
Tumbug: A pictorial, universal knowledge
representation method

Mark A. Atkins, Ph.D.
aginik@outlook.com

December 26, 2023

Abstract

Since the key to artificial general intelligence (AGI) is commonly
believed to be commonsense reasoning (CSR) or, roughly equivalently,
discovery of a knowledge representation method (KRM) that is par-
ticularly suitable for CSR, the author developed a custom KRM for
CSR. This novel KRM called Tumbug was designed to be pictorial in
nature because there exists increasing evidence that the human brain
uses some pictorial type of KRM, and no well-known prior research in
AGI has researched this KRM possibility. Tumbug is somewhat simi-
lar to Roger Schank’s Conceptual Dependency (CD) theory, but Tum-
bug is pictorial and uses about 30 components based on fundamental
concepts from the sciences and human life, in contrast to CD theory,
which is textual and uses about 17 components (= 6 Primitive Concep-
tual Categories + 11 Primitive Acts) based mainly on human-oriented
activities. All the Building Blocks of Tumbug were found to generalize
to only five Basic Building Blocks that exactly correspond to the three
components {O, A, V} of traditional Object-Attribute-Value repre-
sentation plus two new components {C, S}, which are Change and
System. Collectively this set of five components, called ”SCOVA,”
seems to be a universal foundation for all knowledge representation.

Contents

1 Introduction 6

1

2 Motivation 9

3 Overview and background of Tumbug 11

4 Derivation of Tumbug 13
4.1 Knowledge representation methods 13

4.1.1 The importance of KRMs in AI 13
4.1.2 Typical tradeoffs of KRMs 15
4.1.3 Clues to the type of KRM the brain uses 35
4.1.4 Ranking of KRM methods 38
4.1.5 Why dependency on learning is misguided 40
4.1.6 Criteria and heuristics that make Tumbug seem par-

ticularly promising . 40
4.2 Applicable systems from the real world 47

4.2.1 Physics . 47
4.2.2 Mathematics . 49
4.2.3 Other systems and the Big Picture 50

5 Object-like Building Blocks of Tumbug (O) 55
5.1 Singleton objects . 55

5.1.1 Object Circles . 55
5.1.2 State Circles . 64
5.1.3 Cells . 65
5.1.4 Pathway Tubes . 65
5.1.5 Sensor Bars . 66
5.1.6 Markers . 68

5.2 Collection objects . 74
5.2.1 Location Boxes . 74
5.2.2 Swirly Arrays . 91
5.2.3 XOR Boxes . 93

6 Attribute-like Building Blocks of Tumbug (A) 100
6.1 Attribute Lines . 100

7 Value-like Building Blocks of Tumbug (V) 104
7.1 Value Bars . 104

7.1.1 General . 104
7.1.2 Ranges . 105

2

7.1.3 Example: Goals . 109
7.1.4 Geometrical variations 109

7.2 Wildcards (further development anticipated) 111
7.3 Range Caps . 121

8 Change-like Building Blocks of Tumbug (C) 121
8.1 Single Time Arrows . 121
8.2 Motion Arrows . 125

8.2.1 Motion of objects . 125
8.2.2 Streams of objects . 128
8.2.3 Shorthand notation . 128

8.3 Force Arrows . 133
8.4 Causation Arrows . 134

8.4.1 Single causes . 134
8.4.2 Multiple causes . 139
8.4.3 Labeled causes . 140

8.5 Correlation Boxes . 140

9 System-like Building Blocks of Tumbug (S) 145
9.1 State Diagrams . 145

9.1.1 Overview . 145
9.1.2 Common pairs of states 149
9.1.3 Applications . 149
9.1.4 The importance of avoidance of assumptions 153

9.2 Split Time Arrows (further development anticipated) 154
9.3 Data Set Boxes (further development anticipated) 157

10 Rules for combining the single Building Blocks 159
10.1 Nonquans with Change Arrows 159
10.2 Attribute and Values . 161

11 Convenience Building Blocks of Tumbug 162
11.1 Label Strings . 162
11.2 Attend Rings . 165
11.3 Motivation Triangle . 167
11.4 The Modal Verb Icon . 172
11.5 The Robinson Icon . 172
11.6 Zoom Boxes . 181

3

11.6.1 General . 181
11.6.2 WS150 example: #52 (worm) 182

12 Generalized Building Blocks of Tumbug 183
12.1 Nonquantified Objects (= Nonquans) 184
12.2 Interchangeably Actualizable Maps (= IAMs) 185
12.3 Change Arrows . 185

13 Heuristics for converting sentences to Tumbug 186

14 Relationship to prior work 193
14.1 Conceptual Dependency theory 193

14.1.1 Building Blocks . 193
14.1.2 Slots . 194
14.1.3 Primitive Acts . 195
14.1.4 Overview of comparison 205

14.2 English grammar representation 213
14.2.1 Kolln sentence patterns 213
14.2.2 Allerton sentence patterns 236

14.3 Object-attribute-value (= OAV) triples 239
14.4 Vector graphics editors . 240
14.5 Semantic networks . 246

14.5.1 Kinship relations . 246
14.5.2 Specific objects versus generic objects 247
14.5.3 Intensions versus extensions 250

15 Applications of Tumbug 250
15.1 Natural language translation 250

15.1.1 Conversion from a natural language to Tumbug 252
15.1.2 Discussion of language translation 254

15.2 Mathematics: Arithmetic . 259
15.3 Logic: First Order Predicate Calculus 263

15.3.1 Syllogisms with Venn diagrams 263
15.3.2 Barbara form (AAA-1) 264
15.3.3 Celarent form (EAE-1) 267
15.3.4 Darii form (AII-1) . 271

15.4 Computer language representation 271
15.4.1 Sequential code . 273

4

15.4.2 Looped code . 277
15.4.3 Branching code . 277

15.5 Natural language representation 277
15.5.1 Categories of verbs . 277
15.5.2 Active tense versus passive tense 288
15.5.3 Grammatical time aspects 291
15.5.4 Modal verbs . 299
15.5.5 Propositional attitudes 312

15.6 Tumbug as software . 317

16 A few deep implications of Tumbug 321
16.1 SCOVA: an extension to OAV triples 321
16.2 Mathematical implications . 323

17 Insights from Tumbug 324
17.1 CD theory and Parts of Speech 324

18 Pros and cons of Tumbug 329
18.1 The main strengths of Tumbug 329
18.2 Possible weaknesses of Tumbug 329
18.3 Programs writing programs 331

19 Discussion of Tumbug 333

20 Summary 335

21 Future Research Plan 337
21.1 The Visualizer Project . 337
21.2 Roadmap of the next phases 338

21.2.1 Phase 2 (non-spatial reasoning) 338
21.2.2 Phase 3 (spatial reasoning) 339
21.2.3 Phase 4 (learning) . 339
21.2.4 Phase 5 (visualizer) . 339

22 References 339

23 arXiv response 347

5

1 Introduction

A major underlying problem with all natural language translation is that
there does not exist any universally accepted knowledge representation method
(KRM) for all natural languages. This problem in turn appears to be based
on a more fundamental problem: No known method exists, whatsoever, of
representing semantics (meaning) of sentences in any natural language.

Figure 1 shows that a universal representation would require exactly two
steps for any language conversion: one step from the source language repre-
sentation to the universal representation, then one more step to the target
language representation. Only 1-2 types programs would be needed, namely
1-2 program(s) that converted between the universal representation and any
specific language representation. This is a diagrammatic way to express an
”interlingual conceptual base,” as Roger Schank described it (Schank 1972,
pp. 553-554).

Figure 2 shows an extreme alternative: only one step would be needed
to convert from the source language representation to the target language
representation, but six total programs would be needed for arbitrary con-
version between three languages. In the first alternative, n languages would
always require only 1-2 types of programs, whereas in the second alternative,
n languages would always require n2 − n separate programs. The first type
of program would be concerned with only one type of mapping, the second
type would be concerned with n types of mappings, which suggests the first
type scales better and generalizes better, and is therefore ultimately a better
solution that saves on computer coding effort. Another motivation for the
universal approach is that it would likely lead to insights into the nature of
language in general, which in turn might also lead to insights into the rela-
tionships between language and other fields such as physics, math, computer
programming, and neuroscience.

This article presents a new KRM named ”Tumbug” that appears to be
universal for representing semantics, and therefore can represent any given
sentence in any natural language as a single data structure with appropri-
ately associated values. This structure-with-values combination appears to
be invariant for every language used to write a sentence that has the same
meaning, provided that the corresponding words have exactly the same mean-
ing across the two languages, and provided that all attributes of the corre-
sponding words across the two languages are the same. Thus Tumbug may
implement the ”universal representation”–the center circle of the three lan-

6

Figure 1: First alternative for language translation: This strategy uses one
universal representation, and would need only two programs for three lan-
guages.

7

Figure 2: Second alternative for language translation: This strategy uses no
universal representation, and would need six programs for three languages.

8

guage circles shown in Figure 1.
Emphasized clarification: This is a theoretical study, not an empirical

study. Misinterpretation of the nature of this study probably arises from
the common misinterpretation of the term ”artificial intelligence” to mean
”machine learning,” but machine learning is only one subfield within AI, and
the study in this document is not about the subfield of machine learning.

2 Motivation

The overall goal of this research is to advance progress in artificial general
intelligence (AGI). AGI is the ultimate goal of the larger field of AI in gen-
eral, although currently only the practical, applied aspects of AI–the subfield
of AI called artificial narrow intelligence (ANI)–is well understood, already
implemented, and making obvious progress. In contrast, the subfield of AI
called AGI is currently languishing and awaiting new ideas that will vitalize
it so that it too can be applied to real-life problems. Since AGI progress is
usually claimed to be based on Common Sense Reasoning (CSR) progress
(e.g., Davis 1990, p. 1; Devlin 1997, p. 167), the most promising subfield
of AGI to tackle appears to be CSR. Within CSR, one well-known test of
machine understanding of written language is the Winograd Schema (WS).
Therefore example sentences from the WS will be used in this study to gen-
erate generalities, insights, and examples into the data structures needed for
such a universal semantic KRM, and these insights will be implemented as
a KRM called ”Tumbug.” This KRM therefore has the potential to advance
the field of AGI. Figure 3 shows the relationship of the main subfields of AI.

Emphasized clarification: The author has never had any involvement with
the Winograd Schema Challenge (WSC), a competition that no longer even
exists. The WS is used here only as a convenient, well-known list of bench-
mark problems in CSR, and its presence in this document should not be in-
terpreted to mean that this research refers to some past, present, or future
submission to the WSC by the author.

A comment about notation: There exist various versions of the Winograd
Schema, each of which has a designation ”WS” or ”WSC” followed by the
number of sample problems in that schema (list). The WS version used in
this document is called ”WS150” because it has 150 problems (Davis 2018),
though that designation has not been used elsewhere. Some other named
versions of the WS are WSC273 (Kocijan et al. 2022, p. 2), which has 273

9

Figure 3: The field of AI is divided into ANI and AGI, and in turn the field
of AGI contains CSR. There is currently little or no overlap between ANI
and AGI except in trivial ways such as hierarchies or the massive training of
large language models (LLMs).

10

problems, and WSC285 (Kocijan et al. 2022, p. 6), which has 285 problems.
This article’s convention: WS150 problems quoted in this document have

the second word of the word pair omitted, for simplicity, clarity, and read-
ability. For example, the WS150 sentence ”The city councilmen refused the
demonstrators a permit because they [feared/advocated] violence” would ap-
pear in this document as ”The city councilmen refused the demonstrators a
permit because they feared violence.”

3 Overview and background of Tumbug

The author developed Tumbug from 2021-2023 in an attempt to universal-
ize all the grammars of all the natural languages for the purpose of making
foreign language learning easier. The word ”Tumbug” is a simpler, more
readable version of the acronym ”TUMBVG” (Temporal Universal Model-
Based Visual Grammar). The term ”visual” in the acronym means that
diagrams are used in this KRM instead of text, numbers, logic symbols, or
statistics, which makes Tumbug an extremely unique KRM of a type that no
one appears to have tried yet. The term ”model-based” means that this KRM
is intended to represent arbitrary models of systems, whether a mechanical
system of gears and pulleys, a biological system of organs and bodily fluids, a
physical system such as planets orbiting a star, or any other type of system.
The term ”temporal” means that the models represented also include time,
as opposed to static diagrams drawn on paper. Although Tumbug diagrams
are typically drawn on paper, Motion Arrows and Time Arrows in Tumbug
diagrams show where and how the components are moving relative to each
other, which in a good software implementation would literally appear as
moving images, such as via simulations or animated GIF files. The word
”grammar” originates from Tumbug’s originally intended use, namely lan-
guage translation based on sentence grammatical structure, but Tumbug can
be applied to any system whatsoever.

Figure 4 is a taxonomy of the main knowledge-based approaches to CSR,
based mostly on a list by Davis and Marcus (2015, p. 11) and a very similar
list with more details by Huang et al. (2020, p. 93), but organized here
by KRM: mathematics versus algorithm versus images. The highlighted cat-
egory ”Image-based” that includes ”Tumbug” is new to this diagram and
is the author’s approach promoted in this article. Note that Tumbug is not
only a completely new approach, but is also an entirely new class of approach

11

Figure 4: A summary of knowledge-based approaches to CSR. Tumbug is so
unique that it has its own category.

for CSR, one that has never been explored yet. This situation suggests that
Image-based CSR may contain much new ground for exploration.

So far all code-based approaches have been described as ”informal.” Tum-
bug might also be considered ”informal” because there is some flexibility in
how the visual structures are pieced together, although not much.

12

4 Derivation of Tumbug

4.1 Knowledge representation methods

4.1.1 The importance of KRMs in AI

The fact that KRMs are extremely important for AI is known to surprisingly
few researchers in the field. Related to this, very few AI researchers are
working on KRMs.

• Marvin Minsky said, ’Well, I’d like to have lots of people thinking
about how to combine different approaches. It’s not the different ap-
proaches themselves: it’s ’Why aren’t there more people making a ma-
chine that uses three different representations of knowledge and crosses
over?’ That’s a very specific kind of research project, and I see no one
doing it. So that’s, to me, that’s the missing link.” (GBH Archives
1990)

• Herbert L. Dreyfus wrote, ”A second difficulty shows up in connec-
tion with representing the problem in a problem-solving system. It
reflects the need or essential/inessential discrimination. Feigenbaum,
in discussing problems facing artificial intelligence research in the sec-
ond decade, calls this problem ’the most important through not the
most immediately tractable.’” (Dreyfus 1979, p. 298)

• Han Reichgelt wrote, ”Knowledge representation is a major concern
in Artificial Intelligence and its importance cannot be overestimated.”
(Reichgelt 1991, p. 1).

• John Sowa wrote, ”A knowledge representation is a fragmentary theory
of intelligent reasoning”. (Sowa 2000, p. 134) This suggests that a
KRM itself, even without being used in a computer program, is already
a partial model of intelligent reasoning.

• Laurence Harris and Michael Jenkin wrote, ”The representation of
knowledge is fundamental to human cognition and machine understand-
ing” (Harris and Jenkin 1997, p. 2).

• Heather Jenkin wrote, ”Fundamental to all human cognition is the
representation of knowledge” (Jenkin 1997, p. 268). It is therefore not

13

surprising that the field of knowledge representation arose from the
field of AI (Sowa 2000, p. XI; Cercone 1987, p. 3).

• Haugeland wrote: ”In other words, Artificial Intelligence must start
by trying to understand knowledge (and skills and whatever else is
acquired) and then, on that basis, tackle learning.” (Haugeland 1985,
p. 11).

There have been cases in the history of science when merely switching
to a different KRM was the key to major insights and rapid progress, if not
immediate solution to a single difficult problem. Some examples are: (1)
The switch from the awkward rules of Roman numbers to Arabic numerals,
especially when augmented by use of the placeholder digit ”0.” (2) Use of
Feymann diagrams to ease visualization of particle interactions in physics
(Fischler and Firschein 1987, p. 69). (3) Standardization of business infor-
mation in data base format for consistent, non-redundant storage and ease
of access through query languages. (4) The switch from a 1D list of elements
to the shaped 2D periodic table of the elements. (5) Use of phase portraits
to visualize chaotic systems (Gleick 1987, p. 317). (6) Discovery that the
KRM of genetics was a long chain of paired nucleobases from the set A, C,
G, T, where A pairs only with T, and C pairs only with G, within each link
of the chain.

As for some history on the terminology, the term ”knowledge-representation
method” dates back to at least 1974 with Marvin Minsky (Minsky 1974, p.
28). The abbreviation ”KRM” for this term is still occasionally found on the
Internet (in 2023). More recent terminology includes the term ”knowledge
representation language” (KRL) (e.g., Reichgelt 1991, p. 3; Luger and Stub-
blefield 1998, p. 293), but that term is avoided here because ”languages” are
usually assumed to be textual whereas Tumbug is not, which makes the term
somewhat misleading when applied to visual KRMs such as Tumbug.

The concept of knowledge representation is very close to the concept
of data structures in computer science. Technically a data structure is a
structured collection of data and a set of routines to create and manipulate
that data, whereas discussion of knowledge representation methods tends to
ignore any associated routines. Associated routines are generally ignored in
this document, as well.

Emphasized clarification: Tumbug is a knowledge representation method,
not an algorithm or program, therefore the system is inherently incapable of

14

learning in its current, non-software form. Misinterpretation of the nature
of this study probably arises from the common misinterpretation of the term
”artificial intelligence” to mean ”machine learning,” but machine learning is
only one subfield within AI, and the study in this document is not about the
subfield of machine learning.

4.1.2 Typical tradeoffs of KRMs

1. General properties
Numerous KRMs abound in the sciences, especially in computer science,

and even in games such as chess. In general, KRMs tend to share the follow-
ing general properties:

1. Each KRM has at least one competing KRM that can represent the
same knowledge.

2. Any given KRM will be inefficient in some way that one of its competing
KRMs will not.

3. When a system is rendered in a KRM that is particularly suitable for
a given type of problem, algorithms become highly simplified in that
KRM. In other words, a good KRM can solve the hardest part of any
given problem due to high efficiency arising from the closeness of the
system’s structure with the system’s description.

4. A KRM that attempts to be suitable for solving too many problems at
once becomes impractically large in its notational system. This is an
example of a time-space tradeoff: increased speed comes at the cost of
increased representation size.

5. KRMs that use ”exotic isomorphisms” (verbum Hofstadter 1979, p.
159) are typically so unwieldy that they are impractical for computa-
tional systems. Some examples of exotic isomorphisms are: (1) DNA
structure to represent phenotype structure (Hofstadter 1979, p. 160),
(2) cellular automata to represent numerical computations (Wolfram
2002, p. 640), and (3) an energy function to ”program” a continuous
Hopfield network to perform the appropriate optimization. Related
to exotic isomorphisms is the desirability of a representation to re-
main stable when the represented situation changes slightly (Fischler

15

and Firschein 1987, p. 69), since violation of this desideratum results
in discontinuous mappings. This strongly suggests that complexity is
another key constraint on system efficiency, in addition to the better
known constraints of time, space, and energy. The opposite of ”exotic
isomorphism” is ”prosaic isomorphism” (verbum Hofstadter 1979, p.
159). In other words, human designers should design only systems that
use prosaic isomorphisms.

More specifically, applied to the question of which type of KRM the brain
uses, these general properties can be interpreted as:

1. The brain’s KRM could be any one of multiple possibilities, including
a non-numerical KRM. This is exactly what Tumbug proposes: a non-
numerical KRM that the brain might realistically use.

2. A non-numerical KRM will likely be efficient at solving non-numerical
problems but inefficient at solving numerical problems. This is exactly
the difference that has been noticed since the early days of computer
science: humans are fast at spatial reasoning but slow and error-prone
at numerical reasoning, whereas digital computers are slow and error-
prone at spatial reasoning but fast and accurate at numerical reasoning.

3. A KRM that is a good candidate for the brain’s KRM might solve the
hardest part of CSR, which might result in the associated algorithms
being quite simple. This is exactly what the author claims: that Tum-
bug renders WS problems easily solvable via very simple algorithms.
In other words, the hardest part of the CSR problem might be easily
solvable by a suitable KRM.

4. A universal computing machine is the wrong approach for AGI. This
is exactly what the author claims: that digital computers will always
have their useful niche of solving large or intricate discretized problems
(such as graph problems, data bases, and number crunching) whereas
a non-numerical machine would likely have its niche in non-numerical
problems with noisy data. In other words, a non-computational/non-
computer-like architecture is likely the solution to AGI problems.

5. Exotic isomorphisms should be eschewed as a design heuristic when
developing intelligent machines, otherwise such machines will be too

16

difficult to program and to understand. This is one reason why the
author believes that that first practical, intelligent machines cannot be
based on cellular automata, chemistry, or quantum computers. In other
words, the first intelligent machines should use prosaic isomorphisms.

2. Examples of pairs of competing KRMs
In each of the three domain examples of this section, note that there

exist two main, competing KRMs, the ”best” of which depends on the type
of information elicited, and that both KRMs fail to be useful on the last
question, which means there likely exists a third KRM that is applicable and
efficient. There may exist yet more applicable KRMs beyond these three that
are not discussed.

2.1. Chess moves: algebraic notation versus descriptive notation
The earliest successful symbolic KRM for chess moves is called ”descrip-

tive notation.” For example, the most common first move on the chess board
would be called ”P-K4,” or ”pawn to king 4,” which means that the pawn in
front of the king (this pawn starts on the 2nd row of the chess board) moves
to the 4th row of the chess board. In contrast, the modern, favored KRM
for chess moves is ”algebraic notation.” For example, the move that is called
”P-K4” in descriptive notation would be called ”e4” in algebraic notation,
which means that the pawn in question (a pawn is implied because no piece
letter precedes the pair of characters) moves to the square represented by ”e”
(= the 5th column from the left) and ”4” (= the 4th row from the bottom).
See Figure 5 and Figure 6.

1. Question: In the move by White, KPxQP (or exd5), what is the des-
tination square of the capturing pawn?
The best KRM to generate the answer: Algebraic notation, since
the answer d5 is already provided in that notation, and this answer
cannot be determined by descriptive notation, which can only list all
five possibilities, namely exd3, exd4, exd5, exd6, exd7.
The simple algorithm used: For move Xij, where X = the unit
letter (N, B, R, Q, K, or nil for pawn moves) with a possible capture
sign (= ”x”), and where ij are the last two characters in the string, the
destination square is (i, j).
Answer, and how it was generated: For the move Xij = exd5, ij
= d5, which is the answer.

17

Figure 5: Examples of two KRMs for chess: The shown chess move can be
represented as ”e4” in algebraic notation, based on the indices on the left, or
as ”P-K4” in descriptive notation, based on the indices on the right. Which
is ”best” depends on the type of information elicited.

2. Question: How would one describe the moves P-QR3 and P-KR3 in
general, regardless of the player and the side of the board?
The best KRM to generate the answer: Descriptive notation,
since the answer is the intersection of the two move representations,
namely P-R3, whereas algebraic notation can only list all four possibil-
ities, namely a3, h3, ...a6, ...h6.
The simple algorithm used: For moves X and Y, the general de-
scription of that move is X∩Y, where the result treats any nils as empty
strings that will not show when concatenated.
Answer, and how it was generated: For the two moves P-QR3 and
P-KR3, we calculate P-QR3 ∩ P-KR3 = P-R3, which is the answer.
(See Figure 6.)

3. Question: In the move P-K4 (or e4), from which square did the pawn
originate?
The best KRM to generate the answer: Neither, since neither
notation carries this information. Descriptive notation can only list all
two possibilities, namely K2-K4, K3-K4, and algebraic notation can

18

Figure 6: The more general chess move called ”P-R3” can refer to either side
of the board (kingside or queenside) and to either player (White or Black).
This diagram shows all four possibilities.

Figure 7: The mentioned hypothetical combined notation clearly shows that
increasing the power of the representation (in this case by including more
information) tends to increase the size of the representation, in this case in
the form of a longer textual description.

19

Figure 8: The mentioned hypothetical combined notation approaches a de-
tailed diagram of an arbitrary object’s trajectory.

only list all four possibilities, namely e2-e4, e3-e4, ...e7-e5, ...e6-e5.
Another, more verbose type of notation would be needed, such as long
algebraic notation (e.g., Eade 1996, p. 331).
An example of both representations combined into a third,
hypothetical representation: For a given player (White or Black),
a combined notation that would carry all this information could be S1

U1@X1AS2 U2@X2, where S1 = side of board (K or Q) of the moving
unit, U1 = originating unit (P, N, B, R, Q, or K), X1 = originating
square, A = action (- or x, for ”to” or ”takes”, respectively), S2 =
side of board of the destination square, U2 = the unit on the destina-
tion square (”E” if the destination square is empty), X2 = destination
square, and the square coordinates can have any representation desired
(such as from algebraic or descriptive notation). (See Figure 7.) For
example, for the move e4 (or P-K4) of the Ruy Lopez opening, this
generalized notation would be KP@e2-KE@e4, and for the move exd5
(or KPxQP) of the Center Counter Defense, this generalized notation
would be KP@e4xQP@d5.
Answer, and how it was generated: The move e4 would be repre-
sented as S1 U1@X1AS2 U2@X2 = KP@e2-KE@e4, and the originating
square is the variable X1 in this string, therefore via matching, X1 =

20

e2, which is the answer.

2.2. Elements: list versus periodic table

1. Question: What is the name of the element that has 18 protons?
The best KRM to generate the answer: A list, since the list
equivalent of the periodic table would be ordered by atomic number,
which is the number of protons in an element, and a list can be easily
stored on paper (as a written list) or on computer (as a data base or a
narrow array), and simply traversed with that structure, either by eye
or by computer.
The simple algorithm used: For a given, specified number of pro-
tons i, look up the name of the element at item #i in a list ordered by
atomic number.
Answer, and how it was generated: The element at position #18
in the list has the name argon, which is the answer. See Figure 9.

2. Question: Is element #49 (indium) a metal?
The best KRM to generate the answer: The periodic table, since
a clearly defined region occupying about the left 3/4 of the periodic
table is metals, and all other regions are nonmetals.
The simple algorithm used: If the column of the element in ques-
tion is ≥ 3 and ≤ 12, and if its row is ≥ 4 and ≤ 7, then the element
is a metal, else it is not a metal.
Answer, and how it was generated: Indium is located at column
13, row 5, and since column 13 is ≥ 12, this location is outside of the
metal region, indium is not a metal. See Figure 10.

3. Question: Which superheavy elements, not yet seen, are most likely
to be stable?
The best KRM to generate the answer: Neither, since neither
notation carries enough information to make such a prediction. Not
only are several more pieces of information (attributes of the element)
needed that are not carried in smaller periodic tables, but nuclides
(alternative physical forms of each element) must also be listed, in con-
trast to the regular periodic table that shows only the most common

21

nuclide. The additional information needed includes: (1) the number
of neutrons, not just the number of protons, (2) half-life information
for measuring stability. Also, a spatial arrangement of the number of
protons and neutrons is needed for efficiency so that estimates can be
made about regions of high stability by using spatial direction and clus-
tering information that results, and the range of proton-neutron values
of such nuclides. Ultimately the best way to show the result is by a 3D
plot called a ”stability graph” of proton number, neutron number, and
half-life, as in Figure 11.
An example of both representations combined into a third
representation: See Figure 12. The same information can be carried
by both the periodic table and stability graph, but there are deep visual
alterations. For example, the periodic table’s 2D regions, such as the
region of metals that is shown in blue, disappears because a stability
graph ”straightens out” the 2D periodic table that was folded along the
Z (= number of protons) axis into a straight Z axis, so any 2D region
becomes scattered across the 1D Z axis. Also, the half-life information
(th) that was textual in the periodic table becomes plotted as a point
in a stability graph since that value is of the highest concern in the sta-
bility graph. Also, typical periodic tables do not include more than one
nuclide per element, though the figure shown illustrates how a periodic
table would logically include multiple nuclides per element, a scheme
that causes the periodic table to become 3D with nuclides stored along
the N (= number of protons) axis. In this case a generic representation
of both KRMs at once would require a data base (or spreadsheet) +
sort and subsort operation + list folding (see Figure 14) + plot abil-
ity. With such a foundation, an extended periodic table and stability
graph could be converted to one another in either direction. Whether
numerical data is represented as a data in a data base or a plot is only
a preference in how it is viewed, not as an important distinction in
KRM. (See Figure 13.)
Answer, and how it was generated: Visually it can be seen that
the center of the cluster called the ”island of stability” is at the coor-
dinates Z = 114 protons and N = 184 neutrons, which corresponds to
element 114, or nuclides of copernicum (= element 112) and flerovium
(= element 114).

22

Figure 9: A list of elements. The elements are listed here in order of atomic
number. This is basically a 1D data structure where each cell contains an
embedded 1D list of attributes.

23

Figure 10: A periodic table. Note that the metals form a clear-cut, roughly
rectangular region (colored in blue here, which are: Sc through Zn, Y through
Cd, Hf through Hg, and Rf through Cn) when elements are organized into
this periodic table. This table is roughly a 2D data structure where each
cell contains an embedded 1D list of attributes. (Source: Public Domain,
PubChem via NIH.)

24

Figure 11: A stability graph. Knowledgeable prediction of stable heavy
elements requires spatial assessment of nuclides of the basic elements. This
is a 3D data structure. (Source: unknown.)

2.3. Series notation: infinite series versus infinite product

1. Question: Is it easier to take the derivative of an infinite series, as in
Figure 15, or an infinite product, as in Figure 17?
The best KRM to generate the answer: Infinite series.
The simple algorithm used: Take the derivative of each term. At
the end, add all the terms. If this were an infinite product expression,
it would instead be necessary to use the product rule (fg)’ = f’g +
fg’, which requires taking two derivatives, two multiplications, and one
addition per factor, as well as adding all the terms at the end. See
Figure 16.
Answer, and how it was generated: The infinite series in Fig-
ure 15. See the steps of differentiation in the lower levels that figure.

2. Question: Is it easier to find the roots of an infinite series, as in Fig-
ure 18, or an infinite product, as in Figure 17?
The best KRM to generate the answer: Infinite products.
The simple algorithm used: Set each factor in the product to 0,

25

Figure 12: The stability graph has the same information as a periodic table
that includes nuclides and half-life (t 1

2
) information, but the information has

been spatially rearranged.

26

Figure 13: For numerical data, plots carry the same information as a data
base, and vary only in the way the data is viewed.

Figure 14: A list in which attributes form a pattern can be easily folded
into a 2D table, but the resulting table may not be purely rectangular. The
reverse operation of unfolding such a table into a list is even easier.

27

and solve each such equation for x.
Answer, and how it was generated: The infinite series in Figure 17.
Set 1-(x2) = 0; 1-(x2/4) = 0; 1-(x2/9) = 0, etc., or equivalently: set x2

= 1, which has solution x = 1; set x2/4 = 1, which has solution x = 2;
set x2/9 = 1, which has solution x = 3, etc.

3. Question: Which representation is likely to be the easiest for proving
that a number is irrational: infinite series or infinite products?
The best KRM to generate the answer: Neither, considering the
history of the first proofs of irrationality for the numbers π and e. Both
of those first proofs were based on continued fractions, which are nei-
ther infinite series nor infinite products.
An example of both representations combined into a third
representation: Infinite sums and infinite products can be artificially
generalized by introducing an auxiliary function ”a” that can be set to
a binary operator such as addition, multiplication, or exponentiation:
a(x, y) = (x + y) or (x * y) or (xy). An infinite sequence of simple
expressions to be combined can then be described by using recursion in
conjunction with this function ”a” as follows: Pn = a(Pn−1, tn), where
Pn is the current partially accumulated value to be computed, Pn−1 is
the previous partially accumulated value computed, and tn is the cur-
rent term to be included. For example, the infinite series 1 + (1/2) +
(1/4) + (1/8) + ... = 1/20 + (1/21) + (1/22) + (1/23) + ... could be
represented with this new notation as Pn = a(Pn−1, (1/2)tn−1), where
a(x, y) = (x + y) to designate summation, t0 = 1, P0 = 1, ti = (1/2)ti−1

= (1/2)1 = 1/2. Therefore P1 = a(P0, (1/2)t0) = 1 + (1/2)1 = 1 +
1/2, and t1 = (1/2)t0 = (1/2)1 = 1/2; P2 = a(P1, (1/2)t1) = (1 + 1/2)
+ (1/2)(1/2) = 1 + 1/2 + 1/4, and t2 = (1/2)t1 = (1/2)(1/2) = 1/4;
P3 = a(P2, (1/2)t2) = (1 + 1/2 + 1/4) + (1/2)(1/4) = 1 + 1/2 + 1/4 +
1/8, and t3 = (1/2)t2 = (1/2)(1/4) = 1/8; etc. Some simpler continued
fractions can also be represented with this recursive general notation if
a(x, y) is set to k + 1/a(x, y), but more complicated continued frac-
tions may need an additional auxiliary function. In general, a pair of
coupled recursive formulas are needed, one for the numerator and one
for the denominator (Khinchin 1964, p. 4). For a simple example,

√
2

= 1 + (1/(2+1/(2+1/(2+1/...)))) in continued fraction form, which
recursively would use k = 2, or a(x, y) = 2 + 1/a(x, y).

