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Abstract

We prove Payne’s nodal line conjecture for any bounded simply con-
nected, possibly non-convex, C° boundary domain Q in plane R?; any
second Dirichlet eigenfunction of A, in € can not have a closed nodal line.

a Sketch of Proof. According to Z. Liqun [10], multiplicity of the second
eigenvalue of ) is at most two. It is also known that the nodal line of
the second eigenfunction in €2 divides €2 precisely into two nodal domains.
Supposing the most severe case, we assume that an element ¢2(0) of the
second eigenspace in €2 whose dimension is two has a closed nodal line
which meets 002 at P.

According to [5], given a second eigenfunction in 2 and any smooth
deformation J : Q x [0,1] — R?, a linear sum of two eigenfunctions in the
deformation J(2,t) converges to the given second eigenfunction as ¢ — 0.
But this linear sum is not necessarily an eigenfunction in J(£,t), since
two eigenfunctions may not belong to the same eigenspace.

Let {¢2(0), #3(0)} be an orthonormal basis of the second eigenspace
in ©, and let A; (J(Q,t)) denote the i-th, i = 2,3, eigenvalue of J(Q,t)
associated with the i-th normalized eigenfunction ¢;(t) := cbi(J(Q,t))
of A¢ in J(Q,t). Let us denote J(p,t) simply by Ji(p) and denote the
pulled-back function J; ¢:(t) to Q by ¢;o(t).

Proposition 2.12 states that if A2(J(€2,t)) is double at ¢ = 0 and
simple on a deleted neighborhood of ¢ = 0 with the condition such that
lim,—o ;tt to Ai(J(2,1)), i = 2,3, exist and limy, o %t:tO/\Q(J(Q,t)) #
limyy—o 2 —to As(J(£2,t)), then ¢35 ,(t) turns out to converge to a second

eigenfunction in 2 as t — 0. From this fact we can infer that % \; (¢) and
4 7 (t) exist and are continuous on a neighborhood of ¢ = 0.

We find a condition on deformations such that if a deformation J
satisﬁes this condition, then ¢7o(t) — ¢:(0), ¢ = 2,3, as t — 0 with
A2 (J(,1)) # &, _ A3(J(92,t)). This condition is represented by

dtt 0
di AJ*e({bQ(O)
= —p2¢2(0) — (Ac + A2(0))g2(0), and ... (51)
di AJ*6¢3(0)
= —p3¢3(0 (Ae + )\2 ) (O), ..... (52)



where p2 # p3, pi € R, and ¢;(0) € C§°(2), i = 2,3. Note that the right
hand sides of (51) and (52) have no (¢3(0))-component and no (¢2(0))-
component, respectively. If (51) holds, then by Proposition 2.10 (52) also
holds for a number p3. Provided either (51) or (52) holds and p2 # ps,
one can conclude the followings; for i = 2, 3,

@i 0(t) — ¢:(0) (in Le-norm),
9:(0) = component of £ _ &7 (t) orthogonal to (¢2(0), $3(0)),
pi= P (ID).

We find a concrete deformation J which satisfies the condition men-
tioned above (Proposition 2.25). Given ¢2(0), p2 and ps, p2 # p3, we
will show the existence of deformation J such that J not only satisfies
condition (51) and (52) but also makes the following value (82) with sub-
index k removed be positive, and makes ¢3(0)-component of %tzoqﬁio (t)
vanish;

where K, (o) stands for Green’s function of A, + A2(Q2) in £ and a%
denotes the outer normal derivative. If we assume that ¢2(0) is positive in
the inner nodal domain, then the above positive requirement makes nodal
line of ¢35 ¢(t) be closed and separate from 99 over a deleted neighborhood
of t = 0. Note that from (51) and (52) p; is represented by an integral
— Jo i oAz e0i(0)}¢i(0)dzdy.

According to Hopf’s boundary point lemma, one can show by factor-
ization into linear sums of outer normal derivatives of eigenfunctions that
the following function on 9 has at most four zeros ( Proposition 2.23 );

Z Qi,j 99:(0) a¢j(0), a;eR L (80)

— v ov
2<4,5<3

But we can not confirm in this way the existence of segments of 92 on
which the following function does not vanish;

QMMQ( 0 KA2<9>)

ov Ov\ovpe
0¢i(0) 0¢,(0)
+ Z Qi j , Qoa, i ER. L (81)
o v ov

In Proposition 2.25 to show the validity of construction of J satisfying
the conditions mentioned above we solve a problem related to zeros of
function (81) in an elementary and complicated way.

We will construct a piecewise smooth deformation which deforms 2
to E in order that each second eigenfunction of a piecewise differentiable
path consisting of the second eigenfunctions in this deformation may have
a closed nodal line, where through a dilation and a translation of Q2 we
set

E={(z,y):0<2<2, 0<y<1}, X(E)=A(Q), ENQ#0.



The piecewise smooth deformation is composed alternately and repeatedly
of two distinct smooth deformations

TI™:Qum x [0,1] = R* and  F™ : T"™(Qn, qm) X [0,1] — R?,
where
Qm+1 = _,F{’LOJ;:L(Qm), 0 = Q, m = 1,2,3,....

The supports of J™ and F™ lie in the closures of Q,, \ 2 and Q,, N E,
respectively. Deformation J™ satisfies (51), (52) and makes (82) with
JF* replaced by Ji™* be positive, and J™ is also a deformation with
¢3(Qm )-component eliminated described in Proposition 2.25 which means
%t:ojt*¢2 (jtm(ﬂm)) has no ¢3(2m)-component. If we set 0 < p2 < p3,
then A2 (77" (2m)) and As(T™ (Qm)) — A2 (TJ™ (Qm)) strictly increase as
t grows from t =0 to t = g, < 1. F™ fills up a portion of E\ Q,,, and
then Ao (.Fgm oJqm (Qm)) decreases to A2(€2m ), and A3 (.7:;” o Jqm, (Qm)) —
A2 (F 0 T3 (m)) may decrease toward zero as s grows to one.

Let us denote §nm := =N Q,,. Deformations stated in the above para-
graph will be constructed in order that ¢2(Qm)|Fm, the restriction of
¢2(Qm) to Fm, may approximate to ¢2(E) in Lo-norm as m becomes
large. Then, a closed nodal line of ¢2(2,) compared with the nodal
line of ¢2(E), the nodal line of ¢2(m)|Fm may be considered to be
sufficiently close to the segments {(z,y)|z = 0,1, 0 < y < 1}, and
{(z,9)]0 < < 1, y = 0,1}. Then, the outer nodal domain Q. of
¢2(2m) contains a sufficiently narrow and long simply connected band

W=0,n{(z,y):0<z<1/2, 1/4<y<3/4}.

We will follow methods of David Jerison [7]. From exponential decay
theorem (Lemma 3.1) applied to W one can show that for a ¢ € OWNIQ,,
QF the inner nodal domain of ¢2(£.,), the magnitude of gradient

|Va (2m)(€)]

also decays exponentially as ¢ moves along OW NI}, and as m becomes
large. According to [7], we can show
. Q.
D 162(2m)|
is bounded to the magnitude R|V¢2(Qm)(C)‘ for adisk B(z, R) C Q}, such

that ¢ € 0B(z, R)NONL. It implies that ¢2(Qm)|Fm can not approximate
to ¢2(Z) in Q;, in Le-norm, and then we attain a contradiction.



1 Introduction and a History of Nodal Line Con-
jecture

Topology of nodal lines of eigenfunctions is not yet well known. In a global concept Courant
nodal domain theorem may be regarded as almost the only remarkable achievement. Courant
nodal domain theorem [3] states that the nodal set of any k-th eigenfunction of C°° domain
divides the domain into at most k subregions. A corollary of this theorem tells us that the
second eigenfunction has precisely two nodal domains. As a simple case, study on the closed
nodal line of the second eigenfunction of A, has been pursued since L. E. Payne’s conjecture
[13] : In 1967 he conjectured that in any simply connected bounded domain in R2 any second
eigenfunction of A, with Dirichlet homogeneous boundary condition cannot have a closed
nodal line.

Throughout the paper, Q is any simply connected bounded (possibly non-convex) domain
in R? with C* boundary. An eigenfunction of the Laplace-Beltrami operator Ay in  with
C*° Riemannian metric g is meant to be a solution u # 0 satisfying the homogeneous Dirichlet
eigenvalue problem

Agu+Adu = 0 in Q, (1)
v = 0 ondQ,

1,2, g = (gij), lgl = det (gi;). A positive X for

where Ag =37, ﬁDi( l9lg"" D;), 4,3
which the above Dirichlet condition (1) possesses a solution w is called an eigenvalue of Ay in
Q). Each associated eigenspace is finite dimensional, distinct eigenspaces are orthogonal each
other in L2(Q), and L?() is the direct sum of all the eigenspaces. We will denote the volume
element associated with g by dy. Let us denote by e the standard euclidean metric. Each
eigenfunction of Ay is C°° in Q, and eigenfunction of A, is analytic in Q. It is known that
A is analytic-hypoelliptic operator. The nodal line of an (eigen)function u is defined to be
the set
{z € Qu(z) =0},

and a nodal domain of u is a component of Q \ ©~1(0). According to [4], the nodal sets
of eigenfunctions of C°°-Riemannian manifold in R? (if they exist) consist of a number of
C2-immersed one-dimensional closed submanifolds.

It is known that for generically many metric g eigenfunctions of Ay in a manifold with
boundary vanish of the second order where their nodal lines intersect boundary [15]. C.-S.
Lin [8] showed any convex smooth boundary bounded domain in R2 with symmetry under
rational rotation with respect one point has no second eigenfunction of A. whose nodal line
is closed. A rational rotation means a rotation with angle 27wp/q for positive integers p and gq.
He also proves that if ¢2(€2) is one of the normalized second eigenfunctions of A. in a bounded

smooth convex domain  C R? such that W >0, (% the outward normal derivative, on
09, then ¢2(Q) is the only normalized second eigenfunction of A in Q. David Jerison [7]
showed that for convex bounded domain Q C R? there exists an absolute constant C' such that
if diameter(£2) /inradius(£2) > C, then the nodal line for the second eigenfunction of Q touches
the boundary. Recently A. D. Melas [11](1992) has proved that the Payne’s conjecture is true
for bounded convex smooth (boundary) domain in R2, and G. Alessandrini [1] for bounded
convex domain. On the other hand, as to a multiply connected domain, M. H.-Ostenhof, T.
H.-Ostenhof and N. Nadirashvili [12] have given a counterexample to Payne’s conjecture in a
non-simply connected domain. Also they give an example of domain in R? whose the second
eigenvalue is of multiplicity three.

It is well known that the first eigenvalue is simple. As for the second eigenvalue, from S.
Y. Cheng [4] it can be shown that the multiplicity of second eigenvalue of bounded smooth
boundary domain is at most three. Later Z. Liqun [10] verifies the dimension of the second
eigenspace of A, in bounded smooth boundary simply connected domain of R2 is at most two.
In this paper, according to the result of Z. Liqun we assume that the second eigenspace of A,
in any bounded smooth boundary simply connected domain of R? is at most two dimension.



2 Deformations whose Eigenfunctions form a C'-
Path which passes through a Given Eigenfunc-
tion

2.1 a Regularity of Paths composed of Eigenvalues and
Eigenfunctions of Deformations

Let J : Q x [0,1] — R2, J(P) := J(p,t), be a smooth deformation of Q. According to [5],
p.419, p.421, Theorem 10, the n-th eigenvalue of a C°° deformation J;(§2) varies continuously
to the n-th eigenvalue of Q as t — 0. Also Courant and Hilbert [5] showed that the r-th or-
dered eigenfunctions as well as eigenvalues of perturbed domains which are C'*-diffeomorphic
to €2 converge to those of €, if the perturbed domains converge to €2. Their proof consisted
of reducing the problem to study of a family of differential operators on 2 obtained from
C*-diffeomorphisms. The coefficients of operators becomes to differ arbitrarily little from the
original coefficients. The section 13 of chapter V [5] is devoted to find the first and second
approximations of perturbations of domain. [5] shows a counter example with irregular per-
turbation and Neumann boundary problem in which the continuous property of eigenvalues
failed.

A linear integral equation corresponding to elliptic equation (Ae + )¢ = 0 is represented
by a homogeneous functional equation

$(z,9) — /Q K (2,9, 7)b(C, 7)dCdr = 0.

Let Ko(z,y;¢, 7) and K¢(z,y; ¢, T) be symmetric kernels associated with the above eigenvalue
problem of domain  and J;(2), respectively. According to [5] (Chapter III, §8 p.151, and
§9 p.152), one comprehends the following continuity property of eigenfunctions: Let the n-th
eigenspace of A. in 2, n > 2, be of m-dimensional, and let the kernel K; converge to Ky
uniformly as ¢ — 0. Then, given any n-th eigenfunction ¢ of A, in €, there exists a linear
combination
a1 vit1(t) + - - - + am () Yigm(t) (2)

which converges uniformly to ¢ as t — +0, where ag(t) € R, and ;1 «(¢) is an eigenfunction,
k=1,2,...,m, of Ac in J¢(€2). Note that the above linear sum is not necessarily eigenfunction,
since all eigenfunctions ;4 (¢t) may not belong to the same eigenspace. But it is said from
the above fact that each ;11 (t) converges to an n-th eigenfunction 1;£(0) of Q, as ¢ — 0,
and moreover the limit of each linear combination (2) composes the n-th eigenspace of A. in
Q. Thus, there may be eigenfunctions of Q to which no eigenfunction of J;(2) converges.

Throughout paper it is assumed that a second eigenfunction of 2 has a closed nodal line.
We will find a smooth deformation J¢ of € such that Cl-path {(1)27‘“(9)} which composes of
the normalized second eigenfunction of J;(€2) passes through a given second eigenfunction in
2 and each ¢3 j,(q), t € (0,1], has a closed nodal line separated from boundary, and if ;(0)
is double, ¢ = 2,3, then derivatives of path {)\,(Jt(ﬂ))} composed of the second and third
eigenvalues of J;(2) at t = 0 are equivalent with prescribed values.

Firstly we are to show regularity of these paths. Let us denote by

#i(t) == @i, 5, () = Pi (J¢(22)) the i-th normalized eigenfunction in J¢($2),
NGRS (Jeo thl)*¢¢ (t) the eigenfunction ¢;(t) pulled back to Ji,(2), (3)

Xi(t) =X (Je(Q)) the i-th eigenvalue of J;(Q) associated with ¢;(t),

for i € N, and 0 < ¢p,¢t < 1. For an orthonormal complete system {¢;(to) : ¢ € N} in J¢(€2) let
us expand ¢}, (t) as follows, and call this expansion ¢} to (t) expanded with respect to ¢;(to);

6710 (1) = Bi(t0) + > _ Bro,ik(®dr(to), Bro,ik(t) ER, €N (4)

keN



From identity A =Ai(t)¢; 4, (), i €N, one can induce for 0 <¢,t0 <1

* _
(Jto.];()l)*eqsi,to (t) =

(A (JtOJ;(;)*e — Ae)d’f,to(t)
= = (N0 = Xi(00)) 8710 (0) = (A0 1y, +Ail00)) (0106 0 = 9i(00)). (5)

Remark 2.1. The operator Ae + A2(0) : W*:2(Q) N WDI’Q(Q) — Wk=22(Q), k> 2,is a
Fredholm of index zero, that is,

dim {Wk_Q’Q(Q)/Im(Ae + )\2(0))} = dimKer(Ac + X2(0)),

where W*P denotes Sovolev space. If A2(0) is double, then [, {(Ae + A2(0))f}¢i(0) =
Jo {(Ac + 22(0))¢2(0)}f = 0, i = 2,3, f € WF2(Q) N W2, Thus W’“*272(Q)/Im(Ae +
A2(0)) 2 (¢2(0), ¢2(0)). Thus, the operator Ac-+A2(0) : Wk 2(Q)NW, % (Q) / (¢2(0), $2(0)) —
Wk’Q*Z(Q)/(qbg(O),qbg(O)) is bijective. The inverse operator (Ae + )\2(0))71 : Im(Ae +
A2(0)) = WE2(Q)n W&’Q(Q)/Ker(Ae + A2(0)) given by
Bi¢;(0) — 5 Bi¢5(0)
jgK . jgK _)‘](0)+)‘2(0) s
is also bounded operator since
JEN 2 1

e VRTEYIYE

2 { =X +22(0)}

1

mﬁj ¢j (0)

< 00, (6)

where {¢; : j € K} is an orthonormal basis of the second eigenspace in €, Zjé% 512 =1, and
| = Xjo (0) + A2(0)| is the smallest number among {| — X;(0) + A2(0)| : j & K} //

Proposition 2.1 The value
oI+l

sup sup ——

(.0} (z,y)e0 027 Oy

¢;t0 (t)(l‘, y)7 1 S .7 +l S 27 ]71 € {07 172}7
is bounded on t € [0,€], 0 < ¢ < 1. The left hand of (5), (A(Jtngl)*e - Ae)@fto(t),
0
converges in L2-norm to zero as t — to, to € [0,€]. %A(Jtojf1)*e}¢f to (t) is bounded in
to ’

Q ontel0el].

Proof. Theorem 3.7 ([6] Theorem 9.26, p.250) says that supq |¢;, (¢)] < C for a constant

C over all t € [0,¢] for a e, 0 < € < 1. Then, according to global estimate for solutions of
elliptic equation, Theorem 3.6 ([6] Theorem 6.6, p.98), if we set Lu = —\;(¢)¢7, (¢), then the

i,to
j+1
solution is u = ¢, (t), and then aifiw 71, (t) is bounded over all ¢ € [0,¢]. For this note
that the constant C'= C¢ in Theorem 3.6 is dependent on J¢(£2), but max,¢o,s] Ct exists.
Let us set
3,1=0,1,2 ;
§itl
ALy = S 4By (1)
Jiod. 75 ’ l
(eo to )e 1<iTi<e OzI Oy

Each entry a;;(t)(x,y) — aj,i(to)(x,y) of differential operator A — A, converges to

(Jrou;t) e
zero in || - ||k, 2,0-norm in W*2(Q), k > 2, as t — to, since J; is a smooth deformation. Thus,
the first claim follows. Since each derivative %aﬂ(t) exists at any ¢ € [0, 1], from Theorem
3.6 the last claim is valid. Theorem 3.7 and Theorem 3.6 will be introduced in the next section
without proof. O



Remark 2.2. Let us assume that th ) ?3 1, (1) - #2(to)de converges to a non-zero num-
o ,

ber as t — tg. Then, since the left hand of (5) converges to zero as t — to from Propo-
sition 2.1, and since Im(AJ;« e+ A2 (to)) is orthogonal in metric Jt*oe = e to the second
0

eigenspace of A¢ in Ji,(§2), we can conclude that Az(t) converges to A2(to), and further-
more, then (A‘]t*o‘i + X2(to))¢3(t) which is naturally orthogonal in metric e to the second

eigenspace of Ac in Ji, () also converges to zero as t — to. Consequently, by boundedness

of (AJ;@ et A2 (to))71 (refer to Remark 2.1) the component of ¢4 (t) orthogonal to the second
g

eigenspace of A¢ in Jy, (©2) denoted by (qb; (t));)0 also converges (in L2-norm) to zero as t — t.

But whether ¢5(t) converges to an element in the second eigenspace of A¢ in Jy, () or
oscillates as t — to, the result of preceding paragraph is valid provided A2(t)converges to
)\z(to) as t — tg. //

Proposition 2.2. Let \y(t) be simple at t = tg € (0,¢). Then, A2(t) is continuous
at t = to, and @5, (t) converges in L%-norm to the unique second eigenfunction ¢2(to) as
t—to.

