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Abstract

One of the possible explanations for entanglement is a sort of perverse
holonomy which acts on sheaves whose germs are eigenvectors for a tuple
of local variables. We take baby steps towards realizing this model by
introducing an equivariant form of holonomy. As a test category, we
take U(1)-bundles whose outbound fibrations are Koszul nerves of degree
(p+q)=n.

1 Introduction

Denote by sSets the category of simplicial sets, and write ∆ for a particular
simplicial set. We will use the convention ∆0 = x0 ∈ M for some point x0.
Fix an∞-category (quasi-category), C∞, once and for all. Denote, for an n-cell
C∞ ⇒ sSets, the nth homotopy coherent nerve, Nn

M .

Lemma 1. For the nth homotopy coherent nerve, Nn
M of a manifold M , there

is a decomposition into charts:

φn(M) ◦ ... ◦ φ−1
0 (M)

Let Σ∞
M denote the infinity-fold suspension of M .

Proposition 1. The map
Σ∞

M ↪→ Σ∞
LM

where LM denotes the free loop space of M , is trivial.

From this, we deduce thatHn(M) ≃ Hn(LM), whereHn is the nth homology
group. Thus, the sequence

φ−1
0 (M) −→ φ−1

1 (M) −→ ... −→ φn(M)

has, as its adjoint, the inverse sequence:

φ−1
0 (LM)←− φ−1

1 (LM)←− ...←− φn(M)
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These sequences may be written Sp(M) and Sp(M)ad, respectively, with
the convention Sp(M)ad ∼= Sp(LM)−1. We then define skM to be the principle
fiber bundle

Sp(M) −→ Sp(M)ad −→ sSets ∼= LM −→M −→ ∆

consisting of restrictions of charts to objects in a simplicially enriched category.
For such a category, one fixes a Grothendieck universe V, and, for objects
well-inside V, we say they are V-small. By “well-inside”, we mean that the
relationship

o≪ V

is obeyed. This means that, for a principle bundle of V, there is a set-enriched
V-scheme taking its values in a set whose terminal and initial objects are cofinal
with o. Shown below is a diagram of a V-category, with ⊕V as the group action
passing through o:

α

0 o 1

β

⊤

⊥

⊕V(0, 12−ϵ]

⊤

⊥

⊕V [ 12+ϵ,1)

Proposition 2. V \ o is a groupoid.

Proof. Clearly, every morphism in the diagram

α

0 1

β

⊤

⊥

⊤

⊥

is invertible.

2 Main results

In this paper, we wish to treat the holonomy groupoid HolG∆ as an operad which
takes as its input an n-tuple of skelata, and produces as an output, a nerve
Nn

sk∆
: sk0 −→ skn which is fibered in groupoids. At the same time, we wish to

do so in a G -equivariant way. That is to say, for a specific inertia group Λ(x0)
for a point x0 in a manifold M , we want the n-cells x0 ⇒ xn to be bijective, so
that the formula
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Map(fib(0, n), I) ≃ Nn
sk∆

holds, where by I we mean the interval [x0, xn].
To accomplish this, we will let U(x) be a U(n)-bundle, with x =

∫ n

k=0
xk.

We will denote by Γx the collection of sections of U(x). Our main result is as
follows:

Theorem 1. For a U(n)-bundle U(x), the set of deloopings N = Ωφ(BN ) may
be written as a sequence of transition maps

Sp(M0) −→ ... −→ Sp(Mn)

We will not seek to directly prove this theorem here, but we hope that a
proof will manifest itself with diligent investigation. For starters, we will note
that the above chain is essentially a chain of the form:

M0 −→M1
−→−→M2

−→−→−→M3...

such that, for every submanifold Mn ⊂ M , there is an n-cell Nn
M : Mn−1

n−→
Mn. Right away, it is evident that the proper formalization for the nervous
equivariant holonomy groupoid is an ∞-groupoid.1

2.1 Moore Paths

The following is recalled from [2]. Denote by Path(M) the path category of M .
A Moore path is a pair (r, γ), where r > 0 and γ is the interval [0, r].