28

Figure 15: An infinite series (= sum) can be differentiated easily, per term.

Answer, and how it was generated: Partial fraction representa-
tion was historically the basis of the first proof that π is irrational,
proven by Lambert in 1767, and by Legendre in 1794 (Beckmann 1971,
pp. 170-171) (Figure 19), as well as the first proof that e is irrational,
proven by Euler in 1737 (Maor 1994, p. 192) (Figure 20). Since these
two numbers are the most famous and most commonly occurring natu-
ral mathematical constants, history suggests that partial fractions are
the best representation for proving that a given natural mathematical
constant is irrational.

3. Generalizations from the specific KRM examples
Further examples beyond the three specific KRM examples would be pro-

hibitively long for this document, but in general the following observations
seem to hold for all KRMs:

1. The best KRM to use for a given domain depends on which information
needs to be made more explicit, though in making that information
more explicit, some other information is usually made less explicit to

29

Figure 16: An infinite product cannot be differentiated easily, since the Prod-
uct Rule requires an indefinite number (k) of products be multiplied by an
indefinite number (k) of sums as k approaches infinity.

Figure 17: An infinite product with an infinite number of roots, all easy to
find.

Figure 18: An infinite series with an infinite number of roots, which are
difficult to find, in general.

Figure 19: This continued fraction representation for tan(x) and the accom-
panying identity were used in the first proof that π is an irrational number.

30

Figure 20: This continued fraction representation for e was used in the first
proof that e is an irrational number.

compensate for the increase in representation size. This is already a
very well-known heuristic in computer science.

2. It is possible to retain both types of information in the KRM as one
type needs to be made more explicit, but the cost will be the increase
in representation size.

3. No matter which new KRM is used for each increase in types of in-
formation retained, there will always be some application that needs
yet another, different KRM, until a KRM with maximum complexity
is reached for that domain.

4. As the representation size becomes large, the KRM approaches a max-
imum complexity in a way that suggests some very general form of
KRM, such as a generic data base without specifying any specific ta-
bles, records, or fields, or a generic neural network without specifying
any specific number of layers, number of neurons, or connection pat-
tern.

5. Systems with shaped objects in motion reach maximum complexity in
the representation form of simulation type systems (i.e., SCOVA rep-
resentation). Examples of such systems include board games, puzzles,
folding molecules, and the piano mover’s problem.

6. Systems without shaped objects, motion, aggregation, or rules for di-
rectly combining objects reach maximum complexity in the represen-
tation form of data base type systems (i.e., OAV representation). Ex-

31

Figure 21: A difficult problem can often be solved by decomposing it first
into an appropriate KRM, which then leads to a simple algorithm. The bulk
of the effort in solving the problem therefore goes into development of the
KRM.

amples of such systems include data bases, data sets, and the periodic
table of the elements.

7. Systems with aggregation but without shaped objects or motion, but
with rules or heuristics for directly combining objects reach maximum
complexity in the representation form of formulas or grammars (i.e.,
OAV representation), where a large number of relatively simple com-
ponents of limited types combine according to simple rules or heuristics
to form very impressive structures or descriptions. Examples of such
systems include mathematics, music, language, chemistry, and genetics.

4. Problem decomposition into KRM + algorithms
The aforementioned generalizations about KRMs can be viewed as a

method of decomposing a difficult problem into two parts: the KRM and
the algorithm that works on pieces that use that KRM. See Figure 21.

Recent evidence from modern large language models (LLMs) suggests
that statistical learning works impressively well for giving the illusion of
intelligence operating behind chatbots based on LLMs. Although such sys-
tems have no understanding of what any of the words mean, and cannot do

32

binding or explicit spatial reasoning, an important lesson learned from their
performance and popularity is that massive statistical training can work ex-
tremely well in providing smooth, real-time, plausible, default assumptions,
and can occasionally even give rise to spontaneously emergent behavior such
as arithmetic abilities (Rorvig 2021, p. 39).

The author believes that the aforementioned behavior from LLMs sug-
gests that CSR will decompose into six instead of two main components,
where the first pair of components deals with knowledge matching, and the
last pair of components deals with learning. The training time for learned
CSR knowledge is necessarily very lengthy, essentially of the same order of
magnitude as for human CSR learning, and although this is a complication,
time is not shown in the algorithm decomposition diagram of Figure 22. If
this proposed decomposition strategy holds true for CSR then the implica-
tion is that Phase 1 alone of this project will be highly incomplete because
it address only two components–KRM and algorithm–not lengthy learning
time. This is where the fusion of explicit and implicit memory merge: this
current study uses explicit memory in the form of connected groups of icons,
but true general intelligence will need to have both forms of memory, includ-
ing statistical fusion of huge numbers of Tumbug icon structures in order to
immediately default to proper associations and temporal continuations. This
current direction of study must start somewhere, however, so the issues of
training on Tumbug icon structures are deferred for future work. Hopefully
the follow-up work will be greatly simplified due to the ability of the Tumbug
KRM to represent knowledge in a useful and profound way, which echoes
Haugeland’s statement: ”It may even happen that, once the fundamental
structures are worked out, acquisition and adaptation will be comparatively
easy to include” (Haugeland 1985, p. 11). On the positive side, conventional
neural network training per se is mostly straightforward, although generat-
ing quality training data is a challenge. Also, a certain amount of Tumbug
programming can substitute for naive training, especially with Correlation
Boxes, whose function mappings can resemble the mappings of neural net-
works.

As most highly experienced people will confirm, especially teachers of
enormous topics such as a given foreign language or chess, there is no sub-
stitute for experience. General intelligence, just like large academic topics,
requires an very large number of training experiences over large spans of time
in order to generalize and predict properly. Some of this burden can probably
be eased by explicit programming of some heuristics, but the amount, qual-

33

Figure 22: The author’s prediction: CSR will require three algorithms in
its decomposition, and all will be based on a KRM like Tumbug. The bulk
of the effort in solving the problem therefore goes into development of the
KRM.
KRM = knowledge representation method (viz. Tumbug)
KMA = knowledge matching algorithm (probably a special case of the SRA)
SRA = spatial reasoning algorithm
LA = learning algorithm

34

ity, and detail of knowledge learned by the human brain is incredibly vast,
too vast to encode, even when summarized with explicitly coded heuristics.
This implies that there is no shortcut to overcome the need for vast amounts
of training, which usually involves vast amounts of time.

4.1.3 Clues to the type of KRM the brain uses

Not many AI researchers have directly conjectured what type of KRM the
human brain might use, but a few researchers have provided clues:

1. Per Roger Schank, predicate calculus is insufficient (Schank 1976, p.
172). Prior to Schank’s CD theory, predicate calculus was the only
suggested canonical form of propositional information (Schank 1976, p.
172), which is one indication of the paucity of research into KRMs for
AGI, a situation that still persists today (as of 2023). Implication: The
brain’s KRM is more powerful in representational power than predicate
logic.

2. Roger Schank reasons that a canonical language representational scheme
could not have natural-language words as its elements since natural
language is too ambiguous (Schank 1976, pp. 171-172). In fact, this
limitation was Schank’s motivation for creating CD theory. Implica-
tion: The brain’s KRM is more powerful in representational power than
the tree data structure, which is used in sentence diagramming.

3. William A. Woods wrote, ”Viewing the knowledge base of an intelligent
agent as a model of the external world focuses attention on a number
of problems that are not normally addressed in database systems or
knowledge-based expert systems.” (Woods 1986, p. 1323) Implication:
The brain’s KRM is more powerful in representational power than data
bases or rule-based expert systems, which means more powerful than
tables or trees, even when outfitted with search and matching routines,
even when outfitted with an uncertainty management system such as
confidence factors, fuzzy logic, or Dempster-Shafer theory (e.g., Coppin
2004, p. 483).

4. Ben Coppin wrote, ”The human mind uses some form of representa-
tion for all concepts, which enables us to understand such abstract
ideas as ”happiness,” ”lateness,” and ”common sense.” . . . Clearly

35

this internal representation has a lot to do with our ability to think, to
understand, and to reason, and it is no surprise, therefore, that much
of Artificial Intelligence research is concerned with finding suitable rep-
resentations for problems” (Coppin 2004, p. 466). Implication: The
brain’s KRM needs to represent abstract concepts as well as concrete
concepts.

In summary, it is clear the human brain’s KRM is much more complex
and expressive than any of the commonly used KRMs of AI. At the least, the
human brain’s KRM covers any form of symbols. Jerry A. Fodor wrote, ”I
suspect that the representational system with which we think, if that’s the
right way to describe it, is so rich that if you think up any form of symbolism
at all, it probably plays some role in thinking” (Fischler and Firschein 1987,
p. 308). Similarly, John Haugeland wrote, ”AI has discovered that knowledge
itself is extraordinarily complex and difficult to implement–so much so that
even the general structure of a system with common sense is not yet clear”
(Haugeland 1985, p. 11).

Side conjecture: The KRM used by the human brain may be at or above
the pictorial level of representation in a list of KRMs ordered by their repre-
sentational power that has the most powerful KRMs at the top.

One possibility is that the human brain’s KRM involves images, or some
something like images (= ”imageoids”), which a possibility that has been
suggested by several authors over the years, and even has an entire book
devoted to the topic, viz. Kosslyn et al. 2006:

1. Martin Fischler and Oscar Firschein believe the mind uses two, major
representations, namely propositions and images (Fischler and Firschein
1987, p. 308), though they admit that, when considering images, some
representations are isomorphic to images but would not be considered
images per se. Fischler and Firschein mention some important advan-
tages and disadvantages of using images as a KRM.

2. John Haugeland notes, ”The beauty of images is that (spatial) side
effects take care of themselves. If I imagine myself astride a giraffe, my
feet ’automatically’ end up near its belly and my head near the middle
of its neck. If I have a scale model of my living room, and I put the
model couch in the front alcove, it ’automatically’ ends up by the bay
window and opposite the door. I don’t have to arrange for these results

36

deliberately or figure them out; they just happen, due to the shapes of
the images themselves” (Haugeland 1985, p. 229).

3. James Hogan wrote, ”Vision and language involve what are perhaps our
most complex and abstract representations of the external and internal
realities we experience. Comprehending how they operate would get
close to the core of what true intelligence is all about” (Hogan 1997, p.
179).

4. Kenneth Haase came up with an idea of visual memory that influenced
Marvin Minsky’s idea of K-lines (Minsky 1986, p. 82), which is a
theory of memory. ”You want to repair a bicycle. Before you start,
smear your hand with red paint. Then every tool you need to use will
end up with red marks on it. When you’re done, just remember that
red means ’good for fixing bicycles.’ Next time you fix a bicycle, you
can save time by taking out all the red-marked tools in advance.” He
then generalized this idea to different colors for different jobs.

5. Rodney Brooks wrote: ”There is certainly no AI vision program which
can find arbitrary chairs in arbitrary images; they can at best find one
particular type of chair in carefully selected images. This character-
ization, however, is perhaps the correct AI representation of solving
certain problems; e.g., a person sitting on a chair in a room is hungry
and can see a banana hanging from the ceiling just out of reach. Such
problems are never posed to AI systems by showing them a photo of
the scene. A person (even a young child) can make the right inter-
pretation of the photo and suggest a plan of action. For AI planning
systems, however, the experimenter is required to abstract away most
of the details to form a simple description in terms of atomic concepts
such as PERSON, CHAIR and BANANAS.” (Brooks 1992, p. 143)

6. Donald R. Tveter wrote: ”The fact that people do store many memories
as pictures and do at least some of their reasoning about the world
using pictures ought to be one of the most obvious principles of all, and
yet it has been neglected, in part due to the predominance of symbol
processing and in part due to the fact that processing pictures is still
underdeveloped and has not been used in conjunction with representing
the real world in programs where the goal of the program is to reason
about the real world.” (Tveter 1998, p. 18)

37

The fact that imageoids are such an obvious candidate for the brain’s
KRM and yet are still not being researched to any great extent is puzzling.
If a breakthrough in AGI is going to be made, this is likely the subject area
in which it will occur. This is why the Tumbug KRM has been based on
imageoids.

4.1.4 Ranking of KRM methods

Can the ”best” KRM be determined by its properties alone? Probably, but
this has not been done yet. Only a few authors have mentioned ways to
measure the relative power of KRMs. One is Arthur B. Markman, who
suggested three attributes (Markman 1999, p. 14):

1. the duration of the representational states

2. the presence of discrete symbols

3. the abstractness of representations

The following previously unpublished, additional criteria would likely be
useful, as well:

1. analog representation capability (e.g., for representing time/space with
indefinite precision)

2. data structure intricacy or nonlinearity (e.g., tree structures are more
intricate than lists)

3. ability to represent time (e.g., for representing moving images, or other
changes over time)

Another such author is Han Reichgelt (Reichgelt 1991, p. 5), who divided
KRMs into two practical considerations:

1. syntactic aspects - ”the naturalness and the expressiveness” of the
KRM

2. inferential aspects - ”the power of the underlying inference machinery”

Despite the lack of consensus on this topic, the following hierarchy at-
tempts to show a few well-known KRMs, and the author’s estimate of their
approximate representation power relative to each other, where #1 is the
most powerful KRM listed here.

38

1. pictures or illustrations

2. directed graphs (e.g., semantic nets, knowledge graphs, state diagrams,
DFAs, NFAs)

3. directed acyclic graphs

4. trees

5. binary trees

6. jagged arrays

7. arrays or adjacency graphs

8. Venn diagrams

9. lists

10. vectors

11. scalars

A few other KRMs such as predicate calculus, pushdown automata, CD
theory, and Petri nets are not on this list since their advantages and disad-
vantages involve attributes that are distributed across multiple dimensions
and are distributed excessively across even the levels of a 1D list.

The ”pictures” type of KRM mentioned at #1 occurs in Tumbug only
inside of a Location Box of some type, which is a Tumbug Building Block
icon for representing space. Such pictures may be represented verbatim, in
which case a Verbatim Box is used, or they can be abstracted into general
regions and general objects without being rigidly specified, in which case
a Descriptive Box is used. Together these types of Location Boxes allow
concrete images and abstracted images to be represented, or both types mixed
together. The fact that Tumbug uses the most powerful KRM, viz. images,
suggests that Tumbug could be the most powerful KRM developed so far,
provided that its Building Blocks prove to be strong and consistent.

Side conjecture: In theory, it is likely that ultimately no canonical form of
meaning exists, any more than a canonical description of 2D shapes exists,
since any given description can be based on different conceptual foundations
that can be combined in uniquely different ways that produces unmatched

39

forms. However, in practice there usually does exist a description that is
more intuitive or natural than others, and usually also simpler than others,
which in practice serves as the canonical form.

4.1.5 Why dependency on learning is misguided

A common fallacy is that all that is needed to produce AGI is to let a system
learn. Haugeland (1985, p. 11) described this misconception well:

”Learning is the acquisition of knowledge, skills, etc. The issue is typi-
cally conceived as: given a system capable of knowing, how can we make it
capable of acquiring? Or: starting from a static knower, how can we make an
adaptable or educable knower? This tacitly assumes that knowing as such is
straightforward and that acquiring or adapting it is the hard part; but that
turns out to be false. AI has discovered that knowledge itself is extraordi-
narily complex and difficult to implement–so much so that even the general
structure of a system with common sense is not yet clear. Accordingly, it’s
far from apparent what a learning system needs to acquire; hence the project
of acquiring some can’t get off the ground.”

Figure 23 shows basic conceptual components of processors (both for IT
and AGI) and their dependencies. Note that learning is dependent upon
data structures or knowledge structures, or in general learning is dependent
of structured data/information/knowledge/wisdom (DIKW), which in turn
are based on KRMs. Therefore there exists no easy way to avoid KRMs
because they are basic to every processor of which humans can perceive.

4.1.6 Criteria and heuristics that make Tumbug seem particularly
promising

1. The-only-move that-doesn’t-lose Principle
Every current AI design appears to have at least one fatal flaw that

prevents it from every achieving true general intelligence status. An overview
is shown in Figure 24. A question mark in the table means ”unknown.”
Merely by virtue of being new, Tumbug has a particularly promising design
because most of its table cells are still blank because not enough research has
been done on Tumbug to identify any fatal flaws. Although many blank cells
seems to be weak justification of a promising design, Tumbug was specifically
designed to overcome the flaws of every major AI paradigm. Also, by analogy,

40

Figure 23: Conceptual dependencies in processors. Note that KRMs underlie
both types of processors.

41

Figure 24: Some of the most promising current approaches to AGI.

a row of the table is like an evaluation of physical paths through a rugged
landscape, where the traveler knows in advance that at least one navigable
path exists: many paths can be tentatively ruled out because they appear
to have impasses, whereas a path where nothing is known has a greater
likelihood of being one of the paths that are navigable. This type of ignorance
evaluation logic also appears in chess, where the proper move can sometimes
be chosen only because all the well-known alternatives are known to lose,
therefore the best candidate for the best move is a move of which little is
known.

2. Organization is more important than performance
Some of the deepest insights into the nature of intelligence and its rela-

tion to AI come from well-known authors who emphasize that what is not
important for producing AGI is not speed (therefore faster computers, par-
allel computers, and quantum computers will not be the key to AGI) or
superficially impressive results, but rather the organization of the system.
AGI will clearly need a clever type of underlying organization that has not
yet been publicly considered. Below are some quotes to this effect.

Marvin Minsky: ”Hardware is not the limiting factor for building an
intelligent computer. We don’t need supercomputers to do this; the problem

42

is that we don’t know what’s the software to use with them. A 1 MHz
computer probably is faster than the brain and would do the job provided
that it has the right software.” (Sabbatini 1998)

Jeff Hawkins: ”According to functionalism, being intelligent or having
a mind is purely a property of organization and has nothing inherently to
do with what you’re organized out of. A mind exists in any system whose
constituent parts have the right causal relationship with each other, but those
parts can just as validly be neurons, silicon chips, or anything else.” (Hawkins
2004, p. 36)

3. Pei Wang’s tables
Professor Pei Wang, in his course on AGI at Temple University, Philadel-

phia, collected and summarized the approaches to AGI that he considers the
most promising, which are listed in Figure 28. His list of criteria is shown
in Figure 27. The architectures are allowed to come from any of three types
of integration, which are listed in Figure 25. The ”integrated” type is the
same concept that the author called ”fusion” type in 2000 (Atkins 2000),
which is the type that the author favors. The author’s Visualizer Project
that includes Tumbug fits two out of three of Wang’s criteria for a promising
AGI architecture:

1. The Visualizer Project is not application-specific, therefore Tumbug
fits criteria #1.

2. The Visualizer Project is still currently being worked on, therefore
Tumbug fits criteria #2.

3. The Visualizer Project is too new to be documented well, therefore
Tumbug does not fit criteria #3.

Wang’s last two criteria are based on the current worldly success of a
given architecture, so if an architecture fails to meet either of these criteria it
does not necessarily mean that the architecture is deficient per se, only that
it is not popular for some reason.

Regarding Wang’s three categories of combined architectures (viz., hy-
brid, integrated, and unified), see Figure 26. Some examples of two different
architectures being combined in these three ways in a single system are:

• rule-based expert system + neural network (NN):

43

Figure 25: Wang’s three types of combined systems are hybrid, integrated,
and unified.

1. hybrid: each type of architecture can be called from a program
running in the system, as needed

2. integrated: a heuristic search can use the expert system for the
search, and the NN for the heuristics

3. unified: the rule-based expert system is implemented with artifi-
cial neurons

• digital computer + analog computer:

1. hybrid: each type of computer can be called from a program run-
ning in the system, as needed

2. integrated: the digital computer performs only algebraic opera-
tions, and the analog computer performs only calculus operations

3. unified: each calculation is done in analog, but is iterated digitally
to confirm accuracy

• object-oriented program + data base program:

1. hybrid: each type of program can be called from a program run-
ning in the system, as needed

2. integrated: the data base holds the initial values of each object,
and the object-oriented program performs simulations with these
objects

3. unified: an object-oriented data base

4. Kocijan’s criteria

44

Figure 26: A diagrammatic view of Wang’s list of three strategies for com-
bining existing disparate architectures. Per Wang, the ideal strategy for AGI
is unified, which happens to be the type that Tumbug is.

Figure 27: Wang’s table of criteria of promising AGI approaches.

45

Figure 28: Wang’s table of some of the most promising AGI approaches.

Kocijan et al. (2022) assessed different approaches used so far to solve
WSC problems, and mentioned the following five desiderata. Each desidera-
tum below is listed with a comment about how Tumbug (or more generally,
a visualizer) is believed to obviate the mentioned pitfall. Page numbers in
this list refer to the aforementioned reference.

1. The inference should be carried out automatically, before the question
points out the anomaly (p. 4).
A visualizer conforms to this criterion, but demonstration of this will
require a knowledge matching algorithm, which will not be fully inves-
tigated and documented until the end of Phase 2. Tumbug is quite
simple, so an architecture such as a visualizer using Tumbug does not
require ”commonsense reasoning of some depth and complexity” (p.
4). A visualizer is a novel implementation of a ”reflexive reasoning”
architecture (cf. Shastri and Ajjanagadde 1990).

2. The approach should not be easily solvable using word correlation (p.
16).
As used so far, the Tumbug approach completely ignores the statistics
of word frequency or word correlation, so obviously Tumbug bypasses
this pitfall.

3. The approach should demonstrate some semblance of CSR, not merely
technical tricks (pp. 7-8).
Because Tumbug uses a visual grammar that the author believes is uni-
versal across all natural languages, and because Tumbug deals with the

46

actions of real-world objects, at the very least each scenario that Tum-
bug visualizes could be run as a video simulation, which would confirm
that the correct corporeal actions on the correct corporeal objects are
being used.

4. The system should have reasoning capability, not just general pattern
mapping as in neural networks (p. 23).
Tumbug is mostly symbolic/iconic, not a neural network, so it avoids
naive pattern mapping of the neural network type.

5. The system should be able to generalize, so that good performance is
attained across any subset of WC, not just one selected subset (p. 26).
If this statement refers to learning, then a visualizer should conform to
this criterion, but research on this will not begin until Phase 4. If this
statement refers to programmable representation of a concept, that a
Tumbug diagram can already do this.

4.2 Applicable systems from the real world

4.2.1 Physics

Obviously physics is intended to provide explanations for events that happen
in our physical universe, so a KRM that is trying to represent those same
events should do well by basing itself on physics. Less reliable alternatives
would be to cover only topics in a narrow domain, cover only encountered
topics in some convenient corpus of text, or to guess at which foundations
that might span all known possibilities. Physics is the study of space, time,
matter, motion, energy, and any other related phenomena (Baez 1967, p. 3),
and certainly a large percentage of English sentences describe objects (which
consist of matter) and motion, so physics is one of the most obvious founda-
tions of descriptions of real-world events. Also, many authors (e.g., Pezzulo
2007; Berthoz 2000, p.22) have noted that brains of higher animals seem to
simulate real-world events, especially for purposes of prediction, planning,
and CSR, and to simulate is to represent events partly by relying on physics
formulas, therefore physics is probably the best field on which to found a set
of Building Blocks.

The most basic concepts in physics are often listed at the beginnings of
physics textbooks (e.g., Baez 1967, p. 3), and include especially the following:

47

• spacetime: a single structure that includes space and time as separate
dimensions

– SUBCOMPONENTS: space, time

• mass-energy: physical objects

– SUBCOMPONENTS: mass (m), energy (E)

– CONSERVATION: approximately yes, for total energy of a system
in classical mechanics

– INTERCHANGABILITY: with energy via the equation E = mc2

• momentum: a property of a physical object

– SUBCOMPONENTS: mass (m), velocity (v)

– CONSERVATION: yes, for an isolated system

– INTERCHANGABILITY: with mass and velocity via the equa-
tion p=mv; with force via the equation F = ∆p/∆t

• force: deals with the interaction of objects, not so much with single
objects

– SUBTYPES of force: contact force, non-contact force

– SUBTYPES of force: strong nuclear, weak nuclear, electromag-
netic, gravity (a pseudo-force)

– CONSERVATION: not in general, but depends on the type of
force

• charge: deals more with single objects, not so much multiple objects

– CONSERVATION: yes, for an isolated system

• probability: used in quantum mechanics where waves consist of prob-
abilities, not energy

– CONSERVATION: no

48

Since Tumbug is intended to model primarily the human-centric view
of the world, especially that of human intuition, Tumbug currently does not
make a distinction between true forces (viz., electromagnetic force, strong nu-
clear force, weak nuclear force) and pseudo-forces (viz., gravitational force).
Tumbug also uses its own version of spacetime, a much simpler concept than
Minkowski space, largely because no quantified interactions (e.g., the formu-
las of relativity) between space and time are considered in Tumbug unless
explicitly modeled. Also, Minkowski space is limited to four dimensions,
which Tumbug space is not. Tumbug is able to model those more complex
versions of physical phenomena, but such constraints are not built into Tum-
bug.

4.2.2 Mathematics

Physics is not the sole and ultimate science for modeling the real world,
however, since the laws of physics are in turn described with mathematics;
mathematics is assumed to be the descriptive foundation of physics. A few
mathematical concepts used in physics that are seldom found in basic physics
books but that are concepts that involve useful mathematics for modeling
the real world are:

• combinatorics (from probability)

• randomness (from probability)

• connectivity (from topology)

A few of the more fundamental mathematical concepts needed to repre-
sent natural language concepts have been mentioned and included with Tum-
bug concepts in this document, but there may exist many more mathematical
concepts, possibly infinite in number, that may be needed to describe real-
world situations. In particular, more concepts from first-order logic, which
is a subset of math, may well be needed in Tumbug since predicate logic is
one of the oldest and soundest KRMs for AI systems (Cercone and McCalla
1987, p. 3). Already a form of the NOT concept (viz., XOR) and a form of
the existential qualifier (viz., C-A Aggregation Boxes) from predicate logic
have needed to be added to Tumbug in order to represent WS150 sentences.

49

4.2.3 Other systems and the Big Picture

In the big picture, humankind has recently begun to struggle with its ancient
systems of representation such as mathematics and language to cope with
the extreme advancements of science. Several authors have noted that some
new type of mathematics is likely needed to cope with the very complicated
concepts that modern science is uncovering (e.g., Bailey 1996, pp. 9, 26, 28;
Devlin 1997, pp. 282-283; Wolfram 2002, p. 627; O’Neill 1981, pp. 48-49).
Presumably the need for new KRMs is correlated with the need for new
mathematics, since mathematics is itself a type of KRM.

Figure 29 shows the most basic fields from which each concept arises,
where ”most basic” means ”most universal”: (1) mathematics, (2) logic,
(3) physics, (4) human world, (5) computer science. This justification is
based on the observations that: (1) mathematics is applicable to any universe
because it is based on nonphysical abstractions, (2) physics is universal for
this universe, regardless of whether physical objects exist or not, (3) human
perception and mental organization can detect natural patterns not covered
by physics, (4) computer science is a human-created system of abstraction
not covered naturally by the human mind.

See Figure 30 includes the same list with more detail, but with the corre-
sponding Building Blocks of Tumbug, in all their higher and lower general-
izations. The specific icons that implement these concepts have names that
are capitalized. These icons visually tend to be a type of Box, Arrow, Circle,
Bar, Line, or String. A few of these icons have not yet been used for any
encountered sentences, but are believed to be essential for certain future ex-
tensions and modifications of Tumbug. Since those unused Building Blocks
are untested, those are the Building Blocks most likely to have unforeseen
drawbacks in their current form. All these Building Blocks of Tumbug are
discussed in detail later in this document.

Relative to the importance of the five overall categories (S, C, O, V, A)
that are clearly defined by SCOVA (see the section on SCOVA), the partic-
ular choices of categories to be considered Building Blocks of Tumbug are
relatively unimportant, other than for historical value in that those icons gave
rise to the more general SCOVA insight and are more frequently used than
other categories with other levels of generality. For example, since a Physical
C Object Circle and a Data C Object Circle can be used interchangeably
with ease, with possibly nobody even noticing the difference in appearance
of their respective icons (viz., a solid line versus a dashed line), it is not very

50

Figure 29: A summary of the originating fields of Tumbug icons, in order of
increasing universality.

51

Figure 30: The current Building Blocks of Tumbug and their originating
fields.

52

useful to consider those different Building Blocks. At the other extreme, a
Change Arrow is too general to be of practical value in translating sentences
into Tumbug because, for example, time and cause-and-effect are very differ-
ent concepts, so the Change Arrow icon is not considered a Building Block,
only a Basic Building Block of theoretical value for categorization purposes.
In turn, the exact count of Building Blocks in Tumbug is not particularly
important, although an approximate count is useful for comparing Tumbug
to CD theory, or in estimating the amount of time it would require to code
Tumbug, for example.

Regardless of topic, the concepts and relationships between concepts must
be represented somehow, and some system or systems must bear the burden
of performing that task. Ideally there would exist a universal standard rep-
resentation system, a system that Roger Schank sought for language. Since
Tumbug largely follows this ideal, and since Tumbug shows signs of exceeding
the representative power of CD theory, Tumbug may be the representation
system needed to replace math in certain areas such as AI.

The goal of Tumbug is to collect all concepts of the real world that hu-
mans would reasonably want to express in language, and then to represent
those concepts with images. Mathematics and its branches are obvious can-
didates for sources of concepts, and those fields have been used in AI for
decades. Physics and model-based reasoning (e.g., Luger and Stubblefield
1998, p. 231) have also been used in AI, though to a lesser extent. The
world of human beings, which includes psychology and sociology, contains
concepts (especially the concept of ”object” and ”motivation”) not covered
in the hard sciences of inanimate objects, so Tumbug needs to include those
concepts, also. Several knowledge representation concepts (especially gen-
eral aggregations and labels) do not occur in their general form in the more
general fields so computer science must be included. (For example, math
has sets and parentheses, but does not generalize these notions into a gen-
eral ”aggregation” concept.) (See Figure 31.) Because of Tumbug’s eclectic
nature and the infinite nature of the real world, Tumbug is not guaranteed
to cover every basic concept in the real world, but in practice its span is so
extreme that the author has found no lacunas despite extensive perusal of
several fields. If a lacuna does exist, it would probably be found in some
of the less frequent concepts of mathematics, possibly from group theory or
topology.

53

Figure 31: The Tumbug KRM considers this collection of the fundamental
entities from several systems from the real world, all AND-ed together for to
cover the basics of every one of those fields.

54

Figure 32: Tumbug’s icon for a Physical C Object Circle.

5 Object-like Building Blocks of Tumbug (O)

The term ”Building Blocks” comes from other authors’ descriptions of Roger
Schank’s CD theory (Schank 1975), evidently not from Schank himself. More
specifically, the term ”building blocks” is used to describe all the components
of CD theory, including the Primitive Acts and the Primitive Conceptual
Categories. The term ”Building Blocks” is used in this document in the
same way as in CD theory: to describe Tumbug’s basic components, espe-
cially since CD theory and Tumbug have roughly the same intent: to form a
foundation on which any action can be described. Tumbug’s Building Blocks
were derived from generalizing many examples of sentence representation,
primarily from the following sources: (1) WS150 problems, (2) CD theory,
(3) Kolln grammatical examples, and (4) the author’s own insights.

Terminology used in this document for CD theory:

Primitive Conceptual Categories = {PP, ACT, PA, AA, LOC, T}
Primitive Acts = {ATRANS, PTRANS, PROPEL, MTRANS, MBUILD,
SPEAK, ATTEND, MOVE, GRASP, INGEST, EXPEL}
building blocks = Primitive Conceptual Categories ∪ Primitive Acts

5.1 Singleton objects

5.1.1 Object Circles

The preliminary letter ”C” is a formality that stands for ”concrete.” Usually
C Object Circles are called simply ”Object Circles.”

1. C Object Circles
1.1. Physical C Object Circles
1.1.1. General
A Physical C Object Circle is shown in Figure 32.

55

Figure 33: Left: Example of a physical object with interior structure. Right:
Example of an object with exterior structure.

Computers ultimately represent everything with numbers. This is be-
cause computers evolved from calculating machines that work with only
numbers, and because the foundation of all science is mathematics, which
primarily uses numbers. (Some exceptions are group theory and topology.)
Even images are represented in a computer by matrix-like file formats such
as BMP, JPG, and GIF, which are ultimately only numbers arranged in an
orderly manner in space. Mathematics, however, is only an abstraction of
the real world. In the real world, the fundamental entities of importance that
are perceived and mentally manipulated by animals are objects, which are
different than both numbers and pictures.