(Note.) If A2(to) is simple, then there is an € > 0 such that if |t — tg| < e, then A2(¢) is also
simple. From Theorem 3.6 and by convergence of A Jye to A, one can verify convergence of

#5(t) in L2-norm to ¢2(to) assures convergence in || - ||2,2,o-norm.

Proof. Firstly, we consider energy of the pushed-ahead first eigenfunction (J,g0 o Jfl)*¢1 (to)
to J¢ (). We have

J7,0) V1)V (t)de
le @l
Lroiy V(o 0 I 1) 61(t0) V (Jeg 0 J; 1) " 1 (o) de
H(Jto ° Jt_l)*¢1(t0)}|§ .

On the contrary we have
thO(Q) Vo1 (to) Vi (to)de
o1 (to)ll3
B th0<9> V(Jt o ;") ¢1()V (Jr 0 Jih) ¢ (t)de
- 1(7e0 751 01013

If t — to, the right hand of (8) converges to A1(to), and the right hand of (9) converges to
A1(t). Therefore, if t — to, we have A1(t) < A1(to) + €1(t) and A1 (to) < A1(t) + e2(t), where
€i(t) > 0, i = 1,2, converges to zero as ¢ — tg. Consequently, A\1(t) — A1 (to).

Then, since from Remark 2.1 the inverse operator of Ajt*oe +A1(to) defined in Im(AJt*Oe +

(9)

A1(to)) is bounded, and since A1 (t) — A1(to) converges to zero, and since from Proposition 2.1
the left hand of (5) converges to zero, we can conclude that the component of ¢7 ; (¢) —¢1(to)
orthogonal to {¢1(to)) with respect to metric e converges to zero function as ¢ — to. Therefore,
#7 4, (t) expanded with respect to {¢x(to) : k& € N}, then ZkeN\{l} 5t20,uc(t) converges to

zero. Since |47, (t)||i] Jolyee = 1 = ||¢1(to)||?, and each function of entries of the smooth
’ +o to *e
metric tensor (J; o Jt:)l)*e converges (in || - ||2,2;0-sense) to that of e as ¢ — tg, we may

conclude that [|¢7 , (t)||? converges to one. Thus, (1 +ﬁt0’1,1(t))2 converges to one, and then
T to (t) converges to ¢1(to) as t — to.
Secondly, we are to verify proposition for the second eigenfunction. From minimum energy



property of eigenfunction we have
th(Q) V2 (t)Ve2 (t)
ECIE

< |:‘/Jt(ﬂ) V{(Jto o J;1)*¢2(to) - 5271(t0,t)¢1(t)}

. V{(Jto o Jt_l)*¢2(to) — 5271(t0,t)¢1(t)}1|
N —2
[ 0 1) 62(t0) = 2.1 (t0, 1 )| (10)
where 62,1 (t0,t) = th(Q) {(Jto o J;l)*qﬁg(to)}qbl (t). On the contrary

L1, @) V2(t0) V(to)
l2(to)]l3

< |:-/JtO(Q) V{(Jt o J{)l)*du(t) —d2,1(¢, t0)¢>1(t0)}

{0 751 62(0) = 8211, 10)61 10
N0 T 020) — 821t )6 )| ()
where 62.1(¢t,t0) = tho(Q) {(Jso Jtzl)*¢2(t)}¢1 (to). Since ¢ (t) — ¢7(to), we have
lim 5271(t0,t) =0= lim 52’1(t,t0). (12)
t—tg t—to

According to the argument verifying convergence of the first eigenvalues, from (10) and (11)
)\Q(t) — )\z(to) as t — to.

Therefore, since the inverse operator of Ay« . + A2(to) defined in Im(AJt* e + A2(to))

0 0
is bounded operator from Proposition 2.1, formula (5) says the component of ¢3(t) — ¢3(to)
orthogonal to (¢3(to)) with respect to metric J;; e converges (in L2-norm) to zero. That is,
2 . * *
Secrn 2y (Bro.2.5(1) = Bug 2.4(t0))? converges to zero. Since 03113, = 1 = [#5(t0)]2, ,
0
and since each function of entries of metric tensor J;e converges to that of Jfoe as t — to,
we may conclude that ||¢3(t)|| s . converges to one. Therefore, (1 +ﬁt0,272(t))2 converges to
0

one, and then ¢3(t) converges (in L2-norm) to ¢3(to) as t — to. O

Proposition 2.3. Let us suppose that A2(t) is simple att = to € (0,€). Then, derivatives

A2(t), and %t:to ?5 1o (t) exist, and we have a unique representation

4
dt t=tg
d

dtt=t, (Jfo";ol)

Lfato) = =% AaW)aalto) = (Ae +Xalt0) Ty Gheg() (13

Proof. The limit

. 1 «
t1i>ntlo { t—to (A(JtOJ;ol)*ﬁ B Ae)¢2,t0 (t)}
d
ﬁt:toA(Jtth_ol) e
Then this limit equals to the left hand of equality (13). Thus, from (5) we get (13). In formula
(13) the image of Ac+M2(to) is orthogonal under the metric e to the second eigenspace ($2(to))

exists, since from Proposition 2.2 ¢3 to (t) converges to ¢2(to) and exists.

of A¢ in Ji,(2). Therefore, a unique existence of %t:tg A2(t) and a unique existence of the
o
component of %t:to ¢3(t) which is orthogonal to (¢2(to)) denoted by (%t:to ?3 1, (t)) are

shown.



To show existence of ¢2(tg)-component of %t:to #3 1, (1) we expand ¢3 , (t) with respect
to ¢2(to). Then, it suffices to show the existence of coefficient %t:to Bty,2,2(t). We introduce
a notation;

Notation 2.1. Let us suppose that #3 4, (t) converge to ¢2(to) as t — to. Expanding
#3 4, (t) with respect to ¢2(to), we define a value xt, (62()), to € (0,¢), by
Xz, (62(t))
2
=850 O VI,

= (¢2(t0) + Z Bto,2,k (t) Pk (to)) (¢2(t0) + Z ﬁto,z,k(t)¢k(to))de
k=1

Tty (2)

k=1
o0
=1+2819,22(8) + 3 67, 2, (8)- (14)
k=1
Note that ||¢;7io(t)($’y)”;(Jtth_l)*e =1 for all ¢ € [0,1], but H(b;(t)(a:,y)”ge may not
equal to one for tg # t. // ’
We are to show from smoothness of J; that %t:to Xto (¢2(t)) exists at to € (0,£). From

equality ||¢§7t0 ) (z, y)”; (o) e = 1, by differentiating a product of function and metric
’ 0

tensor, we have
d

2
= 5 (t d —1)*
dt t=tq []to(ﬂ) |¢2,t0( )(xyy)| (Jto‘]tol) e
d 4

—_ 2 t / t 2d — « =0
dtt:tUXtO (2(t)) + dtimto L1, o |$2(t0) (=, y)] (o) e = O

and then
d

—_ 2 = - 2 1\ * -
_— (¢2(1) dt 1=t /Jmm [eatto)@.v)] Yonor) e (15)

The right side of (15) exists at to, that is, %t:toxfo (¢2(t)) exists. Differentiating (14), we

have
4 X, (#2(1))
dt t=tq to

d

d
=2—  Big22)(1+ Brg.22(t0) +2 D Big2kto)—  Big2.k(t).
dt t=t, keN (2} dt t=tg

Since limg_,¢, ‘b;,to (t) = ¢2(to) and then By, 2 x(to) = 0 for any k € N, we have
d 9 d
— t) =2— t). 16
it 1g, Xlo (o2(1)) 7toﬁt0,272( ) (16)

dtt=
Thus, %ﬁt072,2(t) exists at t = tg. O

Remark 2.3. If \x(to) is simple, then obviously %t:tod);,to(t) is represented by

d
E Bto,Q,k(t)7
py=rt dt t=t,

and since \g(to) — A2(to) # 0 for k € N\ {2}, identity (13) implies that each %ﬁm’g’k(t),
k # 2, converges as t — tg. One can represent the component of %t:to ¢3,t0 (t) orthogonal to

(¢2(to)) by

d : __ da . :
(1 B ) = /J to(m{dtt:toA(ho%l) L02(t0) (2, 9) } Kong 1) (@43 G, T, (17)

where K3, ) stands for Green’s function of Ac + A2(t0) in Jiy(§2). Green’s function will be
introduced in this section later. //



Proposition 2.4. Let us suppose \a(to) be simple for to € (0,€). Then, paths of t-
variable functions %)\2 (t) and %d)% t, (t) are continuous at t = to.

Proof. From the formula (15) %Xto (¢2(t)) is continuous at t = to, since J is smooth. Then,

from (16) %ﬁto,zz(t) is also continuous at t = to. By a similar way to getting (5) from (1),
we obtain the following second order identity from (13);

d d
ZA Ly — — A 1y 5 10 (T
{dt (Jtthol) e dti=t, (Jtthol) e}¢2,to()
d
dt

A(JtoJ;Dl)*e{QS;,tg(t) — p2(to)}

t=tq

= { S22 2a®}61,,0)

dt 1=t,
MO8 - Galt0)}
- {A(Jto%l)*e +22(t) = (Ae + Az(to))}%@,to(t)
— (Bet xolto) { G300~ T, B} (18)
Since Ao (t) — A2(to), and @3, (t) — ¢a(to), identity (18) shows that fXy(t) — %t:m)\g (t)

o
and (%(ﬁg’to ) — %t:to ¢§7t0 (t)) converge to zero and zero function, respectively, as t — tg.
We obtain from (18)

d2
— A 1y t
02 ooy (000 ,02(to)
d d
=—2— A 1y v — 5 t
dt t=tq (Jt"JtOl) edtt:t0¢2’t0( )
d d
—2— Ao (t)— 3 t
dt t=t¢ 2( )dtt:tod)z’to( )
d2
- — Aa(t t
a2 s, 2(t)p2(to)
—(Ac + >\2(t0))£ 3,10 (2)- (19)
e dt2 t=to 2,to
Proposition 2.3 and identity (19) show a unique existences of %tzto)\g(t) and a unique
existence of the component (:th:to b5 4 (t)) °of %t:to #3 +, (t) which is orthogonal in metric

e to (¢2(to)). Therefore, particularly, %Ag(t) and (%¢§ to (t))° are continuous at ¢t = to.

gince %Bto,g’g(t) is continuous at t = tg, the continuity of %qﬁg,to (t) at t = to is shown.

Proposition 2.5. Let \2(t) be double at t = 0.

(i) Then, regardless of the existence of lims_,q ®;o(t), and regardless of multiplicity of A2 (t),

t>0,i=2,3, we have lim¢—0 A;(t) = A2(0), and the function ( 7 o(t) —$:(0))° which stands

for the component of ¢} ((t) — ¢; (0) orthogonal to ($p2(0), ¢3(0)) also converges (in L%-norm)

to zero-function as t — 0.

(i4) Regardless of multiplicity of A2(t), t > 0, if limy—.o @3 ((t) exists, then A2(t) and (¢’2‘70(t))°,
the component of ¢§,0(t) which is orthogonal to the second eigenspace of 2, are continuously

differentiable at t = 0.

Proof. (i) Let us assume there is a sequence {t, € (0,e)} such that ¢, converges to O,
and assume [ 12,1 (0) - @3 ((tn) converges to zero for any second eigenfunction 2 ,(0) €
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(#2(0), $3(0)) corresponding to each t,, asn — co. Since ¢} ;(tn) converges to $1(0), [, ¢1(0)-
¢3,0(tn) converges to zero as t, — 0, and then we have A2(tn) — A2(0) + €1 for a number
€1 > 0. But minimal energy property of eigenfunction implies

{ / V(Jt—nl*% (0) = 62,1(0, tn) 1 (tn))
T, ()

. v(]{nl*@(o) - 52,1(0,tn)¢>1(tn))}

{/ T (0 >—62,1<o,tn>¢1(tn>\2} > Aa(tn),
Tty ()

where 62,1(0,tn) = thn @ J7 1 $2(0) - ¢1(tn). Since #7 o(tn) converges to $1(0), 62,1(0,tn)

t”L
converges to zero as t, — 0. Observe the left hand of this inequality converges to A2(0) as t, —
0. It implies A2(0) > A2(tn) + €2 for sufficiently large all n and for an ez > 0. It is impossible
under the consequence such that A2(tn) — A2(0) 4 €1. Consequently, [ ¢2,m(0) - ?3 o(tm)
does not converge to zero for any sequence {t,, € (0,¢)} converging to zero, and for a second
eigenfunction ¢a, m (0) € <¢>2( ), $3(0)) corresponding to each given t,,. Then, from formula
(5) lim¢—o0 A2(t) = A2(0), and (¢2 o) — da( ))o converges to zero.

In the same way let us assume there is a sequence {t,, € (0,€)} such that t, converges
to 0, and assume [, ¥2,,(0) - 83 0(tn) converges to zero for any the second eigenfunctin
$2,n(0) € (¢2(0), $3(0)). Then, since [q, @5 (tn) - ¢1(0) also converges to zero as tn — 0, we
have A3(tn) — A2(0) + €3 for a number e3 > 0 as t, — 0. But

{ / V(anl*%(o) —63,1(0,tn)¢1(tn) — 53,2(0,tn)¢2(tn))
Tty ()
V(I 85(0) = 85,1(0, 1)1 (tn) — 85,2(0, 1n) 2 (tn))}

-1
{/ ’ - 93(0 )—63,1(0,tn)¢1(tn)—63,2(0,tn)¢2(tn)’2} > A3(tn),  (20)
Tty ()

where 83,;(0,tn) = fJ L@ Ji 2 $3(0) - ¢i(tn), ¢ = 1,2. Since #7 o(tn) — ¢1(0), we have
03,1(0,tn) — 0, and by the assumption Jq ¥2,1(0) - 835 o(tn) — 0 for any second eigenfunction
2,7(0) in Q, we have 03 2(0,trn) — 0 as n — oo. It implies the left hand of (20) converges to
A2(0), and therefore A2(0) > Az (tn )+ €4 for suffciently large all n and for an €4 > 0. It contra-
dicts to the consequence A3(tn) — A2(0) + e3. Consequently, from (5) lim;—0 A3(¢) = A3(0),
and (¢§,0(t) — ¢3(0))° converges to zero as t — 0.

(ii) When we replace tg by 0, the formula (19) as well as (13) holds in spite of double multiplic-
ity of A2(0). For this, consider the argument in the proofs of Proposition 2.3 and Proposition
2.4. O

Remark 2.4. Let \2(t) be double at t = 0, and simple on t € (0,¢). Let {¢2(0), $3(0)} be
an orthonormal basis of the second eigenspace in €2, and let qﬁ;’o(t) be expanded with respect
to ¢2(0). Let us assume that ¢3 (¢) converges to ¢2(0) as t — 0. Then, from (13) we have

%t: QS; 0( )) ((E y fQ dt t= OAJ e¢2( )(C7 T) . K}\Q(O)(x7y; Cﬂ')dcdﬂ
%t:O)Q fsz dt t= OAJ 6¢2( ) ¢2( ) (21)
dtt Oﬁo,zk(t) = W fg TioDre?2(0) - ¢x(0), k € N\ {2,3},

where K, (o) is Green’s function of Ae + A2(0) in ©, and (Et:()(t);’()(t))o denotes the com-

ponent of %t:od’;,o(t) orthogonal to (¢2(0),#3(0)). Thus, A2(¢) and (d)é’o(t))o are con-
tinuously differentiable on ¢t € [0,¢). Even though we assume that ¢} ,(t), ¢ = 2,3, con-

verges to ¢;(0), respectively, we can not assure existence of 4 e qui o(t), since existences of
)

lim¢, o %t:tgﬁovi’j( ), 4,J = 2,3, are not yet verified.
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Now let us suppose that we do not know whether ¢§,0(t) converges to ¢2(0) or not. From
(13) we represent at to € (0,¢), for i = 2,3, k € N,

d -1 d

— ik(t) = —— —_ A 1\ * @it . to)dxzdy.

o, Broik() = s /J o {5 sty rlt0)} - dulto)ddy

Since diverges as tg — 0, one can not exclude the possibility of either di-

—1
—A3(to)+A2(to)
vergence or oscillation of %t:toﬁm’?’?’(t) as to — 0. Thus, (¢2(to), #3(to)) component of

4 *
dtt=tqg " ito

of k € N\ {2,3}, Proposition 2.1 implies %t:toﬁto’i’k(t) is bounded on 0 < tp < €. //

(t) might oscillate as to — 0 like the derivative of function t2 sin % But in the case

Proposition 2.6. Let J: be a smooth deformation of Q such that A2(0) = A3(0) is

double second eigenvalue, and A2(t) and A3(t) are simple on t € (0,e). Then, for i = 2,3,
o .

%t:to)\i(t) and (%t:to T to (t))° which denotes the component of %t:to 7 1o (t) orthogonal

to (p2(t0), #3(t0)) = (P2(to)) @ (P3(to)) under the metric e are bounded on 0 < tg < €.

Proof. From Proposition 2.5 A;(to) is bounded on 0 < tgp < €. Considering Proposition 2.1,
regardless of existence of lim¢, 0 ¢} ;(to) (even though ¢} ;(to) oscillates as to — 0), one can
infer that in the identity (13)

d d .
A(Jtojt_()l)*eqbi(to) = —%:toAz(t)du(to) — (Ac+ Ailto)) = _,, Yo (t),

Et:to dtt

%t:toA(JtoJ:Ol)*e(bi (to) is bounded on 0 < tg < e. Then, since Im(Ae+)\i (to)) is orthogonal
to (¢i(to)) under metric e, two summands %t:to)\i(t)tbi(to) and (Ac + A;(to)) %t:to 7o ()
which are orthogonal to each other are bounded on 0 < t9 < €. Consequently, from Re-
mark 2.1 (%t:to T to (t))° which denotes the component of %t:to #7 4, (t) orthogonal to
(¢2(to), ¢3(to)) under metric e is also bounded on 0 < tg < e. O

Remark 2.5. Under hypotheses of Proposition 2.6 in order to show the existence of
lim¢,—o %t:md);,o(t) we are to verify that %t:tofgtoalj (t), 1 =2,3,0 <ty < g, converge as

to — 0. In this case (t) exists from Proposition 2.4 and is represented by

d *
dt t=tg ¢2,t0

4
dt t=tg

(62(t0) + > Bro 2,6()0k(t0) )

keN
If we expand Jj ¢;,t0 (t) = qﬁgyo(t), 0 < to, with respect to ¢2(0), then from Proposition 2.3
the following identity holds;

d d d
—_ A x5 o(tg) = —— o (t)os o (to) — (A 5= Aot — 5 o(t).
s, Tre®3,0(t0) ety 2(8)¢5 o (to) — ( Tte + Xa(to)) dtt:t0¢2’0( )

In this case since AJ;“ ek (0) # A (0)¢r (0), the coefficient of ¢y (0)-component of (AJZ« e+
“0 0

Ag(tg))%t:to¢§70(t) may differ from ( — A (to) + AQ(ko))%t:toﬁoygyk(t)m(o). Thus, the

coefficient %t:toﬁo’i’k(t) can not be represented by the same formula as %t:toﬁtov’?k(t)

expressed in Remark 2.4.
If we jUSt show limtoﬂo %t=tgﬁt0’i’j (t), Z,] = 2,3, exist, then hmtoﬂg %t:toﬂo’i’j (t)

also exists, and vice versa. For this, note that since J; o (Ji o thl)* = J;, we have
d d

Ji (7 *(t ) -2

fo dtt:toqsl’to( ) dt =

We may define lims, .o %t:toﬂovivj (t) by %t:oﬂovivj (t). Then, lims,—o d)z"o(to) exists from

é70(t)-
to

Proposition 2.5, and

B R 3 3 0 d
Jim 670(t0) = 3i(0) = (#70(t0))° + 3_ Bo.ing (11)85(0) + 3 / =;%0.6:5 ()93 (0) .
j=2 j=2"%
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*

1=t Pioto (t) converges as tg — 0.

