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Abstract

Probability, as manifested through entropy, is presented in this study as one of
the most fundamental components of physical reality. It is demonstrated that the
quantization of probability allows for the introduction of the mass phenomenon.
In simple terms, gaps in probability impose resistance to change in movement,
which observers experience as inertial mass. The model presented in the paper
builds on two probability fields that are allowed to interact. The resultant prob-
ability distribution is quantized, producing discrete probability levels. Finally, a
formula is developed that correlates the gaps in probability levels with physical
mass. The model allows for the estimation of quark masses. The masses of the
proton and neutron are arrived at with an error of 0.02%. The masses of sigma
baryons are calculated with an error between 0.007% and 0.2%. The W-boson
mass is calculated with an error of 1.3%. The model explains why proton is stable
while other baryons are not.
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1 Introduction

Since the conception of the General Relativity Theorem, the idea of establishing a uni-
fied model describing the fundamental forces of nature has become an active research
topic. At first, the objective was to unify electromagnetism with gravity. Later, the
strong and weak interactions became part of the objective.

Einstein was adamant that a single theory must describe all of nature. In his Nobel
lecture in 1923, he said ” The intellect seeking an integrated theory cannot rest content



with the assumption that there exist two distinct fields totally independent of each
other by their nature”. [12]

So it’s been more than a century since the search for a unifying theorem became
a prominent focus of research. After 100 years of effort, countless research papers,
numerous Nobel prizes awarded for the achievements towards that goal, and still a
huge pool of intellectual endeavour invested by the giants of scientific thought into
this topic, the theory has not been formulated.

Let us pause, step back, and try to understand what has happened. In mathematics,
there is a concept of "proof ad absurdum,” which is also known as indirect proof
or proof by contradiction. When one is unable to prove something directly, one may
attempt to show that a negation of the premise does not hold.

At the beginning of the 20" century, this method became part of the physics world
due to the problem of establishing the existence of the Luminiferous Ether.

Firstly, the (1887) failed experiment by Michelson and Morley[22], which was being
perfected over the following 20 years or so but still failing. This was followed by the
1904 paper by Lorentz[23][24] and, subsequently, the 1905 Special Relativity paper
by Einstein[13]. In fact, one may say that the very existence of the Special Relativity
Theorem is a direct result of the failed Michelson-Morley experiment.

Thus, the failure of an attempt to establish something became a means to estab-
lish the opposite. As a result, proof ad absurdum became part of Einstein’s logical
vocabulary.

In 1923, Einstein used his enormous influence to rally the scientific community on
a quest towards establishing a unified theory. Being able to construct a singular theory
of everything effectively disproves the hypothesis of a staged creation of the physical
world. Thus, the proof ad absurdum has been set in place. Either the physical reality
came about through a singular event or via a number of separate, distinct events.

For the proof ad absurdum to be effective, the scientific community’s efforts must
fail.

In that instance, a natural question emerges. Specifically, what is the next step?
The answer depends on what we would like to discover. Here, we seek the most funda-
mental principles of physical reality, and it appears that the most fundamental concept
is entropy. As such, entropy has been the subject of extensive research. And it appears
that entropy may be regarded as the most fundamental component of physical reality.

The investigation of entropic forces constitutes one of the most exciting research
topics. This is partly because of the evidence of entropy influencing a wide spectrum of
reality, but also due to entropy exerting such influence at the most fundamental levels.
In physics, it is expected that entropy provides an agent, which is expressed through
the four observable forces of nature [1]. Moreover, entropy has been recognised as a
major factor in information transmission theory [2] [3].

Entropic time is associated with entropy production [4] [5] [6], and consequently,
the evolution of the universe is associated with entropy production [7]. Entropy is
assumed to constitute a fundamental force underlying physically observable reality [8].

Following that line of reasoning, we propose that entropy is the medium enabling
the emergence of the property known as inertial mass.



2 A note on the Chaos Theory

In mathematics, an infinite sequence of numbers may converge to a specific value,
called a limit. A precise definition of a limit was provided by Augustin-Louis Cauchy.
The definition assumes that a limit, if it exists for a given sequence, is always a singular
number. One of the roots of the chaos theory is the observation that a sequence of
numbers may tend to more than one limit, alternatively jumping from one to the next
as the sequence progresses. To avoid confusion with the concept introduced by Cauchy,
the collection of such limiting numbers is called an attractor, as if to say that these
numbers attract the sequence for large n. An attractor can be a singular number, a
finite collection of numbers, or an infinite collection, in which case the state while
“chaotic” may still be represented through a well-defined orbit.