It is probably this last observation that was primarily responsible for
the development of object-oriented programming (OOP), which groups data
into an abstract data structure called an ”object” whose simulated behavior
is similar to that of its corresponding real-world object. Tumbug likewise
treats objects as the fundamental entity of importance. The Tumbug icon
used to represent an object is usually a plain one-lined circle called a ”C
Object Circle.”

Any objects where more detailed anatomy (e.g., taste buds on the ob-
ject’s interior, or an arm on the object’s exterior) is important to represent
can be drawn as bumps or protrusions on the perimeter of the C Object
Circle, protruding in the appropriate direction, and can have any desired
size, length, or shape, though typically a single truncated or elongated circle
or ellipse is sufficient for the typical level of detail in WS problems. See
Figure 33.

Very commonly an object, especially a person, needs to be represented as
generating output (e.g., speaking, shouting, gesturing) or actively processing
input (e.g., watching, looking, listening). Logically this would involve an
anatomical structure that is partly inside and partly outside the body, so

56

Figure 34: Left: Object with input sensor. Middle: Object with output
generator. Right: Object with input-output.

Tumbug uses a smaller C Object Circle on the border of the entity’s C
Object Circle to represent such an input-output device. The symbol ”⟨”
can be placed on this structure to designate it as an input device (sensor),
”⟩” for output, and ”⟨ ⟩” for either input or output, as shown in Figure 34.

Why are Tumbug representations so simplistic and abstracted, instead of
being more detailed and realistic, for example by showing arms and mouths?
The answer is that Tumbug in a future software implementation would even-
tually need to view and interpret its own icons, therefore the simpler the
icons that Tumbug must interpret, the better. This is especially true in lan-
guage translation, where the Tumbug representation would need to be read
after it had been stored, in order to make the final translation to the target
language.

C Object Circles are allowed to overlap, although such a need tends to
be uncommon. For example, two circular spots of light would logically be
represented as two C Object Circles, and since spots of light can overlap, C
Object Circles should also be allowed to overlap. Similar logic would apply to
clusters of objects, where each cluster could be represented by one C Object
Circle or by one Aggregation Box, and would apply to set boundaries as seen
in Venn diagrams, where each set boundary could be represented by one C
Object Circle or by one Aggregation Box.

This article’s convention: Tumbug object icons are kept as simple as
possible, as often as possible. For example, details such as hands on arms
or taste buds in the mouth are typically never shown unless relevant to the
problem, or unless explicitly stated in the sentence to be represented.

1.1.2. Icon variations
For the purposes of WS problem representation, Tumbug can be easily

and optionally supplied with icons for any encountered concepts whatsoever,
especially for physical objects. A predefined class of intelligent, human-like
entities seems particularly useful for high-level, cross-ideology-set discussions

57

Figure 35: Elaborate hierarchies of types of animate objects can be created
with icons for a Tumbug/WS library.

in philosophy, science, politics, and religion: human, generic animal, robot,
alien, spirit, cryptid, elf. At the lower-level end of the hierarchy, the set of
animals sheep, deer, fox, dog, wolf, cat, mouse, chicken, bird, duck, shark,
fish, minnow, butterfly, worm would be particularly useful because those are
all the animals specifically mentioned in WS150 problems, the solution of
which one Tumbug-based algorithm was originally designed to provide. The
hierarchy of Figure 35 shows animate object types and their icons is only one
example of the endless elaborate hierarchies that can be created.

The exact icons used are not critical, though the existence of such a
hierarchy of objects is useful. Such a library is useful because the more
specific the Tumbug icons are, the more readily a Tumbug diagram can be
understood. One downside of any hierarchy, however, is that a hierarchy is
necessarily rigid, therefore any unexpected item (such as a spork) is automat-
ically excluded from fitting into any existing classes (such as spoon or fork).
In order to keep this presentation simple, the circle with ”X” and circle with
”O” are not used elsewhere in this document, but in other documents such

58

Figure 36: Tumbug’s icon for a Data C Object Circle.

a distinction could be quite useful.
Roger Schank referred to objects in CD theory as ”PP,” which stands for

”picture producers,” meaning objects that have a physical appearance that
typically comes to mind upon hearing or seeing the word for that concept.
This term suggests that use of icons would be particularly beneficial to use in
place of Physical C Object Circles in Tumbug whenever possible. Throughout
this document, icons may appear in place of Physical C Object Circles.

As an aside, the icons of Tumbug can be grouped into different types:

1. geometrical icons - very simple circles, rectangles, arrows, lines, etc.

2. composite geometrical icons - organized groups of geometrical icons

(a) composite tangible geometrical icons - for articulators, sensory
organs, etc.

(b) composite intangible geometrical icons - for emotions, verb modal-
ity, etc.

3. realistic icons - for cats, dogs, computers, bottles, etc.

1.2. Data C Object Circles
1.2.1. General
A complication in the real world, especially in the modern world, is that

many of the ”objects” being used are collections of data, not physical objects.
This distinction can be fairly important in the meaning and implications of
sentences, therefore Tumbug modifies the Physical C Object Circle icon so
that the circle has a dotted border (or sometimes a dashed border) when
it represents a label-worthy chunk of data, as shown in Figure 36. As with
physical objects, data objects can have attributes, such as topic, format, size
in number of bytes, truthfulness, source, and so on.

59

Figure 37: [35] Tumbug for ”They broadcast an announcement.”

Data C Object Circles can be thought of as envelopes or flash drives
that hold their contents inside the circle. For example, a digital photo is a
data package whose contents could easily be represented verbatim inside a
Data C Object Circle by placing the photo inside a Verbatim Box inside the
C Object Circle.

1.2.2. WS150 example: #35 (subway)
The example in Figure 37 is from a portion of WS150 question #35.

A Data C Object Circle is necessary because data is implied via the words
”broadcast” and ”announcement.”

”[35] They broadcast an announcement, but a subway came into the sta-
tion and I couldn’t hear it. What couldn’t I hear? POSSIBLE ANSWERS:
{the announcement, the subway}”

As with physical objects, data objects have direction of travel, although
their transmission pattern can be more flexible since data without a carrier
path they can either be transmitted in a straight line (as with a laser beam
modulated to carry a message) or in a spherical plane (as with a loudspeaker
broadcasting a message). Dashed planes are more difficult to draw than
dashed lines, so a Tumbug diagram uses three representative lines with a
single Data C Object Circle and a single Motion Arrow to help convey the
concept of an emanating plane wave using simpler icons that are already used
in simpler scenarios.

Conceivably a system of icons could be developed for data objects as

60

Figure 38: This is the Tumbug color coding scheme used in this document
for the different types of grammatical objects, and the underlying logic for
this scheme. Colors are optional in Tumbug, however.

well as physical objects. For example, speech (which is particularly common
in WS examples and grammatical examples) could have its own icon, as could
vision.

This article’s convention: Although Tumbug diagrams never need to be
in color, a color-coding convention has often been used on C Object Circles
in this document to aid understanding of grammatical examples, as shown in
Figure 38 and Figure 39.

1.2.3. Data Points
More general Building Block: Data C Object Circle

Simplifications from the more general Building Block: (1) Only 1-2 attributes
used, namely the attribute-value pairs at which it can be plotted, and the
event(s) from which the measurement was taken.

Figure 40 shows a specific Data Point with two attribute-value pairs.
Since a single data point may have arisen from more than one event or
observation or measurement, in general there may be a list of event IDs in

61

Figure 39: This is the Tumbug color coding scheme used in this document
for other types of objects, and the underlying logic for this scheme. Colors
are optional in Tumbug, however.

the event ID field.
2. C-A Object Circles
The Tumbug icon for a C-A Object Circle is shown in Figure 41.
”C-A” stands for ”concrete-abstract,” which is a pair of concepts at the

two extreme ends of the abstraction spectrum. Both C Object Circles and C
Aggregation Boxes can be abstracted to produce C-A versions of those icons.
In both cases some attribute-values (those protruding above the associated
icon) are forced upon the object by the user, and the other attributes (those
protruding below the associated icon) are the resulting detected attribute-
values. The value of the outputs may or may not have been influenced by a
Correlation Box. For example, an output could be a default value based on
the object’s class, and untouched by a Correlation Box.

An example of usage of a C-A Object is shown in Figure 42. Other
uses of C-A objects can sometimes be found in the WS150 problems. For
example:

”[9] The large ball crashed right through the table because it was made
of steel. What was made of steel? POSSIBLE ANSWERS: {the ball, the
table.}”

In this case, the composition of the unknown object is fixed at steel,
which forces the object’s weight and strength to be very high. Since tables
tend to be made of wood, which forces a table’s weight and strength to be
only moderate (or at most, high), the ball described will tend to have more
weight and strength than the table, which allows default reasoning to occur

62

Figure 40: A Data Point is a small Data C Object Circle that contains only
attribute-value pairs and optionally a reference to the event that produced
it.

Figure 41: Tumbug’s icon for a C-A Object Circle.

63

Figure 42: If Billy’s weight is fixed at a high value and his height is fixed at
a low value, then he is forced to be fat.

Figure 43: Tumbug’s icon for a State Circle.

and for the correct default answer to be chosen.

5.1.2 State Circles

Figure 43 shows a State Circle
In Tumbug the need to represent states is almost as common as the

need to represent objects. This is because verbs apply to states almost as
frequently as they apply to objects, and the best icon to use is the icon whose
concept most closely matches the sentence meaning, even if the specific words
of the sentence and their grammatical order superficially suggest otherwise.
The State Circle icon used for a state in Tumbug is intended to resemble the
Greek phi symbol (ϕ), which is used in physics for phase, which is a concept
that is similar to state. The similarity between the C Object Circle icon and
State Circle icon is intentional since it is sometimes desirable to use a State

64

Figure 44: Tumbug’s icon for a Pathway Tube.

Circle instead of a C Object Circle, so swapping one for the other allows
the viewer to overlook the minor conceptual difference when interpreting a
Tumbug diagram quickly.

Ordinarily a State Circle is only a part of a state diagram, as described
in the section on State Diagrams.

5.1.3 Cells

The meaning of ”Cell” in Tumbug is identical to the meaning of ”cell” in
array terminology: A cell is a discrete location that can hold a single object.
The object may be a number (as in linear algebra), a text string (as in data
bases or spreadsheets), software objects (as in OOP), or any other type of
object, virtual or real. Cells are usually used only in composite structures
such as vectors, arrays, or jagged arrays.

The Cell concept differs slightly from the Tumbug concepts of Verbatim
Box and C Aggregation Box since a Cell may hold only one object whereas
those other structures may hold any number of objects. A Cell is similar to a
State Circle, except the contents of a State Circle must be a state whereas a
Cell can contain an object that is not a state. A Cell could also be accurately
called a ”pigeonhole,” as in the ”pigeonhole principle,” since a cell conforms
to the same constraint of one object per location.

5.1.4 Pathway Tubes

Figure 44 shows a Pathway Tube.
A Pathway Tube shows a pathway for anything. It can represent a hiking

path used by people, a pipe for carrying water, a track for carrying trains or
monorails, a fiberoptic path used by photons, a data path in the form of a
USB cable between digital computers, a token path used by Petri nets, the
arrows of logic flow direction in a flowchart, a wave guide for electromagnetic
waves, or other. The pointed end of a Pathway Tube shows the direction of
travel of objects or data within the tube/pathway, like a one-way street sign.

65

Figure 45: Pathway Tubes normally contain a 0D Marker, like the tokens of
Petri nets.

Figure 46: Tumbug’s icon for a Sensor Bar (left), and Sensor Bar with a
signal output line (right).

The objects moving in a Pathway Tube can be represented by 0D markers,
as shown in Figure 45.

Pathway Tubes in this document are always shown as straight, but in
general they need not be. Straight Pathway Tubes can be connected end-
to-end to implement changes in direction, if for example a vector graphics
editor does not a simpler means to create such a shape.

5.1.5 Sensor Bars

A Sensor Bar is shown in Figure 46.
Tumbug contains Values Bars to represent values, but these values can-

not be used unless the values can be read somehow. Sensor Bars solve this
problem. Each Value Bar (by current convention) is typically outfitted with a
Sensor Bar that has a signal output line to represent a signal being sent from
the sensor to some other component if and only if that sensor is activated.

Typically a Sensor Bar is overlaid upon a Value Bar so that if the value
in the Value Bar falls within the span of the Sensor Bar then the Sensor Bar
sends an output signal (marked here as ”*”) on its output line, as shown in
Figure 47 and Figure 48.

In turn, a single activated state within a state diagram may trigger
further activity within that state diagram, or possibly within a program

66

Figure 47: A Sensor Bar overlaid upon a Value Bar.

Figure 48: A Sensor Bar senses a value in the specified range within a Value
Bar and sends a signal to a State Circle.

67

containing an ”if” statement that relies on that state being active in order
to choose with branch of code to execute next.

Value Bars and Sensor Bars are currently proposed for Tumbug for com-
pleteness purposes, but for diagram simplicity it could be assumed that the
system automatically activates whichever applicable state needs to be read
by the system, and does so in the background, without need to illustrate the
details of how that state became activated.

Sensor Bars in this document are shown with a -45-degree hatching
pattern, whereas 2D Markers are shown with a +45-degree hatching pattern.

5.1.6 Markers

Technically, a Marker in Tumbug can be defined as a labeled manifold that
marks something of significance in a Tumbug diagram. For example, a non-
intersecting border drawn around an irregular region in a plane would be
a 1D manifold in 2D space that would bear a label mentioning that it is
a border, and typically also what the border surrounds. Markers can be
of any dimension, and can occupy any dimension, and can have any non-
intersecting shape. For example, a wire that traced the edges of a collection
of stacked cubes would be a 1D manifold in 3D space. Markers can also have
unbounded ends, such as an arrowhead at one end of a 1D line segment, or a
3D arrowhead pointing outward at the border of a 3D planet’s atmosphere.

1. Geometrical Markers
1.1. 0D Markers
More general Building Block: C Object Circle

Simplifications from the more general Building Block: (1) Only 1-2 attributes
used, namely location, and optionally priority.

The zeroth dimension (0D) is a point, so in Tumbug a 0D Marker is a
single point that is used to highlight some item or location. This 0D Marker
icon is currently represented in Tumbug as a sizable red spot, as shown in
Figure 49.

Some practical uses of 0D Markers are:

• A checkmark of any kind. (Note that this implements Kenneth Haase’s
red paint idea described by Marvin Minsky (Minsky 1986, p. 82).)

• A red dot on a map labeled ”You are here.”

68

Figure 49: Tumbug’s icon for a 0D Marker.

• A radar blip that indicates the position of an aerial object detected by
radar.

• A bouncing dot over lyrics to help singers keep track of the current
part of the song.

• An ”X” on a treasure map that marks the spot where the treasure is
buried.

• A spot like the spot from a laser pointer that shows the part of an
overhead slide being discussed by the lecturer.

• Color-coded labels on unmarked cardboard boxes.

• The desired attribute of a query.

• The current state within a state diagram. If the current state is in
transition between two states then the 0D Marker can also represent
this easily by being placed on the Pathway Tube itself.

• The current statement being executed within a flowchart.

• A token within a Petri net.

• A mental marker to remember a possible king position on a chessboard
when visualizing possibilities in a chess endgame.

• A marker like a painted stone on a trail that indicates a place that was
formerly visited, to prevent going in circles if lost on a hike.

• A position affixed to the rim of a rolling circle.

69

Figure 50: One common usage of a 0D Marker is to step sequentially through
program statements.

• The conjectured K-Lines of Marvin Minsky (Minsky 1986, p. 82) to
mark tools that were used for a given job.

One use of 0D Markers in Tumbug in this document is to represent
instruction pointers in an executing computer program. See Figure 50.
Whereas a digital computer uses an instruction pointer that points to the
instruction currently being executed in a program, Tumbug uses a small red
dot as a visual means to mark this instruction in the program itself. Then,
instead of incrementing an address in computer memory to step through a
program, Tumbug moves a spot sequentially through a program. Since the
program structure is already represented as a graph-like flowchart, use of a
0D marker in such a flowchart maintains the higher-level view of the program
as completely visual.

An important use of 0D Markers is in diagramming queries. For ex-
ample, a data base type query might equate to the question ”What color
is Bob’s car?”, which would place a 0D Marker with an ”information goal”
attribute atop the value of the ”color” attribute in the data base record for
Bob’s car, then the value of that attribute would be noted. In this way an
entire question reduces to a single placed 0D Marker. See Figure 51, where
the color red here substitutes for the attribute ”information goal.” Note that
a single spot–the 0D Marker–is difficult to see on a diagram at a glance,
therefore a clearer representation is recommended in practice, which is the
representation with the slanted line with one end on the desired value and
the other end marked with ”DK” (= Don’t Know). (Currently, use of ”?” to
represent queries in Tumbug is discouraged since ”?” has a different meaning
as a regular expression wildcard.) Since all Tumbug lines are normally drawn
either horizontally or vertically, a 1D Marker line that is slanted at about a
45-degree angle stands out at a glance.

70

Figure 51: A slanted line in Tumbug is much more visible than a tiny 0D
marker when diagramming queries.

In WS150 problems the queries are only slightly more complicated in
that they are always about disambiguation, but 0D Markers can be used
there, also. For example: ”[108] Grace was happy to trade me her sweater
for my jacket. She thinks it looks great on her. What looks great on Grace?
POSSIBLE ANSWERS: {the jacket, the sweater}” In this query a 0D Marker
would be placed atop value of the ”clothing type” attribute for the item of
warm clothing that Grace is wearing after the trade, with the same attribute
”information goal” attached to the 0D Marker, then the value of that at-
tribute would be noted. Oftentimes such queries require following an extra
link. In this case, Grace would first need to be located in the Tumbug dia-
gram, then the 0D Marker placed on her warm clothing.

1.2. 1D Markers
1D Markers are lines used as a visual aid to mark something as lying in

a straight line. In the WS150 problems such lines would be desirable to show
visual interference along a line of sight, for example. The lines could also be
useful to show alignment, or to show an angle from a given point.

Some practical uses of 1D Markers are:

71

Figure 52: Tumbug’s icon for a 2D Marker.

• A straight line that makes clear the alignments of objects or text,
whether through their tops, bottoms, centers, or other.

• A straight line that separates plotted data points into classes.

• A straight line across an opening in a concave geometrical figure, where
the line separates interior from exterior.

• A straight line between extrema in a convex geometrical figure, where
the line shows regions that can be obscured via occlusion from certain
angles.

1.3. 2D Markers
2D Markers are merely shaded regions, as in Figure 52. Such regions are

probably most often used for Venn diagrams, such as to show intersection
of two sets as in Figure 53, or to show the conceptual allowable range of
elements of one set. 2D Markers in this document are shown with a +45-
degree hatching pattern, whereas Sensor Bars are shown with a -45-degree
hatching pattern.

Some practical uses of 2D Markers are:

• A circle around an important region within a picture or within text.

• A ”set cordon”–an irregular contour that shows which parts of a Venn
diagram are being considered.

• A contour that encloses data points that are considered part of a given
classification.

• Boundaries between regions on a geographical map.

72

Figure 53: 2D Markers are usually used to show 2D ranges within sets rep-
resented by Venn diagrams.

• The four borders on a JPG image that is being cropped.

2. Relationship Markers
See Figure 54. Relationship Markers use dotted lines, which no other

Tumbug convention uses, which is done for uniqueness, clarity, and consis-
tency. The consistency arises because a 0D Marker can already be considered
a Relationship Marker with a single point, so two points could be considered
a 1D Marker, three non-colinear points could be considered a 2D Marker,
and so on.

Relationship Markers are very generic markers that point out any im-
portant relationship that the user would like to flag. Depending on how
Relationship Markers are used, Relationship Markers may be optional or
required.

In Venn diagram representations of First Order Predicate Calculus, a
Relationship Marker would almost be required in some cases. For example,
the final inference of the ”Socrates is mortal” example already shows Socrates
as an element of a subset of both men and mortals, but the user may have
overlooked this 2-step removed inference during the derivation of that final
result since each addition of a Venn diagram circle potentially creates several
new inferences simultaneously, so the important final inference should be
explicitly pointed out by a unidirectional Relationship Marker pointing from
Socrates to mortals.

Relationship Markers often have direction. For example, the sentence
”Bill is Mark’s uncle” must be stated unidirectionally in text in the form ”X
is Y’s uncle” since the converse ”Y is X’s uncle” is not true, therefore one
arrowhead (centralized on the arrow’s stem) is used to point in the needed

73

Figure 54: Relationship Markers have centered arrowheads on dotted lines,
in any of three possible arrangements.

direction (per the user’s convention), such as from X to Y to show the di-
rection of meaning of ”X is a/an of Y.” Some sentences are bidirectional,
however, such as ”Denny and Wanda are siblings,” therefore in that case two
arrowheads pointing in opposite directions are used to show both directions
of unidirectional meaning simultaneously.

Relationship Markers are also nearly required for genitive case, meaning
possessive situations, such as ”Sam’s drawing” [14], ”Ann’s son” [27], and
”Joe’s uncle” [28], all of which are examples from WS150. (The version of
Tumbug described in the 2022 article on Tumbug described such possessive
use of Relationship Markers as ”genitive arrows” (Atkins 2022), but Rela-
tionship Markers are more general than just genitive case, such as in the
phrases ”Socrates is mortal” or ”Denny and Wanda are siblings.”)

Relationship Markers are essentially the same node-with-link data struc-
tures used in semantic networks. Since many sentences and phrases can be
easily represented with semantic networks, this suggests that a good use of
Relationship Markers might be as an intermediate stage of conversion from
text to Tumbug.

Relationship Markers could be considered a compound type of icon since
Relationship Markers contain 1D lines that are bent into 2D.

5.2 Collection objects

5.2.1 Location Boxes

”Location Boxes” is a generic term of Tumbug that currently refers to three
types of rectangular icons in Tumbug, each type of which is intended to be
a border in which to hold multiple items inside, to show the locations of
those items inside the box, and to show the location of the Location Box

74

itself, at least relative to any other icons that may exist outside the box.
Figure 55 shows that these three types of Location Boxes exist in a spectrum
of severity of location constraints. These boxes may be any shape that is
needed, although rectangular is the default shape.

• Verbatim Box: every item inside must exist only in the place where it
is shown. There is no flexibility.

• Descriptive Box: every item’s location is subject to constraints that are
specified with the box. There is some flexibility.

• Aggregation Box: any item is allowed to be in any location within the
box. There is complete flexibility inside the box.

• no box: there are no constraints at all on the locations of the items.
There is complete flexibility and there is not even a border.

Although the two extremes of this spectrum, namely Verbatim Boxes
and Aggregation Boxes, are conceptually simple and fully defined, the mid-
dle of this spectrum, namely Descriptive Boxes, have tremendous flexibility,
so would need more research to fully investigate. For example, Figure 55
shows that four Object Circles in a square arrangement can be scaled to pro-
duce an unmistakably similar arrangement, but scaling is just one geomet-
rical transformation. Another geometric transformation that would produce
an unmistakably similar arrangement is translation. The result of rotation
may also be considered an unmistakably similar arrangement, depending on
a person’s taste and goals. Figure 56 shows several such geometrical trans-
formations, and which common transformation groups include those basic
transformations.

Further development anticipated: Since different types of Location Boxes
are allowed to overlap or to be embedded in one another, precedence rules are
likely to be needed, the same issue as scope of name binding in computer
programming. Probably Verbatim Boxes at the strict end of the strictness
spectrum would need to take highest precedence, for example.

This document usually assumes that Descriptive Boxes: (1) retain the
same spatial arrangement of the original items (i.e., allow differences in scal-
ing), (2) disallow rotation, (3) disallow reflection and any other more com-
plicated transformations such as projective transformations. Rotations are

75

Figure 55: Tumbug has three types of Location Boxes that span a spectrum of
severity of constraints on the locations of the items inside. Here the original
locations of four Object Circles are shown by the Verbatim Box, this square
arrangement has been scaled to be larger but still maintains the same shape
in the Descriptive Box, and in the Aggregation Box there are no constraints
on location at all except that the Object Circles must be inside the box. If
not even an Aggregation Box exists then no Object Circles have any location
constraints whatsoever.

Figure 56: There exist several common types of transformation groups, each
with a unique name and with a unique set of more basic transformations
(translation, scaling, rotation, etc.) that are considered part of that group.

76

Figure 57: Tumbug’s icon for a Verbatim Box.

disallowed partly because each diagram is usually assumed to contain a grav-
ity vector that points straight downward on the page, which in turn suggests
that depicted items are usually viewed from the side, and are either resting
flat on something or have an inherent bottom (such as buildings, transporta-
tion, people, animals, plants, and natural geographical features). Ideally
all such assumptions should be stated somewhere and somehow within each
Tumbug diagram or each project, which in turn suggests that it would be
useful to attach codes to Descriptive Boxes, such as placing an ”R” in the
corner of a Descriptive Box to indicate that all objects in that box have the
freedoms of transformation of the ”Rigid transformations” group.

1. Verbatim Boxes
A Verbatim Box icon is shown in Figure 57.
1.1. Concepts that imply space
It should be clear that the concept of space is common in the WS150

problems. Below, two examples are given for each of the concepts of inte-
rior/exterior and direction. Together these two concepts imply the need to
represent spatial relationships in some parts of some sentences. The Tumbug
icon used to represent places inside of it is a double frame or a triple frame
to suggest a picture frame. Any objects where space (i.e., interior/exterior
or direction) is important to represent must be placed inside of this frame,
which can have any desired size or length-to-width ratio. Some concepts that
inherently imply space are: (1) interior or exterior, (2) direction, (3) position,
(4) alignment.

The Verbatim Box is where bona fide images are contained, therefore
this is where Tumbug has its best prospects of demonstrating that its KRM
is more powerfully expressive than any other existing KRM. ”Bona fide”
images in this context mean images other than predetermined icons or text.
For example, a textual description such as ”two circles of diameter 1 have
their centers aligned along the 64-degree angle line, and their centers are 2.7

77

diameters distance from each other” is a bona fide image that potentially
spans an uncountably infinite number of similar images by merely changing
two numerical values. In this way Tumbug can output an uncountably infinite
number of images. Similarly, in applications where the goal is to depict a
default scene to aid the viewer’s comprehension of that scene, any photo
whatsoever may be inserted verbatim into the Verbatim Box. For example,
in a Jonny Quest animated cartoon, stock real jungle scenery (and even
background sounds) could be used as a background wallpaper within the
Verbatim Box to make the cartoon more realistic. Even a video could be
placed in the Verbatim Box, such as a video of rapidly passing city buildings
as background for an animated film where the characters in the foreground
are riding aboard a train in the city.

1.1.1. Interior
This example is from a portion of WS150 question #52. A Description

Box is necessary because the general interior of one object (viz., the fish) is
implied by the word ”ate,” but no exact pictorial depiction of the event was
provided.

”[52] The fish ate the worm. It was tasty. What was tasty? POSSIBLE
ANSWERS: {the worm, the fish}”

The verb ”eat” would be defined in object-and-action terminology as
something like ”Subject eats Object = Subject arranges for Object to go
inside Subject’s mouth, whereupon Subject closes Subject’s mouth to entrap
Object, then moves Object toward Subject’s stomach to be digested.” Since
any such definition involves the concept of ”inside,” which implies the concept
”interior,” direction is inherent in the sentence meaning, therefore some type
of Descriptive Box should be used, as shown in Figure 58.

In Figure 58, the fish has moved toward the stationary worm in time
and has engulfed the worm into an anatomically interior position such as a
mouth or stomach. This interior structure is represented by the smaller C
Object Circle inside of the larger C Object Circle that represents the fish as
a whole. The eaten worm then is represented as an even smaller C Object
Circle inside of the fish’s interior C Object Circle.

In practice, any juxtaposition that involves ”interior” tends to be so
clear that the surrounding Description Box can optionally be removed from
the diagram without confusion. Figure 59 shows a version of the fish diagram
that removes the Location Box and–even more visually effective–uses realistic
icons instead of C Object Circles.

The fish diagram with realistic icons is more standard for Tumbug, de-

78

Figure 58: [52] Tumbug for ”The fish ate the worm.” (with abstract icons)

Figure 59: [52] Tumbug for ”The fish ate the worm.” (with realistic icons,
and without emphasizing space)

79

spite the intermediate positions in time not being shown. Any other 2D
temporal representation, viz. an icon in discrete time or an icon in contin-
uous time, will not be clear since the separate time axis in 3D space would
not be shown, which would force a moving object to overlay part of itself in
the same plane, which in total will result in a smeared, lengthy composite
image. The most practical option for simulations is to render real-world time
the same as rendering simulation time, so that an object moving in the real
world will be seen as an object moving in the simulation. For applications
that require careful consideration of all points along a trajectory, such as de-
termining whether several rotating disks in a plane, each of different radius
and speed, and each with a visible spot near its rim, will ever align, rendering
time as a separate dimension might be preferable.

Ideally Tumbug should be implemented in at least 3D space so that the
states of moving 2D objects can be seen easily and collectively across the
entire time span.

1.1.2. Direction
This example is from WS150 question #11. Some type of Location Box

is necessary because the relative direction of an object is specified via the
words ”down” and ”top.”

”[11] Tom threw his schoolbag down to Ray after he reached the top
of the stairs. Who reached the top of the stairs? POSSIBLE ANSWERS:
{Tom, Ray}”

If the phrase about the stairs is omitted for simplicity, then the partial
sentence would be diagrammed in Tumbug as in Figure 60.

The ”0” on the Time Arrow represents ”now,” so the fact that the
event completely finished in the time before time 0 means that the event
happened in the past. The direction of the backpack is straight down because
the sentence says ”down” and no mention or implication was made of the
throwing having a horizontal component; if the schoolbag had also been
thrown in a horizontal direction as well as downward, then the trajectory
of the schoolbag would be shown as angled, say toward the right of the
diagram, as it approached Ray at the bottom, who would also be positioned
more toward the right.

Further development anticipated: Note that throwing the schoolbag re-
quires a force, and gravity would be exhibiting a smaller force even without
throwing. So far Tumbug examples have not attempted to show all applica-
ble forces, the resulting force vector after adding component forces, or even
different length arrows that are proportional to the different force magni-

80

Figure 60: [11] Tumbug for ”Tom threw the schoolbag down to Ray.”

tudes. Ideally such fine details should be worked out eventually, though in the
WS150 examples the need to differentiate between force magnitudes does not
ever appear to arise.

The full sentence would be diagrammed in Tumbug as in Figure 61.
Note that a longer Time Arrow was be used in order to show two events,

one of which happened after the other. Each event–(1) the reaching of the top
of the stairs, and (2) the throwing down of the schoolbag to Ray–is enclosed
in its own C Aggregation Box to make the situation conceptually simpler.
Since the person called ”he” was not identified in the sentence, the diagram
does not yet assign a color to the ”he” C Object Circle , or assign the name
on that ”he” C Object Circle to ”Tom.” (That is for CSR to resolve at a
later stage of processing.) The word ”after” would be implied by the relative
times of the two events. As before, relative to the current time ”0,” both
events happened in the past. The word ”top” is understood to mean ”top
of the diagram” since the direction ”down” has already been established as
the bottom of the page, and since ”top” is defined as the opposite direction
of ”bottom.”

1.1.3. Position
Figure 62 shows an example from a portion of WS150 question #19.

81

Figure 61: [11] Tumbug for ”Tom threw the schoolbag down to Ray after he
reached the top of the stairs.”

82

Some type of Location Box is necessary because the relative position of an
object is specified via the word ”above.”

”[19] The sack of potatoes had been placed above the bag of flour, so it
had to be moved first. What had to be moved first? POSSIBLE ANSWERS:
{the sack of potatoes, the bag of flour}”

1.1.4. Alignment
Figure 63 shows an example from a portion of WS150 question #34.

Some type of Location Box is necessary because the relative alignment of
objects is specified via the word ”between.”

”[34] There is a pillar between me and the stage, and I can’t see it.
What can’t I see? POSSIBLE ANSWERS: {the stage, the pillar}”

The dotted line is technically a 1D Marker, used to help the viewer can
discern that the three objects are aligned.

2. Descriptive Boxes (further development anticipated)
The Tumbug icon for a Descriptive Box is shown in Figure 64.
Whereas a Verbatim Box shows exact, inflexible locations of parts of

images, a Descriptive Box is more flexible and therefore more general in that
it uses links that describe spatial relationships via text instead of rigidly
placed objects in space. See Figure 65.

Descriptive Boxes of any type may be arranged and nested arbitrarily.
For example, to show the upstairs and downstairs of a house, two such De-
scriptive Boxes would logically be stacked. Similarly, to show two regions of
a picture where each region could contain only one type of item, but each
item could be in any location within that region, two such boxes would be
placed inside of a third, larger such Descriptive Box. The same observation
holds true of Aggregation Boxes.

