# One Tile Suffices 

VOLKER WILHELM THÜREY<br>Bremen, Germany *

December 1, 2023

MSC-2020: 51P99 Keywords: Tiling; plane


#### Abstract

We have found for all $k$ larger than two a possibility to tile the plane completely with $k$-gons. We use infinite many copies of a single tile. The proofs are not by written words, but by pictures. Amongst others, we use the well-known tiling with hexagons. We show for $k$ larger than 4 new ways to cover the plane.


We think that it is useful to repeat the definition of a simple polygon.
A simple polygon with $k$ vertices consists of $k$ different points of the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, $\ldots\left(x_{k-1}, y_{k-1}\right),\left(x_{k}, y_{k}\right)$, called vertices, and the straight lines between $\left(x_{i}, y_{i}\right)$ and $\left(x_{i+1}, y_{i+1}\right)$ for $1 \leq i \leq k-1$, called edges. Also the straight line between $\left(x_{k}, y_{k}\right)$ and $\left(x_{1}, y_{1}\right)$ belongs to the polygon. We demand that it is homeomorphic to a circle, and that there are no three consecutive collinear points $\left(x_{i}, y_{i}\right),\left(x_{i+1}, y_{i+1}\right),\left(x_{i+2}, y_{i+2}\right)$ for $1 \leq i \leq k-2$. Also the three points $\left(x_{k}, y_{k}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{k-1}, y_{k-1}\right),\left(x_{k}, y_{k}\right),\left(x_{1}, y_{1}\right)$ are not collinear.
We call this just described simple polygon a $k$-gon.
Theorem 1. Let $k$ be a natural number larger than 2 . Than there exists a tiling of the plane $\mathbb{R}^{2}$ by $k$-gons. We need infinite copies of only a single tile.

Proof. This theorem is well-known. Please see [1], p. 11.
There is another proof. For $k=3$ and $k=4$ and $k=6$ the theorem is trivial. For $k=5$ please see Figure 1. We take a regular 6 -gon and cut it into identical halves. See also the tiling in the case $k=6$.

Now let $k$ be a natural number larger than 6 .

[^0]- Possibility $1: k \equiv 0 \bmod 4$.

The numbers $k$ are $8,12,16, \ldots$
See Figure 2. As an example, we show one tile for the case $k=12$. The measures for the big square are $4 \times 4$, while the two small squares have measures of $2 \times 2$.

- Possibility 2: $k \equiv 1 \bmod 4$.

The sequence of the numbers of $k$ is $9,13,17, \ldots$
See Figure 3. There we show one tile for the case $k=13$.
The big square has sidelengths of 4 , while the small square has sidelengths of 2 . The two horizontal edges on the left have lengths 4 and 2 , respectively.They have a distance of 1 . The two sloped edges both have a length of $\sqrt{2}$.

- Possibility 3: $k \equiv 2 \bmod 4$.

The sequence of the numbers of $k$ is $10,14,18, \ldots$
See Figure 4. We show a 14 -gon. The square has a sidelength of 4 , the rectangle has measures of $2 \times 4$. The triangle on the left has sidelengths 4,2 , and $\sqrt{20}$. The triangle on the right has sidelengths 4 and $\sqrt{32}$.

- Possibility 4: $k \equiv 3 \bmod 4$.

The sequence of the numbers of $k$ is $7,11,15, \ldots$.
See Figure 5. Here we show a 15-gon.
The square also has a sidelength of 4 , both rectangles have measures of $2 \times 4$.

Figure 1:
$k=5$ and $k=6$


Figure 2:
$k=12$


Figure 3:
$k=13$


Figure 4: $k=14$


Figure 5:
$k=15$


## References

[1] http://www.willimann.org/A07020-Parkettierungen-Theorie.pdf
[2] http://www.mathematische-Basteleien.de/parkett2.htm
[3] Ehrhard Behrends: Parkettierungen der Ebene, Springer (2019)

Acknowledgement: We thank Dr. Ralf Donau for a careful reading of the paper


[^0]:    *49 (0)421591777, volker@thuerey.de