In many cases, an attractor depends on the initial conditions of the sequence. This
leads to the notion of a ”basin of attraction”. A set of initial conditions that result
in the sequence being bounded, belong to the attractors’ basin of attraction.[9][10] In
turn, the basin of attraction may be split into separate regions, each representing a
collection of initial points, which result in the sequence tending to a specific point of
the attractor.

3 Materials and Methods

The method employs two feedback formulae and runs a looping iteration, feeding the
results of each step as input to the next. The question is when to stop the iteration,
or, in other words, when to decide that the iteration is close enough to the attractor
that it may be terminated. Here, we decided to use a simple rule. If three consecutive
values of a sequence are the same, then it is safe to assume that the attractor has been
reached and the iteration can be stopped. The experimental observation was that the
sequences became stable after no more than 100 steps. We would still run the iteration
for 200 steps, but allow the iterating function to terminate when three consecutive
values were the same.

In the case of a two-parameter sequence, for an initial point (pg, qo), the sequence
is initiated with (1), followed by (2), and (1), etc. This makes the “p” sequence never
exposed to the initial condition of qo, as in q1(po, o), P1(Po, d1), d2(P1, a1), P2(p1,
1), ete.

The sequence is iterated 200 times, and then, depending on the requirements, either
the next 200 iterations or the immediately following value is collected. As (1) is used
in the first iteration, the two sequences are asymmetric, with the Q-sequence having
an advantage of the first move.

The basin of attraction chart is obtained by setting an equally spaced 1,000x1,000
grid of initial conditions covering the square (0, 0, Pmax, dmax) = (0, 0, 1.2, 1.2).
Starting from each initial point, a trajectory is calculated and then evaluated at k =
2.05.

To collect data, we ran the script using variables declared as 128-bit long dou-
bles. This resulted in precision as the number of decimal digits at 18, a value range
of 3.3621E-4932 to 1.1897E+4932, and epsilon, the smallest number granularity at
1.0842E-19.



4 Two Parameter Chaotic Entropy — The
Methodology

Let us describe an interaction between two fields, both of which are defined by
the Boltzmann-Gibbs entropies and interact with each other via normal conditional
relationships.

P(gnp)  —kgnpn In(gnpn)

qnt1=P(qlp) = P(p) = on = —kgy In(qnpn) (1)
pn+1 =P (plg) = PI(Dq (2)p) B _kqnpanl(qnpn) = —kpy In(gnpn) (2)

where 0 < k < e (2.71) and 0 < gp

(Note: Here, k stands for a parameter that varies between 0 and Euler’s number
and does not relate to the Boltzmann constant.)

Formulae (1) and (2) constitute a two-dimensional set of feedback sequences. An
important point to note is to observe that the formulae, as they stand, do not impose a
limiting value of either q or p. The only constraint is the argument under the logarithm,
which must be within the open (0,1) interval (otherwise q or p becomes negative and
feeds a negative value to the logarithm’s argument). In order to recover probabilities
from q and p, we scaled them back by dividing each by their sum. These scaled values
are used in the subsequent calculations and shown in the figures.

An example of trajectories obtained through (1) and (2) for a sample of randomly
selected initial conditions is shown in Figure 1.

The procedure used in the construction of Figure 1 consists of the following steps:

1. Select a random pair of initial conditions (qg, pp) with values from the (0, 1) interval.

Choose a small value of k.

3. Run the sequence (1) (2) for 200 steps, and then collect the subsequent values of
(dn, pn) as the attractor.

4. Draw the attractor point(s) with some chosen colour.

5. Increase k by a small step and use the same initial condition for the next run.
Again, plot the attractor with the same colour. Repeat until k is close to the Euler’s
number.

6. Choose another set of initial conditions (qo, pg) and repeat steps 2-5, drawing the
results in a different colour.

7. Repeat the above with 20 or so different initial conditions. Plot each set of points
in a different colour.

N

The figure clearly consists of three distinct regions. When k is below 2.0, the
attractor is represented by a multiple of points aligned along semi-continuous lines.
At k between 2.0 and 2.6, the trajectories asymptotically converge to 0 or 1, without
attaining either of these values. When k is above 2.6, the sequences become chaotic,
and the attractor consists of a collection of seemingly random points.
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Fig. 1 An example of p-normalized trajectories

5 The banding, error rounding principle and the
basin of attraction

The basin of attraction is defined as a collection of initial points that are mapped
through the feedback sequence into a specific value of the attractor. It is evident from
Figure 1 that for k in the 2.0 to 2.6 range, all trajectories asymptotically tend to the
normalized values of either 1 or 0. Therefore, the attractor is either 1 or 0 for k in this
interval. Thus, if we demand that the attractor be equal to one of these two values,
the collection of the initial points is going to be split into those that lead to 0 and
those that lead to 1. Figure 2 illustrates this phenomenon, showing the distinctive
banding of the basin of attraction. Here, with k set to 2.1, any initial condition within
the green bands leads to the attractors’ value of 1, and the initial conditions within
the yellow bands lead to the attractors’ value of 0.