Consequently, according to Remark 2.4, it is confirmed that -2

/!

Before proving existences of lim, 0 ¢} ((to) and limz, .o %t . @7 o (t) we are to describe
s =tg " ¥

concretely a deformation of €.

Definition 2.1. Let J=!:R? x [0,1] — R? be a C*° deformation defined by

(6m) = (2,y)
=7 Em,t), TN (E )
=(&—Ge(&m), n—He(&m), 0<t<1, (22)
where J7 ' R2 = R2, J7 1 (€, ) == J71(€,,t), is a diffeomorphism for each ¢ € [0,1]. Thus,

G:R?x[0,1] - R and H : R? x [0,1] = R, Gu(¢, n) = G(&n,t), He(€,m) :== H(E,n,t), are
C*°-function such that Jacobian determinant of J7

1 _ 9Gt _ OH
€ D€
_ 9G4+ 1 OH|»
on on

must not vanish at each ¢t € [0,1]. Also, Then, by inverse mapplng theorem the inverse map
J¢ 1 R? — R? exists and is of C*°(R?) at each ¢ € [0, 1]. Since J; ' is of C™ for t-variable, J;
is also of C°°([0,1]). Thus by definition the following constraint equation holds;

Je(J7NEm) = Em),  J7 (@) = (z,y).

We call J~1 the inverse deformation of J. Let us call the restriction of J; to Q a simple
deformation of . The smoothness of 9.J¢(f2) is also assumed. Let us define the support of
C*° deformation J : R? x [0, 1] — R2 by the closure of set

{p€R2 S J(p,t) #£p, forallt,0 <t < 1}.

Let us call the intersection of support of J with Q the support of a simple deformation J of
Q, and denote the support by supp(J). Equivalently, it holds that R? \ (supp(J))O = {p S
Q:J(p,t)=p, forat,0 <t < 1}. One can show that supp(J~!) = supp(J). For this, if and
only if J(p,t1) = p for a ¢1, from the equality J_l(J(p,tl),tl) =p=J 1(p,t1), we can
conclude p & supp(J~1). Let us call boundary support of Jiq the set supp(J) N Q. //
Let us set J(z,y,t) = (&,n) = (Jg (z,y,t), Jn(z, vy, t)) Then the following equations hold;

d d
=— =—  J NI (z,y,t),t
dtt:om dti=0 * (T, ),1)

_{anlag 8J; 1 on 8J;1}
t=0

o ot o ot o
:[anl 0Je 0y 0y ajgl}
o ot an ot At Ji
_e 0!
ot t=0 Ot t=0

For this, note that 6}]92_ —o =1, and 2 677 — = = 0. About variable n the same result occurs,
and then we have

aJ  _ oJ71

Ot t=0 ot =0

Let us consider the co-ordinates change (§,1) — (x,y). The metric Jje(z,y) = (gij)(z,y) is
given by

_ 060§ | Onon
911 = 525z T oz o
g12 = g21 = 0, (23)

_ 06098 |, 9non
922 = 5y 3y Oy 9y *
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From the fact Ay = Z” \/7 D;( |g|g”“'ij)7 ,j = 1,2, g = (g9ij), |g| = det(gs;) one can
calculate %t t {AJ eJiw(to) }(@,y) for any 9(t) € C?(J;(Q)). One has AJ;«E(Jt*Oq/;(tO)) =
JEAe (J g P(to ) From this equality one can obtain the following;

d

ity [{ac (i wtto) o ™) } o 1],

{5 et vit)} = =

dt t=tq

Calculations using the chain rule on this equality also yields the following formula;
F IR CVIURUD) CXY
e (5 (5 oo 5
A () Yo T
2{(? zt>-<8‘;zt>+<a‘;i“>~<a‘;i*>}w8225‘;;”;“’
H{(T)+ (o P

)+ (B8 2580 o

Let us denote th = %t:tl G¢. From now on, particularly at t = 0, without inconsistency
- . gk1tks - gk1t+ka -
we will identify [{WGt} S Jt(x,y)] e with mGo(m, Y)- //

Proposition 2.7. Let a simple deformation J; of Q be given by (22), and v(0) be any
C2(Q)-function. Then, we have

d
s O@ Y}
_ 28G0 ~9%4(0) 728G'0 C9%p(0) {0260 N 82Go } )
Oz oz2 Oy Ozxdy Oz2 Oy? oz
_,0Hy Py(0) 0Ho 9°9(0) {8% N 32H0} O (25)
Oy Oy? ox  Ox0y Ox? Oy? oy
where Go = %t:OGt'

Proof. Direct calculation using (24) yields the equality. Note that for the first summand in

(29)
-1
%t:o{(aigg t)QOJt} - %tzo{ §<£ Gt@ 77))}

_ 4 {1 = 25t (el y1). T, t))}2

dt t=0 o€
— d aGt 8Gt 2
= _2at:0 (JE z,y,t), Jn(m y,t }+ 85 (Jg(a: y,t), Jn(m,y,t))}
d 0G4y B Gy d]& BQGt d']TI
— o (=22t aJe dJy
[(dt 85 )(5’ ") 0€2 dt  9¢on dt ]
d aGt

+2{ (Jg x,y,t), Jn(z, v, t))} (Jg(x y, t), Jn(z, y,t))}

=0 dt 1=0 6{
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Since [%Céf}t: = [8;521] 0= [7gz§;]t:0 = 0, we have
d 0J7 1 \2 B d 9G;
at:o{( B£ ) OJt} _72[<dt 85 )(Jé(mzyvt)aJn(x:yvt))]tzo
_ ,9Go _ (, 2@)
[2/3 Oz
By similar calculations, for the other summands it is also easily shown. a

Proposition 2.8. Let a simple deformation J; be given by (22), and {$2,¢3} be a basis
of the second eigenspace of Q2. Then we have

/ {i Agredi(, y)}d)j(m, y)dzdy

dtt=0
/ Colz, 1) 3@3(15] JA

/ Ho(z, )8@ ‘%J dA, i,j € {2,3}. (26)

Proof. Using property (Ae + )\2(0))(1)1' =0 = (Ae + Ag(O))d)j as a solution of eigenvalue
problem, from Proposition 2.7 one can write the component of fQ {%t:OAJ;eqﬁi}qu induced
by y-directional deformation (£,n+ Hy) as follows;

8Hy 82¢; 8Hy 82¢; 8% Hy 82H0 a¢l )
(2220, 49770 .
/Q ( Oy  Oy? i+ ox Ozdy i +{ Ox2 Oy? ¢]
9 02 dH, 9¢; 0¢; 09
=— | —(Ho —_— i — Hg dzd
g (o s+ 5,0 Gy = o i Yo
d [ 8¢ 9Hy 0% 9¢i 9¢;
- — H i+ —— i — Ho dxdy. 27
/833( Oaxa o+ ox 8y¢J Oy Oz ) ray @7)
For each y such that Q N {y x R} # 0, denote the union of components of Q N {y x R} by
Urlre @) rer1(®)], k = 1,2, ..., 7 (y) < m41(y), and for each z such that QN {R x z} # 0,

denote the union of components of Q N {R x z} by U;[s1(2),s141(2)], I = 1,2,..., s;(z) <
s141(x). Since ¢p; = 0 on 09, (27) attains to

Op; 3¢J SL+1(I) / 6(;51 0¢; 17k+1 ()
d
/mz "y ay Z "oy %) Y

sp(z) T (y)
_ Il 0¢; 05
aa Oy Ov

dA. (28)

One exchanging the coordinate y for z, (28) for G also holds by the same arguments.
m]

Remark 2.6. Although A\2(0) is double, if #p 2 (t) converges to ¢2(0), then from (13) one
can represent as follows;

d

2 co2(0 0)de,

& x == [{5 8500}

1o} d Ie] d

= (£ ) =-[ = K : LA dwd
8VP(dtt:O¢2() /Bu(g,f):P A2(0)(1,y74,7){dtt20 Jte¢2(0)} xdy,

where K, gy stands for modified Green’s function of A¢ + A2(0) in Jo(€2) which will be men-
tioned later. Let us review the equality (27) replacing ¢; by %“ ‘r):PKM(O)‘ Considering
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induction of equality (27), we can infer that the component of fQ {%t:OAJ;‘e(bi}%PKAz(O)
induced by y-directional deformation (&,7n) — (£,7 — H¢) is read as

7/87<H ¢¢+7O Oy — Fro 22 ¢J)dxdy
adyl " oy dy Ay dy oy
9 [y 0% OHy d¢; B¢ Op;
= Jo o\ i+t 5 i — Hy— — ) dzd
/93»’0( Yozoy” T ax oy ¥ T 0y &v) vy
o 5 09
_ — Ho—/— )& - , dd, 2
/Qau(g,ﬂ:p< 0 ay> ¢, (@, y)dedy (29)

where [, OVP<H0 (%1)5 = BV ()= P(Ho((,T)%). The last term results from the
definition (Ae + A;(0 ))K/\i(o) =4 as follows;

. 3 . 9%, . 06 02, . 8¢ 020,
*/Ho i%*/HOia;; ¢j+</Hoa¢ 8¢2]+/H03¢; 83?2])

Jrnoe [0t [5 (05w

Since ¢; is O(|P — (a:,y)|3) from hypothesis, one has % <Ho %‘f}) = 0. Therefore, since

K, (0) vanishes on 9Q\ P for the measure zero point set { P} on the boundary 99,
K, (0) substitutes for ¢;. //

9

ov (¢,7)=P
(26) also holds when 5 .,
Proposition 2.9. For any distinct eigenfunctions ¢y, and ¢y, in the second eigenspace
(¢2(0), #3(0)) of Ae in Q, we have

/ 20 6djﬁdA:o
a0 Or Ov

Proof. Set G¢ = t, and Hy = 0. Then, J; is a translation, and therefore Jfe = e, and
%tZOAJ:ednc(m, y) = 0. From (26) our claim follows. O
Definition 2.2 Let us set
0 8
N +
e a(é ) o€ B(&, n)

for C*° functions o and B on 992, and let G and Hy satlsfy

4t —o(&m) = B(&malE,m),
L o€ = (& m)B(E ),
where (§,m) € 99, and & is a C°° function of 90 called a boundary function of Ji. //

The following equality with self adjointness of operator AJ;‘ . on the second eigenspace
in 2 holds;

(31)

a4
dtt=0

Proposition 2.10. Let {¢2(0),#3(0)} be a basis of the second eigenspace in Q, and let
Jt be a simple deformation of Q given by (22) and (31). Then,

/Q {%t:OAJ;e@(O)}(ﬁj(O)de

:/ @3@'(0) 5¢j(0)deA
90 ov ov

d
=/ (O 5 Aspedi(O)de, ije {23} (32)
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where de A is the volume element on the boundary with respect to standard euclidean metric
e.

Proof. 1t is verified from Proposition 2.8 and from the preceding definition 2.2. O
When k ¢ {2, 3}, the following related to adjointness holds;

Proposition 2.11. Let J: be a simple deformation of Q given by (22) and (31), and
let ¢i(to), to € (0,¢€), the k-th eigenfunction of Ji,(2). Suppose that X2(to) and A3(to) are
simple. We have for k € N\ {2,3}

d
/Jtom) {at:toA(Jtojt?)l)*e¢k (to)}¢>3(t0)de

d
:/]tO(Q) {at:toA(JtoJ[(,l)*€¢3(t0)}¢k(t0)de

— (A3(to) — Ax(to)) ‘/Jto(ﬂ) {Gto 8¢;SO) + Hy, 8¢;SO) }¢k(t0)de

+ (Ak(to) — As(to)) /J @ {Gto 9¢x(to) + Hy, 8¢2;t0) }¢3(to)de

o oz
@ {Et:tOA(JtOJ;Ol)*E¢3(t0)}¢k (to)de
B 3 G, 8Ht0
(Ak(to) — Az(to)) /Jto(ﬂ){ p }¢3 (to)¢x (to)de (33)

Proof. When X;(to) # Aj(to0), equality (27) turns into the following formula;

Oy, 02 ¢l (to) aHtO 2¢;(to)
—|2—— —=5—¢;(to) + :
Jio (Q) Oy oz dzdy

2 )
+ {8 fy | 9 H“) }- 8¢Z(t0)¢j(t0)>de

¢J (to)de

Oz2 y2 Oy
_ 0 1. 0%¢i( ) 6Ht0 6¢1(t0) ‘ - 0¢i(to) Op;(to)
_7/@<Hto Oy? #;5(to) + oy oy ————;(to) — Hy, ay éT)de
0 02¢;(to) OH, 5@( 0) - 0¢i(to) 0¢;(to)
—/%( toTay%(tO)‘f' 8; &5 (to) — HtoTyo éx )de
~ Outto) = xya0) [y 20 )<z>g (to)de (34)

Jto ()

Notice the equality below is commutative with respect to sub-indices ¢ and j when \;(tg) #
Aj(to);

d /. 9%t OHz, O¢;(t . O¢i(to) O (t
,/@(Hto g(QO) ;(to) + 6;0 ¢8;O)¢,(t0) — Hy, d’ai’o) ¢é;O))da:dy
9 /. 2t OHy, O¢;(t i (to) O (t
= [ (i Ty 10+ 25 9% 00 a0 — ey R S Yy
:/ 66%( 0) 8¢j(t0)deA. (35)
871 () ov ov
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Thus
A Asgeon(eo) (o) = (o) = Natta)) [ {22500 g DD 1

:/ 63¢k (to) a¢3(t0)deA
8¢y () ov ov

- /J Q) {%tﬂoAJ?S%(tO)}d’k (to)de
to =

— (A3(to) — Ax(t0)) ‘/Jto(ﬂ> {Gto 8(]5;9(;0) + Hy, 8¢g§50) }¢k (to)de- (36)
Note
/G‘to(%)giito)dm(to) = —/Gto (%gig(:o)qﬁk(to) —/%%(to)%(to)- o

Proposition 2.12. Let J; be a simple deformation of Q such that A2(0) = A3(0) is
double second eigenvalue, and A2(t) and A3(t) are simple on (0,e). Furthermore, for tg €
(0,€) let limgy—o %t:to Ai(t), i = 2,3, ewist and

d d
lim — As(t lim — Aa(t). 37
to—0 dt t=tq 3(t) # to—0 dt t=tq 2(t) (37)
Then, %t:toﬁtﬂ’i’j(t)’ 1,7 = 2,3, converge as to — 0. Then, ¢>;‘70(t0) converges to one

element $;(0) € (¢2(0), $3(0)). Therefore, formulae (13) and (19) hold provided ¢2(to) and
to are replaced by a second eigenfunction ¢2(0) of Q and 0, respectively. Consequently, A;(t)
is of C1([0,¢)), and defining by

d d
lim = () = k(b)) ik =2,3, 38
tolgo dtt:toﬁto,z,k( ) dtt:ogo,l’k() 1 ( )

$10(t) € C1([0,2).

(Note) When ¢} ;(t) is expanded with respect to ¢;(0), ¢ = 2,3, Proposition 2.12 implies that
one can represent

$i(0) = ¢4(0) + lim¢y—0 Bo,:,2(t0)$2(0) + limyy—o Bo,i,3(to)¢3(0),
Bo,i,k(to) = Bo,i,k(t1) + f:::ttlo %S:tﬁo,i,k(s)dt-

Proof. Let us suppose that limy, .o %t:toﬂtﬂ’gﬂ‘"’(t) exists. Then, according to Remark 2.5,
lim¢o—0 Bo,2,3(to) exists, and then from Proposition 2.5 and from the fact that ||¢3 (to)ll2,sx ¢
b 4 0
converges to one as tg — 0 one can infer that lim¢, o 50,2,2(to) also exists. Thus from
Proposition 2.5 ¢3 ((to) converges to a second eigenfunction in Q as tg — 0. Therefore,
according to the argument succeeding to Notation 2.1, regardless of multiplicity of A2(0), (16)
shows the existence of lim,—.0 %t:to Bo,2,2(t) and the continuity of %t:to'go’QvQ(t) on [0,¢).
Consequently, according to the argument of Remark 2.5, limy, .o %t:to ¢35 o(t) exists and
05 0(t) € C([0,¢€)).

The proof for B4, ,3,;(t), j = 2,3, can be accomplished in the same way as By,,2,;(t). Also
in a different way, one can infer that when existence of lims,—0 ¢5 (to) is shown, the limit of
¢3% o(to) which is orthogonal to ¢} (o) also exist. Then, existence of lim, .o %t:t[)d)g o(®)
can be verified. Consequently, it suffices to prove only existence of lim¢, .o %t:to Bto,2,3(t).

To obtain an equation for coefficient %t:to Bto,2,3(t) of ¢p3(to)-component of %t:to ?5 1, (1)
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we take inner product of each side of (19) and ¢3(¢0). Then, we have

d2
—_— A 1\ * t to)de
‘/Jt(Q) <dt2t:t0 (JtOJtol) L02( 0))¢3( 0)
d d d d
—_ A3 (t)— 3(t) —2— A2 (t)— t
dt t=tq 3( )dtt:toﬁto’z’j( ) dt t=tq 2 )dtt:toﬁt0’2’3( )

+2 ) (—As(to)-i-)\k(to))d

kez+t\{3}

d
t)— t
dtt:toﬁto,k,a( )dtt:toﬁto,lk( )
2

_ ( — )\3(t0) —+ )\Q(to)) jtz s ,Bt07273(t). (39)

From (39) we obtain

d d d
— t)q2( — A3(t) — — A2 (t
dtt:tOBtO’Z'S( ){ (dtt:to 3(t) dt t=tq 2( ))

+2( = A3(to) + A2(to)) %t:t 5z0,2,2(t)}

d2
N /9 {Et:toA(‘hoJ[{)l) *e¢2(t0)}¢3(t0)de

—2 3 (=) M) G Bk

—  Bro2,k(t)
kez+\{2,3} = dti=to

2

+ (= Xalto) + Aalt0) 27 Pro2a(t). (40)

2
We do not know yet whether the second derivative ;?t . Bo,2,3(t) and the second summand
=to

in the right hand side of equality (40) converge or not as to — 0. So firstly we will describe a
formula of %t:to Bo,2,3(t) by solving ordinary linear differential equation (40). One can write
(40) equivalently as follows;

d d
lim — t) = —
im dtﬁto,z,s( ) 7

t
Jm tt:toﬂto,z,?)( )

1
= lim
t=t0 2(LX3(t) — £X2(t)) +2( = Aa(t) + A2(t)) £ Bro,2,2(1)

{/n {%A(ho%l)*ﬂ?(to)}¢s(to)de

2
+ (= 20(0) + 2a(0) 5560250
22 Y (0 M) Pera® aan®]. D
kez+\{2,3}

From ordinary linear differential equation (41) we obtain a primitive function %ﬂto,ZS(t)
of t-variable

d Qo () (/‘ )

— t Py, (t)dt ) = | ————— - Py, (t)dt )dt + C,

dtﬁio,Q,B( ) exp (/ to (£) ) / A3 (t) — Aa(t) exp o (1) +
where C is an integration constant,

P (1) — 20200 = F20(0) +2(= 2a(0) + 2a(0) 62200
ol = Xs(t) — Aa(t) k

19



and

2
Qo (1) :/{j?A(Jto%l)*em(to)}qss(to)de
2 Y (a0 4 M 0) S0 By 200,

kezt+\{2,3}

A simple calculation shows

d d
oxp (/Pto(t)dt) —exp (/aﬂog (As(t) = 2a(0)) ) exp ( — 2/£ﬁt0,2,2(t)dt)
=C1(Aa(t) = Ao(t)” - exp (= 2810,22(t) + C4), C,Ch € R,
Then, we have

d

— t
dtt:toﬂtﬂ’zs( )

- z /
Cé (Ag(to) — )\Q(to)) - exp ( — 2ﬁt0’2,2(t))

d2
‘ |:/{@A(JtoJfol)*e¢2(t0)}¢3(t0)dxdy
2N (N4 A (0) S () o0

A3(t) — A2(t)) - exp (— 2Btg,2,2(t))

kezZ+\{2,3} t=to
+ 20 , C5€R. (42)
C4(A3(t) = A2(1))” - exp (= 28t9,2,2(1)) le=to
‘We are to show that the value
d d
-2 — A3(t Ak (t — t)— t 43
Z (= A3(to) + Ak(to)) dtt:toﬁto’k’3( )dttztoﬁtg,z,k( ) (43)

kezt+\{2,3}

which is a summand of integrand in (42) converges as tog — 0.

