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Abstract: Based on the fact that the frequency of light is reduced at the same rate 
(redshift) across a far distance, and the fact that the speed of light is constant, we can 
yield a mathematical law of light’s frequency loss. This law states for light traveling 
through vacuum space, its frequency must reduce an amount equal to Hₒ= H/MPC = 
2.26*10-18 Hertz for every cycle (or every 1 wavelength of travel) of the light wave, 
where H is Hubble Constant and MPC = Megaparsecs = 30,856,775,814,913,673,000 km 
or Δf/f = -Hₒt. This frequency is reducing exponentially against time (f(t) = fₒe-Hₒt). In 
Mathematics, some properties of Digamma function ψ(x) is used to deliver the law. By 
carefully comparing space’s expansion and this law of frequency loss, we conclude the 
expansion of space cannot be the reason of light’s frequency reduction, since they 
contradict one another. Instead, light traveling in space will lose a very small and 
constant amount of energy for every of its wavelengths that it travels. Finally an 
experiment is proposed to prove the theory and to find the Hubble Constant without 
needing to look at galaxies millions of light years away. 
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1. Frequency of light decrease exponentially against time. 
 
Let us denote ft to be the frequency of light traveling at time t and fₒ to be the original 
frequency of the light. In this section, we will show that  
 

 ft =  fₒe-H₀t       (1) 

 

Where H₀  = 
H

MPC , H is the Hubble constant, MPC = Mparsec = 

30,856,775,814,913,673,000 km, and e is Euler’s number or the base of the natural 
logarithm. 
 
When we observe light from a far distance, we notice that its frequency spectrum has 
been shifted to the right.  The shift distance is in direct variance to the frequency 
variance of the light. So we have the following postulate: 
 
Postulate 1: For any light traveling in a vacuum during time t, the frequency 
decreases at the same rate as any other light traveling with a different initial 
frequency in a different space. This rate depends only on time t (i.e. the rate at which 
frequency decreases is the same for any fₒ whether it is a microwave or a gamma 
ray).  
 
 

ft =  fₒa(t)      (2) 

Where a(t) is the decreasing function of time t and fₒ is the original frequency of the 
light.  
 
Now let us use Postulate 1 to derive the formula (1).  Assume t1 < t, and C to be the 
point the light reached at time t1, as illustrate in the Figure (a).  
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We have  
 
  ft1

 = fₒa(t1)  

  
  ft = ft1

a(t -  t1)  

 
ft = fₒa(t)  

 
Combining the last 3 equations, we have 
 

a(t) = a(t1) a(t -  t1)  

 
 This equation holds for any t1 and t with t1 < t. By Theorem 1 in appendix, we have 
 

  a(t)=  e-ht  
 
 Where h = -ln(a(1)) and t is time in seconds. 
 

 By the Taylor series of eht  we have 
 

fₒ
 ft

 =  eht =1 + ht + 
1
2!(ht)2 +  

1
3!(ht)3+ ...  

 
The redshift, Z, is defined by  
 

 Z = 
fₒ
 ft

 -1 =  eht - 1 =ht + 
1
2!(ht)2 +  

1
3!(ht)3+ ...  

Then when ht is small we have 
 

 Z = 
fₒ
 ft

 -1 =  eht - 1  ≈ ht  

On the other hand, by the Doppler Effect:  
 

 Z ≈ 
v
c   or   v = H (ct) = Hd 

When v is relatively small compared to c; c is the speed of light; and d is the distance 
in kilometers. 

 
Hubble’s law states that the recessional velocity of a galaxy is proportional to its 
distance from the observer. Mathematically, this can be expressed as 
 
 v = Hd  = H₀ ct 
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Where v is the recessional velocity in km/s, and c is speed of light, d is the distance to 
the galaxy in Megaparsecs,  H = 69.8 km/s/megaparsec [F1] is the Hubble constant, 

and H₀ = 
H

MPC .   

 
Therefore,   

 Z ≈ 
v
c   = H₀ t or h = H₀ 

 
Therefore  

 h = H₀ = 
H

MPC  

 
Here we use  
 
 MPC = Megaparsecs = 30,856,775,814,913,673,000 km 
 
Then  

 H₀ =  
69.8

 MPC = 2.2620674×10-18 ( 
1
s )  

 
Where s denotes seconds and the frequency unit is in Hertz.    
 