The error rounding principle is a result of banding and is introduced by observing
that, from the attractor’s point of view, it is impossible to establish what point within
a band was used as the initial condition to arrive at this attractor’s value. The breadth
of the band limits the most precise estimation that can be established.

To arrive at this estimation, we used the pop=qq line. This line cuts the bands in
their widest region. This allows for the maximal width of each band to be measured,
which results in a one-dimensional error-defining parameter.

The next crucial step is the error rounding. One does not consider an error to be a
precise number, but rather its magnitude is taken as a representation of its estimation.
Therefore, we scale each of the variables by expressing them as multiples of band
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Fig. 2 Close up of the basin of attraction at k=2.1 and pg, qo under 1.20 showing attractor bands

width. Another way of looking at this problem is to say that, because of the banding,
the most precise knowledge one may have about each of the variables can be expressed
as a multiple of the band width.

This approach is applied to the values of p, q, and k variables. Thus, when per-
forming a computation, the sequence is run on a computer at the highest precision
available. However, the values used to obtain the normalized p, q, and k are scaled
through the banding parameter, as in below. In the case of q and p sequences, the
integer portion of the scaling is taken to implement rounding. K is set as multiples of
the width of each band, splitting the attractor into a collection of distinctive points
along the k-axis. When performing the quantization it is essential that the number is
rounded to the nearest integer rather than truncated. This operation mimics the most



naturally expected behaviour; that is, when introducing quantization, the most likely
movement would be towards the closest integer. (The formulae for the g-sequence are
shown; the p-sequence is similar.)

q
integer — Int ded —_—
Qinteg nteger(rounde )((wzdthofband)) (3)
Gscaled = integer * (Widthof band) (4)
k; = (widthof band) * i (5)

Thus, the computed number is divided by the width of the band, rounded to the
nearest integer, and then multiplied back by the width of the band to arrive at the
scaled value. The scaled value expresses both p and q in terms of multiples of the
band width. These values are used to normalise q and p, respectively. The attractor
charts are plotted for the normalised values of p-normalised and g-normalised against
granulated k, as in (5), (6), and (7).

Gscaled
qnormalised = (6)
(scaled + Pscaled
Dscaled
Prormalised *— (7)

Pscaled + (scaled

5.1 Basin boundaries and the Lyapunov exponents

Any measurement is subject to error. The most critical measurement here is the width
of each band. While those values have little bearing on predicted quark masses, they
have a significant impact on computations involving composite particle masses and
the W-boson. The inaccuracy stems from the uncertainty surrounding the position
of the transition from one band to another. In other words, the width of the edge
between each pair of bands is not trivial. The literature refers to this region as a ”basin
boundary.” [16]

Basin boundaries vary depending on the attractor and can be smooth or fractal.[17]
In this scenario, the boundaries are smooth, but they broaden the transition between
the bands, creating uncertainty in the initial conditions.

Looking carefully at the case considered here, we observe the following: When
the initial point is chosen adjacent to the band edge, the sequences 1 and 2 behave
asymmetrically. There are locations near the edge where one of the sequences rapidly
converges while the other diverges. This behaviour can be studied in depth by
examining the Lyapunov exponents for each sequence in the region around the
boundary.[18][19]

Lyapunov exponents are a measure of error propagation. They are calculated as the
average of consecutive error ratios.[20][21] In particular, if we begin with the starting
points pg and pg + € , where ¢ denotes a small error, and calculate the images of
those two points, the ratio of the post and prior distances between the points and
their images, provides a measure of the error change. If the ratio exceeds unity, the
error increases; otherwise, it decreases. When calculating Lyapunov exponents, the
logarithms of the ratios are averaged. Thus, a positive Lyapunov exponent indicates
a diverging sequence, whereas a negative exponent indicates a convergent sequence.