Lemma 2.13. Let A2(0) = \3(0) be the double second eigenvalue, and let A2 (t) and \3(t)
be simple eigenvalues of J¢(2) for t € (0,¢e), where Ji is a simple deformation of Q given by
(22). Let k € N\ {2,3}. Then, for the coefficients By,,:,;(t) defined by (4) the series (43)
converges as tg — 0.

Proof. We will show the series is bounded on 0 < to < e. Each factor ( — A3(to) +
)\k(to)) %t:to Bto,k,3(t) is bounded on tg € (0, ) from Proposition 2.6. Then, %t=tgﬁt0’2’k(t)
will converge to zero as k — oo at any tg. That is, each summand term converges to zero as

k — oo. Consequently, the series will converge as tg — 0.
Let to > 0. From Proposition 2.11

d
&t:toﬁto,kﬁ(t)

S o (to) s (to)

T =As(to) + Ak(to) S dte=tg (JtOJt_[)l)*e RAT0JE3LT0

_ 1 i aGtO 8Ht0

=T () (i) J diemgy ™ (reoag) e f3(0)Ok(f0) +/{ }d)‘"’ to)gx(to)
d oG 8H

=i Bto,3,k(t) + /{ o Zho }(bs (to) o (to)- (44)
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Thus, (43) is equivalent with

S (= alto) + awlto)) [ 5

keN\{2,3} dt t=

. /{3Gt0 3Ht° }¢3(t0)¢’“ tO)} Ztt:to

ﬂt0,3,k(t)

Bto,2,k (1) (45)

The following equality holds;

Z (= As(to) + Ak(t0)) %t:toﬁto,&k(t)

keN\{2,3}

(= Xa(to) + Ak (to)) %t:to

d d
:/ |:£t toA(JtOJil) ¢3(t0) dtt toA(‘]tOJil)* ¢2(t0):|

Z /{dtt ' JtOJ 1) » ¢3(to }¢k to) /{dtt " JtOJ D) = #2(to) }¢>k(t0

ke{2,3}

Bto,2,k(1)

(46)
Then,

> (= As(to) + Me(to)) 4

kEN\{2,3} dtt=to

Bty,3,5(t)

(= 2l0) + Melt0)) 5 By 20

d 213 d 213
< — * . — *
_{/)dtt tOA seorigh) ¢3(t0)’ } {/’dtt tOA(JtO,fl ¢2(t0)’ }
» ®3(to) p x(to) / « #2(to) ; ox(to).
ke%::s}/{d“ t - (Feod!) } {dtt —to - (J05") }
(47)
Even though -2 T i=to Bto,i,j(t), 4,7 € {2,3}, oscillates as tg — 0, (47) is bounded on tg € [0,¢),

because [ [{ dttztoA(.}toJ;Ol)*e¢i(t0)}|’ i € {2, 3}, is bounded on tg € [0, €) from Proposition

2.1. Consequently, ZkEN\{2,3} ( — Asz(to) + Ak(to))%t:toﬁtm&k(t)%z:toﬁtm?vk(t) is also
bounded on tg € [0,€). On the other hand the series

> (= xs(to) + Ak(to) [/{6Gt° 8Ht° }¢3 t0)¢k(to)] a

kEN\{2,3} dt t=t

Bto,2,k(t)  (48)

is bounded on tg € [0,¢). For this, note that

oG 0
> (= Aa(to) + Ak(to) {/{ 0 Hto }¢3(to b to)} t:toﬁto,z,k(t)

keN\{2,3}

:/{ 6‘5;0 aHm }¢3(t0 _ AJ:e@(tO)]
N /[ 9Cie, 6Hto }(;53 - )\g(t)qb(to)}

+/ [ aGto 8Ht0 }¢3 t )( )\3 to) + /\2(t0)) it:toﬁto,273(t)¢3(t0):| (49)
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is bounded on tg € [0,¢) from the fact that
d d
— Aa(t) = — — A “1yx oa(t 5(t
Gy o) /{dtt:to (eest)" 45 (t0) 03 (10
is bounded on tg € [0,¢) and from Proposition 2.1. Inequality
—A3(to) + Akt1(to) _ —A2(to) + Ak+1(to)
—A3(to) + Me(to) = —A2(to) + Ak (to)

holds for sufficiently large all k. Then, by the comparison test for the serieses we can show
(48) is also bounded on tg € [0, €). O

To show whether the right hand of (42) at ¢ = ¢o converges as tg — 0 one may set
approximately Az(t) — A2(¢) up to equal to
d d
— Az(t) — — Aa(t) )t 50
(dtt:O 3(t) dtt=0 2 )) (50)

for ¢ in a sufficiently small deleted neighborhood of zero. Let us denote a factor of integrand
of (42) by

2
Fro(®) = [{ 558 (rrasr). foat0)0s0) sy

d d
-2 > (=) + M) 2P0 k3 () Bro 2,6 ().
kEN\{2,3}
From Lemma 2.13 Fi,(to) converges as tg — 0. The integration [ (As(t) — A2(t)) exp ( —
2Bt0,2,2(t)) Fro (t)dt vanishes in the second order as t — 0. Thus, if C = 0, one can affirm
that function (42) at ¢t = to converges as t9p — 0. Let us assume that the constant C is not
zero. Then, the last summand of (42) at ¢t = ¢o diverges in ﬁ degree as tg — 0. That is,
%t:to’gt072’3(t) diverges in ﬁ degree as tg — 0. Then, B¢, 2,3(to) must be diverge in %
degree. It is not true, since B,,2,3(to) must be bounded around t9 = 0. Thus, the integration
constant C' must be zero. Consequently, %t:toﬁtmz,g(t) converges as tg — 0. O

2.2 Another Approach to Regularity of Path (;537 1(9)
¢3,(t) with respective to t-variable when \,(2) is Dou-
ble

Firstly, we wish to find a criterion for a simple deformation J¢ under which an orthonormal
basis {¢2(0), $3(0)} of the second eigenspace of Q2 is given, there are pulled-back eigenfunctions
¢§,0(t) and ¢§70(t) of J¢(€2) which converge respectively to ¢2(0) and ¢3(0). Let us consider
the following equalities for p2, p3 € R;

d

%t:OAer(pZ(O) = _02¢2(0) — (Ae + )\2(0))92(0), (51)
& Aseds(0) = —psdal0) — (e +3(0))3500), =2)

g9i(0) =0, on 092, i=2,3.

Proposition 2.14. Let )\;(0), i = 2,3, be double eigenvalues. Let us assume that hy-
potheses (51) and (53) hold for Ji. If

p2 # p3, (53)
then pulled-back eigenfunction ¢f ((t) in Ji(2) to Q and the associated eigenvalue \i(t) of
Ji (), i = 2,3, have derivatives, respectively, on t € [0,&) which satisfy

(56000) =, (0

s _ . d _ .
thi% ¢ 0(t) = ¢i(0), lim —A;(t) =p;, and lim 7

t—0 dt t—0
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where (% ;‘70(t))o stands for the component of % 7 o(t) orthogonal to (¢2(0), ¢3(0)).
Conversely, if ¢3 (t) converges to $2(0) as t — 0, then there is a pulled-back eigenfunc-
tion ¢3 (t) to Q which converges to ¢3(0). Thus, conditions (51) and (52) hold.

Proof. First, if X\;(t) is double on ¢ € [0,¢), then obviously given any ¢;(0), there exist a pair
(a(t),b(t)) of real numbers such that a(t)¢3 o (t) +b(t)#3 o (t) which is a pulled-back function
of the second eigenfunction a(t)$2(t) + b(t)p3(t) of J¢(2) converges to ¢;(0) as t — 0. Then,
we considering (13), (51) and (52) hold with ps = p3. That is, hypothesis (53) is not kept.
Consequently, we may verify Proposition only in the case that X;(¢) is simple on (0,¢) for an
€>0.

Let us assume ¢3 () does not converge to ¢2(0). Let us denote

¢3.0(t0) = ¢2(0) + Bo,2,2(t0)$2(0) + Bo,2,3(t0)¢3(0) + > Bo,2.k(t0)i(0).

keN\{2,3}

Since ZkEN\{Q 3} Bo,2,k(t0)®:(0) converges to zero as t — to from Proposition 2.5, although
€ > 0 assumes any sufficiently small value, there are a fixed constant ¢ > 0 and 0 < tg < €
such that 82, 5(to) > o. Note that from Proposition 2.3 for to € (0,¢)

— A * 5 t
dt =1, J; E¢2,0( 0)

d d
—— % )bk o(to) — (A o + Aa(te)) =
oy 2()93,0(t0) = (Asz e + A2(to))

D> Bozk()er(0).  (55)

dt t=t, keN{2,3}

On the other hand from (51) and (52)

d
— A g s ot
dtt:to J{ e¢2,0( 0)

=%t:tOAJ;e ((1 + Bo,2,2(t0)) #2(0) + Bo,2,3(t0)p3(0) + (¢3,0(t0))0>
= — (14 Bo,2,2(t0)) p2¢2(0) — Bo,2,3(t0) p33(0)

— (Ajt*oe + A2(t0)) { (1 + Bo,2,2(t0)) g2(0) + Bo,2,3(t0)g3(0) }
A D Boanrlto)dn(0)}.

- J
dtt=to keN\{2,3}

We are to show the ¢2(0) and ¢3(0)-component of the summand

d AJ;e{ > ﬁo,z,k(to)m(o)}

dt t=t, keN\{2,3}

converge to zero as tog — 0. Referring to (7), for ¢ = 2,3 the following value is bounded over
all k e N\ {2,3};

/ {%t:toAer(bk(O)}qﬁi(O)dzdy

4,1=0,1,2

- [ao@n{ >

1<j+1<2

3=0,1,2 it

oy, PO D o 61 0)@9) }6: (0 :9)

1<j+1<2

it (d

527557 Uit oy, it D@90 ) |

Since zkEN\{Q,:S} Bo,2,x(t0) ok (0) = (qS;YO(tO))O converges to zero in Lo-norm as tg — 0, the
norm ZkeN\{Q,s} ﬁg 5 1 (to) converges to zero, and it verifies our claim. Consequently, from
(55) 7(1 + ﬂ072,2(t0))p2¢)2 (0) — Bo,2,3(to)p3¢3(0) must be equivalent to the formula

%t:t A2(t){ = (14 Bo,2,2(t0)) $2(0) — Bo,2,3(t0)¢s3(0) },
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and since |Bo,2,3(t0)| > /o, we have p2 = p3. It is a contradiction. For ¢3 ((t), the same
argument can be applied.

Conversely, if qﬁ;’o(t) converges to ¢2(0), then from Proposition 2.5 formula (51) holds,
and then the converse statement can be verified from the adjointness in Proposition 2.10. The
converse is also shown by the fact that the third eigenfunction ¢3 ,(to) which is orthogonal
to ¢§70(t0) under metric J; e is uniquely determined, and therefore qﬁg’o(to) also converges,
and then (52) holds. O

Remark 2.7. We have shown in Proposition 2.10 that Ja %t:OAJ;e(z)Q(O) - ¢3(0) =

Ja %t:OAJt*6¢3 (0)-¢2(0). Therefore, if ¢35 o(t) converges to ¢2(0), then [, %t:OAJt*eq&g (0)-
¢3(0) = 0, that is, if (51) holds, and then (52) which does not have ¢2(0)-component naturally
follows, since image of A+ A;(0) is orthogonal to (¢2(0), ¢3(0)) which is kernel of A+ A;(0).
Then, setting 12 = a2,2¢2(0) + a2,3¢3(0), we can ascertain Proposition 2.10 as follows;

d
/Q &tzoAJt*c(bQ(O) "2

d
=/ atZOAJ;e@(O) - (a2,2¢2(0) + az,3¢3(0))

=- /Q p2$2(0) - (az,2¢2(0) + az,3¢3(0))
d
=—agp2 = /Q atZOAJ:er(O) - ¢2(0).

The number p;(0) is uniquely determined, and g;(0) € C3(€2) is also uniquely determined
modulo ($2(0), #3(0)). //

Definition 2.3. Let us call the following deformation an inflation or deflation of Q in
c-rate;

Iey: (:c,y) €N (:c+ct:c, y+cty), —o<c<oo, t€ {te [0,1]: -1 < ct}. (56)
Let {¢2(0), $3(0)} be the orthonormal basis of the second eigenspace of Q. Define

5:(0)@v)
i 1 —1x 4

= I B0} )

_ ! i (0 ! ! It (Q i =2,3
0O (g ) @) € L@, =23

Then, ¢;(t) is a normalized second eigenfunction of I (), and X; (Ic,:(Q)) = W&(Q)

Then, we have

Thet et T+et?
%t:OAi(t) = i (I, (Q)) = —2¢X:(0), (57)
%t:o To) = _Cdji(O):j and .
Et:()ﬁoviﬂ'(t) =—c= Et:oxo(d)i(t)), 1=2,3.
For a more general form consider the following eigenfunction in I. () for real smooth
functions a2 (t) and a3(t) such that «;(0) =0 for ¢ = 2, 3;

{177 (#2(0) + a2(t)62(0) + as(H)83(0) ) bz, v)

={02(0) + 02(1)62(0) + 233O } (1 71

¢;o(t) = I‘j’t{#l—l*qﬁi(o)} _ %:i(0)

)y @y Eln(@).  (58)
Define a normalized second eigenfunction ¢o(t) in I.¢ () by

1 1
. $2(0) + a2(t)¢2(0) + as(t)$3(0)
1+t \/(1+a2(t))2+a§(t){ 2 2\92 3\es }<

X Yy )
14+ct’ 14ct/’
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Then, (;33 (t) — ¢2(0) as t — 0, and

~ 1 1
¢3(t) = :
2 1+ct \/(1+a2(t))2+a§(t)

{22000 + c2(t)82(0) + as ()60 } (2.) .

Then,

%t*OAQ(t) = %t*O [ -
- - (1+ct)\/(1+a2(t))2+a§(t)

{(1 + a2(t)) A2(0) + aa(t)Aa(O)}] ,
= —{c+ a5(0) + a53(0)}A2(0) + {a5(0)A2(0) + a5(0)A5(0)}

= —cA2(0) — a5(0){A2(0) — A3(0)} = —cA2(0), (59)
d 1) = 4 1 (1 + ao(t
Gtr=0f0220) = diemo (et (1+a(6) *+a3 (0 (14 eaf ))}

= —{e+a5(0) + a5(0)} + a5(0) = —c — a3(0),

%t:()ﬁo,z,s(t) = %t:() - 2 ra3(t)) | = aj(0),
(1+cz)\/(1+a2(t)) +a2(t)

where A2(t) and By,,; 1 (t) defined by (4) are associated with the pulled-back eigenfunction

q~53 (t). Thus three derivatives can be set at random by selecting %t:oai (t), i = 2,3, and the

constant ¢ at our disposal. We may define qgg (t) as follows; for real smooth functions ~;(¢)
such that 7;(0) = 0, i = 2,3, and }_,_, 3 ;(t)7i(t) =0,

- 1
#5(t)(z,y) = : #3(0) +72()92(0) +13()¢3(0) ¢ (z,9).  //
3 Y 1+4ct \/(1_’_72@))2_’_7?2)(15){ 3 Y2 2 Y3 3 }( y)

Definition 2.4. Two C* deformations J! and J2 of Q given, we define the sum J! & J2
by the deformation of 2 given by

(Tt W I (2, y)
=(z,y) +{J} (@,9) = (z.9)} + {7 (@,9) — (z,9)}
=Ji (2,y) + JP (2, y) = (2,9)
:(ng(ac,y,t) + J?(ac,y,t) —x, J%(ac,y,t) + Jﬁ(w,y,t) -y), (z,y)€q.
Obviously W is commutative, associative. //

We can show a linearity for W sum of simple deformations J* of Q;

Proposition 2.15. Let J* be a simple deformation of Q given by formula (22) for each
k=1,2,3,..,1. For any C?(Q)-function 1(0) in Q and for —oo < { < oo we have

d
atzo{A(wzzlJa,t)*ew(o)}

1
d
:;Ck{gtzoAJ;;*edﬂ(O)}, .

Proof. For ¢, € R, Jk

Cut satisfies the equality

d d
N Jk ) = N J ) ) ) Q.
Do ot (@) o t(z,y), (z,9)€
—1 —1 —1
Denote Jékt (5’77) = (5 - Gfkt(ﬁ,ﬁ)m - kat(&ﬁ))- Thcn: Jélt 4 J<22t (E,Tl) = (5 -
Sho1 GE (& m)yn = F_y HE ,(&,m)). Proposition 2.7 (25) shows (60). o

Thus from (60) we may state the following linearities;
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Proposition 2.16. [ILet o (th(Q)), k = 1,2, converge to the same eigenfunction ¢2(2)
as t tends to zero. Then, we have

{ i3 (T O R) = 03 (JH) + s 08 (FEO),
dtt

e ire=o o1
B a9 TF@) = e () + 3, e (7(90).

Therefore, ¢3 (J} &J2(£2)) converges to ¢2(£) provided 4 Tito2 (Jtl&JJtQ(Q)) # 4 -0 A3 (Jly
TP ().

Proof. Let us denote
Ath*e — Ae = DAJ{?*@’

X2 (JE(Q)) = A2(9) 1= DAz (JF(9)),

65 (JE(9)) = 62() = D3 (IF(Q)).-
By the first hypothesis the limits of these differences exist as ¢ — 0. Thus

(Ae + @AJW) (@(Q) + D03 (JF (Q)))
=~ {2a(9) + D2 (75(2) } (62(2) + 003 (7 (@) )

holds for all ¢ € [0,¢]. Discarding the second degree terms Z‘DAthc*e - D5 (JF(Q)) and
DA (JE(Q)) - D% (JE()), we have for each k= 1,2

1
lim ;{Aei)dﬁ (JE @) + ’DAth*eqﬁz(Q)}

= — Jim {2 (FF () 92(2) + A2(D)D93 (7 () }. (62)

Thus, we have

lim A, 37 D¢3(IF Q) + Z @Ath*e@(Q)}
=1,2

t—0 ¢t
k=1,2
=~ Jim {3 DX (®)62(0) + Xa() Y D63 (@)} (63)

k=1,2 k=1,2

Equality (62) is no other than (13). In fact from (60) equality (63) implies (61).