Proposition 3. If MorPath(M) is the full space of morphisms, then the source
and target maps, s, t : MorPath(M) −→M are Serre fibrations with contractible
fiber.

Proposition 4. The geometric realization of the path category has the weak
homotopy type of M .

|Path(M)| ≃M

The fiber spectrum Eϕ
x at a point x ∈M is ϕ(x), and if γ : x −→ y is a path in

M between points x and y, then on the level of morphisms, ϕ(γ) : Eϕ
x −→ Eϕ

y is
an equivalence.2 In our language, this means that the class of diffeomorphisms of
M contains all of the necessary sections of the tangent spaces of path-connected
points. Viz.:

DiffM ⊃ Γ(TxZ) ∀Z ∈ γ

1See [1] for more details.
2Ibid, pg. 16
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2.2 U(1)-bundles

The simplest case in which we can begin our investigation is that of a U(1)-
bundle over a manifold M . This gives us a natural stratification:

StratUM −→ (U(1) ∈M)×M −→ N ⊂M

into a submanifold N which acts as a portable D-module. We can then induce
a flat embedding:

D ♭
↪→ Post(Path(N/ ∼))

into the Postnikov tower of submanifolds of M , which are defined up to modular
isomorphism with N . This gives us the effective Thom spectrum, ThomEff of
our base manifold. We have:

Ω∞(M) = Σ∞(π∞(M)) ≃ N∞
M

≃ QCoh(Bd)
∧

QCoh(Bd ∪#Bd)

= DehnQ̂(N)

= D(BunG)× Coh(Xcofib)

where X is a p, q-tensor:

X =
∏
p=0

qN p
N

on the Nisnevich site, meaning that G̃ has finite cohomological dimension.3 We
generally would like to think of X as a germ on the presheaf PshvG, such that
the map

X ∈ PshvG −̃→ G̃

is an isomorphism for all im(X), and where G̃ is a stack.4

Proposition 5. If skx is symmetric monoidal, then skx⊗BunU(1) = ˜BunU(1)+
is a Cartesian closed category.

Let us assume that the above proposition holds, and letP = ˜BunU(1). Then,
we obtain a wordline WP, which is equivalent to

Lp−q ⊗ (Taut(Strat
{∗}
M )×Dehn(FP · A1))

with FP some preferred foliation and A1 the affine line, as used in motivic
homotopy theory.5 It is trivial to show that this wordline is G -equivariant, for

3As of the time of this writing, it is unknown whether X can be calculated (or generalized)
for etale cohomology.

4Note that if X is perfect, and G̃ is etale, then the above map is a totally lossless projection.
Thus (speaking level-wise), if X is perfect, then every Γ(im(X)) is perfect as well.

5See [3]
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some isotropy group G ; indeed, this is equivalent to the statement that the
ambient space is an H-space, and

Ω∞(WP) ⊃ {∗}

assuming the space to be presentable. Letting this be the kernel of an index I,
we have a collection of Ehresmann connections

I =

p=q∑
p<q

Γ

∇(p, q)

which are ramified by the Tate circle.6 This “basically” means that, for any
geodesic γ encompassed by Ωr

0, the maximum possible τ -value a point-like object
can attain is q. So, for any induced periodic flow whose coefficient is I, the
maximal degree at which a homotopy is killed is q. Thus, there is a relationship

pRCurvX

where by R we mean “is basically”, such that for a p-adic cochain generated by
p, the mean curvature of X is basically equivalent to (and is in fact generated
by) p.

3 Future Work

In the future, the author hopes to extend this discussion by generalizing from
the case of U(1)-bundles to U(n)-bundles for any n, and specifically to the adic
case of U(p)-bundles for fixed primes p.

One route for exploring this would be to review Edward Witten’s work
on the Dirac index of a loop space operator. It is tempting to make the
connection between the I that has been established here, and the Dirac index
of a loop space. This would further the aim of unification between the work
of G. Segal and P. Dirac. In particular, employing contact geometry (and
specifically the notion of an overtwist) would give some insight into the Hopfian
structure of bordisms, especially given the relationship between Ω-structures
and cobordisms.

6Ibid
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