However, this observation about nested boxes does not hold for mixtures
of different types of Location Boxes since placing a less constrained Location
Box inside of a more constrained Location Box logically suggests that the
constraints of the less constrained box must then be made more constrained,
which is probably not what a diagrammer would want. For example, in
Figure 65, the painting inside the Verbatim Box could not logically contain
regions of Descriptive Boxes because then those Descriptive Boxes would
presumably fall under the rules of the encompassing Verbatim Box.

3. Aggregation Boxes
3.1. C Aggregation Boxes
The preliminary letter ”C” is a formality that stands for ”concrete.”

83

Figure 62: [19] Tumbug for ”The sack of potatoes had been placed above the
bag of flour.”

Figure 63: [34] Tumbug for ”There is a pillar between me and the stage.”

84

Figure 64: A Descriptive Box has one less border than a Verbatim Box to
suggest that a Descriptive Box is less constrained than a Verbatim Box.

(”Corporeal” would be a good alternative synonym, if so desired.) Usually
C Aggregation Boxes are called simply ”Aggregation Boxes.”

Tumbug has two types of Aggregation Boxes: C Aggregation Boxes and
C-A Aggregation Boxes. Tumbug’s icon for an C Aggregation Box is shown
in Figure 66. C-A Aggregation Boxes are described in the different section.

Location Boxes and Aggregation Boxes may be arranged and nested
arbitrarily. For example, to show the upstairs and downstairs of a house,
two such boxes would logically be stacked. Similarly, to show two regions of
a picture where each region could contain only one type of item, but each
item could be in any location within that region, two such boxes would be
placed inside of a third, larger such box.

Note that the border of any type of Aggregation Box need not be rect-
angular, though rectangular is the default shape.

Nearly all representation systems have some means of representing ag-
gregation. Some examples are:

1. In English grammar phrases can be aggregated by parentheses, such
as ”The flower fields of Encinitas were gradually either replaced (by
condominiums or a tourist attraction) or left to fall into neglect.”

2. In algebra, terms can be aggregated by parentheses. For example: 2(x
+ y) - 3(x + y).

3. In human societies, residential regions are organized into communi-
ties, which are grouped into cities, which are grouped into states or
provinces, which are grouped into countries, and so on.

In Tumbug a (single-bordered) rectangle called a ”C Aggregation Box”
is used to surround the visual objects that are to be aggregated.

85

Figure 65: A Verbatim Box has every feature in a fixed location, but a
Descriptive Box has only loosely constrained locations. (Painting: ”Café
Terrace at Night” (Vincent Van Gogh, 1888))

86

Figure 66: Tumbug’s icon for a C Aggregation Box.

Figure 67: A C Aggregation Box would be used to represent a set since
element location is unimportant.

If mathematical sets are being represented in Tumbug, an Aggregation
Box would be used since there is a homomorphism between a parenthesized
list of numbers in any order and a box of objects in any location, as in
Figure 67. For an ordered list, however, a Descriptive Box would probably
be used since the relative order (relative places) of the listed objects must be
preserved: an isomorphism. See Figure 68.

An Aggregation Box may also have attribute-value pairs, and often do.
Some attribute-value information that might be useful to include: the count
of the items in the Aggregation Box (e.g., ”count = 3”), attribute-values that
all the items in the Aggregation Box share (e.g., ”shared attribute-value =

Figure 68: A Descriptive Box would be used to represent a list since element
location is important.

87

Figure 69: Tumbug for ”All the pink souvenirs.”

’color = pink’”), the source of the items (e.g., ”source = Madonna Inn gift
shop”), discounted price if a customer buys everything inside (e.g., ”5”), the
name of the set (e.g., ”things that Fred does routinely”). See Figure 69.

The ”shared attribute-value” attribute on any type of Aggregation Box
is currently necessary in Tumbug when representing a conjectured set whose
members (and therefore count) are not known.

3.2. C-A Aggregation Boxes
Tumbug’s icon for a C-A Aggregation Box is shown in Figure 70.
The C-A Aggregation Box is one of the Building Blocks where Tumbug

becomes the most profound. ”C-A” stands for ”concrete-abstract,” which is
a pair of concepts at the two extreme ends of the abstraction spectrum. A
comparison of the C Aggregation Box and the C-A Aggregation Box follows:

• Both have a rectangular boundary that surrounds a set of arbitrarily
selected objects.

• Both may have a list of detected attribute-values associated with the
represented set.

• Only a C-A Aggregation Box has a second list of forced attribute-values
that define the set.

• A C-A Aggregation Box typically contains an unknown number of ob-
jects, so an ellipsis is shown inside.

88

Figure 70: Tumbug’s icon for a C-A Aggregation Box.

89

A C-A Aggregation Box is a deeply abstracted form of a mathemati-
cal function, where the input is analogous to an independent variable and
the resulting output is analogous to a dependent variable. As in functions,
the primary interest is usually in observing the effect on the output after
inputting a specific value. For example, if the forced input to a C-A Ag-
gregation Box is the attribute-value pair ”species = human,” the resulting
set would contain all existing humans, and a useful attribute would be the
count of all objects (= all humans) in this set. In this way a C-A Aggrega-
tion Box is similar to a SQL data base query where query word ”WHERE”
specifies the attribute-value pair (which in a data base is the column and
row, respectively), the aggregate function ”COUNT” is a detected (and out-
putted) property of the set, and the query word ”FROM” refers to the set in
question. Also, as in math functions and SQL queries, the mapping may not
be invertible, such as when the math function is y = x2 for x = -1 and x =
+1, or when the SQL query returns more than one applicable record when
queried with ”WHERE surname = Smith”. Since the resulting matches are
typically large and of an unknown count, an ellipsis is used inside a C-A
Aggregation Box.

There also exists an analogy of C-A Aggregation Boxes with first or-
der predicate calculus (FOPC). For example, the statement of the classic
syllogism, ”Every man is mortal,” which is represented in FOPC as ”(∀ x)
(MAN(x) → MORTAL(x))”, which could be read as ”For all x, if x is an
element of the set of humans (MAN), then that implies that x has attribute
mortal (MORTAL),” can be represented in Tumbug with the C-A Aggrega-
tion Box shown in Figure 71. Note that the ”count” attribute of this set
(one of the outputs) has unknown value, and its current magnitude would
be measured in the billions. Note also that the forced input that defines this
set is that ”species = human” but that the detected output that describes
the resulting set is ”mortality = mortal,” even though that attribute-value
pair was not mentioned in the input.

C-A Aggregation Boxes are needed for mathematical theorems. For
example:

”Theorem: In any graph with at least two nodes, there are at least two
nodes of the same degree.”

Tumbug would illustrate this theorem with a C-A Aggregation Box that
contains only one graph of at least two nodes, as shown in Figure 72. The
set membership requirement could be represented as the textual description
”each graph contains at least two nodes,” and the resulting implied output

90

Figure 71: The classic ”All men are mortal” syllogism.

could be represented as the textual description ”each graph has at least two
nodes of the same degree.” The upper, forced attributes of the graph could
collectively be considered a large ”if...” condition, and the lower, resulting
attributes of the graph could collectively be considered a large ”...then...”
result. In constructive theorems that show a concrete example, a visual
example would go inside the Aggregation Box, but not all theorems are con-
structive, so such a diagram is a luxury. This theorem happens to be a
non-constructive theorem.

5.2.2 Swirly Arrays

The components of this composite component: Location Box, Cells, optionally
any number of 0D Markers up to the number of cells.

An array, also called a matrix, is a well-known mathematical data struc-
ture that contains cells in a rectangular structure. If the structure contains
only one row or one column then it is called a vector. Information technology
has extended the array concept so that the rows of the array need not be
the same length (or equivalently, that the embedded ”member arrays” need
not be the same length) though the rows are usually shown aligned on their
left-hand sides. Such arrays are called ”jagged arrays” or ”ragged arrays.”

91

Figure 72: Tumbug representation of a graph theory theorem: ”In any graph
with at least two nodes, there are at least two nodes of the same degree.”

Tumbug extends the concept of a jagged array even further: In Tumbug a
”swirly array” is defined as a given spatial arrangement of cells where the
cells do not need not to be contiguous or aligned horizontally or vertically.
See Figure 73. (Many mathematicians, high school students, and science fair
project creators have probably reinvented the concept of swirly arrays many
times before, but if so, such documentation is not well-known and not readily
available. The author hereby gives advance credit to any such prior inventors
and their proposed invention names.) Arrays of any kind in Tumbug context
could be called a ”composite Building Block.”

Swirly arrays as used here are treated more like annotated diagrams
than mathematical entities. Using obvious methods, two swirly arrays could
easily be added together, and one swirly array could easily be multiplied by
a scalar, but special functions such as taking a determinant of a swirly array,
or multiplying two swirly arrays together would not be possible in general.
However, such structural flexibility in swirly arrays could also be beneficial
for customizing arrays for certain special purposes that might need to hold
one or more adjunct values not related to the main task at hand, such as
storing coefficients of squared terms, which might allow an elegant extension
to linear algebra.

The aforementioned array examples use squares for cells because that

92

Figure 73: Examples of different types of array arrangements.

Figure 74: Two examples of Swirly Arrays in Tumbug are the Modal Verbs
Icon (left) and Robinson Icon (right).

is standard mathematical practice, but Tumbug uses circles instead, because
in Tumbug cells hold concepts or circles, both of which are represented as
circles. Swirly arrays are motivated in Tumbug by the need to place detector
neurons (or just detector lights) at fixed locations that match irregularly-
shaped diagrams of organized concepts, neurological structures, or maps of
any kind, for the positional coding of concepts. It is the on-off status of the
detectors in combination with their locations that represent more compli-
cated concepts such as emotions or modal verbs. See Figure 74.

5.2.3 XOR Boxes

1. Applicable icon

93

Figure 75: The Tumbug icon for an XOR Box.

To represent logical OR in Tumbug, a box similar to a C Aggregation
Box is needed, a box that holds all the objects that are being OR-ed. How-
ever, a C Aggregation Box is not quite specific enough for the concept of OR
because a C Aggregation Box is merely a set that does not indicate that only
one choice must be selected from the collection of choices in the set. This
selection restriction is the concept of mutual inhibition: if all the choices were
mutually inhibited neurons, for example, each firing neuron would attempt
to suppress all the other neurons for firing, which is what is called a Winner
Take All network. To implement a Winner Take All in Tumbug, a variation
of a C Aggregation Box is needed, a variation that is called an XOR Box, the
Tumbug icon of which is shown in Figure 75. The black dots in the corners
are intended to be suggestive of the typical link diagrams used to represent
mutual inhibition in artificial neural networks.

2. Inclusive OR
It should not be surprising that the most basic logic operations (AND,

OR, NOT, XOR, NAND, NOR, etc.) should be present in Tumbug in some
manner. Some traditional methods of representing the (inclusive) OR oper-
ation in computer science are shown in Figure 76.

Although the Venn diagram representation is an appealing candidate for
Tumbug, it has two practical problems: (1) It normally shows both possibil-
ities in detail, which is spatially prohibitive in Tumbug unless variables are
used; (2) The intuitive visual logic of the real world is the opposite of that
shown in Venn diagrams.

The latter problem is the most important and the most interesting. In
particular when the existence of real-world objects is considered, ”AND” is
intuitively understood to mean that all the listed objects are present. For
example, the statement ”nuts and berries are present” implies a visual depic-
tion of nuts existing in the vicinity of berries, whereas the statement ”nuts

94

Figure 76: Some traditional visual representations of logical ”OR.”

95

or berries are present” (the ”or” of which is an inclusive OR, by default) im-
plies a visual depiction of nuts existing or berries existing, or possibly both.
A Venn diagram fails at representing this situation since a Venn diagram
shows an OR (= union) of two sets by showing both sets at the same time,
which is intuitively wrong, and shows an AND (= intersection) of two sets
by a small region of intersection, which in real life would be interpreted as
showing the presence of only objects that are categorized as both nuts and
berries, which is also intuitively wrong. The conclusion: Intuitive, visual
”OR” cannot be easily and intuitively represented by a Venn diagram, there-
fore intuitive, visual ”OR” is intuitively an abstract concept that requires
some other representation. Therefore Tumbug represents visual ”OR” using
the perceptron method. (A perceptron is a type of artificial neural network,
therefore Tumbug could be said to use neural networks, to some extent.)

The Tumbug solution for the representation of OR relies on another
Tumbug Building Block discussed elsewhere: the Correlation Box. One main
difference is that whereas the Correlation Box examples shown earlier rep-
resented a function of a single variable, such as A = f(B), OR requires a
function of two variables, such as A = f(B, C). Specifically, the function
would be named A = OR(B, C). Correlation Boxes can be generalized to
any number of input variables, as shown in Figure 77.

Figure 78 shows the intermediate Tumbug representation of OR, one
diagram for inclusive OR (= IOR), and one diagram for exclusive OR (=
XOR). Note that the use of a C Aggregation Box functions as a set of possible
choices. For example, IOR(A, B) produces the set {A, B, A AND B}.

The comparison of IOR and XOR is shown again in Figure 79, using
XOR Boxes.

3. The existence attribute
An attribute that is important enough to address in its own section is the

attribute of existence. In mathematical literature, for example, the ”there
exists” symbol (∃) is extremely common, so to render mathematical theorems
in Tumbug, one would need to know how to represent ”there exists.”

The Tumbug solution is simple, but unfortunately the solution not sat-
isfyingly visual: the current solution is to use a typical Attribute Line on
a typical C Object Circle (or C Aggregation Box) whose existence is to be
made explicit, and to place the attribute name ”existence =” followed by
a value from the range 0 through 1. The 0-1 range describes the range of
likelihood from ”does not exist” (0) through ”exists” (1). See Figure 80. The
main visual drawback of this representation is that existence is such a funda-

96

Figure 77: Correlation Boxes can be used with any number of input variables,
not just one.

97

Figure 78: Tumbug representation of inclusive OR (= IOR) versus exclusive
OR (= XOR).

98

Figure 79: Comparison of IOR and XOR functions, using XOR Boxes.

mental attribute of real-world objects that one would expect that attribute
of an object to be overwhelmingly obvious in a diagram, but in Tumbug it
is not.

The reason this non-visual, attribute-value type of solution seems to
be necessary is that an object depicted in a Tumbug diagram is ordinarily
assumed to exist, therefore to show that an object does not exist would sug-
gest that mere omission of the depicted object would represent non-existence.
However, that solution in turn implies that any object not shown must not
exist, which in turn implies that a Tumbug diagram must depict everything
in the universe. Although one could adopt the convention that anything not
drawn on a Tumbug diagram is merely a ”don’t care” rather than a ”does
not exist,” by the Tumbug convention of wildcards (discussed elsewhere in
this document), a blank already means ”don’t care,” when then leaves no
way to uniquely represent ”does not exist.” This uncomfortable and counter-
intuitive situation is a variation of the ”closed-world assumption” of formal
logic, where anything not explicitly marked ”true” must be ”false.”

99

Figure 80: Existence in Tumbug is considered merely another attribute whose
value can vary.

6 Attribute-like Building Blocks of Tumbug

(A)

6.1 Attribute Lines

In Tumbug, attributes are almost always shown together with values, and
vice versa, separated by an equal sign ”=”. An attribute followed by its
value, such as ”speed = quick,” are written together on the same horizontal
line. Figure 81 shows the basic line that holds text, Figure 82 shows how
such lines are attached to a C Object Circle, Figure 83 and Figure 84 shows
generalizations of this type of structure, and Figure 85 shows an example
of a specific object with specific attributes. There is no theoretical limit on
how many Attribute Lines may be attached to any type of Object Circle. In
a physical implementation of Tumbug, the equals sign ”=” would not exist
since the equals sign merely distinguishes between two types of stored con-
cepts (viz., attributes and values), and in a physical implementation there
would presumably be two separate memory locations that hold those con-
cepts, and the separation of these memories would be already clear.

Some Attribute Lines terminate at icons or small diagrams when the at-
tribute values are not simple textual or numerical descriptions. This happens

100

Figure 81: Tumbug’s icon for an Attribute Line.

Figure 82: Attribute Lines for a given object branch off from a single stem,
and can be of any quantity.

Figure 83: Three AV pairs alone.

101

Figure 84: Three AV pairs attached to an object, which is the usual situation.

Figure 85: Tumbug for ”quick, brown fox.”

102

Figure 86: These two Tumbug representations for ”quick, brown fox” are
equivalent. Currently both are acceptable.

with State Diagrams and Motivation Triangles.
As for the values to which attributes are set, in typical, partial-text Tum-

bug, numbers are given exactly as in their standard math counterparts, such
as ”3.” Tumbug ultimately was intended to be a fully visual representation
system, however, so such numbers can also be given as lengths of a special
measurement object whose icon is called a Value Bar, described elsewhere in
this document.

This article’s convention: Tumbug attribute-value pairs are almost al-
ways connected to the object to which they are associated, rarely isolated. If
there exists more than one attribute shown per object, a single stem is usu-
ally used, unlabeled, with all the attribute-value pairs branching off that stem.
The stem can be shown emerging from the bottom, top, or (less frequently)
at another arbitrary point on the C Object Circle’s perimeter.

Tumbug minor convention: It is not always necessary to have an at-
tribute and value paired, although this is usually the situation. For example,
”life status = alive” could be abbreviated to merely ”alive” if the meaning is
clear enough.

On C Object Circles shown in this document, the main label on the
circle, such as ”fox” or ”Susan” or ”they,” is technically an attribute from the
set of Attribute Lines for that object. That main label could be considered
to be the value assigned to the first attribute in the list, an attribute called
”IDENTIFIER,” such as in the attribute-value ”IDENTIFIER = fox.” See
Figure 86. Such a single, enlarged Label String on the C Object Circle itself
is intended only to make the diagram easier to read and understand at a
glance.

103

Figure 87: Typical forms of Tumbug’s icon for a Value Bar.

7 Value-like Building Blocks of Tumbug (V)

7.1 Value Bars

7.1.1 General

The possibility of using an additional Building Block only to represent mag-
nitude was alluded to, elsewhere in this document. Tumbug’s icon for such
a Building Block is called a Value Bar, shown in Figure 87. Since numerical
values are so terse to write as digits, there is currently little motivation to
use Value Bars unless possibly to demonstrate that Tumbug can be made
entirely visual, as the Tumbug acronym suggests. Also, if Tumbug were to
be implemented in an artificial neural network in hardware form, digits (and
text) would be too difficult to represent unless they were visual, which would
be another justification for use of Value Bars.

The length of the shaded segment along the bar (= thin rectangle) is
primarily what is most important in this icon. The Tumbug icon for a Value
Bar is a bar, typically with an arrow at one end, but the arrow is not required
when the value is obviously limited to a finite range. The two extreme values
within the given range are emphasized by a vertical hatch mark at each
end of the bar, as if to show where a ruler or tape measure would be laid
while measuring the bar end-to-end. The hatch mark at the arrow tip means
infinite magnitude of the associated attribute’s value.

Side conjecture: It may be possible that each specimen of a higher ani-
mal, especially if human, uses its own individual height as the primary unit
of height measurement in the real world. Most likely the ratio between heights

104

is subconsciously computed as a convenient estimate for the likelihood of win-
ning a fight against another animal. For example, if the self-to-other height
ratio were ≥ 1.25, meaning the self is 1.25 times taller than the other animal,
this could automatically trigger the psychological impression and attitude in
the self that ”I can take him.”

Side conjecture: The above conjecture about height also holds true for
other physical, emotional, and psychological measures of the self, in relation
to others, such as weight, speed, aggression level, empathy level, intelligence,
and knowledge.

Values of motion, such as speed, acceleration, and direction, can be rep-
resented by Tumbug in nearly the same way as length. Compare Figure 88
for distance to Figure 89 for speed. In general, this magnitude coding scheme
is of great benefit for neural network implementation since a single hardware
mechanism can represent any of the Building Blocks of Tumbug, whether
numerical or visual–length, circumference, angle, area, volume, curvature,
speed, acceleration, duration, age, weight, force, energy, power, friction,
temperature, color, texture, volume, range, precision, accuracy, probability–
and even human-based, abstract attributes such as price, stock keeping unit
(SKU), attractiveness, popularity, sentimental value, and cuteness.

As for neurobiological verisimilitude of Tumbug, various biological visual
systems are known to handle motion information using specialized hardware,
which implies certain neurons fire in response to certain types of motion or
certain values of motion, which would then map fairly directly to Tumbug’s
Motion Arrows with appropriate attribute values of speed, acceleration, col-
lective looming motion, and so on, filled in. For example, detection of the
movement of images is one of the four primary visual operations in a frog’s
eye (Lettvin et al. 1959, p. 257), a fly’s visual system determines if the vi-
sual field is looming sufficiently fast for the fly to contemplate landing (Marr
1982, p. 35), speed gradients are computed in middle temporal/V5 area of
the macaque extrastriate cortex (Orban 2008), and the human visual system
uses at least two motion detection systems, one of which is not even aware
of the object whose motion is being automatically detected (Chubb 1995, p.
109).

7.1.2 Ranges

Tumbug represents ranges as shown in Figure 90.
Value Bars can also represent ranges. Each equivalent of a unit square on

105

Figure 88: Tumbug can represent distances as lengths, if desired.

Figure 89: Motion attributes such as speed are almost as simple to represent
as static attributes such as distance.

106

Figure 90: The word ”multiple” applies only if the observed value falls within
the hatched range of ≥ 2.

107

Figure 91: The words ”most” and ”all” apply only if the calculated ratio
falls within the hatched range.

a Value Bar can represent a span of one unit (⇒ a count of 1) in the horizontal
direction, therefore such squares placed side-by-side into a horizontal bar can
represent a specific integer (e.g., a count of 3). In Figure 90, the shaded
region makes the count easier to see at a glance because a 2D area is easier
to see than a 1D hatch mark on a number line, and the green color can
represent known (i.e., non-fuzzy) information. A 45-degree hatched pattern–
the hatched pattern used by 2D Markers–could logically be used instead of
the green color, but that scheme was not used in this document.

A semi-ambiguous quantity like the concept conveyed by the word ”mul-
tiple” (meaning more than one) typically means an arbitrary point within
a range, so both the point and range must be represented somehow. If the
specified range can be represented by a different shading, such as the pur-
ple shading in Figure 90, then a small ball can represent an arbitrary point
within that range: the location of the ball becomes a type of Wildcard. The
ball icon suggests that the ball is free to roll to anywhere within the range,
but at any given time the ball must occupy a specific point within the range.

In the aforementioned examples, fixed values (viz., 0, 1, 2, 3) were used.
By using ratios instead, especially 0% through 100%, relative concepts such
as ”most,” ”all,” ”few,” and ”many” can be defined with Value Bars, as
shown in Figure 91 and Figure 92. Some of these examples and values as
shown do not exactly match human intuition about the meanings of these
words, but all come close, and can be modified as desired.

The delimiting hatch marks are important in this icon because they allow
quick estimation of the ratio of shaded bar length to the full bar length. Such

108

Figure 92: The words ”few” and ”many” apply only if the calculated ratio
falls within the hatched range.

ratios are needed to give visual estimates to language terms such as ”few,”
”several,” and ”many,” since such terms conceptually are fuzzy-bordered
regions whose lengths and locations are a fuzzy percentage of the entire
region. The hatched triangles in the diagram represent triangular, fuzzy
logic membership functions.

7.1.3 Example: Goals

Such value representations can be combined in various, useful ways. For ex-
ample, a certain range of distances can be given a fuzzy textual description
such as ”far,” and conjunctions of such ranges from different measurement
types can be a given fuzzy textual description such as ”far” and ”fast.” In
turn, these conjunctions of ranges can become useful for expressing common
motivation, and therefore common goals, as shown in Figure 93, Figure 94,
Figure 95, and Figure 96. The ability to represent goals in general is ex-
tremely important in artificial intelligence since ”goal-directed” behavior is
often cited as a component of the definition of intelligence itself (e.g., Minsky
1986, p. 22; Kurzweil 1990, p. 18; Kurzweil 1999, p. 73).

These nuances of which goals might be important to a person come into
play in language translation, discussed later in this document.

7.1.4 Geometrical variations

Value Bars imply the existence of several interesting side topics that have
not been addressed here. For example, in many cases a geometrical structure

109

Figure 93: ”I want to get that (yellow) thing away from me, as far as possible.
(I don’t care where or how fast.)”

Figure 94: ”I want to get that (yellow) thing away from me, as fast as
possible. (I don’t care where or how far.)”

110

Figure 95: ”I want to get that (yellow) thing on target, as accurately as
possible. (I don’t care how far or how fast.)”

other than a rectangle is preferable, such as when angles are being measured,
whereupon a circle would be more suitable. Similarly, many phenomena that
have a wide numerical span are probably mentally understood via exponential
scales, or via hyperbolic termination, such as representation of infinity by an
asymptote’s location.

7.2 Wildcards (further development anticipated)

Because Tumbug is a visual representation, the usual type checking of digi-
tal programs is made much more difficult with Tumbug. In particular, when
Tumbug represents an OAVC system, a person would ordinarily expect the
value (V) to be numerical, as in Figure 97. However, Tumbug is so general
that it needs wildcards, which include ”values” like ”Don’t Know,” ”Don’t
Care,” or ”Not Applicable,” as in Figure 98. Such strings are few enough
in quantity that they could be implemented with special strings, as in the
”NaN” (= Not a Number) special value implemented in the programming
language Java (e.g., Gosling et al. 1996, p. 35), but Tumbug is more compli-
cated still. For example, a noisy numerical value would need multiple pieces

111

Figure 96: ”I want to get that (yellow) thing away from me, as far as possible,
as fast as possible, I don’t care where.”

112

Figure 97: In this Tumbug representation of an OAVC system, the value (V)
is numerical.

of information: (1) the value, (2) the probability density function (pdf) (e.g.,
Gaussian) that is associated with that value, (3) the mean of the pdf, (4)
the variance of the pdf. This situation cannot even be represented with a
four-element vector since the pdf is a function, not a numerical value.

The wildcards currently of interest in Tumbug are the following:

• * = any value, matches even 0 values

• ? = any value, matches even 0 or 1 values

• + = any value, matches at least 1 value

• DK = don’t know

• DC (or blank) = don’t care

• DNE = does not exist

• allowed range

A very useful wildcard is the asterisk ”*”, which is often used to mean
”any value.” In computer science, regular expressions routinely use this as-
terisk wildcard ”*”, as well as the two other wildcards ”+” and ”?”. To
generalize this situation, ideally a wildcard should be able to represent any

113

Figure 98: In this Tumbug representation of an OAVC system, the ”value”
is a string, which is closer to the concept of an object (O).

type of range description, which suggests use of a number line of real num-
bers, or even a 2D region or higher of real numbers. Figure 99 shows two
simple Wildcards. Theoretically it seems that the ”V” (= value) slot in a
Tumbug diagram should allow any object in order to be completely general,
though the implications of such a decision have not been investigated in this
study. However, this is the same design decision made in Allen Newell’s ar-
chitecture Soar (Newell 1990, p. 169): ”Both the attributes and values may
be other objects, so that arbitrary attribute-value structures can occur.” This
situation is not too different from situations that humans encounter, such as
”His final grade was the average of his midterm score and final exam score,
where each letter grade is assigned to each 10% section of the top of the spec-
trum.” Effectively such a description of a value is equivalent to a deferred
answer that requires data to be gathered and a function to be applied to that
data before the resulting value can be known.

The icons in the figure are intended to suggest that the small ball inside
the smooth tube can roll to any position within the tube, especially un-
predictably. This pictorially represents that the ball can exist at any point
within the range of values within the tube. More commonly this range has
values marked on it, as in Figure 100.

The region in which the ball can roll can be easily extended to 2D, 3D,

114

Figure 99: Tumbug’s icon for a Wildcard. Top: Where any real value is
possible. Bottom: Where only a limited range is possible.

Figure 100: A Wildcard that is limited to a point within the continuous
range of values from -5 through 5.

or higher. Figure 101 shows a 2D wildcard region.
As an example, consider a specific attribute value x. There exist a few

common situations where the visual value of x may be difficult to plot:

1. Problem: x has no magnitude.
One solution: Plot a point at x = 0.
Justification: Simple and obvious.

2. Problem: x has no value, not even zero, because x does not exist.
One solution: Do not plot any point. Conceptually x = nil, the same

Figure 101: A Tumbug 2D Wildcard that is a square region.

115

value given to new pointers.
Justification: Any plot of x at a given point means x has that value,
so there should be no plot.

3. Problem: x is unknown, although the user does not care about its
value.
One solution: Pick a random value for x, and plot that value.
Justification: Since the user does not care which value x has, any
value will work fine.

4. Problem: x is unknown, and the user does care about its value.
One solution: Plot all possible values, and apply probability to the
ranges.
Justification: The answer does get plotted, and the probability be-
comes a caveat for acceptance.

Each of these cases and its suggested visual equivalent is shown in Fig-
ure 102.

The described solution in the figure works acceptably for attributes
where x is simply a 1D magnitude, but the problem is more severe when
x is a multivalued attribute like color (which is 3D) or shape (which is ∞D),
not because of the multiple dimensions but because in practice such an ob-
ject cannot even be depicted since any depiction must be rendered with some
color and some shape. There exist workarounds, but the workarounds are
less intuitive for problematic attributes like color.

The aforementioned situations have an interesting implication: Numer-
ical values from a human perspective have more attributes than mere value.
These attributes are largely independent and consist at least of:

• magnitude

• existence

• range

• importance

The zero case is ordinarily clear, though for clarity a KRM should not
default to value = zero only because it is convenient, since zero is often a

116

Figure 102: For the attribute of magnitude, good visual representations of
Wildcards exist.

117

mathematically problematic point and the KRM display should be as unex-
pected as tolerable for visualizing the system In Tumbug there exists at least
three Wildcard values:

• don’t know (”DK” symbol)

• don’t care (”-” symbol)

• does not exist (”nil” symbol)

In the sets of four cases diagrammed above, these cases combined as:

1. does not exist (”nil” symbol)

2. unknown but user does not care: ”DK/DNC”

3. unknown and user does care: ”DK/C”

These three wildcards can be generalized into a single diagram, as in
Figure 103. Although humans often tend to think of ”exists” as a binary
condition ”exists versus does not exist,” in physics such concepts do not
strictly hold. For example, the question ”An electron exists within this atom
of iron” may not have a clear-cut answer if that atom of iron has formed a
metallic bond with another iron atom. Similarly, humans tend to think of
”know” as the binary condition ”know versus don’t know,” in real life such
concepts to not strictly hold, since likelihood of a fact falls within a spectrum
from ”absolutely not” through ”absolutely sure.” For example, the question
”Can your son solve a random Rubik cube position within five minutes of
seeing a Rubik cube for the first time?” evokes the commonsense answer
”no,” but nobody knows for certain.

Existence is independent from knowledge. For example, the question
”Are coelacanths endangered?” involves an existent animal but an unknown
attribute value, in contrast to the question ”What color are unicorns?” in-
volves a non-existent animal with a consensus attribute value. See Figure 104.
Similar situations arise even in mathematics, such as in induction proofs
where a base case has not been established. For example, if n = n + 1 for
all positive integers n, then it is true that for a specific n = k the formula
will also be true for n = k + 1. However, no base case can ever be found
whereby k = k + 1, therefore this ”fact” becomes known in a formula that
does not legitimately exist.

118

Figure 103: The three wildcards of ”exist,” ”know,” and ”care” are indepen-
dent and can be generalized and integrated into a 3D plot. Each of the three
wildcards has an associated spectrum, even if a spectrum for such a concept
is rarely used. (Source: unknown.)

119

Figure 104: Existence and knowledge are independent; people might not
know facts about existent entities, yet might know facts about nonexistent
entities. (Source: Drawing Tutorials 101.)

120

Figure 105: Range Caps are used on Value Bars to mark off a range and to
show inclusion/exclusion of the end point.

7.3 Range Caps

Figure 105 shows Range Caps.
Range Caps are just the four familiar keyboard characters ”(”, ”)”, ”[”,

and ”]” as used in math to mark the ends of 1D range on a number line. The
brackets ”[” and ”]” mean the end point is included, the parentheses ”(” and
”)” mean the end point is excluded.

8 Change-like Building Blocks of Tumbug (C)

8.1 Single Time Arrows

Most commonly when Tumbug needs a Time Arrow, it uses a Single Time
Arrow. However, Split Time Arrows also exist to represent multiple possi-
bilities along the timeline. See the section on that topic for more details.

Tumbug’s most common icon for a Time Arrow is shown in Figure 106.
Very often a hatch mark representing the current time is also included, and
is labeled ”0” to mean ”now” (Figure 107).

It should be clear that the concept of time is common in the WS150
problems.

The Tumbug icon used to represent time is a single-line arrow, usually
pointing downward on the page, labeled with the word ”time” or ”t”, and
running down the left-hand side of the diagram as shown in Figure 108. Any
scenario where time is important to represent (e.g., for grammatical tense or

121

Figure 106: Tumbug’s icon for a Time Arrow.