From the first assumption ¢3 (Jk (Q)) k = 1,2, also converge to the same eigenfunction
¢3(2). Then, from the last hypothe51s Proposﬂ;lon 2.14, and from (60), equality (61) implies
the last statement.

Remark 2.8. Let {¢2(0), #3(0)} be an orthonormal basis of the second elgenspace in Q.
For inflation or deflation I.; we have % =c= 88}1140 and aGO . ¢ (O) + 6HO .8 E;ﬁ;(o) =
—cXi(0)¢;(0), ¢ = 2,3, but the other summands are all zero. Then from Proposition 2.7
%tZO{AIC,t*E@(O)} = +cXi(0)$:(0). Thus, &, X;(t) = —c;(0).

One referring to an example of Definition 2.3, (bf( ) converge to ¢;(2), i = 2,3, respec-

tively. For the pulled-back eigenfuncion (53 (t) in Definition 2.3, the following equalities holds;

d T
$t20¢2 (t)

- 050,2,2(t)¢2(0) +

dt 1— Bo,2,3(t)$3(0),

da
dtt=0

where coefficients %t:oﬂovm(t)’ i = 2,3, can be determined by selecting a suitable c-rate of
inflation or deflation and by adding suitable second eigenfunctions a; (t)¢;(0), ¢ = 2,3, in  to
the second eigenfunctions in I, ¢(2) at our disposal. For this, we may refer to (57) and (58).
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A simple deformation J; given, and let ¢2(¢) be the second eigenfunction of J¢(2) such
that ¢3 ((t) — #2(0), and let us denote by 92(t) the second eigenfunction in Ji W Ic,(2)
converging to ¢2(0). Denote (J¢ W I¢¢)*1p2(t) = t3(t). Considering the linearity (60) in

_4d
dt t=0

the coefficient of ¢3(0)-component of %t:o(ﬁ; (t) so that the coefficient of ¢3(0)-component

Proposition 2.16, from (57) and (58) one can define coefficient as3(t) to be equal to

of %t:ow; (t) may vanishes.

Let us suppose closed nodal line of ¢2(0) meets 9Q at P, and ¢2(0) is positive in the inner
nodal domain. Then, nodal line of 2 (¢) separates from boundary at sufficiently small all
t € (0,1] provided %P(%t:od);,()(t))o > 0 and provided the coefficient of ¢3(0)-component
of %tzowg (t) vanishes. Since f%P¢2 (0) = 0, it does not matter what change of the coefficient

of ¢2(0)-component of %tzoz/;; (t)is. //

Proposition 2.17. Suppose that A2(0) = A3(0) is double, and A2(t) and \3(t) are simple
ont € (0,¢). Let {¢2(0),¢3(0)} be an orthonormal basis of the second eigenspace in Q. Let

Ji be a simple deformation of Q and let us suppose that ¢§,0(t) — ¢2(0), and %tzo)\z(t) #*

%tzo)\g(t), Given any real number ¢ < 0, one can select an inflation or deflation I
and coefficients az(t) defined by (57) so that the pulled-back second eigenfunction 3(t) in
Ji W I+ () to Q may converge to ¢2(0) as t — 0, and

Jo 43 () - ¢3(0) = 0,
4 (e wgc,t(ﬂ)) = %t:o/\2gt) — A2 (0),
(#00¥30) " = (#_¥30)
where (%tzow; (t))o stands for the component of %t:ow; (t) orthogonal to <¢2(0),¢3(0)>,

Proof. Considering (57), (58), (59), and Proposition 2.16, we can select a3(t) satisfying our
proposition. O

Definition 2.5. A deformation with ¢3(Qm)-component eliminated in c-rate means a
deformation J; W I.; described in Poposition 2.17. //

2.3 Green’s Function of A, + X\2(0) in

Green’s function of A¢ 4 A;(0) in Q is the kernel Ky, (oy(,y;(,7) of an integral operator
represented by

u(¢,T) :/QKxi(o)(%y;C,T)k(w,y)dwdy,

which corresponds to the linear inhomogeneous equation (Ae+)\i (0))u = k. Recalling Remark
2.1, such integral operator may be accepted as an inverse of A. 4+ X;(0) and bounded in a
sense

sup | [ Koo k()| < oo (64)
[IEll2=1 2
Green’s function K, () acting on distributions over 2 is a weak solution of

(Ae + )\1(0)) (z,y) K/\i(O) (Cv T;T, y) = 6(§,7‘) (Z‘, y)7 (65)

where § is the Dirac distribution. From this we have

/Q Ko (B +20(0)) 1} dady = /Q {(8c +X(0) Kn (o) fdody = ¢, 7),  (66)
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if [, %f =0 for all ¢ € W, *(Q) such that (Ac + X;(0))y = 0, where f € C2(Q) N W, *(Q).
According to [5] p. 370, Green’s function satisfies

K)\2(0) (mvy; ¢ T) = K)\Q(O) (Cv T§x7y):
K>\2<0)(x,y;(,7') = _ng?"‘f"ﬂ%y%(ﬂ')a (67)
KAQ(O)(mvy;Cv T) =0, for (Cv T) € 09, (z,y) €Q,

where
r=y/(@-0*+y—7)?
~v(z,y; ¢, 7) and its derivatives up to the second order are continuous in a neighborhood of the
singular point, and where b(z,y; ¢, 7) denotes a function having continuous derivatives up to
the second order such that b(¢, 7; ¢, 7), the value at source point, is identical to one.
To find symmetric functions b(z,y; ¢, 7) and ~ for which (65) and (67) are satisfied we
consider the equalities;

(A(e,r) +22(0)) Ky (o)

logr 1
=—- —(Ab) —b—Al
2w (&6) 2 8T
2 Ologr Ob 2 Ologr 0b

T om o¢ 9o¢ 2w Or Ot
1
- Az(o)(g logr)b+ (A ry + A2(0))y

logr 2 Ologr Ob 2 Ologr 0b
- B Ay - 2 T 2O,
27 2r 0¢ O¢ 2w Ot OT 27
+ 000, (6, 7) + (Bg,m) +22(0))7 = 3,0 (6 7)- (68)

Let us denote by

logr 2 Ologr Ob; 2 Ologr Ob; logr
(z,y;¢,7) i= ——(A(c.1 bi — — A2(0 b;,
9o;(2,436,7) 27 ( ) i+ 2w 0¢ O¢ 2t Ot Ot 2 )< 2m ) ¢

for some symmetric functions b;(z, y; ¢,7) which belongs to C2(Q2 x ©2). Defining b= 3", 0, b;,
for real constants o;, one can select o; so that b(¢,7;¢,7) = 1, b € C2(Q x Q) and gp :=
>i9e; € C1(Q2 x Q). Such belongingness can be achieved by selecting o; so that Ap,nb+

A2(0)b € o(r), 26 € o(r), and a@_rb € o(r). Let us consider equations

» 8¢

{ (e +X2(0)) (1@, 53¢, 7) = go (w,55¢,7),  in Q, (69)
Y,y ¢or) = MEECT 1600z — 02 + (y — )2 := (@, y; ¢, 7), on ((,7) € I

for ¢ € C%(Q). Such a symmetric solution v will satisfy (67). Let us set
v(@,y; ¢, 7) = u+ h(z,y;¢,7),
where u € W*2(Q) N 1/1/01’2(9)7 k > 2, and h is a harmonic function, that is, Ach = 0 in £,
and h = ¢ on 0. Thus,
(Ae +X2(0))u = go (2,55 ¢, 7) — (Ae + A2(0)) h. (70)

Therefore, from Remark 2.1 u exists, and then 7 also exists. The uniqueness of Green’s
function is stated later with some assumption.

Let P € 09. By symmetric property we may regard (z,y) = P as a unique singular point
of Ky, (0)(z,y; P) in Q. From (65) we have
0

@(q,r):PK)‘Z(O) (x,y;(,r)) =0, forall (z,y) € Q. (71)

(A+M®me<

Since K, (0y(®,y;¢,7) =0 for (z,y) € 9Q\ P and for any (¢, 7) € Q\ P, we also have

0

O Kn@@nGn =0 atany (9) €90\ P ()
v (¢(,T)=P
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Let us denote by N the closure of the set

e}
{ewea:l  Kuo@uan=of. (73)
v (¢,m)=P
No matter how path points (z,y) moves to P, and no matter what the following value is;

li — K RTH RU 0},
el ) @6 7) ERU o0} (0}

the line N divides Q at most into two domains. To verify this assertion we refer to [3]. Let
us assume €2 \ N consists of domains G1, G2, and G3. For each j = 1,2, define

)i = %PKM(O) in Gjy,
! 0 in Q\Gj.

Also let P € 9G3. One can find a nontrivial function
2
f=>a¥;, a;eR
j=1

satisfying
0= (fr(@) = [ (Lor@)av,

where ¢1 q is the first eigenfunction of 2. One can verify that each 1, j = 1,2, belongs to the
space of admissible functions in spite of existence of a singular point P. Space of admissible
functions is the completion of C'*° functions compactly supported on € under the metric
induced by ||f||?1) = || f|I3 + ||Grad f||3, where ||Grad f||3 = [(Grad f, Grad f)dV, and Grad
is defined by using a concept of weak derivative for functions in L2(Q) under a given metric
on the domain, that is, Grad f is a weak derivative of fsatisfying (Grad f, X) = —(f,divX) for
all C! vector fields X with compact support on Q. Since a%/(g T):PK,\Q(O)(:v,y;C, 7) =0 at

all (z,y) € 00 except the unique singularity (z,y) = P € 0G3, the following equality holds;
(Grad ¢, Grad f) = —(Ag, f). (74)

Then, (Grad f, Grad f) /|| f|13 = ?:1 a?kg(O)/HfH% = X2(0). Therefore, Rayleigh’s theorem
implies f is an eigenfunction in Q with g = e and A = A2(0). Thus, f is analytic in Q. So,
since f = 0 in G3, from maximum principle [3] p.329, chapter XII, section 11, (or from the
unique analytic continuation theorem,) f =0 in Q. It is impossible.

For the first eigenvalue A1(0) one can show %(C,T):PK/\l(O) has no line N which is
defined in the same way as (73). The line A/ defined for %@ =P
into two domains. We state a generalized Courant’s nodal domain theorem;

K, (0) divides © precisely

Proposition 2.18. The line N defined by (73) divides Q exactly into two sub-domains.

Proof. This assertion has been shown in the previous paragraph. a

Definition 2.6. Let us call the line A" defined by (73) a nodal line, and call a component
of Q\ N a nodal domain of %(C T):PK>\2(0)' //

Remark 2.9. Let us consider the function ¥. This function assumes to be zero on {(z,0) :

x € R\ {0}}, converges to zero as (z,y) tends to (0,0) along path {(z,y) = (z, cz?) : z € R},
and converges to a constant c as (z,y) tends to (0,0) along the path {(z,y) = (z,cz) : v € R}
for any constant ¢ € R. But this function diverges as (z,y) converges to (0,0) along the path

{(z,y) = (z, V) : 2 > 0}. /1
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Proposition 2.19. Let {¢2(0),$3(0)} be an orthonormal basis of the second eigenspace
in Q. There are at most two points on O at which the nodal line of

0
azd2(z,y) + asds(z,y) +a48f( e K)\Q(o)(xyy;ﬁ )
meets OS2, where a; € R are not all zero.

Proof. It can be proven according to the proof of Courant’s nodal domain theorem. The
argument was shown in the paragraph preceding to Propsoition 2.18. O

Green’s function may be required to satisfy

(A + >\2)K)\ 0) = 6(z,y Cv T) Z ¢1 C7 T)¢Z(0)(I7y)7 1=2,3, (75)
i=2,3

where {¢2(0), ¢3(0)} is an orthonormal basis of the second eigenspace in Q. From (75) Green’s
function satisfies the following consistency of a distribution;

[ mno{ @ xoaof=o= [ {act 20K 0 o0, i=23. @)

In contrast to this, for Green’s function which is not defined by (75) we have

/K)\ (0){ Ac 4+ 2i(0))u }Z/Q{(Ae+>\2(0))KAi(o)}U°, (77)

where u° denotes the component of u which is orthogonal to (¢2(0), ¢3(0)). According to [15],
Green’s function is uniquely determined if we assume that

We call this uniquely determined Green’s function a modified Green’s function. It is obtained
by subtracting the eigenspace associated with A;(0). We are to represent modified Green
function K, by bilinear eigenfunction expansion. Let ¢ (0), k = 1,2, 3, ..., be the k-th ortho-
normal eigenfunctions of A, in  associated with eigenvalue A;(0), A2(0) = A3(0). Then, we

have

(Ae + A2)¢r(0) = — (Ax(0) — A2(0)) 61 (0),
that is, ¢ (0) is an eigenfunction of A. + A2(0) in Q associated with eigenvalue Ag(0) — A2(0).
Thus, {¢2(0),$3(0)} is the ortho-normal basis of the eigenspace of operator A + A2(0) in
) associated with eigenvalue equal to zero. Modified Green’s function is constructed in the
manner of bilinear series converging in La-norm,;

_ a0 m) 61(0) (@, )

KAQ x y7<7 A2( )

k#2,3

2.4 Deformations such that nodal line of ¢3(.;(Q2)) is split

from boundary, and )\Q(Jt(Q)) which is multiple at ¢ = 0
changes into simple eigenvalue as ¢t grows from zero

The following lemma implies that if ¢ satisfies the Dirichlet eigenvalue problem (1), and
if nodal line of ¢ does not intersect a boundary point ¢, then %(q) # 0, that is, on a
neighborhood of boundary around g ¢ vanishes in the first order.
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Lemma 2.20. ([6] p.34, Hopf’s boundary point lemma in a limited
sense )  Suppose

Aeg + c(z,y)¢ > 0,
in an open set D C Q such that 9D is smooth and 0D N ONY is non-empty. Let qo be a point
on 0D N O such that
1) ¢ is continuous at qo;

2) ¢(z,y) < ¢(qo) for all (z,y) € D and ¢(qo) = 0.
Then the outer normal derivative of ¢ at qo satisfies the strict inequality

¢

0.
o (q0) >

Definition 2.7. Let Q be a bounded smooth domain in R? and f be an eigenfunction
on Q and p € 9. We say that f has equi-angular K-system at p if and only if the nodal
line of f divides QN B(p,r) into K sectors of equal amplitude by theirs tangent lines at p for
sufficiently small all r > 0, K =1,2,3,---. //

If f has equi-angular K-system at p, then f vanishes of the K-th order. The equi-
angularity of K-system of an eigenfunction at boundary of a convex Euclidean domain in R?
with no smoothness assumption was verified by Alessandrini [1]. A. D. Melas [11] also showed
that nodal line of the second eigenfunction approaches to boundary point nontangentially with
respect to the boundary. Previously Cheng [4] showed that the eigenfunction of a Riemannian
manifold has equi-angular K-system at interior points where the nodal line meets.

The following Proposition is regarded as a concrete version of Hopf’s boundary point
lemma. From this proposition one can perceive eigenfunction ¢ vanishes as homogeneous
spherical harmonic polynomial in the lowest degree near each p € 99;

Proposition 2.21. Any eigenfunction ¢ of Ae in Q has an equi-angular system at every
p € 0N

Proof. To show that ¢ vanishes only up to finite order around p, we follow the arguments of
A. D. Melas [11]. Let H = {(z,y) : y > 0} be the upper half plane and let h be a conformal
mapping of H onto Q N B(p,r) with h((0,0)) = p, where r is small enough for QN B(p,r) to
be a simple domain. From the boundary regularity of elliptic differential equations it follows
that ¢ is C° up to the boundary near p. By a theorem of D. Kellogg [8] h extends C*° to
the boundary of H. Let .
$=goh

in H. Thus there is a sufficiently small # < r such that @ is C* up to the boundary in
B((0,0),#) N H and ¢ = 0 on B((0,0),#) N OH. By direct calculation, we have

|Acd| = [(Act) o h[R'[* < |9
in B((0,0),#) N H for some constant C. Define é in B((0,0),7) by

o) — (%(w,y) if y >0,
Hew) { 9w, —y) ity <o 7

. 8 1 87 82 7 i" . . ~
Then it is easy to check that 7, 5y o, rvm ¢, and 55 ¢ are continuous in B((0,0),7),
and 8%22& = 0 in B((0,0),#) N &H. From the inequality |A.¢| < C|¢| in B((0,0),#) N H,

it follows that ;—;& is also continuous in B((0,0),#). Since ¢ is C* up to the boundary in
B((0,0),#) N H, we conclude that ¢ is in the Hélder space C2! in B((0,0),#), and moreover

|1Aco| < Clg|
in B((0,0),7). Thus by Aronszajn’s unique continuation theorem [2], ¢ does not vanish of
infinite order in L!-sense at (0,0). Let a@ = -2 | for outer normal derivative 2 to 2 at
vp Oy p v p
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p. Since (73 is C°° function in a neighborhood in H around (0,0) and vanishes of finite order
at (0,0), ¢ = ¢ o h~! also vanishes of finite order at p := (0,0). Then, since ¢ extends to be
C'*° up to the boundary of €2, one has Taylor expansion such that for an integer N > 1

¢ = Py +aPyni1+0((z,y)| V1)

holds in IT := Q N B(O, #, ), where B(O,#,7) = {z: 0 < arg(z) < 7, |z| < 7}, I is convex
for a sufficiently small number 7, Py is a non-zero polynomial of (minimal) degree N, and
Pn41 is a polynomial of degree N 4+ 1 with a € R. In fact according to Taylor expansion
aPny1(z,y) +0(|(z,y)|V+!) is written by

1 aN 0 5}
— — p(tx,t — p(ta,t
+(N+1)! av|,_,. {$8$¢( z, y)+yay¢( z, y)}

for all (z,y) € I, and for some tg € [0,1]. We have

Ae¢Pny =0, in II,
since ¢ has no homogeneous polynomial whose degree is less than N. Thus the polynomial
part Py is homogeneous spherical harmonic. Therefore, ¢ has equi-angular N-system at
p=1(0,0). o

Proposition 2.22. Let (0,0) € 8Q, and {%(0’0) = —(%(070). Suppose the nodal line of

the second eigenfunction ¢2(0) of Q has equi-angular three-system at (0,0), that is, it vanishes
of the third order at (0,0), and ¢$2(0) > 0 in the middle open sector of the system. Let J;
be a simple deformation of Q. Suppose %(0,0)%t=0ﬁ‘¢2(t) >0, where ¢2(t) is the second
eigenfunction of Ji(Q2) converging to ¢2(0). Then, there are e1 > 0 and €2 > 0 such that for
every t € (0,e1) the nodal line of J; ¢2(t) is separated from a fized neighborhood of boundary
B((0,0),g2) N oK.

Proof. Let us map Q by a conformal map b to the upper-half plane R2t with (0,0) —
(0,0). Let us remind ourselves that the equi-angular three-system at (0,0) is representes by
—3x2y 4 y3 as minimal degree, and the spherical harmonic two-system is represented by xy.

Assume that h~1*J*¢2(t) has equi-angular three-system at (z,0) = (c1 (t),O), for a dif-
ferentiable real function c;(t) such that ¢1(0) = 0. The function ¢;(¢) is differentiable with
respective to ¢-variable, since ¢2(t) is differentiable with respective to t-variable. Then, the
system is represented by —3(z — c1 (t))2y +y3 = -3ty + 2c1(t)zy — 2%y + y> near (0,0).