Lyapunov Exponent for Band 4

05

04

0.3

0.2

0.1

0.1

0.2

0.3

04

05

Ly
6.036102E-06

|
6.036295E-06

Initial point

0.005

0.003

0.002

0.001

-0.001

-0.002

Lyapunov Expenent for Band 5

-0.003

-0.005

Fig. 3 Lyapunov exponents at the boundary between bands 4 and 5. Please note different scales.

Figure 3 shows a close-up of the boundary between Bands 4 and 5. Two thousand

data points were plotted. Data points were collected when one of the sequences had
already converged. The vertical axes depict the Lyapunov exponent for the other
sequence. The horizontal axis represents the initial points. Please note that the right
axis has a scale that is 100 times finer than the left.

Three points of interest are identified. The boundary point established by the
computer is positioned in the middle. The machine indicates this with an accuracy of
19 decimal points. (For all simulations, we used a 128-bit long double data type with
an inherent precision ”epsilon” of 1.084E-19.) However, Lyapunov exponents change
sign some distance from this midpoint, as illustrated in the Figure 3. The numerical
results are presented in Table 1.

Table 1 Zeros of Lyapunov Exponents and Boundary Mid-Points

Band Left Zero Mid-Point Right Zero Band Error
2 9.525121849042 E-08  9.534083887897 E-08  9.560245414085 E-08 3 6.6587 E-19
3 7.853281336832 E-07  7.856015230133 E-07  7.856800831656 E-07 4 6.4136 E-19
4 6.036101673169 E-06  6.036294834603 E-06  6.036367270141 E-06 5 5.7776 E-19
5 4.288421326183 E-05  4.288507096325 E-05  4.288489942297 E-05 6 9.7041 E-19
6 2.787133486889 E-04  2.787178081738 E-04  2.787178081738 E-04 7 7.2935 E-19
7 1.634186946017 E-03  1.634206556496 E-03  1.634206556496 E-03 8 9.6710 E-19
8 8.483572856683 E-03  8.483674660779 E-03  8.483674660779 E-03 9 5.4634 E-19
9 3.797038023000 E-02  3.797083588003 E-02  3.797083588003 E-02 10 5.1161 E-19
10 1.407361524549 E-01  1.407378413090 E-01  1.407372783577 E-01 11 7.0473 E-19
11 4.038808058157 E-01  4.038856524436 E-01  4.038856524436 E-01 12 8.6736 E-19
12 7.881181702138 E-01  7.881276277453 E-01  7.881276277453 E-01 13 5.9631 E-19
13 9.586044549117 E-01  9.586159583032 E-01  9.586159583032 E-01 14 7.5894 E-19
14 9.952382662828 E-01  9.952502092853 E-01  9.952462282845 E-01 15 5.4210 E-19
15 9.996445451943 E-01  9.996565410728 E-01 ~ 9.999804297921 E-01 16 8.6736 E-19




Table 2 lists each band characteristics as measured by setting the trajectories’

initial conditions to pg=qp.

Table 2 Widths of attractor basin bands

Band Id Lower Edge po Upper Edge po Attractor Width of Band
2 1.096725463867 E-08  9.512901306152 E-08 0 8.416175842285 E-08
3 9.560245414085 E-08  7.853281336832 E-07 1 6.897256795424 E-07
4 7.856800831656 E-07  6.036101673169 E-06 0 5.250421590003 E-06
5 6.036367270141 E-06  4.288421326183 E-05 1 3.684784599169 E-05
6 4.288489942297 E-05  2.787133486889 E-04 0 2.358284492659 E-04
7 2.787178081738 E-04  1.634186946017 E-03 1 1.355469137844 E-03
8 1.634206556496 E-03  8.483572856683 E-03 0 6.849366300187 E-03
9 8.483674660779 E-03  3.797038023000 E-02 1 2.948670556922 E-02
10 3.797083588003 E-02  1.407361524549 E-01 0 1.027653165749 E-01
11 1.407372783577 E-01  4.038808058157 E-01 1 2.631435274581 E-01
12 4.038856524436 E-01  7.881181702138 E-01 0 3.842325177702 E-01
13 7.881276277453 E-01  9.586044549117 E-01 1 1.704768271664 E-01
14 9.586159583032 E-01  9.952382662828 E-01 0 3.662230797966 E-02
15 9.952462282845 E-01  9.996445451943 E-01 1 4.398316909839 E-03

Figure 4 illustrates trajectories for bands 4, 5, and 6 in the region of small k. The
error rounding principle results in quantization both along the k-axis as well as p and
q normalised values. Now the attractor consists of distinct points, as opposed to the
original continuous lines.
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5.2 Probability-Mass relationship

Figure 4 shows some form of probability quantization. It would be natural to seek a
physical interpretation of this phenomenon as well as a formula that would translate
the changes in probabilities into quantities that could be measured physically. In
particular, we are interested in how the probability chart could be interpreted in terms
of mass.