Throughout this paper, we denote Hₒ by  
 

  Hₒ  =  
H

MPC  

 
We also call Hₒ the Hubble Constant in terms of Hertz or just the Hubble Constant. 
 
 
Example 1.  How long does it take for blue light to change to red light? 
 
A typical blue light wavelength is 450 nm while red light is 700 nm. 
 

t = 
ln(

700
450)

Hₒ  = 
0.441833

Hₒ   = 0.195323×1018  (  seconds )  = 6.19364×109  (years)  

 
So it takes about 6.19 billion years for light to change from blue to red, and also to 
traverse 6.19 billion light years.  
 
Example 2. Using redshift to calculate distance 
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 t = 

ln(
fₒ
ft

)

Hₒ  = 
ln(Z + 1)

Hₒ   

  
 d = c t  
If we denote time in billions of years, then we get d as billions of light years (BLY). 
1BLY = 31536000000000000 Seconds or 3.1536E+16,  Hₒ* 3.1536E+16 = 
0.07133655753  

 
We can calculate the following distances. 

 

Galaxy or Cosmo 
Object 

Z Redshift LN(Z+1) Distance(BLY) Estimated Proper 
Distance 

Cosmic Microwave 1098 
        
7.0022              98.13   N/A 

GN-Z11 11.1 
        
2.4932              34.94  32 

UDFY-38135539 8.6 
        
2.2618              31.70  30 

A1689-ZD1 7.6 
        
2.1518              30.16   N/A 

GRB090423 8.2 
        
2.2192              31.10  30 

ULAS J1342+0928 7.54 
        
2.1448              30.06  29.36 

TN J0924-2201 5.2 
        
1.8245              25.57   N/A 

SDSSJ1148+5251 6.42 
        
2.0042              28.09   N/A 

 
The following graph shows y = Z+1. The t2 term shows why red shift grows with the 

acceleration  = 
1
2(Hₒ)2    and y = e is the time the Big Bang occurred. Here Z = 

fₒ
 ft

 -1 =  eHₒ t - 1 =Ht + 
1
2!(Hₒ t)2 +  

1
3!(Hₒ t)3+ ...    
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2. Light frequency is lost constantly for each wave cycle 
 

Let us check  
 

Δf
 Δt = 

f(t + Δt) - f(t)
 Δt   

 
Where f(t) is the frequency of the light at time t. By equation (1) and the Taylor series we 
have: 
 

Δf
 Δt = 

fₒe-Hₒ(t+Δt) - fₒe-Hₒt 
 Δt   =   fₒe-Hₒt 

e-HₒΔt - 1 
 Δt   

 

Δf
 Δt =  fₒe-Hₒt 

-HₒΔt + 
1
2Hₒ2Δt2 + O(Hₒ3Δt3) 

 Δt   

 
Δf
 Δt =  fₒe-Hₒt 





-Hₒ + 
1
2Hₒ2Δt + O(Hₒ3Δt2)   

Assume Δt = 
1

 f(t)  is the time it takes for light to travel 1 wave cycle; f(t) is the frequency 

and  
 
 

Δf=  -Hₒ + 
1
2Hₒ2Δt + O(Hₒ3Δt2)  

Because 
1
2Hₒ2Δt + O(Hₒ3Δt2)  is very small, we have the frequency loss, Hₒ, which is the 

Hubble Constant.         
 
The Law of Frequency Loss of Light.  For light traveling in a vacuum space, it will lose 

exactly equal to the Hubble Constant Hₒ =  
69.8

 MPC = 2.2620674×10-18 ( 
1
s )  in frequency 

(units of Hertz) for every wavelength it travels. 
 