9 d * —
Then, B (2.9)=(0.,0) Tireodi d2(t) =0.

Let us assume that J;¢2(t) has two equi-angular two-systems near (0, 0). We may consider
the following expansion near (0,0);

—3(:17 — CQ(t)) (3: — C3(t))y + 43,
where c3(t) and c3(t) are differentiable real functions such that ¢2(0) = 0 = ¢3(0). Then,
%(0’0)%75:0{ - 3(:1: - CQ(t)) (CE - 03(t))y + y3} =0.
Consequently if %t:o%(o,o)‘]z(ﬁz (t) > 0, then J}¢2(t) has neither equi-angular three-
system nor equi-angular two systems for every ¢t € (0,e1] on B((O, 0),52) non. m]

We describe a preliminary proposition which shows a general case of Hopf’s boundary
point lemma. Let {¢2, ¢3} be a basis of the second eigenspace of (2.

Proposition 2.23. The function

S e 2% (80)
2<ig<s ov Ov

on the boundary 02 has at most four zeros on 0N, where real coefficients «; ; are not all
zero.
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Proof. Let a3z # 0. Let us put (80) into the simple form %% + w%% +

asz,3
@2,2 O¢g 02
az 3 Ov Ov

. Firstly, let us assume

(a23+a328¢2) 4<%%%)

3,3 v
o0} + 2 ,
(e i)

on a subset of Q. Then from quadratic formula (79) is factorized into

(%_ 6¢2)(% _ 8¢2)

a3,z Ov Ov

el eo—— ) ondf2, er,e2 €ER.
ov ov ov > ov ’ 1o
Each function of boundary 8(;;3 —e1 % and 6¢3 - eg‘lﬁf has at most two number of zeros

on the subset of 92. Secondly, on the complement of the above subset of 92 we have
O 2
( ¢2) {<a2,3+a3,2> B azz} <o
ov 3.3 3,3
Then (79) has no zeros on this subset. Thus our proposition is valid. If a3 3 = 0, then it is
easily shown that (79) also factorized. Thus our proposition follows. a

Remark 2.10. Unlike the function (79), we have no knowledge for the number of zeros
on 0N of the following function

3¢2 ( 0 0¢; 0¢;
3o 0@ )+ D0 aiy (81)
v v ovp 2<ig<s ov v’
Remind yourself that 6 8VPK)‘2(O) has also at most two zeros on boundary (Proposition

2.19). This formula can not be always factorized in linear factors like (80). For simplicity let
us put (81) into the formula

093 0¢3  a23+ az 2 Op2 0p3 g2 0pa  azg O ;0 092

- t— oty Tt 7*(* KAz(O)) et

ov Ov a3,3 ov Ov a3 3 Ov 3,3 0v \Ov p ov
When the following function

2
<a2,3+0t3,2 %) _4f 022002 a2,43<£ K,\2(0>) 2
33 ov az 3 Ov a3,3 0v \ovp ov

is not negative on an oen subset of 92, considering the quadratic formula we can not expect

the factorization of (80) in linear factor consisting of % 8“53 ; and 5 (8» PKM(O)) unlike

(79). //

Corollary 2.24. LetS;,i=1,2,3,4,5, be closed segments on dQ which are disjoint one
another. Let simple boundary functions &;, i = 1,2,3,4,5, whose boundary supports are S;,
respectively, be given and each &; do not vanish on S?. Then, there is at least one simple
boundary function &, 1 < k <5, for which the value

[oo X a2 80

2<4,j<3

does not vanish, where constant coefficients o ; are not all zero.

We are to show our main proposition of section 2. Let us denote
cki=—fq {%tzOAJk:em(o)}(ﬁj(o)da:dy, i,5 € {2,3},
k d 9
Coy = — fQ {EtzoAJ’v:e‘z’?(O)}{E(g,f):(p)KAz@)}dxd?%
To verify the proposition we apply significantly Hopf’s boundary point lemma. It seems to
be naturally true, but its proof is elementary and complicated. In the following Proposition

2.25 if a simple deformation J; of €2 is given, the deformation denoted by J¢¢, ¢ < 0, can be
defined from (22) in Definition 2.1.

(82)
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Proposition 2.25. Let pa, ps and ps > 0 be real numbers such that pa # p3, and let
{¢2,p3} be an orthonormal basis of the second eigenspace of A in Q associated with A2(0),
and assume that the nodal line of ¢a be closed and meets OS2 at exactly one point P and
¢2 is positive in the nodal domain enclosed by the closed nodal line. Let eleven boundary
functions &y of simple deformations Jf, k=1,2,3,...,11, whose boundary supports Sy are
disjointed each other be given, and let each & does not vanish on the interior of its boundary
support. Then, one can select four simple boundary functions ®y ., and real numbers ij,
j=1,2,3,4,1<k; <11, for which the followings are satisfied: Let us define a deformation
J:Qx[0,q — R% q< min{l, Tl ’Ciz , Cis  Cen }, with ¢3(Qm)-component eliminated
which is represented by

JIJ (W lea(r,y), 0<t<q,

where each J,7 is a simple deformation on 0 <t < 1 with boundary function Qﬁkj, and It
is an inflation or deflation in c-rate. Then,

1) @3 o(t) and ¢% (t), 0 <t < 1, converge to ¢2 and ¢3 ast — 0, respectively,

2) %t:OAQ(t) = p2, %t:(J)@(t) = p3, and

3) 55 paieeo®3,0(t) = pa is satisfied.
Proof. From Proposition 2.14, Proposition 2.16, Proposition 2.17, Definition 2.5 and notation

(82), it suffices to find Jki, j =1,2,3,4, for which the following system of linear equations
has a solution ({ry,- -+ Chy);

0%2 e oy Qfl
C%B C23
€23 "7 Ca3
Ca4 """ Coy Cha
A « 92)d2
dett 0( Uﬂ th)e )
~Jo diimo (A $3)9 +cx2(0)
Q dit= (w ) e 3 )3 P2 2
_ j=1 Ck t _ | ps +¢r3(0) (83)
- J; A K oye $2)¢3 o
tht 0( ]141)6 ) pa—p
d 2
_fQ Et=0(A(Lﬂ4 7 kj )*e¢2)$pK/\2(0)
i=

=17¢p;t

where p denotes the increase of outer normal derivative at P of the ¢3(2m)-component elim-

inated from U4—1JC . To find each J*i 4 x 4-matrix in (83) has to be transformed without
change of rank into a regular matrix

di -

0 d2

0 0 ds (84)

with dg # 0 for k = 1,2, 3,4. Each d; is calculated in

1
dl = C29,
_ 2 C33
dg = c33 — ‘3227
Cho
1
2 €23 .2
1 c 23¢
da = 3 Ca3 3 B chy 22 3 €33 3
3 = Ca3 1 C22 ) 33 1 C22)
€22 2 22
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C.
c c
24 1 =22
4 24 4 €22 4 33 4
da _<C24 - cl 022> { d } ' (ng n 022>

22 2 C22
1
2 €34 2
1 €24 "1 €22 1
(- et - {(2TE) (- o)
o\l ds 33 7 ol “22
ds
2 0%3 2
1 €23 — . C22 1
4 €23 4 Ca2 4 €33 4
: (023 5 022> . ‘(033 1 C22 (85)
C22 2 C22

From Corollary 2.24 one can select by turn &1, ,®2,, 63, € {&1,- -, &11} for which dy, da,
and d3 do not vanish. For an example we obtain

1
da _/ &, (228003 33002002
ov Ov c59 OV Ov

One can show that all &1,, &2,, and 3, have to be distinct each other. Otherwise, for an
example, while 17 = 21, the entry do = 0, since 6%2 = c§2 and cgg = c§3. When &;,, &2,
and ®3, are selected, the number of candidates for &4, is eight. But, since function (81) can
not be factorized in linear factors like (80), one can not select a simple boundary function Sy
for which d4 does not vanish in the same way as we select ®1,, &2, and &3,. Accordingly,
let us set

4 C%4 C§3 4
dy =cyy — 1 - B (033 ol C22)
c22 €22
23 4 33 4
*Kl{(cz?) 1 C22) By - (033 1 Cm)} (86)
€22 €22
where L
2 €24 2
Co4 — 1 Ca2
_ 22
B = ——F—,
da
2 c2
€33 — o1 Ca2
B — 22
2 )
da2
2 24 .2
1 €247 1 C22 1
(03 _ 24 .3 ) _ €22 . (03 _ ©33.3 )
24 — 1 _C22 ds 33 — o1 C22
K| =— 22 22
ds
Let us denote by (&1,, &2, ®3,) triplet of boundary functions, I = 1,2,3, ..., such that each
&, , k= 1,2,3, is contained in {®1, -, B11}, and makes di not vanish in order in a sense of

Corollary 2.24. Let us define a function A(®1,, &2,, &3,) on 0N related to (86) by
A(®1,, Bz, B3))
_0920¢s _ c340020¢2 _ p (322 903 ) 002 002

ov v 0%2 ov Ov ov Ov 6%2 ov v
Op2 O3 023 Op2 Op2 O0p3 O3 633 Opa O
{( )~ B2 ( )}

ov v 022 ov v

87
ov Ov 022 ov v (87)

where ¢4 = &IPK)\Q(Q), and ¢
2.24, (82), and Proposition 2.10.

Let us assume that (assumption I. although any triplet (&1,, &2, ®3,), | = 1,2,3,...,
be given, we have

i k =1,2,3, is determined by &, in a sense of Corollary

/ B A(B1,, By, B3,) =0,
Q

for any &, € {&1,- -+, 611} \ {&1,, B2, B3, }.) Let us assume that (assumption II. if we
replace (®1,, B2, , &3, ) with another triplet (&1,, B2,, &3,), then the coefficient K1 defined
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by (&1,, B2,, B3, ) turns into K1 +v2,3, 0 # 72,3 € R.) From now on when we select a triplet
(®1,, B2, B3,) from {&1,-- -, &11}, we will assume that if 11 # Iz,

Gy, # 61y,
Note that since the coefficient of function 884;2 %qff in (87) is one, a{;if % is invariant under the

choice (&1,, &2, ®3,). Coefficient of component ML’? in (87) varies from K1 to K1 + 72,3

as (&1,,®2,, B3, ) is replaced with (&1, , &2, , B3, >V, and therefore
A(lezv G2,, 632>
O¢2 O3 O¢2 O O¢3 3¢>3

=A(61,,62,,83,) + — 5+ — -+ - i,j € R. 88
(B1y, B2y, 85,) + 9287 =5 = +1225 =5 = F 9335 =50 Vi (88)
From Proposition 2.23 function vz 3 6642/2 993 4~y 2,2 86‘1?,2 992 4 g 3,3 364;3 8(;3} has at most four zeros

at boundary. Consequently, by Corollary 2 24 and by assumptlon I fQ G A(B1,, Ba,, 83,) #
0 for a boundary function &;; € {&1, -, 11} \ Uj—1,2{1,, &2;, 83, }. From assumption I it
is impossible. Therefore, either assumption I or assumption II does not hold. If assumption I
does not hold, our proof is done.

Then, we may assume that (assumption IIL. (&1, ®2 ,&3,) replaced with another
triplet (&1,, B2,, ®3,), the coefficient K is invariant.) Then, suppose that (assumption
IV. the number By — K1 Bs is variant when the triplet changes into (&1,, ®2,, 83,).) Then,
the coefficient of %% in (87) equals to B1 — K1 B2 and therefore it varies according to
the changed triplet. By the same argument as preceding paragraph formula (88) holds with
73,3 # 0. Then, Corollary 2.23 also implies that one can find a simple boundary function &,
which makes d4 # 0 among {®1,---, &11}\ U?Zl{ﬁﬁll , B2, &3, }. It is contradictory to either
assumption I or assumption IV.

Thus we may assume that (assumption V. (&, , B2, &3, ) changed into (&1,, Ga,, B3, ),
By — K1 Bz does not alter.) Then, under this assumption let us suppose that (assumption

el 1
VI. (&1,, ®2,, ®3,) changed into (&1,, &2,, B3, ), the coefficient 2+ — K Zf—?’ in (87) alters.)
cho 22

Then, by assumption V the coefficient of 84?/2 684122 in (87) varies. By the same argument as
the above Corollary 2.23 implies again that one can select a simple boundary function &;,
among {&1, -, 11} \ UL {&1,, &2, B3, } for which dy # 0.
Therefore, let us suppose that (assumption VII. triplet (&1, ®2,,®3,) changed into
cly ol
(S1,,, 622,6532), cT — K123 = K, for a constant K5.) Note that K; has been assumed
22 €39
to be invariant under this change of triplets. Thus, for two triplets (&y,,®2,,®3,) and

(&1,,, B2,, B3,) we have

— Kicky — Kacly = 0. (89)
The procedure in the preceding paragraphs can be considered to progress in the same way
for each pair of triplets {®&1,, ®2,, 83, }, {&1,, B2, 3,}, j = 2,3,4,5, where 611,1 #* 6112,
if I1 # l2. Such pairs of triplets satisfy (89) for constants K7 and Ka. Then, from Corollary
2.23 (89) does not hold, since the function

A2 O O¢a O Ao O
2 Oga K¢2¢3 K¢2¢2

Jv Ov ov Ov ov ov
Opa (O¢a 9¢3(€2) O¢2
=—(—-K — K> 90
ov ( ov ow ov ) (90)
does not vanish calculated with a boundary function &;, which belongs to {&1, : | =

1,2,3,4,5}. For this, referring to Proposition 2.19, we observe that the right-hand side of
(90) has at most three zeros on 9. (If the nodal line of ¢3 is not closed, then (90) could have
at most four zeros.) Thus, (89) fails for some triplet.

After all our assumption I is not true, that is, there is a quadruple {®1,, &2,,Vs,, &4, }
which makes d4 not vanish. O
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3 a Proof of Payne’s Nodal Line Conjecture

In this section we assume the strict situation that the second eigenvalue of € is double and
nodal line of a second eigenfunction in €2 is closed and touches the boundary. Then, Courant’s
nodal domain theorem [3] says that this nodal line meets boundary at exactly one point under
the third order vanishing-system. Then, from Proposition 2.25, one can find a deformation J
such that J:(Q2) has C°°-boundary and has a unique normalized second eigenfunction whose
nodal line is closed and separated from boundary for all £, 0 < ¢t < g < 1.

Let ¢; p and A;(D) denote the j-th normalized eigenfunction of a domain D C R2 and
the j-th eigenvalue of D, respectively. The restiction of ¢; p to Dg is denoted by ¢j D|D .
) 0
Let us denote by
E CR?
the rectangle {(x,y) < <2, 0<y< 1} whose corners are cut symmetrically and
sufficiently slightly to be smoothen. According to [5] p.395, nodal line of ¢ = is {(z,y) : x =
1, 0 <y < 1}. Through inflation or deflation of Q1 := 2, we set

A2(E) = A2(). (91)
By translation of 21 we set
F1:=Q NE#0, %1:=Q1\E7$®.

We deform €27 by a simple deformation jtl whose support lies in the closure of remainder 2
so that Jqll (931) may have thin and long iz bands 6’2“, k =1,2,...,i2 called branch, or have no

more than i2 discs ZB’; with various radius called blossom attached to top of 6’5. Otherwise,
jtl tunnels into 2R;. We denote this tunneled set by Ry \ T’;. Thus we may write

TN Q@) = T4, (@) = s u{m\ s ol ulJ B,
k k k

In fact this domain is regarded as the interior of the closed connected set 1 U { PR\ Uy ‘312“} U

Us 85 uU,, BS.

According to proposition 2.25, a deformation J! with ¢3(Q2m )-component eliminated can
be selected to satisfy the followings;
1) the nodal line of ¢271m(‘7t1> is closed and separated from boundary at all ¢ € (0, q1],

2) A2 (Im(Jtl)) is simple at all ¢ € (0, q1], and
3) A2() = X2(5) £ A2(Im(T},))-

Definition 3.1. Let us call such a deformation J;! a splitting deformation. Subsequently
we fill up the set =\ F1 by a smooth deformation F1 : Im(Jqll) x [0,1] — R? called a filling
deformation so that the support of F! may lie in §1, F2 (1) C E for all s € [0, 1],

FL (Im(7,,)) € FL, (Im(Fy,)), if 0<s1 <s2 <1, (92)
X2 (FL(Im(T))) = A2(B) < X2 (Im(T,)), (93)

Fl (Im(Jql1 )) may have the simple second eigenvalue at all s € [0,1), and nodal line of the
second eigenfunction of F} (Im(Jql1 )) may not touch boundary at all s € [0,1). Let us denote

Qo := F (T4, (1)),

and denote F2 1= Q2 NE, Ry := Q2 \ (T2 U U, S5 U, BE). We define Qyy, inductively by
repeating above procedure;

Qn =F" o g (Unr), m>2. )/
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Definition 3.2. Let us select four simple deformations Jtm’k with boundary supports
Sk k =1,...,4, and let they be W-summands of a splitting deformation J;™ := &Jizljg:;k.
We will call a simple deformation 7™ expansive, if Im (j ’]) - Irn(,]t ’J) and contractive,
if Im (7,77) 2 Im(F,77) for 0 < t1 S ta < qm. //

) Firstly, let us define an expansive deformation jtm’_j, 0<t< gm,onits bou_ndary support
87, as follows; denote the outer normal vector to J;"/ (Qm) at each (z,y) € Sih, 0 <t < gm,

by %J;n,j(zyy). Then, the followng has to be satisfied;

lim o (@, y) = I3 (w,y)

0
50 5 - 6(x7y)7

3VJ§"’j(w,y)7

where & is a non-negative smooth boundary function. ] ]

Let J,™ be defined by a positive boundary function &, on S},, and let it turn out to
correspond to an expansive simple deformation as the j-th W-summand of a splitting defor-
mation Lﬂizljg:;gk. Then (; is positive, and Jgjt’] deforms S}, to fill up a tunnel in R,
from bottom, to form a protrusion, to grow branches, or to increase radii of blossoms. On
the contrary, let J,” turn to be a contractive deformation. Then ¢j is negative, and Vi
tunnels into PR, or diminishes branches and radii of blossoms. If it is assumed that ¢; turns
to be negatlve for the first time among the ordered set {¢1, (2, (3, (s}, the boundary function
of J i 7 does not need to be {;®7,, but we considering the linear system (83) and (84), &,

can be redefined newly by an arbitrary smooth function on &7, being negative on S;,; so that
the coefficient {; may alter only in positive sign. In this case for ¢, i = j +1, d; may alter, and
then &, may selected newly among given eleven boundary functions, and the column vector
(p2 + cA2(0), p3 + c)\g(O),O,p4)T in the system (83) and (; may alter again. Provided ¢; is
also turned out to be negative, one may proceed in the same way as (j. Consequently, when
we designed to fill up the bottom of tunnel according to the given shape, if the deformation
turns out to be contractive, then we can fill up the tunnel from bottom by designing at our
disposal.

If expansive deformations is repeated, the branch reaches an appropriate length, and then
we will inflate the portion around the top of branch. If expansiveness continues, the inflated
portion becomes a blossom which forms a disc except for the negligible small portion of top
of branch which is necessary to smooth the boundary.

If there are eleven blossoms B%, in Q,, then we may deform only U, ®BE, by a splitting
deformation J/™ which inflates or deflates blossoms. Also we can deform Q,, not to allow
more than eleven blossoms.

