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Abstracts 

We are working on concrete applications of the relativistic Schwarzschild metric to the 
cosmos. In this report we calculate the Gaussian curvature of space-time. The relativistic 
Schwarzschild metric solves Einstein's equations exactly assuming a point gravitational 
mass and empty space in its vicinity. This metric leads to a static and symmetric solution 2D 
of the mathematical equation of space-time that  allows to calculate the Gaussian curvature 
at each point. We have calculated some curvature values and found a simple equation to 
calculate them which allows us to extend the results to a wider range of distances. Finally 
using this equation and the Birkhoff–Jebsen theorem we have studied the  curvature in a 
homogeneous and isotropic universe with a constant energy density and obtain a value very 
close to zero for the curvature at any inner point of that universe. 
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1 -The problem of the curvature of space-time 

First, we are concerned with the problem of calculating the curvature of space-time caused 
by a spherical and static black hole at a point located at a distance "r" from the center of the 
black hole. This point will always be further away from the event horizon or Schwarzschild 
radius, “Rs”. Schwarzschild solves the equations of the general theory of relativity [1] for an 
assumption of a point gravitational mass and a surrounding empty space, establishing a 
metric and an equation for space-time that turns out to be stationary in time and with 
spherical symmetry, resulting in a 2D surface, (the Flamm paraboloid), which is represented 
in Fig. 1. 

 

Fig. 1 Space-time in the Schwarzschild metric. Flamm paraboloid 
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2.- Resolution of the mathematical problem 

Flamm's paraboloid, mathematical solution to the Schwarzschild metric, is a 2D surface 
inserted in a space R3. Its geometry allows us to parameterize the paraboloid as a function 
of the observer's distance from the point mass “r” and the azimuth angle “φ”. The problem 

admits a mathematical treatment of differential geometry of surfaces [2], and with it we are 
going to calculate values of Gaussian Curvature. 

Surface parameters (r, φ) 

0 ≤ r < ∞,   0 ≤  # < 2π    

which has this parametric equation: 

x = r cosφ 

y = r senφ 

z = 2(Rs(r- Rs))1/2 

and by vector equation: 

f (x,y,z) = (r cosφ,  r senφ,  2(Rs(r- Rs))1/2) 

Determination of velocity, acceleration, and normal vectors to the surface 

ðf/ðφ = (-r senφ, rcosφ, 0 )  

ðf/ðr= (cosφ, senφ, (r/Rs  -1)-1/2) 

ð2f/ðφ2 = (-r cosφ,   -r senφ,    0) 

ð2f/ðr2 = (0,   0,  (-1/(2Rs)). (r/Rs -1)-3/2)    

ðf/ðφðr = (-senφ,  cosφ,  0) 

n = (ðf/ðφ x ðf/ðr)  = (rcosφ/(r/Rs  -1)1/2,  rsenφ/(r/Rs  -1)1/2,  -r) 

[n] = r ((1/(r/Rs  -1)) +1)1/2  

n = n/[n] 

Curvature and curvature parameters 

Gauss curvature      K = LN-M2/EG-F2      

L = ð2f/ðφ2. n 

N = ð2f/ðr2. n  

M =(ðf/ðφðr). n  

E = ðf/ðφ.  ðf/ðφ 

G = ðf/ðr. ðf/ðr 

F = ðf/ðφ. ðf/ðφ 

Completing a previous work of ours, [3], we have particularized the equations in 20 points 
between 1 and 1400 Schwarzschild radii, Rs, calculating the corresponding curvatures as 
shown in the results table 1. Fig. 2  

Thus, although in the metric there is a singularity at the point 1Rs,  the value of the Gaussian 
curvature for the singularity is resolved mathematically calculating a limit. We have 
calculated that limit for Gauss curvature.
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3.- Results of curvature values 

Table 1. Gaussian curvature values according to the Schwarzschild metric

Fig 2 Gauss curvature of space-time in the Schwarzschild metric
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point mass

Value of Gauss 
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1Rs -0,5000 x Rs-2 60Rs -2,325.10-6 x Rs-2

1,2Rs -0,2873 x Rs-2 80Rs -9,596.10-7 x Rs-2

1,4Rs -0,1821 x Rs-2 100Rs -4,925.10-7 x Rs-2

1,6Rs -0,1220 x Rs-2 200Rs -5,963.10-8 x Rs-2

1,8 Rs -0,0790 x Rs-2 400Rs -4,800.10-9 x Rs-2

2Rs -0,0625 x Rs-2 600Rs -2,376.10-9 x Rs-2

3Rs -0,0186 x Rs-2 800Rs -9,710.10-10 x Rs-2

4Rs -0,0078 x Rs-2 1000Rs -5,059.10-10 x Rs-2

5Rs -0,0030 x Rs-2 1200Rs -2,883.10-10x Rs-2

6Rs -0,0023 x Rs-2 1400Rs -1,810.10-10 x Rs-2
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4.- An equation to calculate the curvature of space-time according to the 

Schwarzschild metric 

An adjustment equation has been obtained using an Excel program by regression methods 
throughout this wide range of distances. The degree of quality of the fit obtained by 
calculating the parameter R2 is very high, 0.9999. For this reason, it is to be expected that 
this equation allows interpolate the calculation of Gaussian curvature values, in this wide 
range of distances, with high accuracy without the need to carry out the laborious 
calculations that would otherwise have to be done. 