Δf =  -Hₒ                (4) 
 
 
 Equation (1) can be considered equivalent to equation (4).  Let us see that (4) implies (1). 
Assume light travels n cycles as follows: 
 
 
 
 

fₒ fₒ-Hₒ fₒ-2Hₒ fₒ-2Hₒ fₒ-nHₒ …….. 

c
 fₒ-2Hₒ  

c
 fₒ-Hₒ  

c
 fₒ  

c
 fₒ-3Hₒ  

c
 fₒ-nHₒ  
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The distance (D) 
 

D = t·c = 
c
 fₒ  + 

c
 fₒ-Hₒ   + 

c
 fₒ-2Hₒ   + 

c
 fₒ-3Hₒ +...+ 

c
 fₒ-nHₒ  

 
Then the time t 
 

t = 
1
 fₒ  + 

1
 fₒ-Hₒ   + 

1
 fₒ-2Hₒ   + 

1
 fₒ-3Hₒ +...+ 

1
 fₒ-nHₒ    (5) 

 

let N = 



fₒ

Hₒ   be the integer part of 
fₒ
Hₒ .  Let a = 

fₒ
Hₒ  - N, here 0 ≤ a < 1.  We can rewrite 

equation (5) as 
 

t = 
1

Hₒ



1

 N + a  + 
1

 N-1+ a   + 
1

N-2+a    + 
1

 N-3+a +...+ 
1

 N-n+a   

 
Based on Theorem 3 in appendix, we have 
 
 

Hₒt = ln(N+a) + 
1

2(N+a)  - O(
1

 (N+a)2
)  -  ln(N-n-1+a) - 

1
2(N-n-1+a) + O(

1

 (N-n-1+a)2
)  

 
 

eHₒt  = 
N+a

 N-n-1+a exp(
1

2(N+a)  - O(
1

 (N+a)2
) - 

1
2(N-n-1+a) + O(

1

 (N-n-1+a)2
) ) 

 
When N-n is big or we have 
 

eHₒt  = 
N+a

 N-n-1+a (1+O(
1

 (N+a)) )(1-O(
1

 (N-n-1+a)) ) 

 
 

1
 N+a = 

Hₒ
fₒ   and 

1
 N-n-1+a = 

Hₒ
ft

   are very small for normal frequency of light, and 

N+a
 N-n-1+a = 

fₒ
 fₒ - (n+1)Hₒ then we have (1)  ft =  fₒe-Hₒt . 

 
The equations of (1) and (4) have a different number of higher order Hₒ terms. But since 
light repeats itself every cycle, even if the frequency changes, it is most likely discrete. 
And (4) is the same for all frequencies of light and thus each cycle. In this way, equation 
(4) is more likely to be true than equation (1) as it is more applicable over shorter periods 
of time, but the two work equally over longer periods. Equation (4) thus also reveals 
more about the nature of light. 
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Example 3.  Life of light. We assume light is dead if its frequency is smaller than Hₒ. 
Based on the law of light frequency loss, we can extend equation (5) until we find that the 
life of light (t) is  
 

t =  
1
 fₒ  + 

1
 fₒ-Hₒ   + 

1
 fₒ-2Hₒ   + 

1
 fₒ-3Hₒ +...+ 

1
 fₒ-(N-1)Hₒ  

 
Based on theorem (3) in the appendix, we have 
 

t = 
1

Hₒ







 ln(N+a) + 
1

2(N+a)  +  γ -  D(a) - 
1

12(N+a)2
 + O(

1

 (N+a)4
)   

Then 
 

t  = 
1

Hₒ( ) ln(N+a) +   γ -  D(a)   

 
For visible violet light with a wavelength of 420 nm: 
 
fₒ= 713×1012 Hertz 
 
ln(fₒ) = 34.20, ln(Hₒ) = - 40.6 
 
we assume a = 0, D(0) = 0 
 
γ = 0.57721 
 

then t = 
75.408

 Hₒ   = 33.33×1018  (seconds) =  1057.07×109   (years) 

 
So the life of visible violet light is about 1.05 trillion years. The last wave of the light 
would only have a very small frequency, Hₒ, or 14 billion years if it were to travel 1 cycle. 
 