Figure 107: Typically a Time Arrow has a hatch mark labeled zero (”0”) to
mark the current time (= ”now”).

122

Figure 108: [104] Tumbug for ”A pin stuck into a carrot will leave behind a
hole when the pin is withdrawn.”

for a temporal list of expected actions) must have this arrow placed on the
associated diagram, typically on the left.

1. Time without space, WS150 example: #104 (carrot)
Although most WS150 problem statements involve time, time need not

be involved in every statement. This is particularly true of general rules,
such as the rule in Figure 108.

This example is derived from a portion of WS150 question #104.
”[104] I stuck a pin through a carrot. When I pulled the pin out, it left a
hole. What left a hole? POSSIBLE ANSWERS: {the pin, the carrot}”

2. Generalization: space-with-time

123

Figure 109: The Time Arrow icon and some type of Location Box icon are
commonly used together when moving objects are described.

Tumbug combines the concepts of space and time into a single concept
called ”space-with-time.” This combination is motivated by the following
observations:

• Language descriptions of objects moving in space are extremely com-
mon.

• Space and time are already combined into the single concept ”space-
time” in physics.

• Time is sometimes spatialized as an extra dimension of space when
training neural networks. (E.g., Simpson 1990, p. 326.)

Not surprisingly, then, the Location Box icon (for space) and Time Ar-
row icon (for time) are often used together, as shown in Figure 109.

3. Discretized time
Not all systems use continuous time. Some examples of systems that

use discretized time are: board games (since each person takes their turn),
sequential marquee lights on a theater sign, frames on a film strip for a motion
picture camera, displayed minutes on a digital watch, instructions executing
during each computer processor clock cycle, cellular automata (since nothing
happens between transitions), and steps of a computer simulation.

Tumbug can represent discrete time increments easily by stacking either
C Aggregation Boxes or Verbatim Boxes along a Time Arrow (preferably
touching the Time Arrow to make the meaning clear). In such a representa-
tion, each C Aggregation Box or Verbatim Box means an aggregated section
of time, rather than an aggregated section of space. In Figure 110, the first
three steps of a simulation of a glider configuration from Conway’s Game of
Life (which is a cellular automaton) is shown, using Location Boxes since the
spatial configuration at each step is important.

124

Figure 110: Time can be discretized with Location Boxes, with each Location
Box holding one time increment of the process. This diagram shows three
consecutive steps of the evolution of a glider from Conway’s Game of Life,
which is an example of a specific cellular automaton.

Figure 111: Tumbug’s icon for a Motion Arrow.

8.2 Motion Arrows

From the outset, one design goal of Tumbug was to regard moving objects
(in contrast to static objects) to be the default situation in the real world so
that Tumbug’s KRM design would not need to struggle later to add time to
a fundamentally static KRM. Too many computer science inventions such as
data bases and artificial neural networks have encountered this problem of
design short-sightedness that required later augmentation with time.

8.2.1 Motion of objects

In Tumbug, solid arrows are used to represent motion of an object (Fig-
ure 111, therefore Motion Arrows are usually used only in conjunction with

125

Figure 112: Tumbug diagram of a physical object in motion using an Object
Circle with a Motion Arrow.

Figure 113: If duration of a moving object is important, then this diagram
type should be used.

an object See Figure 112. If the direction of motion is important, this im-
plies that space is important, whereupon the arrow should be placed inside a
Location Box. Motion Arrows are allowed to point in any direction, whether
inside or inside of a Location Box.

If specific points in time or durations of time are important while an
object while it is moving, then a Time Arrow should be used as shown in
Figure 113 and Figure 114.

Should data objects use the same Motion Arrow as physical objects?
The current Tumbug design decision is ”yes,” and the reasoning for this deci-

Figure 114: If relative duration and relative distance of a moving object is
important, then this diagram type should be used since space and time are
important in such a situation, though not exact values.

126

sion requires some thought. First, information always requires some physical
medium to exist, and on which the information can be transferred. Second,
this physical medium may be either: (1) discrete storage units that can be
transported individually, or (2) continuous media that connects communi-
cating agents. Some examples of discrete storage units are: (1a) physical
strands of DNA that carry genetic data, (1b) physical pages of print that
carry written data, and (1c) physical flash drives that carry computerized
data. Some examples of continuous media are: (2a) the air between two
human speakers that carries sound waves, (2b) the wires between computer
components that carry electrical charges, and (2c) fiber optic cables that
carry light waves.

One implication of these observations for Tumbug is that discrete stor-
age units can be represented in Tumbug as either physical units via Physical
C Object Circles, which can then either be assumed to be carrying informa-
tion, or can be regarded as only physical units with the capability of carrying
information. If this is the way such units are regarded, then their data com-
ponent can be represented as a state within a Physical C Object Circle, which
is just a type of attribute. If continuous media such as air can be assumed
to exist with such convenience and with such ubiquity that there is no need
to represent the connecting medium explictly, then only the message content
as a whole needs to be considered. If this is the way that communication is
regarded, then the data component can be represented as a Data C Object
Circle. In either case, data transfer is regarded as some type of motion of
an C Object Circle, whether a Physical C Object Circle or a Data C Object
Circle, and since the data component of the C Object Circle used will have
already been represented if the designer deemed the data component impor-
tant enough to include, then the only remaining representation necessary is
the motion of that C Object Circle, which at that stage would not benefit
to be distinguished between physical object motion and data object motion.
Therefore only one type of Motion Arrow is needed in Tumbug, which is the
convention used in this document in order to keep things simple.

Obviously Tumbug does not show the intermediate positions of a mov-
ing object. Such a smeared display would undesirable, anyway, since a 2D
image blurred across its 2D trajectory would typically obscure specific fea-
tures. Instead, Tumbug shows the first and last locations of a moving object
and leaves the viewer to fill in the missing intermediate steps. For a more
complicated trajectory, motion arrows can be used, or a few, key, interme-
diate positions can be shown. Modern humans are accustomed to seeing a

127

series of frames that represent a moving object, such as in film frames, or
special effects in films.

8.2.2 Streams of objects

A complication in the real world, especially in the modern world, is that
much of the transfer being done is being done with data, not physical ob-
jects. Conceptually, data objects can be moved in largely the same way that
physical objects can be moved, so in Tumbug the same solid Motion Arrow
is used with both type of objects. A more difficult concept to represent is
that of streams, whether data streams of object streams.

In general, Tumbug must take into account a number of independent,
very basic considerations when representing motion of streams of objects.
Tumbug considers the following four dimensions of motion stream attributes:

1. solidity of the pathway - on a carrier path versus not on a carrier path

2. solidity of the flowing tokens- solid tokens versus data tokens flowing
along the pathway

3. stream organization - random versus information-carrying

4. allowed direction - toward one end of the carrier path versus the oppo-
site end of the carrier path

A complete list of these possible combinations follows for a single di-
rection (i.e., to the left) is in Figure 115 and Figure 116. (The exact visual
patterns of hatchings and bitmaps will vary between vector graphics editors.)

The dilemma may arise as to whether to represent a flow of many objects
as individual objects (via C Object Circles) versus a stream. Tumbug does
not currently specify any threshold to resolve this choice; currently this is
merely a matter of taste or practicality for the user.

8.2.3 Shorthand notation

Note that there exist numerous nuances in how a subject can move a di-
rect object. For example, the subject can throw the object (Figure 117),
bump the object (Figure 118), push the object (Figure 119), carry the object
(Figure 120), and so on.

128

Figure 115: Tumbug for a stream within a Pathway Tube, for objects versus
data, and for organized versus random.

Figure 116: Tumbug for a stream without a Pathway Tube, for objects versus
data, and for organized versus random.

129

Figure 117: Throwing object X consists of: (1) grasping X, (2) propelling
arm with great force; (3) releasing X.

Figure 118: Bumping object X consists of: (1) aiming at X; (2) propelling
arm with force to contact X, (3) ceasing force.

130

Figure 119: Pushing object X consists of: (1) traveling to X; (2) pushing on
X with enough force to move it, (3) traveling while pushing X; (4) ceasing
force.

131

Figure 120: Carrying object X consists of: (1) approaching X; (2) picking up
X, (2) moving while holding X, (3) putting down X.

However, when representing the extremely common concept of transfer-
ence of an object, it is often irrelevant as to whether the object was thrown,
bumped, carried, rolled, or other, since often the only important part of the
situation is that the subject ultimately caused the object to be moved to
another location. For this reason, the shorthand notation of Figure 121 is
useful for suppressing any such details.

This shorthand transfer diagram, which shows the transferred object
alongside the Motion Arrow, becomes very useful when representing basic
English grammatical patterns because it generalizes the situation of object

Figure 121: A shorthand notation for showing transference an object: no
timeline, no end effector, no details.

132

Figure 122: Tumbug’s icon for a Force Arrow.

transfer so much that this one diagram represents one of only about 4-5 basic
grammatical patterns that exist in English.

8.3 Force Arrows

Figure 122 shows a Force Arrow.
Roger Schank’s Conceptual Dependency theory included one Primitive

Act that was called PROPEL, which Lytinen (1992, p. 52) described as
”The application of a physical force to an object.” The concept of force is
mostly missing from the WS, but can be very important because Tumbug
needs to model physics, and force is one of the most basic concepts of physics.
For example, an object struggling against wind, a water current, a magnetic
field, or a gravitational field will need to have that field visually described in
Tumbug, probably as a vector field of arrows, in order for Tumbug to make
an estimated prediction of the object’s final trajectory. Also, the concept
of force makes a difference when an end effector from an actor touches an
object: without representation of force, a Tumbug diagram showing the end
effector at the surface of the object would not make it clear whether the
end effector had stopped at the object’s surface, or was pushing against the
object with a force that might budge (or propel) the object. Overlapping
forces, such as a falling object (acted upon by gravity) being deflected by
wind (acted upon by air) can be modeled by merely using a separate plane
for each force.

Conceptual Dependency theory differs from Tumbug in that the results
of inferences are also automatically included in the same Tumbug diagram
as the original statements, whereas Conceptual Dependency theory does not
perform inference, so continues to represent only the original statements.
This difference will not be evident until Phase 2, however.

In conformance with conventional physics representations of force via
vector fields, Tumbug therefore represents a given force in a given direction
with a single arrow with direction representing the direction of the force and

133

Figure 123: Top: The object is exerting a force to the right. Bottom: A
force from the left is being exerted upon the object.

Figure 124: An object subjected to force typically causes motion of that
object, represented by a Motion Arrow.

with length representing magnitude. If an object is exerting a force, then
the Force Arrow points away from the object, and if an object is being acted
upon by a force, then the Force Arrow points into the object. These two
situations are shown in Figure 123.

Frequently a force acting upon an object causes the object to move,
which is shown in Figure 124. Frequently a force across a region is represented
as a vector field, and an object in that vector field will move in accordance
of the direction of the force vector at the object’s location, which is shown in
Figure 125. In physics the length of the force vector varies with the strength
of the corresponding force, but in informal situations force values are almost
always unknown, in which case the Force Arrow lengths are irrelevant except
possibly in a relative sense.

8.4 Causation Arrows

8.4.1 Single causes

Figure 126 shows a Causation Arrow. A Causation Arrow points from a
cause to an effect in a Tumbug diagram. Often this arrow points to or from

134

Figure 125: An example of a single object in motion as a result of a force
acting on it within a vector field.

135

Figure 126: Tumbug’s icon for a Causation Arrow.

a specific state or a new attribute value, but it can also point to or from some
type of Aggregation Box that describes a situation.

It is necessary to model causation (also known as causality, or cause-
and-effect) in brain-level KRMs for at least two reasons: (1) an entity cannot
be said to truly ”understand” an event unless it understands the causation
of the event (Schank 1976, p. 168), (2) a given verb may inherently involve
the concept of causation, possibly in an indirect way, so such a verb cannot
be easily represented by resorting to the representation of motion, possibly
not at all unless causation is represented.

Schank wrote that, ”The basic mechanism in understanding is the in-
ference process” (Schank 1976, p. 169) because it is inferences that underlie
CSR since inferences extract associated memories that can clarify an ambigu-
ous sentence, which is exactly the situation highlighted in the WS problems.
Chuck Rieger (Rieger 1975) listed sixteen processes of inference, a key one
of which is ”causative” inference, the subject of this section, and Schank
described this inference type as asking ”What caused the action or state in
the sentence to come about?” (Schank 1976, p. 168).

Schank then expanded Rieger’s ”causative” inference class into four
types: (1) result causation, (2) enable causation, (3) reason causation, (4)
initiation causation. Currently Tumbug uses the single Causation Arrow for
any of these four types. If desired, likelihood values can be assigned to Cau-
sation Arrows to represent the likelihood that one event caused another, but
this document does not contain any such examples.

Some sentences are virtually forced to use a Causation Arrow. Fig-
ure 127 does not even need to label the verb ”to cause” since the Causation
Arrow already means ”to cause.”

Figure 128 is more typical in that it shows a state diagram attached to
one of the objects in a way that makes the entire state diagram resemble

136

Figure 127: Tumbug for ”You caused this problem.” Note that the problem
(= the green Object Circle) did not even exist until it was caused.

a simple attribute, except that the state diagram is written to the left of
the direct object instead of below it, in order to save space and to allow the
subject object to connect directly to the state diagram. Note that in this
bottle example that it would be very difficult to describe the exact motions
or actions that the subject took to cause the balance to occur, therefore such
details are best hidden behind the single Causation Arrow pointing to a state
within a state diagram.

Sometimes the collection of states is not as neatly or as geometrically
organized, such as in a State Diagram that contained all possible baseball
hit types. Fortunately, such an intricate State Diagram is not needed, as
shown in Figure 129. Since in that sentence there is mention of only one hit
type, the diagram needs only to represent the situation that the state of the
mentioned hit type was entered, not the previous state.

According to Schank (1976, p. 177), causation is like the glue that
holds together all the sentences of a story so that every sentence makes sense
within the story. In such story usage, causation ”links” (which in Tumbug
are equivalent Causation Arrows) must be generated by inferences with the
system as the story is read, whereas in the aforementioned examples Tumbug
was only representing what it was explicitly told. In any case, understanding
and representation of causation is clearly important for any intelligent sys-
tem, whether the system inputs or outputs causation information. Causation

137

Figure 128: [21] Tumbug for ”I balanced the bottle.” = ”I caused the bottle
to go into a balanced state.”

Figure 129: [75] Tumbug for ”The lead-off batter hit a home run.” = ”The
lead-off batter caused the hit type to go into a home run state.”

138

Figure 130: Three causes that together contributed to an effect: the sinking
of the RMS Titanic.

links can connect nearly every sentence in a story, as Schank demonstrates.

8.4.2 Multiple causes

Multiple causes leading to a single effect are common in practice. For exam-
ple, the sinking of the RMS Titanic in 1912 happened as a result of many
causes, three of which were: (1) the ship was moving too fast, (2) radio re-
ports of icebergs in the area were not forwarded by the radio operator, (3) the
binoculars were locked up. To represent such situations Tumbug would need
only to connect all the propositions somehow (a proposition is a declarative
sentence that is either true or false), each proposition of which would likely
be represented in a C Aggregation Box, and only a single Causation Arrow
leading from the connected propositions would be needed. This is shown in
Figure 130.

139

Figure 131: Tumbug’s icon for a Correlation Box.

8.4.3 Labeled causes

Causation Arrows can also be labeled, and labeling them is desirable in
most cases. Labels can be left generic, such as ”physics” for ”per the laws
of physics,” ”math” for ”per the laws of math,” ”logic” for an implication,
”chemistry” for ”per the laws of chemistry,” or ”social norms” for ”per social
norms.” Labels can also be very specific, such as math operators such as ”+”,
”=”, ”*”, ”/”, or numbers of legal statutes.

8.5 Correlation Boxes

A Correlation Box is a Tumbug Building Block that relates one or more
values in a mathematical way, like a function of two variables. The hardware
equivalent of a Correlation Box would be an op amp (= operational amplifier)
whose output is a function of the voltage input(s), such as a non-inverting
summing amplifier, differential amplifier, or integrator. The Tumbug icon for
a Correlation Box is intended to suggest a 2D plot on a graph whose origin
is the center of a square, as shown in Figure 131.

Only one problem from WS150 requires use of a Correlation Box, so
if Tumbug is used as a static KRM then use of Correlation Boxes is rare.
However, in a software version of Tumbug, Correlation Boxes would likely
be running constantly as a background process in order to keep correlated
attribute values of different objects in sync. The following WS150 problem
demonstrates a situation that would be best described in a software version
of Tumbug.

This example is from a portion of WS150 question #24. A Correlation
Box is necessary because each of two objects is changing its attribute val-
ues simultaneously in a manner that inherently involves the other object’s
attribute values.

140

”[24] I poured water from the bottle into the cup until it was full. What
was full? POSSIBLE ANSWERS: {the cup, the bottle}”

The correlation in this example is that the water being transferred ”from
the bottle into the cup” must cause one container to empty at exactly the
same rate that another container fills. If the total weight of the water were T,
and the weight of water in the bottle and cup were w1 and w2, respectively,
then the mathematical formula for this correlation would be w1 + w2 = T,
or equivalently for each variable:

w1 = T - w2

w2 = T - w1

If T were set to 100, then the equations would be...

w1 = 100 - w2

w2 = 100 - w1

...or in object-oriented form as...

bottlecontents.weight = 100 - cupcontents.weight
cupcontents.weight = 100 - bottlecontents.weight

Tumbug representation of this situation, but with the actor (”I”) omit-
ted, with these last two formulas would be as in Figure 132.

Note the following things about Figure 132:

• The timeline on the left indicates that water is being transferred con-
tinuously over time, from the bottle to the cup, then the transfer stops
when the cup is full.

• Since the present time, indicated by ”0” on the timeline, is located
after this transfer has stopped, this indicates that the entire pouring
event happened in the past.

• The function f, which describes the correlation function represented by
the Correlation Box, is defined out at the top of the page due to lack
of space in the middle of the diagram.

141

Figure 132: [39] Tumbug representation of some water of total weight 100
poured from bottle to cup until cup is 25% full, assuming the bottle and cup
have the same volume, and using abstract icons.

142

Figure 133: [39] Tumbug representation of some water of total weight 100
poured from bottle to cup until cup is 25% full, assuming the bottle and cup
have the same volume, and using realistic icons.

• The function f is given in terms of both variables, which results in two
equations. This makes the relationship two-way, so that the weight
value can be instantly determined for either cup at any time.

• In this system it happens that this function f is invertible (since it is
linear).

• If desired, the C Object Circle icons could be adjusted in size to more
closely match the relative sizes of average bottles and cups, and icons
could even be used for bottle and cup, as shown in Figure 133.

Figure 134 is better for didactic purposes since the lines point directly to
the applicable attributes, but this is more difficult to maintain as a drawing,
so the standard way of representing the fact that two objects are correlated
with a function somewhere between some of their attributes is to simply

143

Figure 134: (didactic:) 2 objects, each with 1 attribute value correlated with
1 attribute value in the other object.

Figure 135: (standard:) 2 objects, each with 1 attribute value correlated
with 1 attribute value in the other object.

draw a Correlation Box between the two objects, as shown in Figure 135.
The Correlation Box may then be labeled, if that level of detail is desired.

Correlation Boxes can be ”expanded” in a sense, because that type
of icon represents typically a 2D plot of a mathematical function, which
ultimately will need to be described somewhere for completeness of system
representation. Either the mathematical function can be written (which will
involve only symbols), or the plotted curve can be drawn (which will involve
only images).

144

Figure 136: A typical Tumbug State Diagram.

9 System-like Building Blocks of Tumbug (S)

9.1 State Diagrams

9.1.1 Overview

The components of this composite component: State Circles, Pathway Tubes,
one 0D Marker.

Oftentimes there exist only two states of interest in a State Diagram,
such as ”on” and ”off,” as in Figure 136.

In computer science a state diagram is a diagram that has states, each of
which is usually represented as a circle, with any possible transitions between
the states represented by arrows. In Tumbug, State Diagrams are as repre-
sented by labeled State Circles, which appear almost the same as C Object
Circles except that each State Circle shows a 45-degree slash behind it, and
these State Circles are connected by Pathway Tubes, each of which appears
as a thin cylinder with one pointed end. At any given moment in time, a
single 0D Marker is typically assumed to exist in exactly one State Circle,
which together represent the current state of the represented system. The 0D
Marker is roughly analogous to a ”token” in a Petri net, although typically
a Petri net contains multiple tokens whereas a State Diagram contains only
one token (0D Marker).

The 0D Markers in a State Diagram are assumed to move from one
State Circle to another State Circle via a Pathway Tube that connects those
two State Circles, but for simplicity this motion is not explicitly represented
with a Motion Arrow since the transition is usually thought of instantaneous
between State Circles. Also, for some sentences it is most logical to show
the 0D Marker as originating from an unspecified Pathway Tube itself. For

145

example, the sentence ”He turned the fan off.” might be most accurately
represented by the 0D Marker starting from within an unmarked, generic
Pathway Tube rather than starting from a State Circle labeled ”on” because
the sentence did not explicitly say that the prior fan state was ”on”. For
example, the fan could have been unplugged the entire time so it might
already have been considered to be ”off,” which leads to some ambiguity
in the sentence and situation. Similarly, many fans have a selection switch
where there exist a ”slow” and ”fast” state rather than a single ”on” state,
and there is no standard convention as to whether a fan has its ”off” state
next to the ”slow” state or the ”fast” state, and neither the sentence nor
the applicable State Diagram give that information, so both the originating
state and pathway to the final state are not known, so additional information
should not be assumed if representing the sentence most accurately. Phase
2 of this project will address such issues of assumptions.

It is generally assumed that all possible states are shown, that all pos-
sible transitions between states are shown, that only one state can be active
at a time, and that each state must be either fully active or fully inactive.
It is very common for there to exist only two states of interest, such as ”on”
versus ”off,” and it is typical for the diagrammed system to cycle indefinitely
among the possible states. However, exceptions exist, such as the connected
pair of states of ”alive” versus ”dead,” where there does not exist any transi-
tion out of the ”dead” state. Often the starting state and the stopping state
boxes are drawn with double borders to signal their special character.

In Tumbug a state diagram is considered an attribute of a given object.
In Figure 137, the on/off state diagram is shown as an attribute of a television
set, where an Attribute Line connects the state diagram and the television
set object. For the introductory examples here, the associated object is not
always shown. It is clearer to surround a given State Diagram with a C
Aggregation Box, but this is not a logical necessity.

Figure 138 shows how state diagrams and object attributes are related:
ordinarily changes in a given attribute of an object are probably initially
perceived as random by an observer who has no prior knowledge of that
given system. Essentially a state diagram describes the internal logic of how
the system changes attributes, as shown in Figure 139.

Figure 140 lists some examples of verbs that render well in diagrams
that show multiple states and the relationships between them, but that do
not render well in motion diagrams. All these examples are from WS150: a
number in brackets is an example number from WS150 that uses that verb

146

Figure 137: A State Diagram is considered an (elaborate) attribute of an
object. Here the object is a television set with two states: on and off.

Figure 138: Attributes such as color report only the current state of the
object, but the state of an object may be driven by some internal logic.
Here a single object, an American traffic light, is represented using two more
specific KRMs: a state diagram on the left, connected to a concrete image
on the right.

147

Figure 139: Attribute values may have an internal logic between themselves
that is not evident to an observer who sees only the outputs of an unknown
system. State Diagrams serve the purpose of describing some of that logic.

148

with that meaning.
Figure 141 lists some examples of verbs that do render well in motion

diagrams, without need for additional description of manner of travel or
mention of additional objects involved in the action.

9.1.2 Common pairs of states

This section gives some examples of State Diagrams that contain only two
opposite states, states that are common in real life, and therefore are common
in WS150 problems.

Figure 142 shows the pair of states of exertion and rest.
Examples of specific exertion/rest states are: active versus quiescent,

active versus passive, awake versus asleep, conscious versus unconscious,
energized versus unenergized, on versus off, work versus relaxation, work
versus rest, work period versus break period. Examples of specific bal-
anced/unbalanced states are: healthy versus unhealthy, injured versus un-
injured, stable versus unstable, running smoothly versus running roughly,
sustainable versus unsustainable, under control versus out of control, and
viable versus nonviable.

Another common pair of states are balanced versus unbalanced, as
shown in Figure 143.

9.1.3 Applications

Many verbs cannot be rendered in Tumbug with standard Tumbug motion
diagrams, but can be rendered with state diagrams.

State diagrams are commonly used in computer science, especially for
deterministic finite automata (DFAs). State diagrams are basically labeled,
directed graphs, where each node represents a state of the system, and arcs
represents traversals to and from those nodes. Nondeterministic finite au-
tomata (NFAs) are a slight generalization of DFAs. Some applications of
DFAs are representing states in vending machines, traffic lights (Figure 144
and Figure 145), video games, text parsing, regular expression matching,
CPU controllers, protocol analysis, natural language processing, and speech
recognition.

These applications tend not to be found in WS problems, however, other
than as meta problems such as parsing text and understanding text from the
WS itself.

149

Figure 140: Examples of verbs from WS150 that render well as states but
not as motions. (The numbers are WS150 problem numbers.)

150

Figure 141: Examples of verbs from WS150 that render well as motions but
not as states. (The numbers are WS150 problem numbers.)

151

Figure 142: A nearly universal pair of states is that of exertion and rest.

Figure 143: [21] A nearly universal pair of states is that of balanced and
unbalanced.

Figure 144: A state diagram for a European traffic light that changes colors
in a predictable order.

152

Figure 145: A state diagram is often considered an attribute of the object
that produces those states in that manner. Here the object is a European
traffic light.

9.1.4 The importance of avoidance of assumptions

It is important not to diagram parts of an event that were not explicitly stated
in the text describing that event. In other words, if Tumbug is to function
appropriately in a CSR capacity, Tumbug must represent only what was
stated in the supplied text, no more. This avoidance of assumptions becomes
critically important in the development of a CSR matching algorithm because
it is those assumptions that CSR must supply, otherwise the programmer
begins doing the work of the CSR, not the system, which negates the value
of a CSR system.

Some examples of assumptions NOT to make when creating the Tumbug
diagram are:

• STATEMENT: The student handed his professor that student’s home-
work.

• DO NOT ASSUME THAT...

...the student withdrew his hand after reaching out his hand
toward the professor.

∗• STATEMENT: Fred turned the TV off.

153

• DO NOT ASSUME THAT...

...the TV was on.

∗• STATEMENT: I balanced the bottle.

• DO NOT ASSUME THAT...

...the bottle was unbalanced.

Some examples of assumptions that can be made when creating the
Tumbug diagram are:

∗• STATEMENT: [19] The sack of potatoes had been placed above the
bag of flour.

• ASSUME THAT...

...the one bag is resting atop the other rather than being on
separate shelves.

∗• STATEMENT: [21] I was trying to balance the bottle upside down on
the table.

• ASSUME THAT...

...a ”table” would mean a table for placing items, not a table
of data.

∗• STATEMENT: [131] The woman held the girl against her chest.

• ASSUME THAT...

...a ”chest” would mean a person’s anatomy, not a storage
chest.

9.2 Split Time Arrows (further development antici-
pated)

The components of this composite component: Time Arrows, XOR Box, op-
tionally one 0D Marker.

Figure 146 shows a Split Time Arrow.
Split Time Arrows are merely multiple Single Time Arrows that fork

off from one another. The most practical convention to diagram this split is
via an XOR Box placed at the junction of the split, which is the convention

154

∗

Figure 146: Tumbug’s icon for a Split Time Arrow. Left: Without concern
about probability. Right: With probability (5/6 = 0.833, 1/6 = 0.166).

shown in this document. Another convention would be to surround the en-
tire ensuing timeline with an XOR box, which is more logical but typically
requires very large boxes, especially for long timelines.

If a given timeline branch is known to be the branch that occurred,
then a 0D Marker is useful to represent that fact, such as by placing the
0D Marker alongside the branch of the timeline that occurred, especially
within the XOR box. By implication all alternative branches are assumed
to be ruled out, which logically would be implemented by the ”Don’t Care”
convention of Tumbug, which is currently implemented by blanking out all
icons and structures that are marked ”Don’t Care.”

As in physics, alternative events can occur in real life, and can do so
with different probabilities. One way to diagram such a situation is to draw
multiple timelines that have split off from each other, where each timeline has
its own scenario unfolding along it, such as in the following WS150 example.

Figure 147 shows an example from a portion of WS150 question #69.
A Split Time Arrow is necessary because the cause of the resulting scenario
indicated by the words ”there was no answer” is not known unless (CSR)
inferencing is done. Only one of the two scenarios can happen: either (1)
Susan is in the house and answers the door, or (2) Susan is not in the house
and does not answer the door.

”[69] Jane knocked on Susan’s door, but there was no answer. She was
out. Who was out? POSSIBLE ANSWERS: {Susan, Jane}”

155

Figure 147: ”[69] Jane knocked on Susan’s door, but there was no answer.
She was out.”

156

Figure 148: A typical Tumbug Data Set Box, here with five Data Points,
here with coordinates described by attributes x and y.

9.3 Data Set Boxes (further development anticipated)

The components of this composite component: Location Box, Data Points,
1D Markers for axes.

See Figure 148.
This feature has not been developed for Tumbug yet, but it is likely to

be a valuable enhancement in the future. The idea is that no stored value
of any attribute is allowed to be a single scalar Data Point, but instead
must always be part of an indexed (and possibly named) data set, especially
plotted against attribute values. This convention obviously takes much extra
storage space and also increases diagram complexity, but it also allows for a
surprising amount of generalization because of the following observations:

1. It allows the system to see the big picture and (at least the location of)
the details at the same time. This allows immediate explanatory ability
since the system can look at a data set, select a point in that data set
based on some additional criteria, then expand the event associated

157

with that point if requested to give an example of the more general
pattern.

2. It allows immediate meta knowledge of the data set. For example,
if queried, ”Have you ever ridden an elephant?”, most humans would
know immediately whether the answer were yes or no, whereas a com-
puter might need to search a lifetime’s length of video files to determine
the answer. Humans might be able to accomplish this feat so quickly
because all elephant encounters have likely been placed automatically
at the same place in memory, so a quick examination of that location
would show whether it contained any Data Points at all. Formally, this
type of meta knowledge would merely be the numerical count of the
Data Points in the particular data set.

3. It allows rapid estimation of functions and inverse functions, including
functions the system was not even aware that it stored. For example,
after years of encounters with point sound sources (e.g., people speak-
ing, radios playing, power tools running) where a human evidently
automatically stored the correlations of sound volume (I) and distance
from the source (d), that person queried as to whether the volume
of a sound diminishes linearly with the distance away from the sound
would probably already know that volume increases nonlinearly as one
approaches the sound source (from distance d1 to distance d2). That
person did not need to take a physics course to learn this knowledge.
Such a nonlinear function is probably computed for the first time at
the time of the query by introspectively considering the data set as a
whole and noting that the correlation is approximately a curve (the ac-
tual function happens to be I2 = I1 * (d1 / d2)

2. Mathematically this
equates to familiar machine learning techniques like linear regression,
but some of the differences are that: (A) such mental plots seem to be
automatically available for every significant attribute encountered fre-
quently in life, (B) the composite view of the data can be perceived as
a specific type of curve immediately, (C) even functions without proper
inverses can likely be understood by intuition without becoming stalled
by mathematical formalities, (D) the curve itself can be regarded as an
entity that can be compared to other curves and to other phenomena.

4. Continuous formulas (e.g., y = x2) and discrete formulas (e.g., the
Heaviside step function H(x)) = 0 if x < 0; 1 if x ≥ 0) become unified

158

into a single data structure with this representation. Some advantages
of this combination of overlays is that more meta knowledge becomes
available immediately, such as the width of the sampling range, and
the presence of any clustering of samples, variance, and mean.

10 Rules for combining the single Building

Blocks

10.1 Nonquans with Change Arrows

Both human languages and programming languages can be represented as
grammars, so the grammar of Tumbug should also be described, which is
done in this section. The result is visual, however.

Two Nonquans and one Change Arrow can be combined in only five
ways that make sense, as shown in Figure 149. The best way to show how
the four types of Change Arrows can be logically combined with the five
combinations of symbols is the table in Figure 150. Although it is gram-
matically legal to use combinations outside of the combinations marked ”+”,
such combinations are not meaningful or useful.

The following list summarizes this table as the following grammatical
rules:

• Arrows and Nonquans can be logically combined only by placing one
end of a given arrow on (typically the leftmost or rightmost point on)
the border of a Nonquan.

• Time is basically a fourth dimension of spacetime, therefore Time Ar-
rows are more like space than a type of Change Arrow. This difference
is more noticeable when considering on which side of an Object Cir-
cle a Time Arrow should be placed: no side makes sense because time
”passes through” every diagrammed object without inherently affect-
ing that object, unlike force, where a Nonquan can cause a force that
affects another Nonquan. The same statements about force also hold
true for causation and motion. Only the statement ”Time exists in
this diagram” adds new information about time because time does not
need to exist in Tumbug diagrams that show only static objects or
static systems.

