$\pi-e, \pi+e, \pi e$ and $\frac{\pi}{e}$ all are irrational numbers

Amine Oufaska

January 24, 2024

Abstract

It is proved that $\sqrt{3}-\sqrt{2}$ and $\sqrt{3}+\sqrt{2}, e$ and $\pi, \pi-e, \pi+e, \pi e$ and $\frac{\pi}{e}$, all are irrational numbers. It is an argument by contradiction.

Notation and reminder

π : known as Archimedes constant, is the ratio of a circle's circumference to its diameter and $3<\pi<4$.
$e=\sum_{m=0}^{+\infty} \frac{1}{m!}$: known as Euler's number and $2<e<3$.
$\mathbb{N}^{*}:=\{1,2,3,4, \ldots\}$ the natural numbers.
$\mathbb{Z}:=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ the integers and $\mathbb{Z}^{*}:=\mathbb{Z} \backslash\{0\}$.
$\mathbb{Q}:=\left\{\frac{p}{q}:(p, q) \in \mathbb{Z} \times \mathbb{Z}^{*}\right.$ and $\left.p \wedge q=1\right\}$ the set of rational numbers.
\mathbb{R} : the set of real numbers.
$\mathbb{R} \backslash \mathbb{Q}:=\{x \in \mathbb{R}$ and $x \notin \mathbb{Q}: \mathbb{Q} \subset \mathbb{R}\}$ the set of irrational numbers.
$p \wedge q:=\max \left\{d \in \mathbb{N}^{*}: d / p\right.$ and $\left.d / q\right\}$ the greatest common divisor of p and q.
\forall : the universal quantifier and \exists : the existential quantifier.

Introduction

Irrational numbers are the type of real numbers that cannot be expressed in the rational form $\frac{p}{q}$, where p, q are integers and $q \neq 0$. In simple words, all the real numbers that are not rational numbers are irrational. In this paper we show that $\sqrt{3}-\sqrt{2}$ and $\sqrt{3}+\sqrt{2}, e$ and $\pi, \pi-e, \pi+e, \pi e$ and $\frac{\pi}{e}$, all are irrational numbers. It is an argument by contradiction.

$$
\pi-e, \pi+e, \pi e \text { and } \frac{\pi}{e} \text { all are irrational numbers }
$$

Theorem 1. $\sqrt{6} \in \mathbb{R} \backslash \mathbb{Q}$. In other words, $\sqrt{6}$ is an irrational number.
Proof. An argument by contradiction. Suppose that $\sqrt{6} \in \mathbb{Q}$, and as $\sqrt{6}>0$ then $\exists p, q \in \mathbb{N}^{*}$ such that $\sqrt{6}=\frac{p}{q}$ and $p \wedge q=1$, then $(\sqrt{6})^{2}=\left(\frac{p}{q}\right)^{2}$, then $6=\frac{p^{2}}{q^{2}}$ and $6 q^{2}=p^{2} \Rightarrow p^{2}$ is even and $p \in \mathbb{N}^{*} \Rightarrow p$ is even or $p=2 k: k \in \mathbb{N}^{*}$ $\Rightarrow 6 q^{2}=(2 k)^{2}=4 k^{2} \Rightarrow 3 q^{2}=2 k^{2}$ and $3 \wedge 2=1 \Rightarrow 2$ divides q^{2} and 2 is prime $\Rightarrow 2$ divides q and $q \in \mathbb{N}^{*} \Rightarrow q$ is even or $q=2 k^{\prime}: k^{\prime} \in \mathbb{N}^{*}$, hence $p \wedge q \geq 2$, and we get a contradiction because $p \wedge q=1$.