The following table demonstrates the life of light: 
 

Light Frequency 
Power of 
T 

ln(f)-ln(Hₒ) + 
γ Seconds BL Years 

Gamma Rays 300 18 88.35777826 3.90607E+19 1238.606 
X-rays 30 18 86.05519317 3.80428E+19 1206.329 
Violet Light 713 12 75.40796665 3.33359E+19 1057.075 
Red Light 1 12 68.83848523 3.04317E+19 964.9834 
Microwave 160 9 67.00590377 2.96216E+19 939.2942 
Radio wave 3 6 56.12158696 2.48099E+19 786.7169 
ELF Radio 3 1 44.6086615 1.97203E+19 625.3278 

 
So for a visible red light with 1 TH to decay to a microwave of 160 GH, this would take 
about 964.98 – 939.29 = 25.69 billion years.  
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3. On the expansion of the universe  
 
The law of frequency loss contradicts the idea that the universe is expanding. We see 
light from far away losing frequency, and one of the theorized causes is the universe’s 
expansion. We have assumed the expanding theory for over 100 years. But it could be 
that light naturally loses frequency or energy while it travels through space. The law of 
frequency says for any light it loses the same amount of energy for every cycle of the 
wave.  It means it travels through the space at speed of light, just like rowing a boat on a 
lake, is not for free, it needs energy.   
 
Let us carefully examine the theory of expansion to see why it contradicts this law. 
 

Let f be the frequency, λ the wavelength λ = 
c
f , where c is speed of the light. For the next 

cycle, frequency becomes f1 = f-Hₒ or the wavelength λ1 = 
c

f-Hₒ , and time t1 = 
1

f-Hₒ  

 

 λ1 = 
c

f-Hₒ  =  
c
f





1 + 
Hₒ

f-Hₒ   = λ( )1 + Hₒt1   

 
 λ1 = λ( )1 + Hₒt1        (6) 

If the law of frequency loss, equation (6), is caused by the universe expanding, then (6) is 
true for all lengths λ and in all directions, and (6) says universe dilates in all direction at 
same rate Hₒ.  Let us look at the next cycle: 
 

 λ2 = 
c

f-2Hₒ ,  t2 =  
1

 f-Hₒ   + 
1

 f-2Hₒ     

and 
 

λ ( )1 + Hₒt2  = 
c
f





1 + 
Hₒ

f-Hₒ + 
Hₒ

f-2Hₒ   = 
c
f





 
f

f-Hₒ + 
Hₒ

f-2Hₒ  = 
c
f







 
f(f-Hₒ) - Hₒ2  
(f-Hₒ)(f-2Hₒ)    

 
Then 
 

 λ2 = 
c

f-2Hₒ  = λ ( )1 + Hₒt2  + λ 






 Hₒ2  

(f-Hₒ)(f-2Hₒ)      (7) 

and  
 

 λ 3 = 
c

f-3Hₒ  = λ ( )1 + Hₒt3  + λ 






 Hₒ2  

(f-Hₒ)(f-2Hₒ)  + 
 2Hₒ2  

(f-2Hₒ)(f-3Hₒ)   

The 2nd and 3rd cycles are slightly larger than the expansion theory predicts.  If one 
thinks this extra term in (7) is too small to be convincing, then let us look at further for λ2 , 

λ3 ,…, λn  for n cycles, as the wavelength λ = 
c
f  becomes λn = 

c
f-nHₒ after time  
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     tn = 
1

 fₒ-Hₒ   + 
1

 fₒ-2Hₒ   + 
1

 fₒ-3Hₒ +...+ 
1

 fₒ-nHₒ  =  
k=1

n

 
1

f-mHₒ   

If this change is due to the expansion of our universe, then by (6)  it should be λn = 
λ( )1 + Hₒtn  . 

But, first for any m ≥ 0 we have  

 
f

f-mHₒ + 
Hₒ

f-(m+1)Hₒ  = 
f

 f-(m+1)Hₒ - 
mHₒ2

(f-mHₒ)(f-(m+1)Hₒ)   

 
Or 

 
f

f-(m+1)Hₒ -  
f

f-mHₒ  = 
Hₒ

f-(m+1)Hₒ + 
mHₒ2

(f-mHₒ)(f-(m+1)Hₒ)   