159

Figure 149: This list describes with text the general meaning of each mean-
ingful combination of one Change Arrow with 1-2 Nonquans.

160

Figure 150: The heading of this table shows all five logical combinations
of two Nonquans and one Change Arrow, and correlates each combination
with a decision as to whether that combination makes sense with each of
the four types of Change Arrows. A ”+” means that the combination is
logically acceptable. ”Makes sense with” means that the specific subtype of
Change Arrow shown can produce more information when substituted into
the Change Arrow in the diagram in the heading.

• Solitary arrows generally make sense, such as the sentence ”A force
exists here” being represented by a solitary force arrow at a given point,
which is why the time column of a solitary Change Arrow is always
applicable.

• Solitary Nonquans generally make sense for the same reason that soli-
tary types of Change Arrows generally make sense: it is acceptable to
say ”An object exists here,” for example.

• Self-reference via Change Arrow is allowed, and is needed for reflexive
verbs such as ”to hurt oneself” or ”to shave oneself.”

10.2 Attribute and Values

The following list summarizes the grammatical rules for attributes and values:

• Attribute-value pairs are always optional since these are merely refine-
ments of Nonquans or Change Arrows.

• If used, attribute-value pairs can be attached to any Nonquan or Change
Arrow.

161

• Current Tumbug convention forbids attached attribute-value pairs on
any icon other than a Nonquan or Change Arrow. For example, the
double modification ”very fast” to a motion is merely a more refined
estimate than ”fast” alone, and the more refined estimate can be repre-
sented as a narrower range of values instead of a modifier of a modifier.

• Either attributes or values may theoretically exist singly, but this is
particularly problematic with unattached values, and somewhat prob-
lematic with unfilled attributes. For example, it is sensible to have
attribute ”weight” on a typical object, even if the value of the weight
is not known, but an unattached value ”85” associated with an ob-
ject could be body weight, atomic weight, age, IQ, employee number,
or some other relationship. In the first case, the attribute-value pair
”weight = Don’t Know” could represent this situation, and in the sec-
ond case the attribute-value pair ”Don’t Know = 85” could represent
this situation.

11 Convenience Building Blocks of Tumbug

A convenience Building Block is a Building Block that is not strictly neces-
sary, but that is desirable in practice.

11.1 Label Strings

Examples of Label Strings are shown in Figure 151.
A Label String can be considered a shortcut for each type of Tumbug

icon (Object-like, Attribute-like, Value-like, Change-like, System-like), not
so much an icon in itself. Tumbug is intended to be a completely visual
KRM, and is capable of being so, but in practice labels are almost always
used to keep the diagrams simple. Without labels, images could become
too cluttered to interpret easily, or the depicted objects (especially biological
objects such as taste buds or the amygdala) would not be familiar to most
people in visual form.

Figure 152 shows an example of how a value such as ”salty” can be
represented visually as a 0D Marker or as the string ”salty,” and Figure 153
shows how a Tumbug diagram would incorporate that 0D Marker and 5D
graph as a Value, and with an iconic Object, and with an iconic Attribute.

162

Figure 151: Examples of Tumbug’s Label Strings, which can label almost
anything.

Figure 152: Any given taste can be represented as a point in 5D space.

163

Figure 153: A completely iconic Tumbug diagram with no text at all except
the separator ”=”. The sentence represented is ”(OBJECT) potato chip has
(ATTRIBUTE) taste (with VALUE) salty.” The taste attribute icon has the
shape and features of a single, biological taste bud.

As a more extreme example, the human cortex is known to be able to
uniquely represent a human face via about 200 feature-detecting neurons
(Chang and Tsao, 2017). Therefore instead of labeling an object ”Susan,” a
Tumbug diagram could instead include 200 feature detectors, meaning 200
attribute-value pairs protruding from the C Object Circle, but this set of
feature detectors would not map to any single name or identifier for Susan:
it would only present a collection of features with the expectation that the
viewer would quickly recognize them as describing the person known as Su-
san. Since any human reader would have trouble quickly converting this
many textual-numerical clues into a unique known object, it would be more
efficient to summarize that set of 200 values as the identifier ”Susan.”

The above observation is very important for a number of reasons: (1)
This set-of-features recognition problem one of the reasons Tumbug uses
visual representation from the start: these value-attribute pairs could be
displayed visually in many cases, which the viewer’s visual system would then
process in parallel for quick identification, in contrast to laborious, computer-
like collection of sequential attributes and values by the viewer. For example,
a simulated face constructed from a collection of these 200 features could be
displayed with the object known as Susan to aid recognition on the part of
the viewer of the Tumbug diagram. This suggests that Tumbug’s KRM is
closer to that used by real brains. (2) This large set of features may be the
key to true ”understanding,” and may explain why biological neurons have
so many efferent dendrites: parallel brain processing of a large number of

164

Figure 154: Tumbug’s icon for an Attend Ring, alone.

attributes would tend to uniquely identify every encountered object without
the need of any names or identifiers. (3) This large set of features may
inadvertently implement OOP style ”inheritance” in that any object in this
KRM would carry along with it so many identifying features that many of
these features could be duplicated with each object of the same class. One
consequence would be that a Tumbug-based system would not need to spend
time checking ”upstream” links to look up inherited attributes of a given
object since all those more general features would already be present in the
object.

Tumbug’s Label Strings are extremely flexible in usage. Label Strings
may be placed on any object, in any position, at any time.

11.2 Attend Rings

Attend Rings have a specific use only within the context of communication,
especially since communication involves streams of objects (such as words or
sentences).

Figure 154 shows an Attend Ring. In Tumbug, Attend Rings appear
only with Motion Arrows that represent motion of a message. The function
of an Attend Ring is to flag that the state of the receiver of a message is the
state of attending to the message (i.e., paying attention to the message), and
since states are object-like icons, Attend Rings could be considered an object-
like Building Block. However, an Attend Ring could also be considered an
attribute value of the listener, such as ”attending = true” versus ”attending
= false”, in which case Attend Rings would be only a convenience Building
Block that made a certain attribute value more visible at a glance. That is
the way Attend Rings are categorized in this document: as only a convenience
Building Block. ”Attend” is a building block used in CD theory, so the use of
Attend Rings in Tumbug is useful to show more clearly how Tumbug relates
to CD theory.

The ”ATTEND” concept in Tumbug is identical to the ”ATTEND”

165

Figure 155: An Attend Ring in its normal position around a data Motion
Arrow.

Figure 156: Typical usage of an Attend Ring: communication between hu-
mans with the receiver paying attention.

Primitive Act of Roger Schank’s CD theory, and takes its name from CD
theory. The importance of this concept is that transmitted information to
an entity (especially to a person) does not necessarily enter that entity’s
awareness or become stored in that entity’s memory unless the entity has
directed its attention to the information stream. For example, the verb ”to
teach” cannot be accurately represented as a teacher transmitting a verbal
information stream to a student because the student could be daydreaming,
distracted, deaf, asleep, might not understand the language spoken, or might
have some other form of communication blockage. The mere presence of
an ”ATTEND” flag in this case makes it clear that the assumed actions of
teaching depicted are functioning normally. In Tumbug this visual flag is
embodied as ring around a data Motion Arrow, near the arrow tip, as in
Figure 155, and an example of typical usage representing speech between
humans is shown in Figure 156.

This article’s convention: Verbs are written as infinitives preceded by
the word ”to,” as in ”to see” instead of merely ”see.” For grammar purists
this is technically incorrect since the word ”to” is an extra word that is not
related of the verb, but such use of ”to” is extremely common, familiar to
more people, and makes the infinitive form obvious.

166

Figure 157: Tumbug’s icon for a Motivation Triangle, states not labeled.

11.3 Motivation Triangle

The components of this composite component: Location Box, Cells, option-
ally any number of 0D Markers up to the number of cells.

In Tumbug, a Motivation Triangle is a certain type of composite icon
composed of exactly four stacked cells with an isosceles triangle shape drawn
around the entire structure, with the peak of the triangle at the top as shown
in Figure 157. The shape is intended to resemble Maslow’s hierarchy of needs.

The need to diagram motivation, also called ”desire” or ”wants” (verbum
Rieger 1975), the latter of which is the term used in this document, occurs
frequently because goals frequently lie at the origin of actions by animals
(including people), and goals in animals incorporate some form of reward or
punishment, depending on the degree of success of the attempt to achieve
those goals. Wants are always based on at least one of at least three types:
physical, emotional, and intellectual (MacLean 1990). Kurzweil also consid-
ers ”spiritual” (Kurzweil 1999, p. 152), and ”consciousness” has also been
considered, despite Michio Kaku’s warnings about research into that poorly
defined concept (Kaku 2011, p. 96). The first three types come roughly
from the concepts of Paul MacLean’s ”triune brain hypothesis” (MacLean
1990), even if the neuroanatomical foundation of that hypothesis may not be
correct.

Such a triune hierarchy does not appear to apply to machines, however,
because currently machines do not have emotions or a pleasure/pain reward
system that operates similarly to that of animals. In particular, comput-
ers and robots have their goals inputted by humans, goals that the machine
cannot override unless specifically programmed to do so, even if those pro-
grammed goals bring the computer or robot to destroy itself, so obviously
such machines do not even have an autonomous survival layer, or a layer
based on physical pain. This situation is a level of severity lower than that

167

Figure 158: A Motivation Triangle with labeled states. This set of four types
of wants could be called a ”quadrune hierarchy.”

of physical needs, since the machine has absolutely no influence over its ac-
tions, therefore the author has introduced a fourth, bottom level to the tri-
une model, named the ”automaton” level, resulting in what could be called
a ”quadrune hierarchy,” shown in Figure 158. With this unified hierarchy,
machine wants and animal wants can be considered together in the same
diagram when diagramming goals. The result resembles Maslow’s hierarchy
of needs triangle, which is roughly similar in concept, but with the Maslow
hierarchy substitutes the roughly analogous term ”physiological” instead of
”physical,” ”love/belonging” instead of ”emotional,” and ”self-actualization”
instead of ”intellectual.”

Since this triangle is usually drawn small in Tumbug diagrams, and
since its levels already have fixed meanings, the level names can and should
be omitted. Since this triangle is basically only a structured state diagram
of four states, and since each level corresponds to a fixed and already-known
state meaning, each state can be independently active, including simultane-
ously. To distinguish between positive motivations and negative motivations,
the same structure of the Robinson Icon is used: the icon is duplicated and
stacked in 3D, and the upper layer is interpreted as the positive layer, and
the lower layer is interpreted as the negative layer, as shown in Figure 159.
Activation of a given state with a given polarity can be represented by a 0D
Marker present at that state (level) in the diagram, and at the appropriate
layer, as shown in Figure 160.

Numerical values could be used, of course, and would be more precise
than textual descriptions like ”positive,” ”negative,” or ”neutral.” For even

168

Figure 159: Two parallel Motivation Triangles can be used to represent ”pos-
itive motivation” versus ”negative motivation.”

Figure 160: Tumbug for ”positive mood” or ”positive emotion.”

169

Figure 161: The motivational state of a human can be represented with a
pair of Motivation Triangles inside a C Aggregation Box that is connected
to the human with an Attribute Line.

more brevity, ”+” can be used for ”positive,” ”-” can be used for negative,
and only the one Attribute Line needed to write this symbol can be used.

As with the State Diagrams described earlier, it is consistent to connect
a Motivation Triangle to its corresponding entity with an Attribute Line,
and to place the entire set of states in a C Aggregation Box, as shown in
Figure 161 for a human’s state.

As in other arrays of Tumbug (such as in Swirly Arrays), Motivation
Triangles are most useful when outfitted with 0D Markers to indicate activa-
tion of the cell at which the marker is found. Such markers will show which
levels of the hierarchy are active at any given point in time. See Figure 162.
Since humans may experience multiple motivations simultaneously, multiple
0D Markers should be allowed in a Motivation Triangle to represent such a
situation, with one marker maximum per cell.

Conceptually a Robinson Icon is an elaboration of the emotional layer
of a Motivation Triangle; whereas a Motivation Triangle indicates that an
emotion is involved as motivation, a Robinson Icon indicates exactly which
emotion is involved. Therefore these two icons should ideally be combined
as in Figure 163.

Motivation Triangles can also be used to represent a system’s wants.
In other words, Motivation Triangles can represent output as well as input.
With this new automaton level, queries to the system about why it per-
formed a particular action can be answered consistently and accurately with
a sentence referring to its motivating wants level, which gives the system an
explanation ability that is not found in neural networks.

170

Figure 162: A 0D Marker in a given cell of a Motivation Triangle indicates
that the system is feeling the motivation represented by that level.

Figure 163: A Motivation Triangle that indicates an emotional state will
likely include a Robinson Icon to indicate which emotion is involved.

171

Figure 164: Tumbug for ”Bob is motivated for negative reasons.”

In practice it is rarely desired to address the details of which motiva-
tional levels are involved in making a decision, and the amount of stimulation
at each level; in typical sentences usually the only relevant information is that
the system overall feels positive or negative motivation. Therefore a reduced
version of Motivation Triangle, unlabeled, with each the two triangles in-
side of its own Aggregation Box that holds a 0D marker in the applicable
Aggregation Box is more practical, as shown in Figure 164.

11.4 The Modal Verb Icon

The Modal Verb Icon of Figure 318 was derived in the section on modal verbs.
Like the Robinson Icon, this icon is an irregularly shaped data structure
that contains cells in fixed locations, and where each of the cells may be
highlighted under certain constraints.

11.5 The Robinson Icon

The components of this composite component: Swirly Array, 0D Markers.
Representation of emotions is tricky, mostly because there does not ex-

ist a standard accepted categorization of emotions, and also because sciences
such as biology, chemistry, and neurology do not suggest any clear-cut nat-
ural categories. Emotions are generally believed to be discrete, therefore it
is believed that all emotions can be listed, and many similar lists do exist.
The most prominent 2D categorizations of emotions are: (1) the circumplex
model, (2) the vector model, (3) Positive Activation - Negative Activation
(PANA) model. Other categorizations are Plutchik’s model and PAD emo-

172

Figure 165: Robinson’s categories of emotions (Robinson 2009, p. 155).

tional state model. With respect to Tumbug, the main problem with the all
these categorizations is that none of them show the emotion ”love” as having
an object of affection, i.e., the concept of love requires a parameter that is
the object of affection, therefore the concept of love cannot be categorized
as a simple data point as can most other emotions. The same is true of the
emotion ”hate,” which is the negative of ”love.”

However, a review of theories of emotions was made by David Robinson
in 2009 (Robinson 2009) that described the emotions of ”love” and ”hate” as
a being in the ”cathected” category, and only those two emotions were in the
cathected category. Notably excluded from the cathected category are emo-
tions in the categories called ”Related to object properties,” ”Event-related,”
and ”Social.” Robinson’s entire list of emotions is shown in Figure 165. The
concept of ”cathexis” comes from Sigmund Freud, and refers to an invest-
ment of energy in an object, idea, or person, which fits well the concept of
requiring an extra parameter that represents the direct object. Robinson’s
categories are only six in number, though each has a positive-negative du-
ality, and largely match the categorizations of other authors, so Robinson’s
categories are currently being used for Tumbug. Robinson’s categories are:
(1) related to object properties, (2) future appraisal, (3) event-related, (4)
self-appraisal, (5) social, (6) cathected, (7) positive versus negative versions
of all these categories.

With a bit of generalization, Robinson’s categories become surprisingly

173

symmetrical when diagrammed with Tumbug. This diagrammatic, progres-
sive abstraction from Robinson’s textual categories to a single, ornate, basi-
cally symmetrical icon is shown in Figure 166, Figure 167, Figure 168, and
Figure 169, and the keys to the letter abbreviations are in Figure 170 and
Figure 171.

The dichotomy of positive or negative emotions, technically called ”va-
lence,” can be represented with a ”+” or ”-” sign, respectively. These form
a pair. The two categories ”future appraisal” and ”event-related” can be
regarded as merely the range of time that defines the category: future for
”future appraisal,” and past or present for ”event-related,” so these two cat-
egories can be represented as two C Aggregation Boxes, one on each side of
current time (time = 0) on the Time Arrow. These form a pair. The two
categories ”related to object properties” and ”social” are similar, and differ
mostly only in whether the cause of the emotion is an inanimate object or
an animate object, especially a person. A C Object Circle, which as shown
earlier can differentiate between inanimate versus animate by labeling it with
an ”X” or ”O,” respectively, can be used to represent those two categories.
These form a pair. ”Self-appraisal” is a singleton category, but then so is
the ”cathected” category, so these last two categories form a pair, as all the
other categories did. The result is a set of three pairs, which together form a
hexagon with each category at one corner, a person icon conceptually placed
in the middle, and one more diagram added as an aside, via an Attribute Line
connecting the person to the specific object of focus for ”love” or ”hate.”

See Figure 172. The ”+” sign on P, S, and E indicate that the textual
descriptions shown are for the positive valence of the given emotion. The final
Robinson Icon as usually used is shown in Figure 169, although the cathected
version is slightly more detailed and shown in Figure 173. The negative
valence descriptions, which were listed earlier, were removed only to save
space, which means that without the valence mentioned, the Robinson Icon
would spatially need two layers, one for each valence, as shown in Figure 174.

The next example, shown in Figure 175 is part of a WS150 problem:
”[64] Mary took out her flute and played one of her favorite pieces. She

has loved it since she was a child. What has Mary loved since she was a
child? POSSIBLE ANSWERS: {the piece, the flute}”

The darkened circles on the hexagon are 0D Markers that correspond to
the corresponding categories in the Robinson diagram discussed earlier, in
this case the categories ”Related to object properties” (the upper right circle)
and ”Cathected” (the bottom circle). The more detailed subnode ”E2” is

174

Figure 166: STEP 1. Robinson’s six emotional categories map and generalize
fairly symmetrically in diagrammatic form.

175

Figure 167: STEP 2. A less annotated version of the previous diagram.

Figure 168: STEP 3 and STEP 4. Progressively abstracted and simplified
versions of the previous diagrams.

176

Figure 169: STEP 5. The Robinson Icon.

Figure 170: KEY. Key to the six primary node meanings of the Robinson
Icon.

177

Figure 171: KEY. Key to the six primary node meanings of the Robinson
Icon., connected and with more detail.

Figure 172: KEY. Complete list of all the node meanings of the Robinson
Icon.

178

Figure 173: The icon will have an Attribute Line emerging from the bottom
node (C) if the emotion is cathected (= regarded in an emotional way by the
subject/viewer).

Figure 174: The Robinson structure actually has two identical layers, ”+”
and ”-”, written elsewhere as text.

179

Figure 175: Example #1a of how the Robinson Icon is used: [64] ”She loves
the song.”

Figure 176: Example #1b of how the Robinson Icon is used: [64] ”She has
loved it since she was a child.”

activated for attraction (”love”). The ”+” inside the hexagon indicates the
positive valence of the pair of choices, in this case ”love” (+) instead of ”hate”
(-).

A specific example from WS150 is shown in Figure 176.
In Figure 177, the example shows the ”Social” circle activated (dark-

ened) with the ”-” sign indicating ”sympathy” (-) instead of ”cruelty” (+),
and the more detailed subnode ”S2” is activated to represent ”sympathy.”

In Figure 178, the example shows the past tense by showing the main
part of the diagram above (past) the current time (time = 0). ”Joy” is a
positive (+) emotion that is ”Event related,” so the corresponding circle (the
upper left circle) is shown activated, and the more detailed subnode ”E2” is

180

Figure 177: Example #2 of how the Robinson Icon is used: ”She feels sym-
pathy.”

Figure 178: Example #3 of how the Robinson Icon is used: ”He felt joy.”

activated to represent ”joy.”

11.6 Zoom Boxes

11.6.1 General

The components of this composite component: two Location Boxes, two to
four 1D Markers to connect the corners of the squares in mock 3D.

The Tumbug icon for a Zoom Box is shown in Figure 179.
As with digital maps that have a zoom in / zoom out feature (Figure 180,

or even with paper maps that have inserts that show an important area
in higher detail, a zoom feature saves a great amount of space and time
since otherwise everything would need to be rendered in the highest level
of detail for the largest possible area, and the user could not even see the
details even if the screen could show those details. The same is truly of any
large or highly detailed system, whether biological (Figure 179), electrical,
mechanical, software, astronomical, or other. Tumbug is therefore assumed
to have the ability to represent two areas of a system, one of which is the zoom
of another. John F. Sowa in his large book about knowledge representation,

181

Figure 179: Tumbug’s icon for a pair of Zoom Boxes.

Figure 180: A zoom in (+) / zoom out (-) control on a DuckDuckGo map.

noted the utility of being able to zoom into part of a representation of an
event for additional temporal details (Sowa 2000, p. 175), and Reisberg and
Heuer mention a study that confirms that spatial relationships remain intact
while humans zoom in on a mental image (Reisberg and Heuer 2005, p. 39).

11.6.2 WS150 example: #52 (worm)

This example is from a portion of WS150 question #52. A Zoom Box is
desirable because taste buds are implied by the word ”tasty,” and taste buds
are a tiny, interior part of anatomy, far smaller in scale than the entire
animal’s body.

”[52] The fish ate the worm. It was tasty. What was tasty? POSSIBLE
ANSWERS: {the worm, the fish}”

182

Figure 181: Zoom in / zoom out ability is a practical necessity for highly
detailed diagrams. The size of a fish compared to the size of one of its taste
buds spans about three orders of magnitude, for example.

Although ”ate” would likely be immediately associated with a mouth,
”tasty” would likely not be immediately associated with taste buds, nor
the fact that taste buds are located inside a mouth. To make this single
envisioned spatial connection across an order-of-magnitude spatial difference,
zoom would be useful to show the approximate location of taste buds inside
the mouth, which in turn would be shown as part of the fish’s body. Other
approaches to answering problem #52 exist, though this zoom approach is
one way.

The example of Figure 181 shows how a critical physical component
from problem #52, namely a fish’s sensors for taste, are orders of magnitude
smaller than the main scale of discussion, namely at the size scale of fish and
worms.

12 Generalized Building Blocks of Tumbug

The generalized Building Blocks of this section are not currently used for
practical applications, but rather used only as a theoretical organizational
scheme to show that all Tumbug Building Blocks reduce to a small number
of very general concepts.

183

Figure 182: A Nonquantified Object is a generalization of a single object and
a collection of objects.

12.1 Nonquantified Objects (= Nonquans)

Figure 182 shows a Nonquantified Object.
Nonquantified Objects, called ”Nonquans” for short, are objects of ar-

bitrary quantity. The idea is to generalize the concept of an ”object” while
still distinguishing between objects, motions, and attributes. Motions and
attributes are in classes different from Nonquantified Objects. Some exam-
ples of Nonquantified Objects are:

• an element of a set

• a set of elements

• a single data point

184

• a cluster of data points

• an Object Circle

• any type of Aggregation Box

• any type of Location Box

• any Compound Building Block

12.2 Interchangeably Actualizable Maps (= IAMs)

It becomes clear after representing numerous sentences with locations and
after representing numerous sentences with states that the concepts of lo-
cation and state are similar. In fact, a state diagram can be considered an
alternative view of a location diagram, and vice versa, in the same way that
a plot of data can be considered an alternative view of a table of numerical
values, provided that all the attributes of each data point are retained. Since
the concepts of location and state are interchangeable at a higher level of
abstraction, they can be generalized to a single concept, a concept that in
this document is called an ”Interchangeably Actualizable Map” (IAM), the
Tumbug icon of which is shown in Figure 183.

For example, a geographical map is a map of actual locations, whereas
a state diagram is a map of concepts, so both representation systems can be
called ”maps” in general, as shown in Figure 184.

12.3 Change Arrows

The observation that locations and states can be considered a single, more
general Building Block has an immediate consequence: since Motion Arrows
represent a change of location and since Causation Arrows represent a change
in state, then Motion Arrows and Causation Arrows can also be generalized
to a single, more general Building Block that represents a change in an In-
terchangeably Actualizable Map. Two other types of arrows, namely Force
Arrows and Time Arrows, represent similar concepts of change, so all these
types of arrows can be generalized into a single, general, change icon called
a Change Arrow, which is shown in Figure 185.

Two asides: (1) Correlation Boxes theoretically also represent change
since they represent continuous mappings, or functions, but such mappings

185

Figure 183: An Interchangeably Actualizable Map is a generalization of lo-
cations and states.

typically involve an uncountably infinite number of points, so Correlation
Boxes are probably best represented as the square icons that they use now.
(2) The original version of Tumbug developed by the author for language
translation (Atkins 2023) was derived from only C Object Circles and Motion
Arrows, which are now known to be insufficiently general icons for natural
language grammars, as this more modern document demonstrates, so the
original language translation version of Tumbug will need to be simpler than
the strong version of Tumbug described in this document. That simpler
version of Tumbug can then be more closely matched with the verbs found in
real sentences, without needing to consider how those verbs might correspond
to states or changes in time.

13 Heuristics for converting sentences to Tum-

bug

The author has found the following list of heuristics useful when converting
sentences to Tumbug.

1. Heuristic: If there exists presence of any type of barrier then at least

186

Figure 184: A geographic map of countries with respect to their membership
in ”The Nuclear Club” is interchangeable with a state diagram that shows
such status, provided that no attributes are lost in the transfer. (Source:
Federation of American Scientists.)

187

Figure 185: A Change Arrow is a generalization of all types of arrows used
in Tumbug.

188

a Motion Arrow + some kind of Box is needed.
Reasoning: A barrier by definition is something that impedes a mov-
ing object from passing, therefore motion must be involved. Similarly,
since motion toward or through a barrier implies that there exists three
sequential spatial regions with qualitative differences: (1) outside the
barrier, (2) the barrier itself, (3) inside the barrier. Therefore an align-
ment of those spatial regions is implied.
Examples from WS150: [22] Placement of a tablecloth to protect
a table. [66] Trying to stay dry from falling rain that will permeate
a newspaper, backpack, clothes, etc. [77] Cold air penetrating a coat
that someone is wearing.

2. Heuristic: If there exists lifting or carrying anything then at least a
Force Arrow and Motion Arrow are needed.
Reasoning: To lift always implies the imparting of force, usually to
overcome gravity, therefore force must be involved. To carry implies a
constant application of force to counter the force of gravity that tries
to pull the carried object to the ground. Also, in all cases motion is
obviously involved.
Examples from WS150: [8] A person lifting their child. [124] A
person placing their child into bed. [129] A person carrying their child.

3. Heuristic: If there exists damage, destruction, physical pain, emo-
tional pain, annoyance, contamination, interference of any kind, whether
applied to people, animals, objects, or other then at least a Correlation
Box is needed.
Reasoning: Pain or damage signals a change of state in an object,
which implies that one object is having a physical effect on another,
therefore the two applicable objects must be correlated. The same is
true even if the effect is emotional rather than physical. The same is
true even if one object is tasked with preventing such damage.
Examples from WS150: [9] One object smashing through another.
[43] Someone who shows no appreciation despite having been done a
great favor. [104] Piercing one object with another object.

4. Heuristic: If there exists direction, position, or alignment of one or
more objects, whether toward, at, front, back, on, atop, above, below,
up, down, inside, outside, through, or other, then some kind of Box is
needed.

189

Reasoning: Relative position of objects in relation with each other im-
plies that that relative position in space is important enough to men-
tion, therefore such a relationship cannot be random, therefore such
position needs to be spatially aggregated. This is true even if there is
only one object whose characteristic has been described.
Examples from WS150: [14] One painting hanging above another
one. [19] One sack of grocery items is atop another sack of grocery
items. [21] Trying to balance a bottle upside down on a table.

5. Heuristic: If there exists specific relative time mentioned, whether
all the described events happened in the past, present, or future, or
whether some of the described events happened in only one of those
time ranges, then at least a Time Arrow is needed.
Reasoning: Like space, if time is relevant enough to be described,
then it should be diagrammed.
Examples from WS150: [32] Statement of a current problem such
as a clogged drain that implies the need for a future solution. [74]
Changing one’s future travel destination because of conditions observed
at the originally planned destination. [146] A book that was known to
have influenced a famous author in the past.

6. Heuristic: If there exists any mention of falling down, hanging down,
dangling down, or rolling downhill, then at least a Force Arrow + Mo-
tion Arrow are needed.
Reasoning: Object hanging downward or falling downward are phe-
nomena that arise from gravity, which is a type of force, and force tends
to give rise to motion.
Examples from WS150: [36] Mention of rain falling. [128] Dropping
an object such as an ice cream. [129] A person’s legs dangling as they
are being carried.

7. Heuristic: If there exists any mention of interior then some kind of
Box is needed.
Reasoning: Interior implies a position in space, relative to another
object.
Examples from WS150: [57] Someone inside a given building, such
as a library. [69] Knocking on a person’s door but they do not answer
because they are not inside. [96] A type of fish living in a specifically
named ocean.

190

8. Heuristic: If there exists any mention of speed then at least a Motion
Arrow is needed.
Reasoning: Motion is represented by a Motion Arrow.
Examples from WS150: [6] One vehicle zooming past another ve-
hicle. [12] Two competing runners in a race, one beating the other.
[93] One animal that should flee from another quickly because the first
animal is in danger from the other.

9. Heuristic: If there exists any mention or implication of a specific view
of certain items collectively, especially if that view must occur along
a specific line or angle, then at least some kind of Box is needed, and
possibly some type of Marker, such as a 1D Marker to show alignment.
Reasoning: A specific view implies a location and/or angle, such as
using the ground for a reference, and locations of objects, or angles be-
tween three reference points, imply relation positions of those objects,
which requires some kind of Box.
Examples from WS150: [31] Being able to see a garden through a
gap in a wall. [120] View of either a crop duster from underneath the
crop duster, or view from the crop duster itself.

10. Heuristic: If there exists any line-of-sight incident, especially where
one person is blocking another person’s view of a stage, then at least
some kind of Box with a 1D Marker is needed.
Reasoning: Line of sight implies relative positioning of objects.
Examples from WS150: [10] A short person cannot see the stage
because a taller person is standing in front of the shorter person. [34] A
person cannot see the stage because a pillar blocks that person’s view.

11. Heuristic: If there exists presence of one of the words {because, as,
since, so, until} then a Causation Arrow might be needed, and is almost
required for the word ”because.”
Reasoning: The word ”because” means ”was caused by.” The words
”as” and ”since” are synonyms for ”because” in some contexts.
Examples from WS150: [13] A sculpture rolling off a shelf because
the sculpture was not anchored. [90] Yakutska’s army losing since its
army was smaller less well-equipped. [150] A user changing to a more
natural password as the new password is easier to remember.

12. Heuristic: If there exists motion, placement, replacement, travel,

191

transfer, transport, performing occupation of a place, or trade/swap
then at least an Object Circle with a Motion Arrow is needed.
Reasoning: All the situations described involve objects changing lo-
cations, therefore require space and time to represent.
Examples from WS150: [118] Taking a particular seat in a car. [126]
Sharing a toy. [135] Giving someone tickets to a play.

13. Heuristic: If there exists teaching, training, presenting, telling, warn-
ing, notifying, learning, believing, or interrupting then at least transfer
of a Data Object Circle via Motion Arrow is needed.
Reasoning: All the situations described change or increase in knowl-
edge, therefore knowledge is being updated as a result of transfer of
data.
Examples from WS150: [27] Telling somebody about a car accident
that involved a person known to the listener. [61] Telling lies about
oneself. [112] Learning history from a book.

14. Heuristic: If a process within a temporal system is being modeled
then it helps to break the process into phases, especially at the mo-
ments when a clearly defined event starts or stops.
Reasoning: Divide and conquer. A drawing cannot easily show the
infinite number of states the process passes through continuously, but
a drawing can show the few finite points at which an event starts or
stops.
Examples from WS150: [104] Sticking a pin into a carrot part way,
then pulling it out. Some moments of phase changes will be: the mo-
ment the pin touches the carrot, the moment the pin transitions from
insertion to extraction, the moment the pin leaves the carrot. [128]
Tommy dropped his ice cream, Timmy giggled, and father gave a stern
look. This process contains exactly three clear-cut phases. [36] In the
middle of the outdoor concert, the rain started falling, and it contin-
ued until 10. Some moments of phase changes will be: the start of the
concert, the moment the rain started falling, and 10 o’clock.

192

Figure 186: A table of how CD theory building blocks compare to Tumbug
Building Blocks.

14 Relationship to prior work

14.1 Conceptual Dependency theory

Probably the closest work on a KRM that is similar to Tumbug is that of
Roger Schank’s Conceptual Dependency theory (CD theory). Although CD
theory is textual instead of pictorial, and is based on a custom-made set of
building blocks instead of physics, Tumbug did borrow one term from CD
theory, viz. ATTEND, and has roughly the same number of building blocks
as CD theory (both around the 2-3 dozen range).