Let us start with some observations. Firstly, in the very low region of k, when
k increases, the probability p also increases. That is, an increase in k results in an
entropy increase. So, in light of the Second Law of Thermodynamics, the system should
naturally tend to move in the direction of increasing k. We feel strongly that the
opposite should be happening. That is, we would like to associate a decrease in k with
the system coming to rest. The way to resolve this is to assume that the probability
of a particular state should be measured in the context of p-level distances. Thus, the
first two levels, with the smallest values of k, have the largest gap between them, so
they are the most probable. Moving to the right, the gaps decrease, so the probabilities
decrease accordingly.

Secondly, if we were to apply this to mass, then smaller mass should be more
probable than heavier mass. Therefore, some form of inverse relationship between
probability and mass would be expected. Thus, we would like to assume that mass is
related to some form of the inverse of the gap between the adjacent p-levels.

We would like to present a derivation that leads to a functional form we are inclined
to use in this context. We are unable to provide a strict derivation of the formula
used later on. The best we can present is a general discussion of the expected form of
relationship. The actual formula was found by the trial-and-error method.

Firstly (8), we multiply formulae (1) and (2), then (9) substitute ”y” for the prod-
uct of q and p, and finally (10) rearrange to remove the logarithm and replace it with
an exponential power. This gives:

Pn+1dn+1 = kzann(ln(ann))z (8)
Ynt+1 = kzyn(ln(yn))Z &)
1
Yn = eXP(iyn) (10)
Yn+1

Based on the formula (10), we would like to seek a relationship between mass and
probability through a formula involving an exponent and an inverse of the square root
of the line gap.

6 The Probability Field and the Quark Masses

The following application of the modelling method allows for the retrieval of the quark
masses. The initial conditions are set to qy = pg for each trajectory, with values set in
the middle of the band. In Figure 5, the trajectory for the 4™ band is plotted, and the
locations of the lines relevant to the quark positions are indicated. The k-parameter is
run from zero, and the p-normalised values are shown when they depart from null. For
values of k where a discontinuity of line is apparent, p-normalised attains a value of

10



exactly 0.5. This is not shown to enhance clarity. If 0.5 were to be included in Figure
5, the quark levels would resemble energy wells, all starting from a common 0.5 level.
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Fig. 5 The trajectory for band 4 with quark levels

It is assumed that gaining mass is achieved by transiting from each line to the line
above. The change in probability is denoted as Aline. These changes in probability
are associated with the mass through (11) and (12), which show that the gain in mass
is exponentially proportional to the inverse of the square root of the probability step.

1

M = My exp(——— 11
MeV

where Mo = 0.15014817— (12)

Formula (11) has not been derived, but rather it is proposed. The authors arrived
at this relationship by looking at the chart characteristics and the way the data aligns
itself. The scaling constant My is found by setting Aline = 2/3 and assuming that
such transition corresponds to the mass of an electron, which is known to eight decimal
places.

Table 3 compares quark masses found through the model to those that are experi-
mentally measured. The experimental data is as published by the Particle Data Group
[11]. Except for the Down quark and the Top, the values proposed by the model
undershoot those found experimentally. The difference is indicated in the deviation
column.

11



The model predicts eight quarks rather than the measured six. Between the Bottom
and the Top, an extra quark with a mass of roughly 25 GeV/c? is expected. Taking
into account the data-model relationship’s negative bias, its mass has been estimated
to be around 28 GeV/c?, as bracketed at ID 6. Another quark (ID 8) with a mass of
roughly 1.3 TeV /c? is also expected.

When k increases further, another set of levels appears beneath the initial one.
This terminates the sequence (making the total number of quarks eight) and may
point to a later set of distinct particles. IDs 9 to 11 represent the first three in this
collection. At this point in the investigation, it is unclear how to interpret any further
probability gaps.

Table 3 The Model and the Experimental results (mass is in MeV/c?)