Main Theorem 1. $\sqrt{3}-\sqrt{2} \in \mathbb{R} \backslash \mathbb{Q}$ and $\sqrt{3}+\sqrt{2} \in \mathbb{R} \backslash \mathbb{Q}$.
In other words, $\sqrt{3}-\sqrt{2}$ and $\sqrt{3}+\sqrt{2}$ both are irrational numbers.
Proof. An argument by contradiction. Suppose that $\sqrt{3}-\sqrt{2} \in \mathbb{Q}$, then $\exists r \in \mathbb{Q}$ such that $\sqrt{3}-\sqrt{2}=r$ implies that $(\sqrt{3}-\sqrt{2})^{2}=r^{2} \in \mathbb{Q}$ $\Rightarrow 5-2 \sqrt{6}=r^{2} \in \mathbb{Q} \Rightarrow \sqrt{6}=\frac{5-r^{2}}{2} \in \mathbb{Q}$, and we get a contradiction. On the other hand, suppose that $\sqrt{3}+\sqrt{2} \in \mathbb{Q}$, then $\exists r \in \mathbb{Q}$ such that $\sqrt{3}+\sqrt{2}=r$ implies that $(\sqrt{3}+\sqrt{2})^{2}=r^{2} \in \mathbb{Q} \Rightarrow 5+2 \sqrt{6}=r^{2} \in \mathbb{Q}$ $\Rightarrow \sqrt{6}=\frac{r^{2}-5}{2} \in \mathbb{Q}$, and we get a contradiction.

Lemma 2. We have $\lim _{n \rightarrow+\infty} \sum_{m=n+1}^{+\infty} \frac{n!}{m!}=0$ and $\lim _{n \rightarrow+\infty} n \cdot \sum_{m=n+1}^{+\infty} \frac{n!}{m!}=1$.
Proof. $\forall n \in \mathbb{N}^{*}, \sum_{m=n+1}^{+\infty} \frac{n!}{m!}=\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots$

$$
\begin{aligned}
& <\frac{1}{n+1}+\frac{1}{(n+1)(n+1)}+\frac{1}{(n+1)(n+1)(n+1)}+\cdots \\
& =\sum_{k=1}^{+\infty} \frac{1}{(n+1)^{k}}=\frac{1}{n}
\end{aligned}
$$

then $0<\sum_{m=n+1}^{+\infty} \frac{n!}{m!}<\frac{1}{n}$ and $\lim _{n \rightarrow+\infty} \frac{1}{n}=0 \Rightarrow \lim _{n \rightarrow+\infty} \sum_{m=n+1}^{+\infty} \frac{n!}{m!}=0$.
On the other hand, we have $\frac{1}{n+1}<\sum_{m=n+1}^{+\infty} \frac{n!}{m!}<\frac{1}{n} \Rightarrow \frac{n}{n+1}<n . \sum_{m=n+1}^{+\infty} \frac{n!}{m!}<1$
, and $\lim _{n \rightarrow+\infty} \frac{n}{n+1}=1 \Rightarrow \lim _{n \rightarrow+\infty} n \cdot \sum_{m=n+1}^{+\infty} \frac{n!}{m!}=1$.

For more details about irrational numbers, we refer the reader and our students to [1] and to [2].

Theorem 2. We have $\lim _{n \rightarrow+\infty} n \cdot \sin (2 \pi n!e)=2 \pi$.
Proof. Indeed, $\lim _{n \rightarrow+\infty} n \cdot \sin (2 \pi n!e)=\lim _{n \rightarrow+\infty} n \cdot \sin \left(2 \pi n!\sum_{m=0}^{+\infty} \frac{1}{m!}\right)$

$$
\begin{aligned}
& =\lim _{n \rightarrow+\infty} n \cdot \sin \left(2 \pi n!\left(\sum_{m=0}^{n} \frac{1}{m!}+\sum_{m=n+1}^{+\infty} \frac{1}{m!}\right)\right) \\
& =\lim _{n \rightarrow+\infty} n \cdot \sin \left(2 \pi \sum_{m=0}^{n} \frac{n!}{m!}+2 \pi \sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right),
\end{aligned}
$$

we put $a_{n}=\sum_{m=0}^{n} \frac{n!}{m!} \in \mathbb{N}^{*}$ and $b_{n}=\sum_{m=n+1}^{+\infty} \frac{n!}{m!} \rightarrow 0$ and $n b_{n} \rightarrow 1$ when $n \rightarrow+\infty$,
then $\lim _{n \rightarrow+\infty} n \cdot \sin (2 \pi n!e)=\lim _{n \rightarrow+\infty} n \cdot \sin \left(2 \pi a_{n}+2 \pi b_{n}\right)$

$$
\begin{aligned}
& =\lim _{n \rightarrow+\infty} n \cdot \sin \left(2 \pi b_{n}\right)=\lim _{n \rightarrow+\infty} n \cdot 2 \pi b_{n} \cdot \frac{\sin \left(2 \pi b_{n}\right)}{2 \pi b_{n}} \\
& =\lim _{n \rightarrow+\infty} 2 \pi \cdot n b_{n} \cdot \frac{\sin \left(2 \pi b_{n}\right)}{2 \pi b_{n}}=2 \pi \cdot 1 \cdot 1=2 \pi .
\end{aligned}
$$