Definition 3.3. For f € C(D) let us denote

S\4is
Inf*

After translating an, we can set for each k£ without loss of generality

5[f]=/D|Vf|27 £°[f] =

Ik i
anz{(x,y)elRQ:f%l<x<7m,0<y<w,’%}. (94)

Although &E, is bent, the validity of setting (94) in the succeedmg arguments of proof is kept.
1k
(Refer to Corollary 3.11.) We denote for — -2 < ¢, zg < m
6777,,19 =6k n{(z,y): —19§x§19}, s (z0) :=6F n{z =z}

In what follows one side of the segment s¥, (0) connected with the blossom B, will be denoted
by
Bt = sfnm{(:c,y):ogxgz’:n/z}u%’:m (95)
and denote
Bl = Q \ BEF
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We denote by Sy, the set of all indices k for which a blossom %]fn of Q,, exists. We set for
ke Sm,jeEN

_ 2
Q?;Ln = ”d)j’le%ﬁf”Q’ gf,m = Hqﬁjygmrgf; ||2 =4y/1- (gf::n) :

According to local estimation at boundary [6], Theorem 9.26 (It is stated in Theorem
3.7 later), one can notice {maxgm (02,0, |+ A2(Qm) = X2(E), m =1,2,3, } has an upper
bound. Then, by exponential decay theorem presented below in Lemma 3.1, there are positive
constants C1 and Co which depend only on the value A2(Qm) such that

max |¢z 0, | < C1exp

min{|llk -9, | — Lk -9/}
—Cy 2tm 2'm ),
sk (9) (

Wiy
where wy, denotes the width of G%,. We may assume w¥, are the same for all branches GF,
of Q. Also lfn may be assumed to be constant for all k € Sy,. Let us denote

: 11k 17k
min { |55 — 9|, |— 305, — ¢
Owm.9 ::CleXp<—Cz L Mk 1 ‘})
Wm,
Fom now on the symbols C7, Ca, C3, etc. will denote positive absolute constants. //

Lemma 3.1. (Exponential Decay Theorem, extracted from [7]) Let
. 1
V={z4+iy:0<y<1/N, 0<z<zm}, N<<:vm,

and Vi and Vs be its vertical sides. Let W be a simply connected domain in R? such that
WnV,#0, WCV, and oW\ {3 UV} CV.

Let (Ae +MNu =0 in W, supy, [u| = e;, and u = 0 on OW \ (V1 U V2). Let us denote
e = max{ei,ea}. Then,

lu(z)| < Czeexp (— C4N - distance(V;, 2)), 2z €W, (96)
for constants Cs, Cyq which are independent of N and distance(V;, z).
Proof. Let v be the solution of (Ae + )\)v =0in V with v = e = max{ey, e2} on the vertical
sides V;, i = 1,2, of V, and zero on the horizontal sides of V. Firstly, let u > 0 in an open

subset Uy C W. Since Ac(v —u) + A(v —u) = 0 in W, from the weak maximum principle ([6]
p 179, Theorem 8.1.) we have

inf(v — u) > inf(v —uw)~ =0,
inf (v—u) > inf (v—u)
where (v—u)” = min{v—u,0}. It implies that u < v in U;. Secondly, if u < 0 in a sub-domain

Uz C W, then
inf(v+u) > inf(v4+u)~ =0,
w 152%4

and it implies that —u < v in Us. These two inequalities imply v > |u| in W. Straightforward
exponential decay estimation for v implies (96). O

Proposition 3.2. There are C;, i =5,6,7,8,9, for which the followings are satisfied:
(i) For each k € Sp,

‘g[¢1,9m|%’;;;] - 5[@?%)%,%5{]' < C5L im,ﬂ‘

Wm

(%) Let us suppose that )\2(%5”_) — A1(BE7) is bigger than a constant Cg > 0 for all m € N.
Then,
2 1
k— 2
whk— gl,m(ﬁl’%ﬁ: H2 < Cr o ®Wm779'

m

[#...
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(iii)
£[410,

(iv) Let us assume that X2(Nkes,, BEY) — A (Nkes,, BY") is bigger than a constant Cg > 0
for all m € N. Then,

NkeSy, B m] Hlik;: ( } ¢ keS,y, Bh H<C8793m,197 and

2
H¢1 U |res,, B {1 h } ¢1,mkesm%f'; ‘ < Cg*ewﬂvﬂ'
kESm
(v) Inequalities (i) and (ii) are also valid BE replaced by BE.
Proof. (i) Let us define a piecewise C2 (B, )-function h™ by
0, —
g = { T 010, 09), (ey) € S, 0BT (o)
07 (17 y) S %’IVCWT \ an 9
Then, since d)l,%’ﬁ,f has minimum energy among normalized functions in Cg(%ﬁf),
—2 _
H¢1,9m|%’ﬁ,r —h7 Ml [0y ] < €101, b —H]: (%8)
Also since qbl Q |‘B’“_ has minimum energy among C’Z(SBf{)-functions which have the same
boundary value and the same La-norm as d)l Q |%k,,
2 - —2
||¢1,Qm|‘5fn7”2 g[¢17%§n_ +h ] 2 ||¢1,f3’fn_ +h H2 g[d)lygm!%’fn*]' (99)

Let us note the inequality

9 ERCN _2
A%—Had%ﬂﬂ%ﬁ_h)}+{&%%ﬂﬂ%ﬁ_h)}]
d o o
i)~ /ka 2or P8l e T /ka 23@¢1,ﬂm

0 2 0 2
o G )+ ()}
%’fn— oz oy
From [6] Theorem 4.6 and Theorem 4.11 (Refer to Theorem 3.4 and Theorem 3.5 which will
be stated later.) one can induce for 4,5 =0,1,2, 0 <i+4j < 2,
giti
o 1. |ek
Oxtdyl " 1L.Om |67

0
.~ —h
‘Bi‘n By

=& [¢

1,Qm

1
<Cio—7 T GSUP [#1,2,, |
m, 9
1
<Cn1 |Z+]|®wm,197 (100)

where wp, is the given width of branches of Q,,. Note that Poisson’s equation Au = w in [6]

is satisfied by u = ¢ for w = =21 (Qm)¢ . We have by (100)

1Qm|6k 1Qm|6m

‘/k— or 1Qm\%ma ‘

1
SQ{/Bk—mgk ‘%d)l,ﬂm ‘Bf{‘zl/nk, ‘%h_F}Z

m m

<2{C11 @2 gwm?- @wmﬂﬁmeﬂ} __mnl—feimﬂ (101)
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Similarly, from (100)

0 9]
2— _—h"
‘/%’:; 8y¢179m|%5n dy '

1 1 L 1
S 2{0%17@3)7”’19(#77119 . C%lTQim,ﬁ‘Umﬁ} 2 = 20%1763_"“1919.
Win Wm Wm

From (100) £[h~] is also bounded above to a constant times %mGim,ﬂ' Thus, we can
conclude 1

5[¢1,Qm|%_ -h7] < s[qblﬁﬂm!%%_] +Cia— ez, s (102)

m
Similarly, one can show
1
5[¢1’<B51— +h7] < 5[9251’%1;1—] + 013763,%19. (103)
m
Thus, from (98)
2
{||¢1,nm BE- 2 =1, g, sk ﬁrm’,“;“%} E[d) mi-]
—2
S”¢1,Qm|<3’§; —h H2 5[¢>1,%17c;]
€16, 0, ot 1)
1

SS[¢LQM|%5{] +C12E®imﬂy (104)

Since [ g+ 17122 [0, s 3~ 16 i 0t [ rom (99

1
||¢1,szm Bk Hg{gwl,%ﬁ;] +013E®imﬂ9}

ZH¢1,Q,,1|%£‘;; Hg g[d)l,%’:; +h”]
ZH(ZSL%?{ +h_||§ g[¢17gm|%ﬁ;]
Z{H¢1,‘B’ﬁ{ ||§ - Hd)ly%,f{ }G]'cn on%ﬁ; |}§}g[¢1,gm|%’:ﬂ*]' (105)

From (104) and (105) (i) is verified.
(ii) For proof it suffices to show

||¢1’Qm|%,&_ — BT = ol - |2 < Cru©2, 4.

Let us set
%= /%,c, (‘ﬁl,nm}%’:; —h7) byt JEN.

Jovrva== [ _@na.

for piecewise 02(‘3517) functions f,g € Cg(‘B,’f,f). Since ¢
from (i) and (102) we have

Note the formula

_ . k—
1,Qm|‘Bﬁ«f h~ vanishes on 0B, ,

C15i@u2um,ﬁ = '€[¢1,Qm|%’ﬁf - hi] - (Qlf;”)zg* [(bl*%f'r]’

=D a3t - (e’f;n)zh(%ﬁ:)‘. (106)
j=1
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Since (g’f;n)Z — 016937”719 < H¢1a9m|%$n_ - h7H§ < (g’f;n)Z + Cl@gim,ﬁv we have

o0
‘(Qlf;nf - Za?( < C1602, 4. (107)

j=1
Then, from (106) and (107) we have

1
Cir—02 4>
Wm,

S a2 (8h) Za%(%ﬁ:)\

JEN JEN

> a{nesh) - aehn)
JEN\{1}
> 3 a?{,\Q(%fn—)—Al(%ﬁ;)}.
JEN\{1}

1 2
C17 5,7 %m0

T em Tom,? k=2 _§hoo 25
P BE ) A (mEY” Then, from (107) when (,QLm) it af 20,

Thus, > e (1} a? <

Ci7 102
—\2 2 2 w. Wi,
0< ()" —af <Ci6®2, 5+ _m —,
" “mt T X (B = M(Bh)
otherwise when (g’f:n)g — ;?';1 a? <0,
Cl?%@i 9 o0
m , 2 2 2 k— \2 2 k— \2 2
7)\ %k* Y m%kf <o — Z aj <oi— (gl,m) < Zaj - (Ql,m) < ClG@um,ﬁ'
2(Bm ) (B ) jEN j=1

Therefore, a? approximates to (glf;n)Q, and (ii) follows.
(iii) We define h~ for each k € Sy, by

0, —
R (z,y) = +wm +61.0,0,9), (z,y) €&k ,NBy,
7 0, () € Nies,, (B \ S}, 5)-

The argument of proof of (iii) is similar to (i).
(iv) The way of proof of (iv) is the same as (ii).
(v) Proof of (v) follows those of (i) and (ii). m

Proposition 3.3. Assume that for a k € Sp,

5*[¢1’Qm|%5ﬁ+] = 5*[¢179m|%5ﬁ—] + A A, >0 (108)
Then, we have
1
(1) Ak, < Cus — el (109)
m

Proof. Let us define (;Si’nm by

(z)i o (z,y) — (1 - 6)‘ﬁl,ﬂm ($,y), (:C7y) € %!rcn+7 (110)
o f(6)¢1,ﬂm (xay)r (I,y) S %57:7
for0 <e< %, where f is a differentiable real function, and
—\2 2
FE@? ()" + (1= (e },)" = 1. (111)

Then, H(z)i,ﬂmHQ = 1. Let us define J)i,ﬂm by

€ k
P o (0y) = { 0 (2:9), (@,y) € U \ &F, ;. (112)

k,
hme(m7y)¢1,ﬂm,7 (Ivy) € an,ﬁz
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where hf,f : 6];1 ¢ — R is a smooth function defined by

B (2, y) = = 762; 19, 1= E;Ff(e). (113)

We are to calculate an upper bound of

£[é1.0,.] —€lor0,]

=E10 o i) T EL g ]~ ElPL0n]
(86 o, o )= or ) (114)
Direct calculation yields
S[d)i,gm,}%’:;} +S[¢i,ﬂm,|%’;+]
=@ (01n) €716, g, ]~ M} + (=P (0110 il (119)
From (115), (111), and from the equality 1 — (glftn)z = (g’f;n)z, we have
S[d)i,szm{%’;;] + 5[¢i,szm,|%$n+] —£[¢1.0,]

={1— (el }) He (91, ] =AM}
—(—2e+ ) ()& [¢1,Qm|%,ﬁ] -
+ (A7) [0, s + (2 ) (elh) € 0, o |mit]
— {1 = (@) HE By 0, i ]~ A} = (@85) 77 [0 ot]
=(—2¢ + ) (oF ) 2N, (116)
The other part in the right hand of (114) is calculated as follows;
ok

Te _ €
5[¢1,Q,,,L|6§n,1,] g[(bl,ﬂm ko

= Sk Hﬂ%,am + (17€7f(6)x+ 176+f(€))3¢>1,9m }2

ko 20 20 2 oz
1—e— f(e) 1fe+f(e)>2(8¢1g )2}
9 m d d
+( 29 T+ 2 By zdy
_ f62v¢,gm2—/ 1-02%|Ve¢ra,|> 117
/@)%MST @Voranl= [, Q= Toal (117)

oft N2 2
Note that f(€)? = 1-1—(26—62)(%) =1+aie+o(e) = 14+0(e), (1—e—f(e))” = aze+o(e),

and (1 —e+ f(e))2 = 2+ aze + o(e) for real constants a;,i = 1,2,3. Then, from (100) and
from (117) eliminating the second degree term €2 for a sufficiently small ¢ > 0, we can induce

€05 o for )8 fon <0062, s < cCro02 L, (119)
Consequently,
£[61,0,.] — €[o1,0,]
<—(2e— 52)(g’fjﬂ)2)\’ffm + 6019i93m,19~ (119)
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If a constant k. makes HREQBiQmHQ = 1, then we have |K,5 — 1| < 1/020693)77“197 since
Hd;iﬂmﬂg =195 q,, ||%‘ < CQOG@im,ﬁ for a constant Ca, and since W’iﬂm”% = 1. Therefore

inequality (119) still holds when one replaces q;i o and C'19 by normalized function n€<£i O
and another constant Cz1, respectively. Since eigenfunction ¢ o, has minimal energy,

~ . 1
0 S g[nqui,ﬂm] - g[d)lig’"l] < 7(26 - 62)(‘91167:n) )\vam + 6021wieimﬂ9'
m
and then setting e small enough, we have (109). O

Remark 3.1. Let us denote the differentiable function N§ ., of e-variable by

- 1 1
€ _ € — € 92 aly=Y)
)€[¢1,Qm}6§%0] g[¢1,ﬂm|efnﬁ]‘ = Nim < O(€) Wm Olomyo S €Clo Wm O
b 2
0 < Elredi 0,,] — E[br.0,] = —(2e = ) (e1],) Nl + Ni -
Since € = 0 is a minimum point of S[rteg?)i Qm] — 8[¢1’Qm],
0= 2 Lendig,] - Elor0,]} = 200Eh) M + L N,
de c—0 Him e ) ™ deemo ™
Therefore, (109) is described as
d 1 o2
Rt \2 _ decmoMim _ €185,,90,0
(gl,m) - )\k* )\k* : //
1,m 1,m

We call f uniformly Holder continuous with exponent o in Q, iff the quantity
[flasa = sup M, 0<a<l,
z,y €Q |z —y|*
TFy

is finite. The Holder spaces C**(Q) are defined as the subspaces of C*(Q) consisting of
functions whose k-th order partial derivatives are uniformly Hélder continuous with exponent
a in Q. For simplicity we write C%®(Q) = C*(Q). By setting C*°(Q) = C*(Q), we may
include C*(Q) spaces among the C*(Q) spaces for 0 < o < 1.
Let us set
[u]k,0,0 = \Dku\o;g = sup sup |Dﬁu|, (3; a multi-index,
1Bl=k Q
[l 00 = [D*ulao = Sup [Du]asq.
=k

With these semi-norms, we can define the related norm

k k
ko2 = Y _[uljoe =Y [Duloq, (120)

J=0 J=0

luller @y = lulrn = |u
)

lullor.a @y = lulk,ai = [ulk,0:0 + [Ulk,a0 = lulkio + [U]k,a;0
2

k
= [ulj 00+ [DFulae = D [DIulo +
j=0 j=0

sup [Dua 0.
|Bl=k
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We set with d = diameter(§2)
lulln gy =l = 3 @l = D @[ Diuloe = S @ sup sup|Dul,
j=0 =0 =0 =j @
il iy = Pilsr = 0l + 8 ks = [l + &2 [DFulace
k
=Y d|Dlufosq + d¥ [DFul a0
j=0

k
= Z & | Do, + dF sup [DP,.q. (121)
=0 |B|=k

Theorem 3.4. ([6] Theorem 4.6.) Letu € C%(Q), and f € C*(Q) satisfy Poisson’s
equation Au = f in Q. Then u € C%%(Q) and for any two concentric balls By = Br(wxo),
By = Bag(xo) CC Q we have

|“|/2,a;31 < C(lulo;, + R2|f|6,a;32),
where C = C(a).

Let us denote by Rﬁ_ the half-plane y > 0, and by T the hyperline, y = 0; Ba = Bag(z0),
By = Br(xg) will be balls with center z¢ € ﬁi and we let B = B NR2, B = By NR2.

Theorem 3.5. ([6] Theorem 4.11.) Letue C*(Bf)NC°(By), and f € C*(Bg)
satisfy Au = f in B;‘, u=0onT. Thenu € CQ""(ET) and we have

lul < Clulg, gy + FIF1G 0ps )

l
2,a;Bf' O,a;B;

where C = C(a).

Theorem 3.6. ([6] Theorem 6.6.) Let Q be a C> domain in R™ and let u €
C?%(€)) be a solution of the second order linear differential equation Lu = a% (z)D;ju +
b (z)Diu+c(xz)u = f in Q, where a¥ = a’?, f € C*(Q), and the coefficients of L satisfy, for
positive constants \, A,

D> a6 = NEP forallz € Q, £ ERT,

i+j=2
and B )
|a”|0,a;91 ‘bl|0,a;ﬂv |C|0,o¢;9 <A

Let o(x) € C%*(Q) and suppose u = @ on Q. Then

[ul2,a;0 < C(luloya + |¢l2,a;0 + | flo,a;0)-
where C = C(n,a, \, A, ).