1D K Start K End P End Model Measured  Dev(%) Quark
1 0.0424856851  0.0426116931 0.333 0.85 2.16 -60.71 Up

2 0.0443705542  0.0445963185 0.400 7.22 4.67 54.6 Down
3 0.0457041385  0.0460086578 0.428 55.70 93.0 -40.11 Strange
4 0.0467542049  0.0471269784 0.444 420.36 1,270 -66.9 Charm
5 0.04762576 0.0480562872 0.454 3,145.54 4,180 -24.75 Bottom
6 0.0483765574  0.0488595879 0.461 23,438.33 (28,000) Unknown
7 0.0490433495  0.0495736331 0.466 174,225.79 172,760 0.85 Top

8 0.049636637  0.0501721709 0.470 1,293,143.65 Uncharted
9 0.0501774212  0.0502141735 0.444 72.86

10  0.0502194239  0.0506657021 0.473 52.04

11 0.0506709524  0.0507969604 0.450 99.66

Figure 6 compares experimentally found quark masses with the values proposed
by the model. The chart employs a logarithmic scale which produces a straight line
for the model.

6.1 Other Considerations — the background energy

The model assumes the existence of two distinct probability fields. After normalisation,
these are separated by a 0-1 gap, that is, Aline equals 1, for their respective base
lines. Using Formula (11), one can associate this gap with energy (mass) difference of
0.408145 MeV /c?. A natural way of thinking would be to associate this energy with
some background energy that is present in all mass-related contexts. It could be called
background energy or mass, and it is reasonable to think that it may be related to
dark matter.

Furthermore, the charts are symmetric with respect to the normalised p and q.
This is due to their definition, which requires them to add up to unity. If one of
these variables represented matter, the other would denote antimatter. However, the
sequencing always starts with one of the variables (p or q). This disrupts the symmetry
of the results. Here, we always begin with the q sequence. If q were associated with
matter, antimatter would never form spontaneously.

12
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Fig. 6 Reported and Modelled Quark Masses

7 Baryon masses and weak interactions

Bands 4, 5, and 6 allow for the reproduction of the baryon masses. Band 7 does not
contain the up quark due to the width of the band. Table 4 summarises the values
obtained here and compares them to the experimental data published by the Particle

Data Group [11]. A percentage deviation between the model and the experimental
results is presented in the last column.

Table 4 Summary of results

Particle  Constituents Model (MeV/c?)  Experimental (MeV/c?)  Difference (%)

proton uud 938.501 938.272 0.024%
neutron udd 939.770 939.565 0.022%
b uus 1,189.290 1,189.370 -0.007%

b uds 1,193.964 1,192.642 0.111%

P dds 1,200.335 1,197.449 0.241%
W-boson W 79,326.707 80,379.000 -1.309%

The following is the presentation of the method as applied to each calculation.

7.1 Gluons and the probability metric

Quarks interact through the exchange of gluons. This is represented here through a
metric (13), which assumes that the interaction requires a gluon’s movement along the
k-direction and p-direction, both treated as changes in probability, with the absolute
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value of the product measuring the amount of the movement. The effective probability
is the mean of the movements (14).

Ay = | (kj = ki) (pj —pi) | (13)

1 YAy
Aline = 5 ZN J (14)

In (14), the summation is over all possible movements, and N stands for the number
of combinations.

7.2 The composite band error

The calculations are subject to yet another banding-related principle. A baryon con-
sists of three quarks. Each quark is distinct as it is associated with a separate band.
The quarks can interact with each other in six ways: (12), (13), (23), (21), (31), and
(32). Each interaction involves two moves, one along the k-direction and another along
the p-direction, as in (13). Therefore, when calculating the Aline, there are 12 possible
sources of error.

Each movement is subject to an error associated with the width of the band. This
error is calculated as the geometric mean of the three widths. Therefore, the maximum
error allowed by the movements is 12 times the geometric mean of the widths. This
puts a maximum value on the probability of composite particles. Table 5 compares
the sum of the quark probabilities (listed in Table 3 in the column labelled ”P End”)
with the maximum error allowed.

Table 5 Composite band error and the particle constituents’ probabilities

Particle Quarks  Sum of Quark Levels (P End) 1 + Max Error  Difference

proton uud 1.067 1.072 -0.005
neutron udd 1.133 1.072 0.062
b uus 1.095 1.072 0.024
b uds 1.162 1.072 0.090
= dds 1.229 1.072 0.157

When one takes a measurement, one allows for a certain degree of error. If the
measurement result is within the margin of error, the result is deemed true. In our
scenario, we calculate a baryon’s composite probability, which is the sum of its three
constituent probabilities.

Because the initial conditions were not accurately defined, that measurement has
an associated inaccuracy. The breadth of the error is 0.072. In the case of the proton,
the constituent probabilities are 2 times 0.333 (up quarks) plus 0.40 (down quark). As
a result, the total probability of a proton is 1.066(6), which is greater than one.