  
Summing them through m = 0 to m = n-1 then we have 


k=0

n-1

 (
f

f-(m+1)Hₒ -  
f

f-mHₒ )   =  
k=0

n-1

 (
Hₒ

f-(m+1)Hₒ + 
mHₒ2

(f-mHₒ)(f-(m+1)Hₒ) )  

 
or 

f
f-nHₒ -  1  =  

k=1

n

 
Hₒ

f-mHₒ +  
k=1

n-1

 
mHₒ2

(f-mHₒ)(f-(m+1)Hₒ)   

or 

f
f-nHₒ  =  1 + 

k=1

n

 
Hₒ

f-mHₒ +  
k=1

n-1

 
mHₒ2

(f-mHₒ)(f-(m+1)Hₒ)   

for λ n = 
c

f-nHₒ   , λ = 
c
f  and multiplying the above equation by λ we have 

 λ n = 
c

f-nHₒ  = λ ( )1 + Hₒtn  + λ 
k=1

n-1

 
mHₒ2

(f-mHₒ)(f-(m+1)Hₒ)   

Because  
1

(f-mHₒ)(f-(m+1)Hₒ)    ≥  
1

f2 
  then 

 λ n ≥ λ ( )1 + Hₒtn  + λ






 Hₒ2  

f 2
 
 n(n-1)  

2       (8) 
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Now let us look at a gamma ray with a wavelength of 10-11 meters, with n = 1011, fₒ= nc ; 
where c is speed of light and  

     tn = 
1

 fₒ-Hₒ   + 
1

 fₒ-2Hₒ   + 
1

 fₒ-3Hₒ +...+ 
1

 fₒ-nHₒ  =  
k=1

n

 
1

fₒ-mHₒ  

Then 
 1/(c- Hₒ)  ≥  tn   ≥ 1/c 
That is the time taken for the gamma ray to travel n cycles.  Let us choose a radio wave 
with wavelength of λ= tnc/(1+ Hₒtn) meters, then the frequency f = (1+ Hₒtn)/tn =1/tn + Hₒ.   

t1 = 
1

f-Hₒ  = tn  then 

 λ1 = λ( )1 + Hₒtn   

Let us assume this length change is due to the Universe expanding. Now let us look at N 
= λ1011 gamma rays each with the same wavelength of 10-11 meters, lining them up and 
filled then in a space of length λ where these spaces after time tn and by equation (8) is 
notated as: 
For each small gamma ray 

 λ n ≥ 10-11  ( )1 + Hₒtn  + 10-11 







 Hₒ2  

fₒ 2
 
 n(n-1)  

2    

and  

Nλ n ≥ λ ( )1 + Hₒtn  + λ 






 Hₒ2  

fₒ 2
 
 n(n-1)  

2   = λ ( )1 + Hₒtn  + λ 






 Hₒ2  

2c2    

where Nλ n should be the same as λ1 since both are caused by the Universe expanding the  

same length λ for the same length of time tn.   Then 






 Hₒ2  

c 2
  ≤ 0 is impossible, since 

although it is indeed very small, it is still a positive number. 
 
In this way, equation (8) contradicts the theory that the Universe is expanding and 
dilating in all directions at same rate Hₒ, i.e equation (6). This proves the contradiction. 
If the universe is not expanding, then the Big Bang theory is also put to question.  The 
cosmic microwave background would be light that has taken 25.69 billion years to decay 
into microwave.  Furthermore, our telescopes can only see light around 14 billion years 
old because the light of the star and galaxy change to infrared ray.  After 14 billion years,  
t* H₀ = 14* 0.07133655753 = 0.998 close to 1 the frequency change is f = f₀ /e, this 
would change most of the galaxy’s light to infrared light. That is why it is difficult for our 
telescopes to observe. So, should we develop more infrared telescopes that can see 
further than 14 billion light years away, we may observe that our universe is more than 
14 billion years old.
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4. A project to test this theory and derive the Hubble Constant  
 
In this section, we are introducing a way to obtain the Hubble Constant H₀. 
 
Based on the law of frequency loss of light, we have Δf /f= - tH₀ where t is time and f is 
the initial frequency of the light. On the other hand c= λf, then we have Δf /f  +  Δ λ / λ = 
0 by the Product Rule. Then 
 
Δ λ / λ  = t H₀  
 
This is spectroscopic resolution. We can obtain H₀ through  
 
H₀  = Δ λ / (λ  t) 
 

Hubble Constant Hₒ is about  
69.8

 MPC = 2.2620674×10-18 ( 
1
s )  

