmetric distribution exactly sees the uniform pertur-
bation as split between su(2)L/R subgroups (with some possibly non-trivial vector space
left representationally dependent). Then, any particular sub-code confined to a specific
Heisenburg code is centrally decohered relative to it’s sub-graph interation tree; this effects
it’s gravitational propogator/information cross section as Ĝ

G ∼ 1
8G̃

. Accordingly, momen-
tum modes on this gravitational channel much be 1

8 -BPS; interpreting [51] accordingly, the
scattered KG modes act exactly as conformally dilated left-functors, SO(4)KK ⋉ RBPS ,
which now emerge naturally as background correcting code state. In particular, spacetime
must now be interpreted as emerging from gravitational interactions under measurement,
in which case they emerge “in-the-bulk" as a constraint topology of class D439; further,
time may be understood as the synthetic embedding dimension of this constraint (which
explains its uniqueness in the emergent bulk).

Note that both of the factors of 21 = 3 · 7 are relatively small primes; accordingly then a
direct test of this setup, in particular Noether’s 0th and 3rd laws, should be seen by a toric-
annealing algorithm to look for a shadow-condensate resonance of chaos over entanglement-
networks of relatively prime order to both the locally-emergent GUE2x2 1

8 BPS superpairing
and the globally emergent D4 spacetime background. Then, because 3 and 8 are relatively
prime, the lowest order loop correction is balanced at order 24; considering the lowest prime
radical of 8 is the 2-cocyle, the lowest sub-stabilizer branch must sit at D6, or as a 2-loop
bond-network algorithm40 .

From the quantization of chaotic channels in the celestial hologram in Chapter 3, it may
be immediately inferred that the locally linear electric quantum, the electron, is dual to
a globally chaotic electric quantum, a chaos electron41; by construction, this conformally

38Or, a U(1) gauge theory over a Clifford number-modulus
39corresponding to a rough k = 4 classical topologic bundle
40In fact, it may be predicted that there should be exactly two other, unique loop stabilizer codes at D12

and D18, and an sea of modD24 reduced-loop density states of these modes
41or, a darkly-bonded bulk electron. Note that in the construction in Chapter 3, the 0th law induced a
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twisted chaos must immediately be dual to the long range interaction modes of the full loop
renormalized (or, 2-pt) graviton. Comparing to the GUE background, it is immediate to
gauge this G2-measurement with s-channel crossing symmetry understand this as a gauge
theory of soft chaos under the 3-3-bounding discussed in the IR discussion above; combing
everything above, this may be understood as a U(1) gauge partition of this chaotic channel
and promoted virially to a partition state of the chaotic quantum field, :

A(3,5)∼̂ eĀ(3)

1
4 − eĀ(5)

1

4
⟨Z(3)(5)

(soft)⟩(3)(5) =
1

4
− e−Ā := p(s) (82)

This idea is very remarkable, as it implies that free information effectively emits soft chaos
under gravitational radiation!Or dually, that Hawking radiation acts as a contraint polar-
ization on soft chaos electrons. Note the partition is bounded from above, as is expected
from a partition of free constraint topologies; this exactly explains how the Cosmological
Constant Problem was resolved in an earlier section. It is interesting to note that the age
of the Universe may be scaled with the approximate Baryon imbalance ratio as:

δtObserved
∆imbalance

∼ −13.8
[ years

number

]
≈ 10 · ln[1

4
] ⇒ 1

10

δtObserved
∆imbalance

∼ ln
[
p(s)
]

(83)

↔ p10(s) ∼ e
δtObserved
∆imbalance (84)

Using the inferences gained from the circuit construction in Chapter 2, it is quick to infer
the propogation of some 10-pt geometry (of 2pt measures). This hints to a dualized res-
olution of both the observed imbalance of locally measured “anti-matter", as well as the
perceived age of the universe (at loop level). Locally Linearized electrons, as produced
under measurements on Earth, exist quantized as a local SU(2) measurement duals; under
the Grand Unification above, SU(2) measurement spaces are only gravitationally stable
asymptotically. There are no local, linear, and uniformly stable electrons, only linearized
decay states of asymptotically chaotic gravitons that may be slowly discharged. In this
sense, chemical energy on Earth derives from non-linear graviton charge deposition; this is
true, as the solar system emerged from some collapsing nebular cluster. Pressing further,
electrons must be strictly chaotically constrained by the bulk interactions (as observed)42.
This explains why charge never naturally accumulates in the bulk: the bulk is locally or-
dered and charge is only ordered on asymptotic boundaries. Or, charge is unstable (requires
informed work) to avoid decay, which is also in clear observation.