That number would appear to be illogical, as probability, by definition, cannot
exceed one. However, the measurement error (0.072) surpasses 0.066. As a result,
we blame the measurement error for the protons’ excess in probability. As a conse-
quence, we may state that the probability of a proton is one while being within the
measurement error. Therefore, the proton is stable.

14



All the other particles listed above have composite probabilities that exceed the
measurement error. As a result, they should not appear, and in order for them to exist,
even for a brief period of time, something must accommodate the excess in probability.
This is also why they must decay.

Table 5 shows that only the proton’s total probability imposed through the con-
stituents is less than the maximum error allowed. All other baryons exceed this error,
which influences the stability of those particles. This has two consequences. Firstly,
the life span of the particle is influenced, with the proton being the only truly sta-
ble one. Secondly, in order for the particle to occur, the excess probability must be
diverted somewhere.
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0.42- 59 points
p:0.429

0.40- - - _

down line 4 down line 5 ornine6 down line 4
0.39- 44 points 10 points. 3points 21 points
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)
w
&

0.37-

0.36-

up line 4 up line 5 up line 6
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KValue

Fig. 7 Quark lines/trajectories 4, 5, and 6 for up, down and strange quarks as used in calculations

Granulation in the k direction is introduced through (5). The width of k spacing
is dependent on the band considered, with the 4*" band producing the least spaced
points and the 6" band the most spread out. The number of points is also influenced
by granulation. Table 6 lists the number of points on each level, as shown in Figure
7. Only those involved in the subsequent calculations are shown. In the case of the
neutron, the down quark on the 4*" trajectory includes the 21 extended points, as
shown in Figure 7 (at k close to 0.09).

7.3 Proton — uy ds ug

Proton is obtained by placing the first up quark on the 4" band, the down quark on the
5*" band, and the second up quark on the 6" band. The number of gluon combinations
N is calculated as a sum of pairwise products, giving 10*1 + 10*24 + 24*1 = 274. The
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Table 6 Point counts for levels as in Figure 7

quark w neutron proton sigma
4 5 6 4 5 6 | 4 5 6| 4 5 6
s-0.42857 | 0 0 0 0 0 0] 0 0 01| 59 0 0
d - 0.40000 | 44 10 3 | 44+21 0 310 10 0] 0 0 0
u-033333 | 24 6 1 0 6 0| 24 0 110 6 1

line width is calculated with (13). These are entered into (14) and (11), which gives the
value of M in (15). To obtain the result listed in Table 4, the proton quark-constituent
masses of two down quarks and one up quark are subtracted as in (15).

protonmass = M —m,, — 2mgq (15)

Please note. The proton is composed of one down and two up quarks, but here the

masses of one up and two down quarks are subtracted. Why? Why indeed. Also, in all

the calculations, the model-arrived quark masses, as listed in Table 3, are used, not
the experimentally found values.

7.4 Neutron — d4 us dg¢ including the extension of the 4" band

Neutron is obtained by placing the first down quark on the 4" band, the up quark on
the 5*" band, and the second down quark on the 6'" band. The 4'" band is expanded
to include points on the closest returning curve, as in Figure 4 and Figure 7 (k in the
region of 0.088). The expansion is to partially accommodate the excess of probability.
The remaining excess of probability modifies the method of combination counting,
which is increased by the maximum amount of the available error. The combinations
N are counted as: N = (65%6 + 65*3 + 6*3)* 1.071732166 = 646.254

The redirection of the excess in probability consists of two processes. Firstly, the
neutron increases the gluonic activity through the utilisation of the measurement
error, but only to its maximum value. In this setting, gluons are more active than the
ordinary combination count would have indicated. The remaining excess of probability
expands the k range to include the points on the returning branch of the trajectory.
The closest points, which are on the 4*" band, are therefore included.

To obtain the line width, the summing is calculated over points that include
the expanded 4" band. These, together with the expanded combinations count, are
entered into (13) and (14).

To obtain the result listed in Table 4, the neutron quark-constituent masses of two
up quarks and one down quark are added to (11). As in the case of the proton, the
model-calculated quark masses are entered in (16).

neutronmass = M + 2m,, + mg (16)

Here, the result is adjusted by involving the masses of two up and one down
quarks. As in the case of the proton, this operation is anti-symmetric with respect
to the particle constituents. The overall count of the correction and the constituents
comes up to the composition of the deuteron, which is stable and, from the quark’s
composition point of view, balanced.
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7.5 Sigma — uus, uds, dds

Sigma mass is calculated by placing the strange quark on the fourth trajectory and the
two up quarks on the fifth and the sixth. The formula (13) is used in the calculation,
with the summing run over each pair of quark locations. This yields the M component,
which is corrected by adding the respective quark masses. In each scenario, the strange
quark’s mass is multiplied by two.