 
We need a spectroscopic resolution accuracy of 1019 if t = 1 second.  We can capture the 
light through a laser component of two highly reflective mirrors and a stimulate emission 
to keep the light live for 1 year = 31536000 seconds, or 3.15*107 seconds. Let us say the 
light is 200 nm in wavelength. To find Hₒ we need to find Δ λ / λ with an accuracy of 10-

12 (i.e spectroscopic resolutions 1012 ).  200nm *1012 = 200 km.  To calculate the different 
of wavelength we can use Michelson interferometer.  So it needs 200km big Michelson 
interferometer to see the fringe change when we switch the light to measure the change of 
wavelength 
 
1012 λ1   +  diff  = 1012 λ2    
 
The diff < 200nm 
 
Therefore diff * 10-12 = Δ λ will get we need the accuracy.  To set the 200km Michelson 
interferometer, we could use the fiber to set it up due to reflection the light is not change 
the frequency.  But rotating Earth should change the reflection frequency like Sagnac 
effect.  We need overcome the Earth rotating effecting on the frequency change. 
 
The other is to use X ray laser.  The wavelength could be the wavelength of the 14.4 keV 
Mössbauer photon it is about 0.86nm, 0.86nm *1012 = 86m. The equipments have to be 
86m apart and displacement accuracy at 0.001nm and also keep the X ray laser for 1 year.  
These all should be a challenge for today’s tech. 
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5. Appendix: some mathematics knowledge 
 
Theorem 1:  If a(t) is a non-zero decreasing function for all real numbers t ≥ 0 and for  
any positive real number t1, t2     
 
 a(t1) · a(t1)  = a(t1+ t2 )    (a1) 
  
 
Then there is positive number H, such that  
 

 a(t) = e-Ht  
 
Here the number e is Euler’s number or the base of the natural logarithm. 
 
Proof:  Let t1 = t2  = 0 in the equation (1), we have  
 

 a(0)2 = a(0)  
  
Because a( ) is non zero decreasing function and then a(0) ≠ 0.  Hence a(0) = 1 and a(1) < 

1.   We can write a(1) = e-H  where H = ln(a(1)) and ln( ) is natural logarithmic function. 
 
For any positive integer n, repeatedly using equation (1), we have 
 

a(n) =  a(1)a(n-1) = a(1)2a(n-2) = ... = a(1)n  
 

Then a(n) = a(1)n = e-Hn  
 
Also, for any positive integer m, repeatedly using the equation again, we have 
 
 

a(1) =  a(
1
m)a(

m-1
m ) = a(

1
m)2a(

m-2
m ) = ... = a(

1
m)m  

 
Or  
 

 a(
1
m) =  a(1)

1
m  

 

And for any fraction  
n
m  ,  we have 

a(
n
m) =  a(

1
m)a(

n-1
m ) = a(

1
m)2a(

n-2
m ) = ... = a(

1
m)n  
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So a(
n
m) = a(

1
m)n = a(1)

n
m  = e

-H
n
m . 

 

Then for any fractional number t we have a(t) = e-Ht .   Because for any real number we 
can find that the decreasing fractional number sequence {tk} has lim tk = t. because a() is 
decreasing function then we have  
 
 a(t1) ≥ a(t2)  ≥ a(t3)  ≥···≥ a(t) 
 

then a(t) ≤  
lim

k→∞ a(tk) =  
lim

k→∞ e-Htk  = e-Ht . 

 
On the other hand, we can find an increasing fractional number sequence which has limit 

t, we have a(t) ≥ e-Ht .  Then a(t) = e-Ht       QED 
 
 
Harmonic number hn is defined by 
  
 

hn = 1 + 
1
2 + 

1
3 + ... + 

1
n = 

k=1

n
1
k  

Theorem 2.  For harmonic number hn we have  
 

hn = ln(n)  + γ  +  
1

2n    -  
k=1

∞
B2k

2kn2k  

 
Where γ is Euler’s constant defined as  
 

γ  = 



1

 ∞

 
x - [x]
x[x] dx = 0.5772156649...  

 
Where [x] is defined as integer part of x. 
 
And  B2k is Bernoulli number, with  
 

B2= 
1
6   B4 = –

1
30    B6 = 

1
42    B8 = –

1
42   ....  
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Defined as the following Taylor series: 
 

x

ex -1
   = 

k=0

∞

 
Bnxn

 n!   