14.1.1 Building Blocks

CD theory’s components, often called ”building blocks,” have nearly iden-
tical correspondence to many of Tumbug’s Building Blocks, as shown in
Figure 186. (Schank 1972, p. 557)

The difference in building blocks between CD theory and Tumbug are
shown in Figure 187.

• Tumbug Attributes are more general, therefore Tumbug has only one
type, whereas CD theory attributes are divided in two types: PA (pic-
ture aider) and AA (action aider).

• Tumbug has more Building Blocks than CD theory: data Objects,
Value, numerical correlators, split timelines with probabilities, wild-
cards, etc.

193

Figure 187: 100% of CD theory building blocks map one-to-one to an equiv-
alent Tumbug concept.

Figure 188: ACTOR: A human-shaped icon can replace Tumbug’s default
circle icon, if a human actor is desired.

14.1.2 Slots

1. ACTOR
An ”actor” in CD theory refers to a human that initiates a PTRANS

(= physical transfer). Compared to Tumbug, this is rather specific in that
Tumbug does not require that the actor or subject be a human. However,
Tumbug does has this CD theory ability because it is trivial to swap in
a more realistic icon of a human to replace the usual circle or ovoid that
are Tumbug’s default representation of objects in a sentence, as shown in
Figure 188.

2. OBJECT
An ”object” in CD theory is nearly identical in concept with Tumbug’s

circle icon, other than Tumbug will also allow any circle to represent a human,
even if the circle is the direct object or indirect object.

3. FROM
In Tumbug the source location and destination location are both repre-

sented by the same Tumbug icon, the Tumbug icon for place. The distinction
between those places is obvious through usage: if an object is coming from
a place, that is the source location (Figure 190), and if an object is going

194

Figure 189: OBJECT: A CD theory object is already represented in Tumbug
by a circle, by default.

Figure 190: FROM: If the object is moving away from a Location Box, that
Location Box represents the FROM location.

to a place, that is the destination location (Figure 191). A Location Box of
some type is the icon for place, and the direction in question should be clear
by the direction of the Motion Arrow, relative to the C Object Circle and
Location Box.

4. TO
This is basically the same as FROM, except in TO the object is moving

toward the given location instead of away from it.

14.1.3 Primitive Acts

Conceptual dependency (CD) theory is a model of natural language under-
standing that was developed by Roger Schank in 1969, which makes it one of
the first such models. The goal of CD was the same as the goal of Tumbug:
to make language meaning independent of the words it uses. Therefore it is

Figure 191: TO: If the object is moving toward a Location Box, that Location
Box represents the TO location.

195

natural to compare CD against Tumbug.
Schank listed 11 Primitive Acts that cover most actions in the real world.

In alphabetical order these are:

1. ATRANS - to change an abstract relationship of a physical object

2. ATTEND - to direct a sense organ or focus an organ towards a stimulus

3. EXPEL - to take something from inside an animate object and force it
out

4. GRASP - to physically grasp an object

5. INGEST - to take something inside an animate object

6. MBUILD - to create or combine thoughts

7. MOVE - to move a body part

8. MTRANS - to transfer information mentally

9. PROPEL - to apply a force to

10. PTRANS - transfer of the physical location of the object

11. SPEAK - to produce a sound

Each of these is discussed and diagrammed next. All of Tumbug’s con-
cepts are more general than CD theory’s concepts, therefore Tumbug dia-
grams can describe CD theory concepts without too much difficulty, whereas
CD concepts usually cannot describe Tumbug concepts. In this section the
CD theory Primitive Acts are listed in order of the simplest to the most
complicated, for ease of presentation.

1. SPEAK
In CD theory, ”SPEAK” is ”The act of producing sound, including non-

communicative sounds” (Lytinen 1992, p. 52), even if from lower animals
and not intended as communication. Tumbug would generalize ”animal” to
any entity, such as a robot. Since the action of speaking does not imply that
the listener is paying attention, an Attend Ring is not needed in the Tumbug
diagram. However, since Tumbug’s data Motion Arrows do not specify what
sensory modality is being used, Tumbug would need to place a constraint on

196

Figure 192: SPEAK: Information emission by sound modality, regardless of
the emitter or reason for the emission.

Figure 193: PTRANS, intransitive meaning: An object moves itself to an
undisclosed location.

the transmission such as ”modality = sound” on its data Motion Arrow. See
Figure 192.

2. PTRANS
In CD theory, ”PTRANS” is ”The transfer of location of an object”

(Lytinen 1992, p. 52). ”PTRANS” means physical transfer, whether in
transitive meaning (e.g., ”He moved the radio farther away”) or intransitive
meaning (e.g., ”He moved farther away from the radio”). Tumbug makes
a big distinction between transitive and intransitive meanings because an
additional object is involved in the transitive meaning, and in Tumbug all
significant objects must be diagrammed. Therefore the CD theory mean-
ing has two possible representations in Tumbug, depending on the type of
transitivity intended.

2.1. Intransitive
See Figure 193.
2.2. Transitive
See Figure 194.
Tumbug minor convention: Motion Arrows may be used in diagrams

without time or space reference, even when chained together, unless this re-
sults in ambiguity about the timing or cause-and-effect of the motions.

197

Figure 194: PTRANS, transitive meaning: An object moves another object
to an undisclosed location.

3. MOVE
In CD theory, ”MOVE” is ”The movement of a body part of an agent by

that agent” (Lytinen 1992, p. 52). This Primitive Act is slightly unusual in
that the moved body part would be considered a direct object, which means
that the subject is regarding its own body part as a direct object.

Whenever anything moves, Tumbug represents this situation with a
timeline on the side of the diagram, spanning from the starting position
to the ending position of the moved object. If the direction and location of
the motion is not important, then a Location Box is not needed, otherwise
if either attribute is important then a Location Box should be included.

An object repeatedly shown along a timeline is assumed to be undergoing
continuous (as opposed to discrete) modification in time, so that the diagrams
along the timeline can be considered only snapshots in time. If practical, one
snapshot should be included for each qualitative change in the situation so
that each diagram can be interpretated as one phase of the overall process.

For the situation of a body part being moved by its connected body, the
body as a whole will ordinarily remain stationary except for that moved body
part. The body would ordinarily be represented as a circle, and the body
part would ordinarily be represented as a circle or ellipse, whichever most
closely resembles the body part. If the moved body part is external (such
as with an arm), the appendage will protrude on the outside of the body
(circle); for an internal body part (such as the larynx), the appendage will
protrude toward the inside of the body (circle). See Figure 195. Appendages
and internal body parts could theoretically be represented with fuzzy regions
instead of crisp ellipses, including details such as fuzzy fingers on fuzzy hands
on fuzzy arms, but this type of representation is likely more difficult to code
as a computer program, and is not in the spirit of traditional, crisp, visual
computer simulations.

198

Figure 195: MOVE: An external body part being moved by its own body,
where direction and location are not important.

4. GRASP
In CD theory, ”GRASP” is ”The grasping of an object by an actor so

that it may be manipulated” (Lytinen 1992, p. 52). In this situation some
kind of end effector (such as a hand) is needed, which is a level of detail not
usually included in Tumbug, which usually shows only the equivalent of an
arm, if that much. See Figure 196.

5. PROPEL
In CD theory, ”PROPEL” is ”The application of a physical force to

an object” (Lytinen 1992, p. 52). This a situation that Tumbug would
represent by a Force Arrow directed toward a C Object Circle. The result
of the force may or may not cause the direct object to move, however: the
PROPEL definition does not specify. If the object moves then per Lytinen
the PROPEL scenario has turned into a PTRANS scenario, otherwise the
scenario is only PROPEL. Also unspecified by the PROPEL definition is
whether some subject is causing the force. The PROPEL diagrams in this
section assume a subject is applying the force, which is the most common
situation, but by definition this is not strictly necessary.

5.1. With no resulting motion
See Figure 197.
5.2. With resulting motion
See Figure 198.

199

Figure 196: GRASP: A bodily appendage with an end effector extends to
hold an object firmly.

Figure 197: PROPEL: An object acted upon by force created by agent, but
the direct object is not moved as a result.

200

Figure 198: PROPEL: An object acted upon by force created by agent, and
the direct object being moved as a result.

6. INGEST
In CD theory, ”INGEST” is ”The taking in of an object (food, air, water,

etc.) by an animal” (Lytinen 1992, p. 52). In Figure 199 the ingestion process
has been divided into three phases: (1) the object is outside the body, (2)
the object is at the surface of the body, (3) the object is inside the body.
If the opening to the body were important during such a process (such as a
mouth) then a region of circle could be delineated to represent a mouth. Note
in Figure 199 that the length of the Motion Arrow decreases in time to show
that the object is slowing when entering the body, then comes to a complete
stop for a while after reaching some (possibly temporary) destination within
the body (such as a stomach).

7. EXPEL
In CD theory, ”EXPEL” is ”The expulsion of an object by an animal”

(Lytinen 1992, p. 52). EXPEL is the same as INGEST except that the
object motion is in the opposite direction, from within the body to outside
the body. See Figure 200.

8. MTRANS
In CD theory, ”MTRANS” is ”The transfer of mental information be-

tween agents” (Lytinen 1992, p. 52). To show this in Tumbug the diagram
needs two C Object Circles, one for each agent, a data Motion Arrow to
show the information transfer, and one Attend Ring to show that the re-
ceiver is paying attention to the transferred information. See Figure 201.
The reason the receiving agent is not color-coded in this diagram is because
the MTRANS concept does not specify whether the message is the direct

201

Figure 199: INGEST: An external object being moved from outside a body
to inside that body.

202

Figure 200: EXPEL: An external object being moved from inside a body to
outside that body.

203

Figure 201: MTRANS: Information transmitted from the agent on the left,
and received by the agent on the right.

Figure 202: ATRANS: Information is transmitted from the agent on the left,
and received by the agent on the right.

object (as in ”He gave the information to his boss.”) or whether the receiver
is the direct object (as in ”He informed his boss.”).

9. ATRANS
In CD theory, ”ATRANS” is ”The transfer of ownership, possession, or

control of an object” (Lytinen 1992, p. 52). Examples in Lytinen imply
that the verbs ”to give” and ”to pay for” are involve ATRANS, and that the
ATRANS operation is described on a link independent of (and parallel to?)
the link that describes the physical transfer (if any). Schank probably in-
tended this ATRANS definition to mean ”full” transfer, as opposed to partial
transfer, although in theory a second person could be placed on an ownership
certificate or given co-managerial control over a group of employees. He we
assume that full transfer is intended.

The simplest way to describe the ATRANS event with Tumbug is to
treat ownership status as a data Object, and to use the shorthand notation
for transfer of an object between two entities, as shown in Figure 202. More
complicated schemes involving acknowledgement via message passing are also
possible.

A more comprehensive view of an ATRANS would involve the change
of legal ownership status, though, not just the physical transfer. This is

204

relatively simple to include, by including a state diagram of legal ownership
status that is associated with the physical transfer operation, as shown in
Figure 203.

A larger view of the State Diagram that is embedded in the comprehen-
sive ATRANS view is shown in Figure 204.

10. ATTEND
In CD theory, ”ATTEND” is ”The act of focusing attention of a sense

organ toward an object” (Lytinen 1992, p. 52). Tumbug uses exactly this
same concept with the same name, and represents it by drawing an Attend
Ring around the information stream arrow on which the receiver is focusing
attention. Although Tumbug can represent a sense organ on the object to
satisfy this definition more closely, it can probably be assumed that if the
object is focusing its attention on an information stream then the object is
capable of sensing it. See Figure 205.

11. MBUILD
In CD theory, ”MBUILD” is ”The construction of a thought or of new

information by an agent” (Lytinen 1992, p. 52). Note that this MBUILD
definition is ambiguous as to whether ”construction” means created from
scratch, or rather created from other objects. Both cases are considered
below, and are handled easily by Tumbug.

11.1. Creation from scratch
See Figure 206.
11.2. Creation from combination
See Figure 207.

14.1.4 Overview of comparison

1. Type of Primitive Acts
CD theory is said to have failed because its small number of Primitive

Acts could not possibly cover everything in the real world that might need
to be represented (Lytinen 1992, p. 51). Tumbug also has a relatively small
number of Building Blocks but many of these Building Blocks are based
on physics, not on human-oriented issues such ingestion or thinking, and
since physics is the ultimate study of the physical universe, physics can pre-
sumably represent anything of interest, therefore Tumbug’s Building Blocks
almost cannot fail at representing the real world. Admittedly, for compli-
cated situations Tumbug descriptions can become unwieldy, but that is why
Tumbug labels exist: as a convenient shorthand notation for complicated

205

Figure 203: A more comprehensive view of an ATRANS operation would
show both information transfer and legal transfer.

206

Figure 204: A State Diagram that shows all possibilities of legal ownership
between two people.

Figure 205: ATTEND: The broadcaster monitor attends to an information
stream from the broadcaster.

207

Figure 206: MBUILD: One new thought forms spontaneously, from scratch.

Figure 207: MBUILD: One new thought forms from the combination of two
old thoughts.

208

Figure 208: CD theory uses Primitive Acts that are human-oriented and are
best at describing complicated actions.

descriptions or diagrams, the same shorthand that nearly every AI system
already uses, such as rule-based expert systems and semantic networks.

Figure 208 and Figure 209 might illustrate more clearly how CD theory
and Tumbug compare. The basic diagram in the form of black-and-white
icons showing a seated person eating a hamburger is the same for each, but
the KRM influences how the information in the diagram is divided. Red text
is used to the label categories according to the KRM being used.

Note that in this case CD theory is excellent for describing the human-
oriented actions of grasping and eating, but many other actions such as
sitting or placing one’s body partially around an object (e.g., a table) could
not be included unless a huge number of additional Primitive Acts were
used. A huge drawback of CD theory is not obvious from the ingestion figure
unless one remembers that CD theory per se cannot show diagrams at all,
or even spatial relationships. In CD theory only rigidly formatted textual
descriptions would be used to describe what a user can so easily see in a
diagram.

One of the main CD Theory terms is ”Primitive Conceptual Cate-
gories,” which is also called ”conceptual primitives,” ”conceptual dependency
primitives,” or ”instrumental conceptualizations,” depending on the author.
The list of these Primitive Conceptual Categories is {PP, ACT, PA, AA,
LOC, T}, and this is the closest set of concepts to Tumbug’s icons that are
called ”Building Blocks,” whose term is based on CD Theory terminology.
The other main CD Theory term is ”ACT,” which is also called ”Primitive
Acts.” The list of these Primitive Acts is {ATRANS, PTRANS, PROPEL,
MTRANS, MBUILD, SPEAK, ATTEND, MOVE, GRASP, INGEST, EX-

209

Figure 209: Tumbug uses Building Blocks that are physics-oriented and are
best at describing simple objects and actions.

PEL}, so these components are instantiations of the single Primitive Concep-
tual Category called ”ACT.” In other words, both CD theory and Tumbug
use the term ”building blocks” to include both major sets of CD Theory,
namely the Primitive Acts and the specific acts of ACT, though in this doc-
ument ”building blocks” (uncapitalized) is used for CD theory and ”Building
Blocks” (capitalized) is used for Tumbug.

Note that in this case Tumbug spans everything that could possibly be
going on in the diagram, from the objects to the forces acting on them to
their resulting motions (i.e., Tumbug is ”more universal.” In mathematical
terminology, Tumbug ”spans” a larger space, but since Tumbug labels are
simpler in concept, a larger quantity of the same Tumbug labels will usually
be needed. More labels and boxes will tend to clutter the diagram. Also,
the forces and motions involved (i.e., using arms to move the hamburger) are
small in comparison to the overall size of the diagram, so those components
may be difficult to see in larger or more complicated events. (This is why
the Zoom ability of Tumbug was introduced: to allow arbitrary zoom in of
smaller objects, at the user’s discretion.) The overwhelming visual advantage
of Tumbug is not seen in such a static icon, however: Tumbug can literally

210

show realistic motion of the objects, like a simulation, whereas CD theory
has no mechanism at all to allow even one moving object to be displayed.

Some similarities between CD theory and Tumbug:

• Both use around 1-2 dozen building blocks.

• Some of the building blocks are identical, and those that are not iden-
tical are similar.

• All slots and Primitive Acts in CD theory can be represented by Tum-
bug.

• Both use aggregation.

• Both use abstract objects, and treat them slightly differently from con-
crete objects.

Some differences between CD theory and Tumbug:

• Tumbug is based largely on physics and math; CD theory is based on
human-oriented actions.

• Tumbug is almost completely visual; CD theory is text-based.

• Tumbug can display images, even moving images; CD theory cannot
display images at all.

• Tumbug can represent phrases; CD theory needs a complete sentence
with actor and action.

• CD theory Primitive Acts cannot cover every possibility; Tumbug Build-
ing Blocks so far appear to be able to do so, at least for WS150 prob-
lems.

• CD theory requires separate text to describe TO versus FROM; Tum-
bug needs no such distinction, other than arrow placement.

• CD theory distinguishes static objects (PP) from Primitive Acts (ACT)
on those objects, though it is possible in Tumbug to define an object
so that it changes state or behavior via an internal Correlation Box
without dictating those changes explicitly. (This Tumbug capability is
not described in this document, however.)

211

Figure 210: 73% of CD theory Primitive Acts map one-to-one to an equiva-
lent Tumbug concept.

• Tumbug’s Building Blocks generalize to a small set of (five) Basic Build-
ing Blocks, but CD theory does not note any such generalizations for
its Primitive Acts (ACT).

To a great extent, Tumbug appears to be what CD theory was attempt-
ing, but Roger Schank used non-universal building blocks instead of consid-
ering physics. Similarly, although not discussed in this document, Tumbug
appears to be what formal language theory was attempting, but Noam Chom-
sky used traditional text instead of images. Tumbug potentially infuses new
life into these earlier milestone ideas, so perhaps Tumbug also has a chance
of becoming a milestone.

2. Nearness to a one-to-one mapping to Tumbug concepts
As seen in Figure 210, CD theory concepts are defined in a way that

typically are represented by only one Tumbug concept. This is mostly the
result of relatively clear-cut definitions of CD theory’s Primitive Acts, not
necessarily due to a similar foundation of building blocks between the two
systems. 8/11 = 73% of CD theory Primitive Acts map one-to-one to a
Tumbug concept.

212

Figure 211: Kolln’s sentence patterns with the order and abbreviations used
by Kolln.

14.2 English grammar representation

14.2.1 Kolln sentence patterns

Martha Kolln listed 10 basic English sentence patterns that she claims con-
stitute the vast majority of sentence patterns that appear in English (Kolln
and Funk 2006). Kolln’s 10 patterns are shown in Figure 211. Kolln num-
bered these by Roman numerals, whereas this documented numbered these
by Arabic numerals.

Each of these patterns is described with some sample sentences converted
to Tumbug in the following sections.

It must be understood that Kolln’s statement applies to (1) Only basic
sentence patterns, since sentences of different types could always be combined
via conjunctions to create a much larger set of types through combinations
of the basic types, (2) Only statement versions of the sentence patterns,
since question versions of these patterns may alter the word order; (3) Non-
interjections, since otherwise an interjection consisting of a single word would

213

Figure 212: [Kolln Pattern #1] Tumbug for ”The last performance was yes-
terday (ADV/T).”

qualify as having correct grammar, which it does not.
The standard sentence diagram that was widely taught in the 1960s and

1970s, formally called the Kellogg-Reed system, is much better known than
the Kolln patterns. However, the formal documentation of the Kellogg-Reed
diagrams with respect to possible combinations of values within the slots
for subject complement (SC), direct object (DO), indirect object (IO), and
object complement (OC) is so weak that the Kellogg-Reed system is ignored
here, at least for comparison purposes.

1. NP be ADV/TP
Both cases are of ADV/TP are shown next, one where the adverbial is

of time (ADV/T), one where the adverbial is of place (ADV/P).
1.1. With Time Arrow (ADV/T)
See Figure 212.
1.2. With Location Box (ADV/P)
See Figure 213.
2. NP be ADJ
This Kolln pattern equates only to an object (O) having an attribute

(A) with a value (V), which Tumbug renders in OAV fashion as shown in
Figure 214.

3. NP1 be NP2
3.1. As superset
This Kolln pattern demonstrates a principle mentioned by Roger Schank

regarding the need for a canonical form of a sentence when sentence meaning
is represented (Schank 1976, p. 172). In this case, there are two simple ways
to express the same meaning of the sentence ”The students are diligent.”:

214

Figure 213: [Kolln Pattern #1] Tumbug for ”The students are upstairs
(ADV/P).”

Figure 214: [Kolln Pattern #2] Tumbug for ”The students are diligent.”

215

Figure 215: [Kolln Pattern #3] Tumbug for ”The students are scholars.”

Figure 216: [Kolln Pattern #3] Tumbug for ”The students are scholarly.”

• ”The students are scholars.” - Involves two noun phrases (NP1 = stu-
dents, NP2 = scholars). This sentence is represented in Tumbug as
shown in Figure 215.

• ”The students are scholarly.” - Involves one noun phrase (NP1). and
one attribute value (scholarly = true). This sentence is represented in
Tumbug as shown in Figure 216.

One of the main goals of representation here is to use only one repre-
sentation for the concept of ”scholars/scholarly,” which suggests that only
one of these two diagrams should be declared the canonical form. Figure 217
shows more clearly how the two previous diagrams are related. (The last
two diagrams are essentially the same diagram, but one has the common
attribute ”scholarly = true” duplicated, the other does not.)

Currently the Tumbug convention used is to use the superset representa-
tion. A similar sentence they has two representation options is diagrammed
in Figure 218.

216

Figure 217: [Kolln Pattern #3] Two Tumbug ways to represent the concept
that ”The students are scholarly.”

Note: The use of the value ”true” in the aforementioned expression
”scholarly = true” is a quick way to conform to OAV notational convention
without need for additional thought, because the attribute-value form is re-
quired to be ”⟨attribute⟩ = ⟨value⟩”, which the expression ”scholarly” alone
would not fulfill, and to think of which attribute would allow ”⟨attribute⟩
= scholarly” to make sense (e.g., ”learnedness = scholarly”, or ”academic
character = scholarly”) is more difficult than merely writing ”scholarly =
true.”

3.2. With removed possessive adjective
Another example said to be Kolln Pattern #3 is ”Professor Mendez is my

math teacher” (Kolln and Funk 2006, p. 31). This is another example of the
inaccuracies of the English language, since the verb ”to be” (conjugated here
as ”is”) has a different meaning than before. Here it would be wasted effort
to create a set called ”my math teachers” and to put ”Professor Mendez”
as a single instance of that set, since usually a student has only one math
teacher. Therefore ”is” does not mean ”is a subset of” here. In this case the
underlying problem is use of a possessive adjective, which should be removed
from a sentence before converting the sentence to Tumbug. There exist
multiple ways to represent this sentence without the possessive adjective, one

217

Figure 218: [Kolln Pattern #3] Two Tumbug ways to represent the concept
that ”The tournament was an exciting event.” Top diagram: One attribute
applies to both the set and superset. Bottom diagram: No superset/subset
structure, but note that the same attribute appears in both sets.

218

Figure 219: [Kolln Pattern #3] Tumbug for ”Professor Mendez is my math
teacher.” = ”Professor Mendez IS-A math teacher OF me.”

of which is shown in Figure 219. This is an indication of weak organizational
criteria used in defining the Kolln patterns.

4. NP linking verb ADJ
4.1. With propositional attitude
This is another Kolln pattern that incorporates very different Tumbug

structures if the verb changes slightly. Many Kolln Pattern #4 verbs involve
general, average impressions, such as ”to seem” and ”to look,” others involve
specific sensory perceptions such as ”to taste,” ”to smell,” ”to sound,” and
others use neither, such as ”to grow” (meaning ”to become”), which has a
very different meaning: a single attribute that changes over time, which has
nothing to do with impressions or sensory modalities. Therefore this Kolln
category is not taken very seriously with respect to Tumbug, other than as a
supply of possibly unusual examples to test against Tumbug representation.

Figure 220 shows an example of Kolln Pattern #4 when the linking verb
is a propositional attitude, in this case ”seem.” English allows an ambiguity
here, regarding the entity (or group) who is interpreting the diligence of the
student. The only logical way to represent this situation is to show an Object
Circle that is unlabeled, as shown in the figure. To show a single person icon
would assume that only one person is doing the interpreting, to show an
”average person” icon would assume that the interpreter is average, to show
a person icon at all would assume that the interpreter is human, and to
show a ”DK” (= Don’t Know) wildcard would assume that the reader cares,
which might entail extra, unnecessary, ongoing work in labeling, especially
on a very large network of connected Tumbug icons that no one is likely to
care about.

219

Figure 220: [Kolln Pattern #4] Tumbug for ”The students seem diligent.”

The term ”propositional attitude” is from Davis 1990 (ch. 8), and the
need for this concept occurs in three of the Kolln patterns (Pattern #4,
Pattern #9, Pattern #10). It is a very useful concept that unifies several
modalities of knowledge. For details, see the section on propositional atti-
tudes in this document.

4.2. With attribute changing over time
An example of a Pattern #4 example that has a very different meaning

and Tumbug diagram is in Figure 221. In this case the only thing happening
is that an attribute value changes in time, which has nothing to do with
sensory input or overall impressions.

4.3. With sensory perceptions
Figure 222 illustrates another example of a propositional attitude, in this

case gustatory taste, which generalizes to any type of sensory perception.
5. NP1 linking verb NP1
5.1. As superset
See Figure 223.
5.2. With propositional attitude
See Figure 224.
5.3. With object changing over time
Kolln does not document the possibility of an object changing into an-

other object over time. The sentence ”The caterpillar became a butterfly”
uses the same verb and tense as before (viz., ”became”) in the sentence ”The
students became scholars” but in this case ”became” implies the object itself
has changed, not just its classification. This is an example of how the Kolln
patterns are based too much on specific verb categories rather than on the

220

Figure 221: [Kolln Pattern #4] Tumbug for ”I grew sleepy.” = ”I transitioned
into the sleepy state.”

Figure 222: [Kolln Pattern #4] Tumbug for ”The soup tastes salty.”

221

Figure 223: [Kolln Pattern #5] Tumbug for ”The students became scholars.”

Figure 224: [Kolln Pattern #5] Tumbug for ”That seemed a good idea.”

222

Figure 225: [Kolln Pattern #5] Tumbug for ”The caterpillar became a but-
terfly.”

meanings of those words in different contexts.
In contrast, Tumbug can easily represent an unmoving object changing

into another unmoving object in the same location by placing the two objects
above each other along the timeline, with the older object at an earlier time
than the newer object. See Figure 225. Since two solid objects cannot occupy
the same space in our physical world, such representation is sufficient, pro
tempore.

This simplicity comes at a cost of increased risk when creating diagrams,
however: Care must be taken not to place two different objects above each
other in a timeline unless one has moved out of the way completely. See
Figure 226.

6. NP intransitive verb
Intransitive verbs are another category of verb that is very poor for

capturing a general meaning of such a verb, as evidenced by the two examples
below that use this same sentence pattern and verb class but have two very
different meanings and Tumbug diagrams.

6.1. With states
Note that in the Kolln example ”The students rested” (Kolln and Funk

2006, p. 35) the verb ”rested” is ambiguous as to whether the rest was
physical or cognitive. Fortunately, a general state diagram such as one for
”exertion versus rest” (as shown in Figure 227) can subsume both possibilities

223

Figure 226: In the real world of physical objects, Object A may occupy
Object B’s space later in time only if Object B has moved out of the way.

Figure 227: [Kolln Pattern #5] Tumbug for ”The students rested.” = ”The
students were in rest state.”

at once. Note also that the sentence given does not necessarily state that
the state of the students before the rest state was the exertion state: the
students could have just come from an earlier break, then decided to take a
later break. Therefore only the later specified state (”rest”) is marked with
an asterisk as known; the state diagram exists in the earlier depiction, but
no state is marked. This detail is very important to note when developing a
matching algorithm for Tumbug.

6.2. With motion
Intransitive verbs can also refer to motion, as in the verb ”to arrive” as

shown in Figure 228.
7. NP1 transitive verb NP2
Even Martha Kolln herself makes a heavy admission about the nature

224

Figure 228: [Kolln Pattern #6] Tumbug for ”The visitors from El Paso ar-
rived.”

of transitive verbs when discussing her sentence Pattern #7 (= Pattern VII)
of hers (Kolln and Funk 2006, p. 39):

”Traditionally, we think of the transitive verb as an action word: Its
subject is considered the doer and its object the receiver of the action. In
many Pattern VII sentences this meaning-based definition applies fairly ac-
curately. In our Pattern VII sample sentences, for instance, we can think of
their assignment as the receiver of the action studied and a home run as a
receiver of the action hit. But sometimes the idea of receiver of the action
doesn’t apply at all:

Our team won the game.
We enjoyed the game.

It hardly seems accurate to say that game ”receives the action.””
This equates to at a deep insight about verbs in all natural languages:

Verbs do not generalize to a single concept (e.g., not motion, action, or re-
lationship), which suggests the modern concept of a ”verb” is flawed. The
term ”verb” is overloaded with the attempt to include references to attribute
values, supersets, actions upon a target object, sensory input to the actor,
states, cause and effect, and possibly more. The Tumbug viewpoint explains
this problem as poor generalizations of language, leading to a poor knowl-
edge representation system for language (such as the Kellogg-Reed system

225

Figure 229: [Kolln Pattern #7] Tumbug for ”The students studied their
assignments.”

or modern tree diagrams of sentences).
7.1. With data transfer
Sometimes Pattern #7 applies to data transfer and/or perception, such

as in Figure 229.
7.2. With motion and contact
The most obvious applicability of Pattern #7 is physical contact of the

subject with the direct object, as in Figure 230.
7.3. With states
See Figure 231.
7.4. With emotions
See Figure 232. This figure combines what is essentially a State Dia-

gram, namely the Robinson Icon, which in this case is in the positive version
of the state of Event Related: Joy, elation, triumph, jubilation, which is a
cathected emotion with respect to the direct object, namely the game.

8. NP1 transitive verb NP2 NP3
It appears that this Kolln pattern always maps only to the same Tumbug

diagram of an object being transferred from subject to indirect object, as
shown in Figure 233.

9. NP1 transitive verb NP2 ADJ
This Kolln sentence pattern maps to at least two different types of Tum-

bug diagram.
9.1. With propositional attitude
Having a propositional attitude about an object or person does not in-

herently involve a change of attribute in time. See the example in Figure 234.
9.2. With attribute changing over time

226

Figure 230: [Kolln Pattern #7] Tumbug for ”The boy touched the shark.”

An object or person can cause a change of attribute in time. See the
example in Figure 235.

10. NP1 transitive verb NP2 NP2
This Kolln sentence pattern maps to at least two different types of Tum-

bug diagram.
10.1. With propositional attitude
See Figure 236.
10.2. With causation
See Figure 237.
11. Nearness to a one-to-one mapping to Tumbug concepts
Kolln’s 10 sentence patterns fail to produce any reasonable approxi-

mation of 1-to-1 mapping with Tumbug concepts, as shown in Figure 238.
Kolln’s examples are useful, however, as a fairly comprehensive source of sam-
ple sentences to test against Tumbug’s representation ability. If Kolln’s 10
sentence patterns cover 95% of encountered English sentences, and if Tumbug
can represent those same patterns, then Tumbug should also have at least
95% ability to represent English sentences. 2/10 = 20% of Kolln patterns
map one-to-one to Tumbug concepts.

12. The five simplest sentence patterns

227

Figure 231: [Kolln Pattern #5] Tumbug for ”Our team won the game” =
”Our team caused the game outcome to enter into the win state.”

228

Figure 232: [Kolln Pattern #7] Tumbug for ”We enjoyed the game.” = ”The
game caused our emotion to enter into the joy state.”

Figure 233: [Kolln Pattern #8] Tumbug for ”The students gave their profes-
sor their homework,” no shorthand diagram used.

229

Figure 234: [Kolln Pattern #9] Tumbug for ”The students consider the
teacher intelligent.”

Figure 235: [Kolln Pattern #9] Tumbug for ”The teacher made the test
easy.”

230

Figure 236: [Kolln Pattern #10] Tumbug for ”The students consider the
course a challenge.”

Figure 237: [Kolln Pattern #10] Tumbug for ”Barrie named his pug Jill.”

231

Figure 238: Only 20% of Kolln patterns map one-to-one to an equivalent
Tumbug concept.

232

Note that the various examples of Pattern #6–”The students rested”
versus ”The visitors from El Paso arrived”–produce diagrams that are very
different from one another. The second example describes the arrival of
people in motion whereas the first example is very unclear what it describes,
even as to whether any motion was involved before the action of ”rested.”