Theorem 3.7. ([6] Theorem 9.26.) Let an operator L represented by
Lu = a¥(z)Djju + b*(z) Dyu + c(x)u
be strictly elliptic in Q with fized constants v and v such that
A - I =
AT A AT

where A, A denote, respectively, the minimum and mazimum eigenvalues of the coefficient
matriz [a']. Let u € W%™(Q) N C%(Q) satisfy Lu > f in Q, u < 0 on BN 0Q where
fe€L™Q) and B = Bag(y) is a ball in R™. Then, for any p > 0, we have

1 1 R
sup u<C —/ R VARS + 20l 7
QNBR(y) {(|B| an( ) > )\H Il (Bm)}

where C = C(n,~,vR2, p).
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PI‘OpOSitiOl’l 3.8. There are positive constants Coz, Coz, Cos, and Cas which are in-
dependent of Qy under the boundedness assumption A2(Q2m) = A2(E), and for which the

followings are satisfied: There exist 31, 32 € R and (152 k— such that
7mk65m%1n

(i)
'E[d)zgﬂ%esm%f{] _g[ Z 3%, NheSy B H < 02279‘“7*“19’
i=1,2
(i)
Hd)2aﬂm,|ﬂkesm%]frf - Z 39, Mees, BE H < C23f@wm 99
i=1,2
where

fﬁkes B {Ziﬂ 230, g %gn—} “ 01,0,
=2 keSm f%H D2, " D1, (122)
5t +32 =1-2 kesm (92 m) -

(i) To any k € Sy, there correspond 33, 34 € R such that
Kty —2
(QQ,m) £
(iv)

<95%)72H¢z,nm|%¢n+—(33%,%5,#*54‘?’2,%&#)” <O @wmﬁ(gk;)*, (123)

1 _2
<Cou—0% y(e5},) ", and
Wm J

[¢2’Qm|%5n+] - 5[33¢1,%5n+ + 34%%%*]

where
{ Skt {33(151,‘35”* + 34¢27‘B?n+} 1.0, = = Jgh- 62,0, P10,
2 2 _ ( kt+ )2
3+ = (@2,m

(Note.) (ii) is valid Nges,, Bry replaced by By with 3; and 32 limited by equations

m

/ - { Z 39 I;,;}'%,Qm = 7/3’” 2,90 * P1,Qm >

1=1,2 m
A+s=1- ()%

Proof. (i) Considering the requirement of orthogonality of ¢2 o, to ¢1 q,, which is the only
difference between proof of Proposition 3.2 (i) and (iii), we define h~ by a function such that
for each k € Sp,
= * T+ 620,,(0,9), (z,) € S, ;0 By,
0, (z,y) € ﬁkesm(% \ &F, 4)-

Note that since Y, 5 5i¢i e is defined in order that it may have the minimal energy
’ ) m

$2,0,,, (0,y)
9 (124)

among functions in CZ(Nkes,, BX) which satisfy conditions (122), we have

—112 3
”%'Qm‘ﬂ’“%]’c’: o HQE[ 2 59, B ] s g[¢2,nm|ﬁk%’:{ —h]

i=1,2

The rest of proof follows the way of proof of Proposition 3.2 (i).
(ii) The way of proof of (ii) is similar to that of Proposition 3.2 (ii) using the result Proposition
3.2 (i). One of the differences between them is the following; let us denote

aj = —h™ -0 _.
= {¢ 5 :
ees,, BE 2, |res,, B N kes, B
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From (i) we have

Cno,0L,.0 2 f[¢2,em|nkes Ll B DO

i=1,

I
HMS

k—
i(kes, BET) = D 30 (Nkes,, Bl )’
j=1,2

= Z a3 X (Mkes,, Br ) — > {3?—Oé?}>\j(ﬂkesm‘35n7)’- (125)

JEN\{1,2} j=1,2
Considering the equation
{0ty et }oron == 3 [ 20, 610,
/ﬂkesm%ic{ JEN DIk E S = m kKESm Loy

If aj = 3; for j = 1,2, this equality holds only for a; = 0 for 3 < j. But if oy varies,

then this equality fails, since from Proposition 3.2 ¢ L_ approximates to {1 —
17Qm|mkesm%7n

2

Zkesm (g ) } ¢, Ares,, BE and (bjﬂkes N for j > 2 is approximately orthogonal

t

°© Q| Nes, B

the case that oo decreases. In this case Z]>d aj changes from zero to a p081t1ve number, and

it implies energy of 3=y a]qS] Ares,,

3jv j =1,2. The rest of proof follows Proposition 3.2 (ii).

1— . Therefore, since 041 + oc2 =1- Zkes (92 m)2 we may consider only

Bk increases. It is absurd. Thus o2 = approximates to
m

(iii) The way of proof is similar to that of Proposition 3.2 (i).
(iv) The way of proof is similar to that of Proposition 3.2 (ii). m]

Proposition 3.9. For each k € Sy, let us assume that

e+ [%’Qm!%,ﬁ] iy [%7%'%%_] FAE, Ak >0 (126)

Then, there is a constant Ca7 such that for any k € Sy,

2
(€57,)" Al < C2702,, - (127)
Thus, we have
2
Do (65h)7 A8 < CorlSmlOZ,, -
kESm

(Note.) If BET and BY are reversed in (126), then (127) also holds g 1, and Q T, reversed.

Proof. The proof is similar to proof of Proposition 3.3 except for the requirement of orthogo-
nality of ¢2 0, to ¢1,0,,-

Let us define d)g,ﬂm as follows; let Qj‘n and €2, the inner-nodal domain and the outer-nodal
domain of ¢2 o, , respectively. For C'-real function fi, 0< fi(e) for e >0, j =2,3,4,5,

m?

f2()b2,0,, (@, 9), (z,y) € B NQk,

€ _ (E)¢2 Qo (m,y), (x,y) %k-,— n Q;"—nv

¢2,Qm (x’ y) - k— +

(E)¢2 Qm (.Z‘ y)7 (J?,y) € By, QOv

(6)¢2 Qm (CE y)7 (xay) fn NQm

Let us define ¢5 , in the same sense as (110) in order that
. 2
’¢2,Qm|%iﬁr 2 [le.. |85 H =1+betolo)
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for a positive constant b. Provided we define ¢~)§ Q,, in the same sense as definition (112),
there exist f;, f;(0) =1, j = 2,3,4,5, for which the following conditions are satisfied;

||<£§79m |2 =1, /Q J’;,Qm - $1,0,, =0, and for sufficiently small all €

0<E[350,.] — E[b2,0,,] < —Case(ohh,)*A5%, +€C2002 5.
The last inequality implies (127). O

Remark 3.2. Considering Remark 3.1, we are to define two functions NS, and N§
of e-variable and (e, t)-variables, respectively. Let us denote

|1

2,0 ] = €l¢} ]‘ =N;5,, < O(e)—e

wm,9*

Sk
n

- 29mlek,

v,

Then, by the same argument as Ny

d d

—_ Te kx el €
0= deeﬁo{g[%’ﬂm] E[p2,0m } =—2(o5 m) Agim t+ g €—>0N27m. //

Remark 3.3. If w,, is fixed, the larger A\5*

contraposition the larger 92 m 18, the smaller )\g*m becomes. According to (127), no matter

3m is, the smaller 92+ becomes. As the

how small (g’;tn)Z is, if we define ©,,,, » to be sufficiently small value, )\Ig*m must be close to
zero, that is, £* [¢2 o |%k+] approximates to £* [¢2 =] ~ £ [(Z)z o |%k,]. //
? m m £l m m

Remark 3.4. Let us deform ‘B’fnJr by dilation and contraction of blossoms. Then, ac-
cording to Proposition 3.9 (127), when (ggtn) and \¥*  varies with fixed Ou,,, 9, they

2,m

correspond to each other one to one. That is, we infer that (ggtn)Z increases, if and only
if Ak* decreases. Consequently, when (g2 m) assumed to be sufficiently small, a suitably

large )\g*m corresponds. Then, from Proposition 3.3 (Ql,m) turns to be a large value, and
then we can conclude that |31| in Proposition 3.8 is determined to be sufficiently small and

|32] approximates to one. //

Repeating splitting deformations and filling deformations, one must attains to a situation
such that remainder R,, is simply connected and has arbitrarily small width. The width of
R C Ry, is defined by the maximum among diameters of disks which are contained in fR.
Let us assume that the width of 2R, can not be arbitrarily small for any sufficiently large m.
Then, we deform 2, repeatedly by splitting deformations whose supports lie in the remainder
and blossoms and by filling deformations. Until there are eleven blossoms, we tunnel R,
attach branches, or vary diameter of blossoms. When the number of blossoms reaches eleven,
we deform only blossoms in order to vary their diameter by splitting deformation. But if
splitting deformations which only attach branches and blossoms and deform blossoms can
continue permanently, then we reach a situation such that = C Q, for a large £ > m. It is
impossible from the requirement 3) of Definition 3.1 of splitting deformation and requirement
(93). Thus, Jpmm must tunnel the remainder for an large m. That is, we can make the R, be
thinner as m becomes larger.

We illustrate a typical example of tunnelling. Let us set Ry, := {(z,9)| 0 < z < 4, 0 <
y < 1}. Consider the following unions of segments in R, ;

{( ) z=1/3, 0 <y <2/3} J{(z,9)| 1/3 <z <11/3, y=2/3}
H@wl1/3<z<5/3, y=1/3}J{@= v z=2, 0<y<1/3}
U{@wl2<z<11/3, y=1/3}. (128)
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Then, we define tunnels in fR,, by some thin neighborhoods of above unions of segments which
are disjoint each other. A simply connected band PRy, is divided into three ways around the
positions (5/3,1/3) and (11/3,1/2) .

From [6] Theorem 8.1 (the weak maximum principle) we obtain a corollary of Lemma 3.1.
Under the hypotheses and notations of Lemma 3.1 we can obtain R C R, described by the
following manner; let N in Lemma 3.1 be a sufficiently large integer, and let B: V — B(V) C
R? be a bending diffeomorphism such that

B i) =w, (129)
9:=8", o 15
0 1o} 0
B~ | =1, B*—,B*=)=0.
R
Thus B preserves |(% |, and therefore preserves %, the width of V. An elementary calculation
shows L L
0 0 o 0By a9 0B,
B* — — = 671 —- = x ) Y
( 65)9 659( &m) = 3-8 2 Ty o
L0 0Bzt o 0Byl o L0 0Bzl o oB,t o (130)
g 9¢ Oz o oy’ dn  On Oz on oy’

where B! := (B; ', By ').

Let p € B(8V \ {V1U V2}), and let us denote the closed disk with maximal diameter
contained in B(V') which touches p by D(p), and denote the set of points B(OV)NOD(p) \ {p}
by [(p). Let us denote by r(p) the radius of closed disk having maximum of the set of bounded
radii of disks which meet p, but do not intersect with B(V). Then, let us assume that two
points p1,p2 € OB(V) lie at each side of p, and the distances from p; and p2 to p are sufficiently
small. Then, the distance from [(p1) to I(p2) is very large compared to the distance from p;
to p2. Set (% is tangent to OB(V) at ¢ € [(p), and f{% is outer-normal derivative at gq.

Then, if we set }B*C% | =1, then |B*c% | is very small compared to one. The magnitude
P q

One can tunnel the remainder in order

el : ; r(p)
of |B* Fgl(p)| is proportional to +(p)Fdiameter of D(p) "

that the width of the remainder may be much smaller than minimal value among all r(p).

Corollary 3.10. (Corollary of Lemma 3.1.) Let 98 C R, be a simply connected
open band with a sufficiently small width and a sufficiently large length, and let O9R consist
of only a subset of 9, N Ny, and more than two segments across Ry,. Let us assume that
(i) either fR satisfies (129)

(ii) or R contains a subset w where R is divided into several ways like the illustration (128),
and boundary of w consists of 99R,, and segments each of whom traverses a way of Ry, with
an inequality diameter(w) << diameter(2R).

Then, the restriction ¢2,9m|9‘i decays exponentially.

Proof. (i) Consider the identities for a differential operator G

Apreg = —X2(Qm)g = (Ac + G)g,
Acg=—X2(Qm)g—Gg, (131)
)

Aev = —X2(Qm)v,

where v is a function given in the proof of Lemma 3.1. From (130), (131), and from the
sentences following (130) there exists a constant C3p which is bounded below to

o r(p) 2
31 - - )
r(p) + diameter of D(p)

for a constant C31, and satisfies

030)\2(97—,1)1) > ‘)\Q(Qm)g+ gg|, and Csgv — |g‘ >0 on ViUJVs. (132)
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Then, considering the function C3gv — g, we have from (132)
Ac(C30v — g) = —X2(2m)(C30v — g) +Gg <0,

and then from weak maximum principle ([6] Theorem 8.1.)

inf (Csov — > inf (Cspv — - =0,
B_l(m)( sov —lg) 2 inf (Csov—lg])

where (C3pv — |g|)~ = min{C3ov — |g|,0}. Thus, C3ov > |g|, and from Lemma 3.1 g decays
exponentially for a sufficiently small width of R.
(i) If ¢ 9.0 | g1 does not decay exponentially in @ in which 9 is divided into several ways,

then one can redefine ¢ o, as follows in order that this redefined function which has unit
norm and is orthogonal to ¢; q,, may have energy less than that of ¢2 . ; consider the

existence of constant C3 in inequality (96). Let us suppose that no matter how much ©,,,, ¢
decreases, (96) fails in w, that is, C3 satisfying (96) does not exist. Then, we redefine ®y ole

by multiplying a positive constant which is slightly smaller than one. Then, we can redefine

¢2 o |Q \o so that it may have a larger Lo-norm and a less energy than the original. We

attain to a contradiction. O

Remark 3.5. One can tunnel %, C Q,, or fill up tunnels in MR, so that Ry may be
sufficiently thin, and curvatures of the boundary 09,4+ ; N 0, ; may have an upper bound
for sufficiently large all j € N. Let p € 00+ N0y, and B(p, 2R) N Ry, 1 be connected.
Let p be far sufficiently from §,, and %Ifn along R,,. Let

$: B(p, R) N Rint; — B(O, R) NR2T,

B(O, R)NR?T =: B(O, R, 7), be an analytic function such that $ maps B(p, R)NOMRy, 44 onto
{(z,y) : —R <z < R, y =0}, H(p) = (0,0). Referring to proof of Corollary 3.10, by a weak

maximum principle 5571*(% Dty ‘B(p R)AR decays exponentially in a rate 8, 4, where

w}, denotes width of Ry,. From Theorem 3.4 and Theorem 3.5 one can infer energy of ¢2 o,
restricted to the component of R,, N{(z,y) : —R < = < R} which contains B(p, R) N MR, also

decays exponentially in a rate %@i;”,ﬁ' //

Now let us assume that width of R, U { Uk Gﬁq} is sufficiently small, and

k+3)2 _
Z (Qz,m) = H¢2,Qm| Ukes,, Bt

2
‘ > (133)
kESm m

for a sufficiently small fixed constant ¢ > 0, and for all m which are bigger than a sufficiently
large m1 € N. Assumption (133) implies from Proposition 3.9 that there exist a positive lower
bound of maximal radii of blossoms B, over all m > mj. Then, the value

3

sup| > agér,q,, + 1Ky, ()l
B, k=2
has a positive lower bound over m and all «,. Corollary 3.10 says Zi:Q Pk, 0, +aaKy,(0)

decays exponentially in 9, U &%,, which implies supgs | Y r_s andr,q,, + as1Ky, 0yl is
m

m

much bigger than the supremum Supg, | Zi:Q aEdk,Q,y, + 044K/\2(0)|7 where $8,, stands for
a connected subset of R, U G’ﬁn whose boundary consists of a subset of boundary of 2R,, U G’ﬁn
and segments traversing R, U an and the length of R, U Gﬁq \ U, is a fixed constant much
smaller than the length of R,, U (‘55,1.

Consequently, if we denote by Cp, : Qum x [0,1] — R? a deformation which collapses iy,
and if we define 7% by a splitting deformation which tunnels into, or attaches branches and
blossoms to J, %fn, then a sum of deformations C,, W 7y, can split nodal line and eigenvalues
like splitting deformations, since collapsing remainder causes a negligible changes in the second
eigenfunctions and eigenvalues. Then, we define Fr, 0Cpn W Tm (Qm) : Qm+1, and deform Q41
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repeatedly by deformations mentioned in Definition 3.1. When remainder has a sufficiently
small width, we perform again a sume of collapsing deformation and splitting deformation
stated in this paragraph. If we repeat this procedure, then we attain to the case such that
vol(E) < vol(Fp) for a large £, and attain to an inequality A2(Fe) < A2(Z). It is absurd, since
A2(2¢) = X2(B).

Consequently, we may assume that
2

< 134
, =€ (134)

k
H¢2,Qm1 Ukesm, Bt

for some large m; and for the sufficiently small constant ¢ given in (133). Let us consider the
identity
A2(E) =A2(Qm,y )
_ k+ )2
_{1 - Z (92,m1) }S*[d)gyg

k

)

my

2
mk‘Bfﬁ} + ; (Qg%l) S*[d)?ﬂml

my
Proposition 3.9 implies
k 2 * k+ 2 * k
Z (92%1) € [‘z)z,nm |%§n+] = Z (03m,)" (5 [¢2,Qm [Bko I+ >‘2Tm1)
k€Smy ! . kE€Smy ! .
is bounded above to ¢2A2(E) + C27|Sm, \937”1 g+ Thus, we have
—_ 2 * —_
0< 2@ = {1-30(55,) ) @y, |npmts ] < 202(E) + CorlSumi 165, o (135)
k

Considering Proposition 3.8 (i) and (ii), we define 52,57"1 by a function such that for each k

2 =123 k— in Bm, \ Vi,

3Mkesm, By

52,&'m =
! 0 in B\ Fmy, and

$2’3m1 is defined in Vj, in order that ¢ may be of C2(Fm,), where Vj is a small

2,8 m1 |Fmy
neighborhood of §m; N m;cnl. Furthermore, we may define Egﬁml in Vi so that

£y i) ¥ EBrs, )

Then, from (135) for sufficiently small values ¢ and wm,
5[52,57”] ~ Elpa =]
Then, by using the method of proof of Proposition 3.8 (ii) one can infer in La-norm
$2’37”1 R 2=,
where 52’57”1 :=0in E\ Fm,. Therefore, we have in La-norm
P2,z ~ j;;? 3]'(15].7”%57”1 B |5,

Then, according to Remark 3.4,

2,2 & 320 (136)

k— .
2ymkesm1 ‘B'ml |37n1

From Proposition 3.8 (ii) when |32| approximates to one, the nodal line of d)Q’le lies in Fm, -
Then, (135) implies a contradiction.
To show this contradiction firstly note that if (136) is true, since ¢2 o has a closed
. . . . . ’ ml.
nodal line, we may say without loss of generality the nodal line of 2, is sufficiently close to
the segments {(z,y) : 2 =0,1, 0 <y < 1} and {(z,y) : « = 0,1, 0 < y < 1}. Let us denote

o1



by Q,,, and Q:,Qz the outer and inner nodal domain of ¢279m1 , respectively. Thus Q.,, must
contain a sufficiently narrow and long simply connected band

W=, N{z,y):0<z<1/2, 1/4<y<3/4}.

Then, by Lemma 3.1 |¢ | decays exponentially in W. Let W have length 2¢’ and

2,Qm |Fmy
width smaller than w§n1 which denotes width of the smallest rectangle containing W.
We are to follow the arguments in [7] of David Jerison. Lemma 2 [7] with the roles of

Q= Q%l and Q2 := Q,,, reversed says that there is ( € oW N Oﬂfnl such that

C32 032
|Vé2,0,, (O] <= max_ |¢20,, |< "0, o, (137)
T 9B(z,8)NQy,, r 1
where B(z,7) C Qh,, ¢ € OW NIB(z,7), 2r < s < 2wy, , and 9‘“;”1"‘9/ stands for the

absolute constant defined in Definition 3.3. Regardless of shape of OW N 89%1, the radius r
and ¢ could be selected in order that %@M 9+ may decay exponentially as winz decreases.
my°

Since |¢2’Qm1 | is superharmonic in Q;"nl, comparison with a harmonic function (Hopf lemma)
implies
_min_|¢2.0, | <R|Vrq,, € (138)
B(z,R/2)
where B(z, R) C Qif, with ¢ € dB(z, R) N dQ;h,,. For this refer to the paragraph succeeding
Lemma 3 in [7]. Thus,
< C32R

_min _|¢2.0,, | <R[Véa,, (O] < Our - (139)
B(z,R/2) T 1

Consequently, (139) implies that (]52,le can not approximate to ¢2 = in Le-norm in Qﬁ“,
and then we attain a contradiction.

4 About another Proof of Payne’s conjecture

Given €2 described in preceding sections, we deform €, only by splitting deformations which
strictly decreases A2(€2m,). Then, diameter of a blossom of €2,, must keep increasing as m
grows larger. But since the closed nodal line of ¢2 (£, ) can not lie in a blossom if %
is bigger than a suitably large constant, it means a contradiction.
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