Main Theorem 2. $e \in \mathbb{R} \backslash \mathbb{Q}$ and $\pi \in \mathbb{R} \backslash \mathbb{Q}$.
In other words, e and π both are irrational numbers .
Proof. An argument by contradiction. First, we prove that e is irrational. Suppose that $e \in \mathbb{Q}$, and as $e>0$, then $\exists p, q \in \mathbb{N}^{*}$ such that $e=\frac{p}{q}$ and $p \wedge q=1$. Then, $\lim _{n \rightarrow+\infty} n \cdot \sin (2 \pi n!e)=\lim _{n \rightarrow+\infty} n \cdot \sin \left(2 \pi n!\frac{p}{q}\right)$,
we put $a_{n}=n!\frac{p}{q}: n \in \mathbb{N}^{*}$, and it is clear that a_{n} is strictly increasing and $\left\{a_{n}: n \geq q\right\} \subset \mathbb{N}^{*}$, then $n . \sin \left(2 \pi a_{n}\right)=0: n \geq q$,
this implies that $\lim _{n \rightarrow+\infty} n \cdot \sin \left(2 \pi a_{n}\right)=0$, and we get a contradiction according to [Theorem 2]. Thus, e is an irrational number. Another proof presented by Dimitris Koukoulopoulos and was found by Fourier in 1815 is available at [3, Théorème15.2]. Second, we prove that π is irrational. A simple proof that π is irrational made by Ivan Niven in 1947 is available at [4] and Lambert's proof of the irrationality of π in 1760 is available at [5].

The sine function (or $\sin (x)$) is defined, continuous, odd and 2π-periodic on \mathbb{R} and $\forall \theta \in \mathbb{R}$ we have $\sin (\theta)=0 \Leftrightarrow \theta \in\{k \pi: k \in \mathbb{Z}\}$. For more details about sine function and its properties, we refer the reader and our students to [6, page 101].
$\pi-e, \pi+e, \pi e$ and $\frac{\pi}{e}$ all are irrational numbers
Theorem 3. We have $\left\{\begin{array}{l}\lim _{n \rightarrow+\infty} \sin \left(n!(\pi-e)+\sum_{m=0}^{n} \frac{n!}{m!}\right)=0 \\ \lim _{n \rightarrow+\infty} \sin \left(n!(\pi+e)-\sum_{m=0}^{n} \frac{n!}{m!}\right)=0 \\ \lim _{n \rightarrow+\infty} \sin \left(n!\pi e-\pi \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right)=0 \\ \lim _{n \rightarrow+\infty} \sin \left(n!p e-p \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right)=0\end{array}\right.$.
Proof. First,

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \sin \left(n!(\pi-e)+\sum_{m=0}^{n} \frac{n!}{m!}\right) & =\lim _{n \rightarrow+\infty} \sin \left(n!\pi-n!e+\sum_{m=0}^{n} \frac{n!}{m!}\right) \\
& =\lim _{n \rightarrow+\infty} \sin \left(n!\pi-\sum_{m=0}^{+\infty} \frac{n!}{m!}+\sum_{m=0}^{n} \frac{n!}{m!}\right) \\
& =\lim _{n \rightarrow+\infty} \sin \left(n!\pi-\sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right) \\
& =\lim _{n \rightarrow+\infty}-\sin \left(\sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right)=-\sin (0)=0
\end{aligned}
$$

Second,

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \sin \left(n!(\pi+e)-\sum_{m=0}^{n} \frac{n!}{m!}\right) & =\lim _{n \rightarrow+\infty} \sin \left(n!\pi+n!e-\sum_{m=0}^{n} \frac{n!}{m!}\right) \\
& =\lim _{n \rightarrow+\infty} \sin \left(n!\pi+\sum_{m=0}^{+\infty} \frac{n!}{m!}-\sum_{m=0}^{n} \frac{n!}{m!}\right) \\
& =\lim _{n \rightarrow+\infty} \sin \left(n!\pi+\sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right) \\
& =\lim _{n \rightarrow+\infty} \sin \left(\sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right)=\sin (0)=0
\end{aligned}
$$