Zuds =M+ My, +mg + st (18)
Ydds = M +mg +mg + 2my (19)

The factor of 2 in the above is understood to account for the strange quark being
two levels above the up quark location.

7.6 The W Boson u4-d4, u5-d5 and u6-d6 transitions

The mass of the W boson is obtained by limiting the interactions to those that are
within each of the three bands. Thus, only us-d4, us-ds, and ug-dg transitions are con-
sidered. The line width is calculated using (13) for each transition band independently,
and then the results are added together to represent the entire structure. Similarly,
the number of combinations is arrived at by adding combinations for each of the bands
separately, that is, 44*24 + 10*6 + 3*1 = 1,119. Formula (14) is employed to calculate
the effective width and (11) to arrive at the mass listed in Table 4. No other factors
are applied in the calculation.

8 Discussion

Mass is perceived as something solid (as in tangible and as opposed to abstract).
The question being asked is how mass came to be. Therefore, whatever originated
mass could not have been solid. In other words, before mass came into being, solidity
did not exist. Light is not solid, as it does not have the rest mass. The effect is
that photons have to move at the speed of light. However, mass can be stationary.
Einstein was motivated by the achievements of his Special Relativity Theorem. Space
contraction[13], coupled with the postulation of undistinguishable heavy and inertial
mass|[14], gave rise to General Relativity. This allowed for the introduction of non-solid
curved space-time as an explanation of the solid mass.

It is difficult to escape from a comment we need to make here. Einstein’s way of
thinking was like that of a pure mathematician. He demonstrated precise reasoning
when deriving his theorems, which is a trademark of this approach. It is most evident
in the Special Relativity papers[13], but he followed that approach in all of them,
including the foundation logic of General Relativity[14][15]. However, when it came
to interpretations, he was making errors. Most talked about was the rejection of the
probabilistic interpretation of quantum mechanics. Instead, he should have embraced
it and applied it to the problems produced by his Special Relativity. If he had done
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that, he would have arrived at a more general statement, namely that “physical mea-
surement and objective reality do not have to agree with each other.” This discrepancy
is evident when one considers a system at its limiting boundary. Like extremely small
distances (quantum physics), but also at extremely high speeds (close to the speed
of light). In general, one could postulate that this phenomenon occurs always, but in
common situations, due to the law of large numbers, it is hidden behind the averages.

In other words, any form of physical measurement has an associated probability. In
common experiments, a physicist associates an error estimation with it. Thus, the field
of statistics and probability estimation became incorporated into any part of physics,
not just quantum mechanics. Here, we have taken another step in that direction,
postulating that probability and entropy existed as that ’'something’ that predates the
existence of solidity.

We see mass and light as having different underlying natures. Both of these phe-
nomena must have some origin. However, we would expect that these origins differ in
character, resulting in the fundamental difference between mass and light. The prior
can be stationary, and the latter lacks that ability.

9 Conclusion

The findings presented in the paper are the culmination of years of research into prob-
ability and its application to the nature of matter. As our investigation progressed, it
became clear that an entirely new philosophical approach was required to confront the
failure of the scientific community’s quest to establish a unified theory of everything.

The break with the traditional approach to the subject is evident on all fronts.
Here we challenge the assumption that inertial and heavy mass are indistinguishable.
That assumption was used as the foundation of General Relativity[14]. We break with
the notion that entropy is a feature of reality, replacing this with the assumption that
entropy is a constituent resulting in physical manifestation. We also discard the tra-
ditional mathematical tools used to describe physical phenomena. Instead, we assume
that the relationships and mappings that need to be employed are discontinuous,
non-differentiable, and chaotic in their nature.

Thus, the work presented here separates inertial mass from other concepts and
uses a totally different mathematical framework to describe this phenomenon.

It is postulated here that the inertial mass is a manifestation of two entropic proba-
bility fields that interact with each other through conditional probability dependence.
This interaction, when quantized, results in probability gaps, which may be associated
with the masses of quarks and the electron. In turn, the resultant mass values may be
used to reconstruct the masses of elementary particles as measured experimentally.

The model is applied to reconstruct the masses of the proton, neutron, sigma
baryon, and W boson. These are provided here as examples to show how the model
may be applied. Each calculation differs somewhat from the others, indicating that a
certain level of understanding is required in order to apply the model successfully.
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