   
For a proof of theorem 2, please refer to reference [A1]  
 
Also, we have:  
 

hn = ln(n) + γ + 
1

2n - 
1

12n2 + O(
1

n4)      (a2) 

 
For a general harmonic number:  
 

   hn(a)  =   
1

 1+a + 
1

2+a + 
1

3+a + ... + 
1

 n + a = 
k=1

 n

 
1

 k+a  

Where 0 ≤ a ≤1 is a real number. 
 
Consider the Digamma function ψ(x) defined as  
 

ψ(x) = 
d

dxln(Γ(x)) = 
Γ'(x)
Γ(x)  

 
Where Γ(x) gamma function is defined as  
 

 Γ(x)  =  
0

∞

 tx-1e-tdt   

 
We have  
 

 Γ(x+1) = xΓ(x),  
dΓ(x+1)

 dx  = Γ(x) + xΓ'(x),  
Γ'(x+1)
 Γ(x+1) =

Γ'(x)
 Γ(x)  +  

1
x  

 
 

ψ(x+1) - ψ(x) = 
1
x  

 
Then 
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hn(a) = 
1

1+a+
1

2+a+
1

3+a+...+
1

n+a = ψ(n+a+1) - ψ(1+a)  

 
 
For the Digamma function ψ(x) [A2 ] we also have 
 

ψ(1+x) = ln(x) + 
1

2x  - 
k=1

∞
B2k

 2kx2k    and 


k=1

∞





1

k  -  
1

k+a     =  ψ(1+a)  + γ  

 
We have the following 
 
Theorem 3.  For general harmonic numbers we have  
 
 

hn(a) = ln(n+a) + 
1

2(n+a) - ψ(1+a) - 
k=1

∞
B2k

 2k(n+a)2k    (a3) 

 
Where B2k is Bernoulli number and 

Lim (hn  - hn(a) ) =  D(a) ≡ 
k=1

∞





1

k  -  
1

k+a     =  ψ(1+a)  + γ   (a4) 

The proof theorem can be seen in reference [A2 ]. 
  
 
Combining (3) and (4): 
 

 hn(a) = ln(n+a) + 
1

2(n+a)  +  γ -  D(a) - 
1

12(n+a)2
 + O(

1

 (n+a)4
)   (a5) 

 
  

Where 0 ≤ a ≤1 is a real number and O(x) < 
x

120 .     QED 
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Let us compute D(a) . Because 

1
k+a  =  

1
k  +  

1
k 

j=1

∞





-a

k
j
  =  

1
k     +   

j=1

∞

(-a)j

kj+1  

We have related to Riemann-zeta function ζ(x) = 
k=1

 ∞

 
1

 xk  

D(a) = - 
j=1

∞

(-a)j ζ(j+1)   =   (1-a)
k=1

∞

 a2k-1ζ(2k)  - 
k=1

∞

 a2k(ζ(2k+1)-ζ(2k))  

D(a) =  
a

1+a +  (1-a)a
k=0

∞

 a2k(ζ(2k+2)-1)  + 
k=1

∞

 a2k(ζ(2k)-ζ(2k+1))     (a6) 

 
Because 

|ζ(2k) – 1| =  
1

22k +  
1

32k  +   
1

42k + ...  <    
1

22k +  
1

(2k-1)22k-1  <  
1

22k-1    and  

|ζ(2k) – ζ(2k+1)| =  
1

22k+1 +  
2

32k+1  +   
3

42k+1 + ... <  
1

22k-1   

The last 2 series have been dominated by (
a
2)2k  ≤  (

1
2)2k .  We can use (a6) to estimate 

the D(a).   
Chart of D(a)

0

0.2

0.4

0.6

0.8

1

1.2

0.
01

0.
04

0.
07 0.

1
0.
13

0.
16

0.
19

0.
22

0.
25

0.
28

0.
31

0.
34

0.
37 0.

4
0.
43

0.
46

0.
49

0.
52

0.
55

0.
58

0.
61

0.
64

0.
67 0.

7
0.
73

0.
76

0.
79

0.
82

0.
85

0.
88

0.
91

0.
94

0.
97

A

D
(a

)

  
The above is the function chat looks like the red is D(a) and blue is D = a. 
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