Fit equation between 1 and 1400 Schwarzschild radii 

Gaussian curvature: k = -0,5268 (r/Rs)-3,054 x Rs-2 

Fit quality R² = 0,9999 

Rounding decimals and according to definition of Schwarzschild radium, Rs 

Rs = 2GM/c2 

where G is the universal gravitation constant, and M is the mass of the black hole, we can 
express the adjustment equation we have found as the following approximate equation: 

k = -GM/c2r3       (1) 

where k is the Gaussian curvature of space-time according to the Schwarzschild metric. 

 

5.- Calculating the curvature of space-time in a homogeneous and isotropic universe 

We're going to calculate the dimensionless curvature for a homogeneous, isotropic universe 
with an energy density ρ and we're going to do it at a generic point that lies within it. This 

universe will have a constant curvature, let's calculate it. This model of the universe is the 
same as the cosmological standard model ΛCDM. 

To do this, we are going to use the results obtained in this work regarding our curvature 
formula (1), the Birkhoff–Jebsen theorem. 

   

5.1- Birkhoff–Jebsen theorem  

We make a brief comment on this theorem of mathematics applied to the theory of 
generalized relativity. First, we summarize Professor Fulvio Melia in reference [5] to explain 
it.  

“If we have a spherical universe of mass-energy density ρ and radius r and within it a 
concentric sphere of radius rs smaller than r, it is true that the acceleration due to gravity at 
any point on the surface of the sphere of relative radius rs to an observer at its origin, 
depends solely on the mass-energy relation contained within this sphere”. 

Thus, according to this, to calculate the curvature of the gravitational field of a point located 
at a distance "rs" from the geometric center that we are considering in our continuous 
universe, it is only necessary to consider its interaction with the points that are at a radius 
smaller than "rs", therefore, the mass "m" to be considered will only be that contained in the 
sphere of radius "rs". 
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In general relativity, Birkhoff's theorem [6] states that any spherically symmetric solution 
of the vacuum field equations must be statically and asymptotically flat. This means that the 
outer solution (that is, the spacetime outside a gravitational, non-rotating, spherical body) 
must be given by the Schwarzschild metric. 

 

5.2- Curvature calculations  

Let us consider applying our formula to our universe, for this we consider a sphere of radius 
r inside, the Birkhoff-Jebsen theorem assures us that if we want to calculate the space-time 
curvature on the surface of the sphere, we could consider only the interaction with the 
gravitational mass found inside. Furthermore, as the Birkhoff-Jebsen theorem assures us 
that the solution is given by the Schwarzschild metric. The curvature formula that we have 
obtained can be applicable in this case, taking into account that the interaction with the 
interior points of the sphere is, that is, the gravitational field on the surface of the sphere is 
reduced to an interaction with a point mass of equal magnitude in the center of the sphere 
and in this case the equation to calculate curvatures of the Schwarzschild model is 
applicable. that we have found. 

Since the energy density “ρ” in this universe is constant, it will be constant in every sphere 

that we are considering and thus we can write: 

M = ρ.(4πr3/3)    (2) 

According to our curvature adjustment equation, we have: 

K = -GM/c2r3       (3) 

substituting (2) in (3) we get: 

K = -4πG ρ/3c2  

 

Equation found, which relates the curvature of space-time to energy density, valid 

at any point in our model of the universe. 

  

K/ρ = -4πG/3c2 = -0,3104.10-26   m/Kg 

 

k is the Gaussian curvature (m-2) and ρ is the energy density (Kg/m-3) 

 
 

Thus, this equation assigns us the same curvature value at each point of the universe we are 
studying, which is characterized by a constant energy density and presents the properties 
of isotropy and uniformity throughout it.  That curvature value, which depends only on the 
energy density and is the same at every point in our model of our universe, we will call it 
the "curvature of space-time" and now we will calculate it: 

How the energy density of the universe is close to the critical density:  

ρ = 0,9.10-26Kg/m3, 

K = -4πGρ/3c2 = (-0,3104.10-26).ρ 

the curvature of space-time results in 
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Curvature of space-time 

K = 0,3.10-52 m-2 ≅ %&'( 

 
 

6.- Conclusions 

We have calculated the curvature value of space-time according to a model of an isotropic, 
homogeneous universe with a constant energy density at all its points. We have obtained 
that the curvature only depends on the value of the energy density and a constant value 
calculated based on the universal gravitation constant and the value of the speed of light. 
This leads us to the same curvature value in each of its points if these are inner points in the 
topological sense. To obtain this result we have relied on the Schwarzschild metric applied 
in a very special way to our universe model and the Birkhoff–Jebsen theorem. The result 
obtained from a curvature value very close to zero agrees with the experimental values 
obtained by the Planck Mission [6] and with the opinion of many scientists currently. 
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