Third,

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \sin \left(n!\pi e-\pi \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right) & =\lim _{n \rightarrow+\infty} \sin \left(\pi \cdot \sum_{m=0}^{+\infty} \frac{n!}{m!}-\pi \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right) \\
& =\lim _{n \rightarrow+\infty} \sin \left(\pi \cdot \sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right)=\sin (0)=0
\end{aligned}
$$

Fourth, let $p \in \mathbb{N}^{*}$ we have

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \sin \left(n!p e-p \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right) & =\lim _{n \rightarrow+\infty} \sin \left(p \cdot \sum_{m=0}^{+\infty} \frac{n!}{m!}-p \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right) \\
& =\lim _{n \rightarrow+\infty} \sin \left(p \cdot \sum_{m=n+1}^{+\infty} \frac{n!}{m!}\right)=\sin (0)=0
\end{aligned}
$$

Main Theorem 3. $\pi-e \in \mathbb{R} \backslash \mathbb{Q}$ and $\pi+e \in \mathbb{R} \backslash \mathbb{Q}$ and $\pi e \in \mathbb{R} \backslash \mathbb{Q}$ and $\frac{\pi}{e} \in \mathbb{R} \backslash \mathbb{Q}$. In other words, $\pi-e, \pi+e, \pi e$ and $\frac{\pi}{e}$ all are irrational numbers.

Proof. An argument by contradiction. First, suppose that $\pi-e \in \mathbb{Q}$, and as $\pi-e>0$, then $\exists p, q \in \mathbb{N}^{*}$ such that $\pi-e=\frac{p}{q}$ and $p \wedge q=1$.
We recall that, $\forall n \in \mathbb{N}^{*}: n!(\pi-e)+\sum_{m=0}^{n} \frac{n!}{m!}>0$.
Then, $\lim _{n \rightarrow+\infty} \sin \left(n!(\pi-e)+\sum_{m=0}^{n} \frac{n!}{m!}\right)=\lim _{n \rightarrow+\infty} \sin \left(n!\frac{p}{q}+\sum_{m=0}^{n} \frac{n!}{m!}\right)$, we put $a_{n}=n!\frac{p}{q}+\sum_{m=0}^{n} \frac{n!}{m!}: n \in \mathbb{N}^{*}$, and it is clear that a_{n} is strictly increasing and $\left\{a_{n}: n \geq q\right\} \subset \mathbb{N}^{*}$, then $\lim _{n \rightarrow+\infty} a_{n} \notin\{k \pi: k \in \mathbb{Z}\} \subset \mathbb{R} \backslash \mathbb{Q} \cup\{0\}$,
this implies that $\lim _{n \rightarrow+\infty} \sin \left(a_{n}\right) \neq 0$, and we get a contradiction according to [Theorem 3].

Second, suppose that $\pi+e \in \mathbb{Q}$, and as $\pi+e>0$, then $\exists p, q \in \mathbb{N}^{*}$ such that $\pi+e=\frac{p}{q}$ and $p \wedge q=1$.
We recall that, $\forall n \in \mathbb{N}^{*}: n!(\pi+e)-\sum_{m=0}^{n} \frac{n!}{m!}>0$.
Then, $\lim _{n \rightarrow+\infty} \sin \left(n!(\pi+e)-\sum_{m=0}^{n} \frac{n!}{m!}\right)=\lim _{n \rightarrow+\infty} \sin \left(n!\frac{p}{q}-\sum_{m=0}^{n} \frac{n!}{m!}\right)$, we put $a_{n}=n!\frac{p}{q}-\sum_{m=0}^{n} \frac{n!}{m!}: n \in \mathbb{N}^{*}$, and it is clear that a_{n} is strictly increasing and $\left\{a_{n}: n \geq q\right\} \subset \mathbb{N}^{*}$, then $\lim _{n \rightarrow+\infty} a_{n} \notin\{k \pi: k \in \mathbb{Z}\} \subset \mathbb{R} \backslash \mathbb{Q} \cup\{0\}$,
this implies that $\lim _{n \rightarrow+\infty} \sin \left(a_{n}\right) \neq 0$, and we get a contradiction according to [Theorem 3].