twisted constraint on the free conformal towers that behaved as the spectral mean surface weight measure
between the centers of two 3(-spectral)-bulk fused (perturbation) towers, [(123)(456)]

∫ ∫
dud3k⃗[u]k2[u](Ã(5)

u − Ã(2)
u ) =

1

4

∞∫

0

∞∫

0

d∆dωω−i∆−1 (81)

42and explains the universal emergence of Cooper pairs in superconductive networks as a method of
centralizing the Dirc equation onto a quasi-U(1)⋉ condensate profile.
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The uniform decay of something as fundamental as information seems like an inherent heat
state, with no immediate use; on second thought, considering how useful the certainty of
uncertainty can be as a quantization procedure, perhaps it is possible to utilize the minimal,
time fractalization state mechanically. Note that 10 is partially prime towards 6; better yet,
note that {lcm, gcd}(10, 6) = {3 · 10, 2}. This immediately suggests that there should be
sub-topologically complete emergent factor algebra hiding at 30−pt that can be modularly
represented by a bonded cluster of area operators, ∼ p2(s); as mod 2430 = 6, this can be
dually thought of as twice-bonded loops of the 24 emergent ghost modes uncovered above.

Recovering the uses of anomalies throughout the paper, this construction specifically im-
plies an (ordered) holographic memory channel recovery rate should be simply buildable
from the (universal) closed modular algebra of ground states. Learning the lesson of the
loop, the solution is immediate once the weakest p-adic topology is established over the
well regulated, fully extended Coloumb branch of 0-pt, gravitationally prepared code sym-
metries between 0 and 21 + k where k is the bond dimension.

Critically, the model presented in this paper survives every no-go theorem and, ultimately,
establishes that IIA and IIB string theories may be representationally pulled through the
gravitational hologram to a pre-symplectic unification domain; indeed the unification was
performed exactly in a formally measurable matrix model[52], although the state prepara-
tion was not sparse nor random. [53] [54].
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This paper ends with an (attempted) recap of some of the results thus covered.

Starting from first principles, namely mathematics and classical physics, the notion of
measurement, as a physical state, was identified as a naturally dual conjugate towards
chaos/quantumness/stringiness. Accordingly, electromagnetism was explored as a natural
time advanced measurement; dually, black holes were explored as a natural measure-hole
advanced measurement. Still, over physically saturated dimensions, generically there are
no independent holographic coordinates available to freely interwine against the notion of
measurement; accordingly, it was shown natural to include an appropriately agnostic em-
bedding prescription and interpret the backreactive system accordingly.

In fact, this algorithm was successfully used to understand a new class of black hole jets
in d = 5 single spinning Myers-Perry black holes as an emergent, dynamical feature of
strong gravity interactions. In fact, promoting measurement to a strongest form of duality
was successfully used to extract hidden, d = 0 dimensional constructions of three critical
physical parameters, namely the fine structure constant, the Weinberg angle, and the cos-
mological heirarchy scale exclusively from the exactly defined first principals, the Laws of
Thermodyamics.

Accordingly, the (measurement) continuum was promoted to a fundamental (Euclidean)
thermodynamic variable and used to add the analogous 0th and 3rd laws to Noether’s First
and Second; accordingly, together these generalized Noether’s Laws were shown dual to
the Laws of Thermodynamics as a unification of singularity chaos. Retrospectively, the ac-
ceptance of “background ↔̂ emergence" amounts to placing the physicist inside the vertex,
and adopting a critical code framework to pull them exactly through the holographically
infinite dimensional Coloumb barrier on the calculation. A quantum information stability
invariant was identified in the degeneracy space of celestial graviton scattering and used to
construct a candidate universal code sub-domain (at 21pt). Then, leveraging everything
that was learned, time was reinterpreted as an R-hole process, not as an R-process, of
error-correcting gravitons (under negative volume stability), which naturally resolved the
arrow of time interactively and unified physics. Summarily, the free universal quantum of
interaction, as a universal form of time(d)-observation, may be holographically projected
as the free modular decuplet:
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