Third, suppose that $\pi e \in \mathbb{Q}$, and as $\pi e>0$, then $\exists p, q \in \mathbb{N}^{*}$ such that $\pi e=\frac{p}{q}$ and $p \wedge q=1$.
Then, $\lim _{n \rightarrow+\infty} \sin \left(n!\pi e-\pi \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right)=\lim _{n \rightarrow+\infty} \sin \left(n!\frac{p}{q}-\pi \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right)$

$$
=\lim _{n \rightarrow+\infty}(-1)^{n+1} \cdot \sin \left(n!\frac{p}{q}\right)
$$

we put $a_{n}=n!\frac{p}{q}: n \in \mathbb{N}^{*}$, and it is clear that a_{n} is strictly increasing and $\left\{a_{n}: n \geq q\right\} \subset \mathbb{N}^{*}$, then $\lim _{n \rightarrow+\infty} a_{n} \notin\{k \pi: k \in \mathbb{Z}\} \subset \mathbb{R} \backslash \mathbb{Q} \cup\{0\}$, this implies that $\lim _{n \rightarrow+\infty} \sin \left(a_{n}\right) \neq 0$ and $\lim _{n \rightarrow+\infty}(-1)^{n+1} \cdot \sin \left(a_{n}\right) \neq 0$, and we get a contradiction according to [Theorem 3].

$$
\pi-e, \pi+e, \pi e \text { and } \frac{\pi}{e} \text { all are irrational numbers }
$$

Fourth, suppose that $\frac{\pi}{e} \in \mathbb{Q}$, and as $\frac{\pi}{e}>0$, then $\exists p, q \in \mathbb{N}^{*}$ such that $\frac{\pi}{e}=\frac{p}{q}$ and $p \wedge q=1$, then $q \pi=p e$ and $\forall n \in \mathbb{N}^{*}: n!q \pi=n!p e$. Then, $\lim _{n \rightarrow+\infty} \sin \left(n!p e-p \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right)=\lim _{n \rightarrow+\infty} \sin \left(n!q \pi-p \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right)$

$$
=\lim _{n \rightarrow+\infty}-\sin \left(p \cdot \sum_{m=0}^{n} \frac{n!}{m!}\right)
$$

we put $a_{n}=p . \sum_{m=0}^{n} \frac{n!}{m!}: n \in \mathbb{N}^{*}$, and it is clear that a_{n} is strictly increasing and $\left\{a_{n}: n \in \mathbb{N}^{*}\right\} \subset \mathbb{N}^{*}$, then $\lim _{n \rightarrow+\infty} a_{n} \notin\{k \pi: k \in \mathbb{Z}\} \subset \mathbb{R} \backslash \mathbb{Q} \cup\{0\}$, this implies that $\lim _{n \rightarrow+\infty} \sin \left(a_{n}\right) \neq 0$ and $\lim _{n \rightarrow+\infty}-\sin \left(a_{n}\right) \neq 0$, and we get a contradiction according to [Theorem 3].

Thus, we conclude that $\pi-e, \pi+e, \pi e$ and $\frac{\pi}{e}$, all are irrational numbers.

Acknowledgments

The author is grateful to the referees for carefully reading the manuscript and making useful suggestions.

References

[1] Ivan Niven. Irrational Numbers . University of Oregon , July 1956.
[2] Julian Havil. The Irrationals : A Story of the Numbers You Can't Count On . Princeton University Press .
[3] Dimitris Koukoulopoulos . Introduction à la théorie des nombres . Université de Montréal, 10 Octobre 2022 .
[4] Ivan Niven. A simple proof that π is irrational. Bulletin of the American Mathematical Society, Vol. 53 (6), p. 509, 1947.
[5] M. Laczkovich. On Lambert's Proof of the Irrationality of π. American Mathematical Monthly, Vol. 104, No. 5 (May, 1997), pp. 439-443.
[6] Terence Tao . Analysis II . Third Edition. Department of Mathematics, University of California, Los Angeles, CA USA .

E-mail address : ao.oufaska@gmail.com