This is not the only Kolln grammatical pattern that is highly unpre-
dictable. Pattern #7–”The students studied their assignments” versus ”The
boy touched the stingray”–has the same general problem. The second exam-
ple has a direct object that receives the action whereas the first example has
more the nature that the assignment was doing to action to the students.

These anomalies lead to a profound insight into all human language:
All human language is structured around the highly inconsistent nature of
verbs, rather than being extremely well-structured by basing all grammatical
patterns on objects and object motions. The author suggests this is the
primary reason why natural language has always been so difficult to describe
with grammatical rules, and consequently why the field of AI has always had
extra difficulty with natural language. Even a seemingly exotic language such
as Japanese, which has particles, has the same two meanings of the verb ”to
be” as English does, and goes through the same distortions as English in
order to force-fit such verbs into inefficient, inconsistent data structures.

Side conjecture: The Proto-Human language, if such a language ever
existed, may have had a needlessly difficult grammar that failed to focus only
on objects and motions, so all natural languages since then, no matter how
seemingly different they are, may have carried the same flaw that forced de-
scriptions of attribute and superset relationships to use unneeded verbs only
because action verb sentences used a structure that required a verb.

This fundamental problem of human grammar does suggest one way to
slightly improve foreign language learning, however: Teach grammar first
with only moving objects, up to three in number, then only later move into
more abstract verbs that are difficult to represent with moving objects, or
with cause-and-effect substituted for motion. Notice that grammar nicely
falls into only about five basic patterns if only the common patterns of motion
are used.

Consider Pattern #6, Pattern #7, and Pattern #8. From a general
standpoint, these few sentence patterns fall into a small, logical set of possi-
ble motions of objects:

Pattern #2: Subject does not move, has an attribute and value: 1 object +

233

0 motions
Pattern #3: Subject does not move, is part of a superset: 1 object + 0 mo-
tions

Pattern #6: Subject moves itself: 1 object + 1 motion
Pattern #7: Subject moves and makes contact with Direct Object: 2 objects
+ 1 motion
Pattern #8: Subject transfers Direct Object to Indirect Object: 3 objects +
1 motion

Pattern #1 can be chosen to be ignored, since it deals only with an attribute
of space or time.
Pattern #4 can be chosen to be ignored, since it deals with a propositional
attitude, which is indirect.
Pattern #5 can be chosen to be ignored, since it deals with a linking verb
over time: complicated.
Pattern #9 can be chosen to be ignored, since it deals with a propositional
attitude, which is indirect.
Pattern #10 can be chosen to be ignored, since it deals with a propositional
attitude, which is indirect.

The summary of these observations is shown in Figure 239.
The above heuristics were a lot of generalization for the sole purpose of

simplifying human grammar, but this practice could be justified if it suffi-
ciently improves the understanding of grammar, and/or if the simpler pat-
terns are more frequently encountered. The names of these most basic visual
sentence patterns are given by the author in Figure 240.

An interesting and little-known fact is that Tumbug’s Transfer pattern
does not exist in Spanish in the same way that it exists in English. For exam-
ple, the English sentence ”The students gave their professor their homework”
would need to be grammatically rearranged to a Spanish grammatical pat-
tern with an extra preposition, such as ”The students gave their homework to
their professor” (”Los estudiantes le dieron sus tareas a su profesor”). This
fact illustrates that slight variations in the number of sentence pattern types
occur between major languages, but that Tumbug representations remains
unchanged between such syntactical rearrangements.

Three of the most basic Tumbug patterns (E, C, T) match three of the
English verb valency patterns listed by D.J. Allerton (Allerton 2006, pp.
170-171), which demonstrates that Tumbug’s natural grammatical patterns

234

Figure 239: These five sentence patterns are the simplest, most basic, and by
far the most common in English. These five patterns are the only patterns
discussed in depth in this document.

Figure 240: A summary of Tumbug patterns, with regard to Parts of Speech
and motion.

235

Figure 241: Three of Allerton’s valency categories exactly match three of
the four basic sentence patterns of Tumbug. Allerton’s tetra-valent category
of sentence patterns involves four objects, which is beyond the number of
Tumbug patterns discussed in detail in this document.

have already been discovered earlier in a different context, therefore Tumbug
is already mostly supported by existing grammar theory. These matches are
shown in Figure 241.

Side conjecture: Human parsing of a sentence, whether that input is
written or spoken, may involve in part the operation of matching the gram-
matical pattern of the input to a small set of known, allowable grammatical
patterns. This matching would be a very fast operation because of the small
number of possible grammatical patterns involved, each of which has only
small structures involved.

Various problems with the Kolln criteria for classifying English sen-
tences often become evident, and are sometimes noticed by English teachers,
therefore further detailed comparison between Tumbug patterns versus Kolln
patterns is probably not worthwhile.

14.2.2 Allerton sentence patterns

Since Allerton mentioned a valency category that is not part of Kolln’s pat-
terns or Tumbug’s five mentioned patterns, namely the tetra-valent category,
this section briefly considers that category and its relationship to Tumbug.
The tetra-valent categories are shown as text in Figure 242.

Allerton lists five examples of the tetra-valent category. Of those five
examples, only one involves a fourth true object. Incidentally, Tumbug calls

236

Figure 242: Allerton’s tetra-valent categories with examples and abbreviation
key, all described with text. (Source: Allerton 2006, p. 171.)

237

Figure 243: The first two tetra-valent examples of Allerton, all described
with Tumbug images.

this sentence pattern ”Swap” since it generalizes to any type of trade due
to two people + two exchanged objects. The other Allerton examples show
either two locations, which are not true objects, or phrasal verbs, each of
which can be reduced to one verb. The first two examples in this category
are shown in Figure 243.

The tetra-valent (= Swap) patterns suggest that there does not exist
any upper limit to the number of sentence patterns that may exist. This is
correct, and this is partly why Tumbug was developed: Tumbug is model-
based, which means that any number of objects and actions can be combined
in any way, which results in a system that can be arbitrarily complicated but
will still describable by a visual model. Some examples of higher valency are:

• swap (4-valent): 2 people + 2 objects

• escrow (4-valent): 3 parties + 1 property

• nuclear fusion (4-valent): 2 incoming atoms + 2 outgoing atoms

238

Figure 244: The traditional way to diagram an OAV triple.

Figure 245: The Tumbug way to diagram an OAV triple.

• attacked pinned piece in chess (4-valent): 4 pieces

• discovered check whose uncovering piece wins a piece in chess (4-valent):
4 pieces

• swap of two properties through one escrow (5-valent): 2 properties +
3 parties

14.3 Object-attribute-value (= OAV) triples

Object-attribute-value (OAV) representation is relatively well-known in com-
puter science, and is usually called an ”OAV triple,” or sometimes ”OAV
triplet.” The traditional OAV way of diagramming OAV triples is shown in
Figure 244, and the equivalent Tumbug way is shown in Figure 245.

239

Figure 246: [78] Tumbug for ”In 1765, Thompson went to Cooper’s grave.”
This is an SOAV diagram because objects (O, e.g. ”Thompson”), attributes
(A, e.g., ”status”), and values (V, e.g., ”alive”) are integrated into a larger
system (S), where the larger system is the entire Tumbug diagram shown
above for this English sentence.

Tumbug uses OAV terminology and its meaning verbatim, although
Tumbug sometimes extends this terminology and the associated diagrams.
For example, Tumbug sometimes adds a novel extension to OAV called
”system-object-attribute-value” (SOAV), shown in Figure 246, and Tumbug
sometimes splits the OAV concept into the ”subject-object” (SO) concept,
an example of which is shown in Figure 247.

14.4 Vector graphics editors

There exists a basic similarity between Tumbug and vector graphics editors
in that both systems are typically used to represent real-world systems with
diagrams. Both involve images in motion: Tumbug has arrows in its dia-
grams that imply motion, and vector graphics editors allow users to actually
drag such diagrams across the computer screen in real time via a mouse but-
ton. Both systems manipulate images with respect to their shapes (circles,

240

Figure 247: [3] Tumbug for ”Per social norms, if a helper helps a helpee,
then the helpee will thank the helper.” This is an SO diagram because no
attributes (A) or values (V) are shown in this system (S) that contains only
objects (O) without Attribute Lines.

squares, rectangles, lines, arrows, etc.), motions (translation, rotation, scal-
ing, reflection), shape distortions (shearing, etc.), and their attributes (color,
texture, border, etc.). All the aforementioned listed motions are called affine
transformations, which in 2D using homogeneous coordinates can be done
via a single multiplication of a 3x3 transformation matrix with a 3x1 vec-
tor of the object’s coordinates. Figure 248 shows an example of one vector
graphics editor, OpenOffice Draw, where the user in the process of rotating
an icon.

It should not be surprising to realize that the operations done by vector
graphics editors are the same operations that humans see performed in the
real world on physical objects, since moved diagrams are usually used to
represent some motion aspect of the real world in some useful manner to
humans. This is summarized in Figure 249, assuming that the occurrence is
happening with respect to a given viewer.

The sole visual operations of a vector graphics editor that tend not to
correspond to anything in the real world are the abilities to create and destroy
objects instantly. (Spontaneous creation of virtual particles of the real world

241

Figure 248: An OpenOffice Draw menu after an image has been selected.
Note the affine transformations of Rotate and Flip (= reflection) at the start
of the Modify menu.

is a possibility in theoretical physics, however.) A vector graphics editor
might have an ”Insert | Picture” menu option to implement the creation
operation of an object (see Figure 250, and the deletion operation might be
done by selecting the object and hitting the ”delete” key on the keyboard. It
might be said that the human brain uses an unknown piece of software that
is a combination of vector graphics editor + simulator + video recorder.

Creation of objects out of nothing can be represented easily by Tumbug,
as well, since when the history of the object is viewed with help from a
timeline, suddenly the object is question ceases to exist before a certain
point in its history. If a Tumbug diagrammer desires to be more explicit,
the ”Does Not Exist” value could be placed at the specific time and specific
place that an object appeared, as shown in Figure 251. Conclusion: Tumbug
can represent any primary operation that can be performed by any typical
vector graphics editor.

The same statements are true for object deletion. See Figure 252.

242

Figure 249: A summary of affine transformations and how they relate to the
real world.

243

Figure 250: OpenOffice Draw implements the object creation operation by
”Insert | Picture.”

244

Figure 251: Creation of objects out of nothing can be represented in Tumbug
by showing no earlier object history.

Figure 252: Deletion of objects can be represented in Tumbug by showing
no later object history.

245

14.5 Semantic networks

Semantic networks are a fairly well-known KRM in computer science, one
that uses nodes and links, and therefore bears a superficial resemblance to
Tumbug. A well-known article by Woods (1975) discusses a large number
of shortcomings of semantic networks. Tumbug addresses most or all these
shortcomings. Full coverage of a comparison and semantic networks would
be too lengthy for this document, however, so only a sampling of Woods’
criticisms are given here, with each criticism followed by the Tumbug solu-
tion.

14.5.1 Kinship relations

With regard to data bases and semantic networks, the sentence ”Harry is
John’s uncle” is problematic because:

1. The term ”uncle” is partially ambiguous because it could refer to either
the mother’s side of the family or the father’s side of a family.

2. Even if the ambiguity is removed, the uncle kinship relation involves
comparing nodes that are not directly connected in a kinship tree.

3. Even if the applicable nodes are explicitly connected with an ”uncle”
link, it is too impractical to store all possible uncle relationships ex-
plicitly, due to combinatorial explosion of all possible matches.

See Figure 253 for a standard kinship tree to see the nodes and links
that are involved in this problem. If a specific ego (= the person under
consideration when describing that person’s kinship relationships) is chosen,
then the ego and the two choices of uncle are marked with a 0D Marker
as in Figure 254. Tumbug solves these issues by the following solutions,
respectively:

1. Either use an ”OR” to disjunct the mother’s side of the family with the
father’s side of a family, or combine both sides of the family into a more
generic group called ”parents’ siblings” and use the male members of
that group.

2. Use a 0D Marker to flag the ego and uncle group, then use a relocatable
template that highlights any two nodes, based on the ego at one end

246

Figure 253: A standard (lineal) kinship diagram. (Source: “Eskimo Kinship
Chart” by Fred the Oyster/Wikimedia Commons, CC0.)

and the uncle distance-and-position at the other end as in Figure 255
and Figure 256. (Again, one of the main goals of Tumbug is to represent
everything visually, as much as practical.)

3. Store a specific ego-uncle relationship only when that specific relation-
ship has been needed to be considered by the system when answering
a query.

Further development anticipated: The uncle kinship relationship tem-
plate shown is rigid and specific to the tree layout shown, not flexible with re-
spect to arbitrary tree layout or unpredictable counts or unpredictable branches.
The conversion of such a rigid to a flexible template was not attempted.

14.5.2 Specific objects versus generic objects

Woods wrote (Woods 1975, p. 22): ”For example, if I create a node and
establish two links from it, one labeled SUPERC and pointing to the ”con-
cept” TELEPHONE and another labeled MOD and pointing to the ”con-
cept” BLACK, what do I mean this node to represent? Do I intend it to
stand for the ”concept” of a black telephone, or perhaps I mean it to assert a
relationship between the concepts of telephone and blackness–i.e., that tele-
phones are black (all telephones?, some telephones?). When one devises a

247

Figure 254: A kinship diagram that flags the possible uncles of the shown
ego.

Figure 255: The ego-uncle relationship can be thought of a spatial template
that can be moved to start at any ego node.

248

Figure 256: The ego-uncle relationship template moved to a different ego
node (off the left-hand edge of the chart).

semantic network notation, it is necessary not only to specify the types of
nodes and links that can be used and the rules for their possible combinations
(the syntax of the network notation) but also to specify the import of the
various types of links and structures–what is meant by them (the semantics
of the network notation).”

First, presumably SUPERC = superclass, which would be clearer in
modern times due to the modern popularity of object-oriented programming.
Woods’ described semantic network diagram is shown in Figure 257.

The three interpretations that Wood mentioned are shown in Figure 258.

Figure 257: The SUPERC semantic network example described by Woods.

249

Tumbug represents a superclass using the Venn diagram convention of draw-
ing a region around the region in question, where the larger region represents
the superclass. Tumbug represents each of these three interpretations differ-
ently, by virtue of making attribute-value pairs distinctly different from Ob-
ject Circle labels and Location Box labels, and by virtue of making objects
and classes distinctly different via Object Circles and Aggregation Boxes, and
by virtue of allowing Aggregation Boxes to span arbitrary regions, where each
Aggregation Box may have its own unique label. Woods is correct about the
drawbacks of semantic networks, but clearly Tumbug has much more repre-
sentative power than semantic networks. Even object-oriented programming
clearly has more representative power than semantic networks. Semantic net-
works are clearly becoming old-fashioned due to their inherent limitations.

14.5.3 Intensions versus extensions

Woods wrote (1975, pp. 22-23): ”Basically a predicate such as the English
word ”red” has associated with it two possible conceptual things which could
be related to its meaning in the intuitive sense. One of these is the set of all
red things–this is called the extension of the predicate. The other concept is
an abstract entity which in some sense characterizes what it means to be red,
it is the notion of redness which may or may not be true of a given object;
this is called the intension of the predicate.”

This confusion was already addressed in this document by the insight
that a concept can arbitrarily change its Part of Speech merely by moving
the node that holds that concept to a different part of the OAVC diagram of
Figure 330. Therefore ”red” as an adjective differs from ”red” as a noun in a
diagrammatically simple way in Tumbug. Therefore ”extension” is ”red” as
an adjective, ”intension” is ”red” as a noun. Such Parts of Speech differences
were shown in Figure 259, and are shown again here in Figure 259 with only
words for colors.

15 Applications of Tumbug

15.1 Natural language translation

Below is the translation of a single English sentence to two different foreign
languages, where each foreign language is from a different branch of the Indo-
European languages: French, from the Romance languages, and German,

250

Figure 258: Woods’ three interpretations of the SUPERC example, as repre-
sented in Tumbug. Top: ”The particular telephone in question (= telephone
#1) is black.” Middle: ”All telephones are black.” Bottom: ”Some telephones
are black.”

251

Figure 259: The concept of color, like most concepts, can appear as different
Parts of Speech.

Figure 260: An English sentence translated into French and German.

from the Germanic languages. Three steps are shown in the translation to
Tumbug: (1) translation, (2) analysis, (3) Tumbug representation, then a
general discussion of the process and its nuances.

15.1.1 Conversion from a natural language to Tumbug

1. Translation
See Figure 260.

2. Analysis
See Figure 261.

3. Tumbug representation

252

Figure 261: Analysis of the sentence in the three translations.

253

Figure 262: Tumbug for ”I threw the ball” in English.

The following abbreviations appear in the diagrams:

DC = Don’t Care
DNE = Does Not Exist

For the English sentence, see Figure 262.
For the French translation, see Figure 263.
For the German translation, see Figure 264.

15.1.2 Discussion of language translation

1. Small mismatches
Evidence that Tumbug is nearly a universal representation between these

three languages is that the iconic Tumbug structures for the same sentence
are absolutely identical, as seen in Figure 265.

254

Figure 263: Tumbug for ”I threw the ball” in French.

255

Figure 264: Tumbug for ”I threw the ball” in German.

Figure 265: Comparison of Tumbug representations of the same sentence
across three languages.

256

Figure 266: Emphasized differences between Tumbug representations of the
same sentence across three languages.

There are a few subtle mismatches, however, all in the attribute val-
ues, and all due to some languages being more specific than others. These
mismatches of attribute values are marked in Figure 266.

Pairs of minor mismatches across languages in Tumbug of this example
are marked with arcs.

The mismatches are the following:

1. Regarding aim: French and German care about the exact meaning of
”to throw” since each of those languages would use a different verb if
the meaning were slightly different. For example, French would use
”jeter” if no aim or detached object were involved, and German would
use ”abgeben” (or ”ausgeben”) for the same reason. English makes no
such distinction, so English shows ”DC” (= don’t care) for the ”aim
present” attribute.

2. Regarding attachment: French and German care whether the object
being thrown is an attached object or not, such as ”to throw a switch”
versus ”to throw a ball.” A different verb would be used, depending on
the attachment status.

3. Regarding gender: French and German have different grammatical gen-
ders for their respective words for ”ball.” English has no grammatical

257

genders so it shows ”DNE” (= Does Not Exist). In this case, gram-
matical gender is a human-attributed quality that does not exist in
inanimate objects, so in this example, object gender is irrelevant. If a
human were in the place of direct object or indirect object, however,
then gender could be relevant, possibly because of outfit, marriage sta-
tus, voice range, or any other influences of biological gender.

Other subtle mismatches could occur easily with different sentences or
with different languages. For example ”you” may have different levels of for-
mality, such as in German and Dutch, some languages do not have grammat-
ical genders, such as in Japanese, and some languages do not have articles,
such as in Japanese and Latin.

All such mismatches are due to differing levels of details across the lan-
guages, however, none whatsoever with the structure and relationships be-
tween the top-level entities or actions after the exact word meaning has been
determined. Of course a sentence could be completely ambiguous even in its
own language, such as ”The pot is in the pen,” but that is a deficiency on
the part of a speaker or the language, not a deficiency in Tumbug. Tumbug
does have some potential weaknesses, but these are subtle and very unlikely
to be encountered. These weaknesses are discussed later in this document.

2. Corrections of the small mismatches
There exist only two obvious ways to correct the aforementioned minor

mismatches in the translation example: (1) require the writer/speaker to
be more specific, as specific as the most specific languages that might be
encountered in later translation, (2) use context to determine the most likely
meaning. The first option is usually not within the reader’s control, so usually
context must be used.

Consider how context of a sentence can be implied by following sen-
tences:

1. Textual passage: ”I saw the player trying to steal third base and he
wasn’t too far away. I threw the ball.”
Suggested context: baseball, where a ball is a critical piece of equipment
that must be thrown accurately
Implied aim present: TRUE
Implied detached object: TRUE

2. Textual passage: ”I was going through the trash, pocketing anything

258

of value and tossing aside anything else. First I found an earring, so I
pocketed it. Then I found a disgustingly moldy ball of cheese. I threw
the ball.”
Suggested context: trash, where the ball described is something the
holder would toss aside quickly, to anywhere
Implied aim present: FALSE
Implied detached object: TRUE

The contextual information in this case clarifies the two main ambigu-
ities from before: whether there was an intended target, and whether the
thrown item was attached. The ambiguity of which gender is involved de-
pends only on language-specific grammatical rules, and not the meaning of
the word after the proper word has been clarified. The result of this con-
text determination from the English (or other language) sentence is the first
step for translation, and results in essentially a word vector of TRUE-FALSE
values. The second step of translation matches this word vector against a
database of (typically) foreign words, as shown in Figure 267.

The third step would be to calculate which context-word combinations
had the closest match. For example, in the context of baseball, a context that
was determined by analysis of the the sentence just described whose source
language was English, each context vector of the source language would be
matched against each context vector of the target language. For two contexts
from English and two candidate words from French the result would be (2x2
=) four vectors, each cell of which contains an indication as to whether there
was a match or mismatch. For example, TRUE matched with FALSE =
mismatch, and FALSE matched with DON’T CARE = match. Figure 268
shows the final results. One simple metric for determining degree of match
would be to simply add the number of matches. In the context of baseball
(C1), the highest matching candidate French word was ”lancer,” which had
two matches versus only one match with ”jeter.” Figure 268 shows this entire
matching process as described.

15.2 Mathematics: Arithmetic

Arithmetic in Tumbug uses a Causation Arrow to represent the operator
(e.g., ”+” or ”-”) or function (e.g., 3x, x2), and uses Data C Object Circles
to represent the numbers. Numbers are not real-world objects so numbers
cannot use Physical C Object Circles. This is in contrast to the way the OOP

259

Figure 267: The one determined context (here C1) from the source language
is matched against each word in a data base of candidate words in the target
language, with one such candidate word (here W2) used in the example. Note
that a ”DON’T CARE” value will match either a ”TRUE” or ”FALSE” value.

260

Figure 268: Each given context (here C1 and C2) is matched against each
candidate word in the target language (here W1 and W2), and the count of
matches across each vector’s elements is shown at the right of that vector. In
the context of baseball (C1) being matched against French words, the French
word with the highest count is assumed to be the French word that has the
closest match. The closest matching French word is therefore assumed to be
the word ”lancer” (W2), which has two matches, as compared to the next
highest matching word, ”jeter” (W1), which has only one match. Therefore
in the context of baseball, the French word with the closest match to the
English word ”to throw” is ”lancer.”

261

Figure 269: To add the numbers 1 and 2, Tumbug sends them as two pieces
of data to a virtual operator called ”+”.

language Smalltalk handles numbers: in Smalltalk, numbers are objects, and
operators are methods. For example, in Smalltalk to add two numbers, such
as 1 and 2, Smalltalk would send the method ”+ 2” to the number ”1”
(Winston 1998, p. 16).

In Tumbug, ”1 + 2” would be rendered as in Figure 269, which translates
to the verbal description ”Messages 1 and 2 together are inputted to the
virtual adder, which causes the number 3 to be outputted.” A ”virtual adder”
could mean anything like a person’s mind or an imaginary computer adder.
If a real world computer or real-world calculator were involved then the
circle around the Causation Arrow would be solid: a Physical C Object
Circle. Numbers will always be virtual, so numbers are always represented by
Data C Object Circles. Although computer memory can erase and overwrite
numbers at will, human memory cannot: the concept of ”1” and ”2” are
practically permanent concepts in human memory after being learned, as
is their sum ”3,” therefore the diagram shows the ”3” concept in a different
location than directly below the ”1” or ”2” so that neither the ”1” nor ”2” are
overwritten by Tumbug conventions. Whether the machine performing the
adding is mechanical (e.g., a cash register) or electrical (e.g., a computer), any
calculation it performs takes time, therefore a timeline (Time Arrow) should
always be present in any Tumbug diagram that represents calculation.

262

Figure 270: A Venn diagram in Tumbug uses C Aggregation Boxes instead
of the familiar circles of Venn diagrams.

15.3 Logic: First Order Predicate Calculus

15.3.1 Syllogisms with Venn diagrams

Venn diagrams are not only closed geometrical figures, each of which may
contain points in arbitrary locations within any given region, but can also be
considered diagrams of physical regions that may contain objects within any
given region, like an aerial view of a horse corral that may contain horses.
Therefore a Venn diagram can be considered only a cleaned up and abstracted
aerial photograph, which conveniently bridges the gap between reality and
geometrical diagrams. Therefore there is no need for Tumbug to include a
separate Building Block for a Venn diagram.

One type of formal logic is First Order Predicate Calculus (FOPC).
FOPC often uses syllogisms represented as Venn diagrams, which are used to
represent sets. As noted earlier in this document, sets are very conveniently
represented in Tumbug with any type of Aggregation Boxes, since order (or
2D position) is not important in a set. Therefore three intersecting sets in
Tumbug would be represented as three intersecting C Aggregation Boxes, as
shown in Figure 270.

There exist only 24 valid types of syllogisms, and each type has been
given a person’s name. In this document the Socrates example has the Bar-
bara form, the reptiles example has the Celarent form, and the rabbits ex-
ample has the Darii form.

263

Figure 271: One way to represent the Socrates syllogism in Tumbug.

15.3.2 Barbara form (AAA-1)

The Socrates syllogism example in this section is the well-known syllogism:

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

In this syllogism the two sets involved–assuming that the information is
regarded as sets whenever possible–happen to be nested and non-intersecting,
as shown in Figure 272. In the literature, usually even Socrates is represented
as a third set, for some reason, but technically Socrates is an element of a
set, not a set per se, so is represented an object here.

The way a person would likely construct a mental picture such as in
the aforementioned syllogism would be incrementally as each of the three
sentences is read: a single mental picture is used across all three sentences,
and after each sentence is read a new piece is added to the composite picture
as shown in Figure 272. Note that the final composite picture does not use
the ”mortals” concept as a set, but rather as an attribute-value pair.

The clue that a set is involved is the verbal form ”all X,” such as in ”all
men” or ”all birds” or ”all even numbers.” In logical calculus or math the
term ”for all” would be the analogous clue. The English verb ”is” (or ”are”
or ”am”) when used in descriptions of the form ”X is a Y” (or ”X are a Y”
or ”I am a Y”) means ”X is in set Y,” as in ”Socrates is man” or ”Tweety is
a bird” or ”6 is an even number.”

Using these rules the aforementioned sequence of three steps results
mechanically, with little or no thought, while building up the associated
image on the side: (1) ”All men are mortal” = ”The set of men has attribute
mortal”⇒ create set ”men” and attach attribute-value ”mortality = mortal.”

264

Figure 272: The three diagram creation steps that correspond to the three
sentences of the syllogism.

265

(2) ”Socrates is a man” = ”The object Socrates is in the set of men”⇒ create
object ”Socrates” and place it inside set ”men.” (3) ”Socrates is mortal” =
”The object Socrates has attribute mortal” ⇒ realize that since set ”men”
has attribute-value ”mortality = mortal” then every object in that set must
have that same attribute-value, by convention.

The last (3rd) step as represented in Figure 273 may seem somewhat
trivial and redundant. However, if this syllogism had been represented with
two sets, one set for ”mortals” as is usually done, the insight of the third
step could be made visible as an arrow connecting Socrates and the set
”mortals.” Such an insight more closely describes of people would typically
think of such a new association, often as a ”that’s true, though I never
quite thought of it that way before” reaction. This type of spatial fusion
evidently happens frequently when mentally piecing together maps to plan a
route. For example, if a person knows the layout of the interior of a building
well, and knows the relative placement of the surrounding buildings but has
always entered and exited through the same entrance of the first building,
then if challenged with finding a new exit that is closer to the destination
building, would likely mentally need to fuse the two separate mental maps in
order to decide which exit would be closer to the destination from a global
viewpoint–a shortcut that could be always be used thereafter. This same
”insight arrow,” called a Relationship Marker in Tumbug, is explicitly shown
in all the syllogisms in this document. Note that extra connections such as
these are likely responsible for increasing a person’s ”understanding” of a
topic (Atkins 2019).

Note that the order of the three sentences of the Socrates syllogism is
not critical. For example, if the 1st and 2nd steps were swapped, the conclu-
sion (and final diagram) would be the same, but would have been built up
in a different order, as shown in the Figure 274.

Socrates is a man.
All men are mortal.
Therefore, Socrates is mortal.

Insight: The described process of the brain building up composite im-
ages that represent meaning across multiple sentences may provide major
clues about the brain automatically providing context for disambiguation of
pronouns in subsequent sentences. In contrast, if a sentence containing an
ambiguous pronoun was a sentence that was removed from its surrounding

266

Figure 273: The insight that Socrates is mortal as represented by a Rela-
tionship Marker that directly connects the two concepts.

sentences then the sentence would likely lose critical information that could
disambiguate that pronoun if the sentence were given to a computer to ana-
lyze.

15.3.3 Celarent form (EAE-1)

The reptile syllogism example of this section is of the Celarent form, and is
shown in Figure 275.

No reptile has fur.
All snakes are reptiles.
Therefore, no snake has fur.

The clue that a set is involved is the verbal form ”no X,” such as in ”no
reptile” or ”no man” or ”no negative number.” Implied is that there exists a
set called ”X” and no element in that set can have the properties described
afterward. In logical calculus or math the term ”there does not exist” would
be the analogous clue.

A complication arises from this example: How to represent ”no” (or
”not”) with respect to an allowed range in Venn diagrams. Two ways are
shown in Figure 276 and Figure 277. Representation #1: The X-ed line
between the two sets means that an element from one set cannot exist in the
set on the other side of the X-ed line.

267

Figure 274: The three diagram creation steps that correspond to the rear-
ranged three sentences of the syllogism.

268

Figure 275: One way to represent the reptile syllogism in Tumbug.

Figure 276: An element of the left set with attribute A cannot appear in the
right set.

Representation #2: The black dot represents an element in the set on
the left, and the arrows emanating from it suggest the range in which it is
allowed to appear in the Venn diagram. The dot can appear in any hatched
area, i.e., the dot can appear in any area except the white (unhatched) region.
The arrows are shown for clarity here, but are not needed in practice since the
shading already spans every region where the element may go. See Figure 277
and Figure 278.

For Tumbug the hatched region representation would probably be clear-
est, since Tumbug has many lines in the diagram already, and using an X-ed
line does not make it clear where the element in the left set can go, only
where it cannot go.

Using the same conventions as in the Barbara example, the following
steps would be involved to create the appropriate Venn diagram, as shown in
Figure 279. (1) ”No reptile has fur” = ”The set of reptiles and the set of furry
animals cannot intersect” ⇒ create set ”reptiles” and set ”furry animals” so
that they are non-intersecting. (Alternative: Attach attribute-value ”skin
covering = NOT fur” to the reptiles set, and attach attribute-value ”skin
covering = fur” to the furry animals set.) (2) ”All snakes are reptiles” =
”The set of snakes is a subset of the set of reptiles” ⇒ create set ”snakes”

269

Figure 277: An element of the left set with attribute A can appear in any
set or region except the white (A) region.

Figure 278: An element of the left set with attribute A can appear in any
set or region except the white (A) region. This is the diagram that applies
to the reptiles example, where A = fur, A = NOT fur.

270

and place it inside set ”reptiles.” (3) ”No snake has fur” = ”No element in
the snakes set can exist in the furry animals set.” Realize that since any
snake must exist only in the ”snakes” set, which is mutually exclusive with
the ”furry animals” set, this is already implied, by the shading convention.

15.3.4 Darii form (AII-1)

The rabbits syllogism example of this section is of the Darii form. Figure 280
shows this syllogism in square Venn diagram form.

All rabbits have fur.
Some pets are rabbits.
Therefore, some pets have fur.

The clue that a set is involved is the verbal form ”all X,” here ”all
rabbits.”

Using the same conventions as in the Barbara example, the following
steps would be involved to create the appropriate Venn diagram, as shown
in Figure 281. (1) ”All rabbits have fur” = ”The set of rabbits is a subset of
the set of furry animals” ⇒ create set ”rabbits” and set ”furry animals” so
that ”rabbits” is a subset of ”furry animals.” (Alternative: Attach attribute-
value ”skin covering = fur” to the rabbits set.) (2) ”Some pets are rabbits”
= ”Some of the set of pets is inside the set of rabbits, but not necessarily
inside the set of furry animals” ⇒ create set ”pets” and make it overlap with
the set ”furry animals” but in a way that it does not overlap into the purely
”furry animals” region. (3) ”Some pets have fur” = ”Some part of the pets
set is inside the furry animals set.” Realize that part of the ”pets” set exists
in the ”furry animals” set.

15.4 Computer language representation

Algorithms can be represented in Tumbug rather easily, especially from
flowcharts, but also from the code itself.

Sequential steps of an algorithm are shown in Tumbug as occurring se-
quentially in time, along a Timeline Arrow. The rectangles along the timeline
are not flowchart boxes, but rather C Aggregation Boxes. The contents of
each C Aggregation Box on the left is the Tumbug representation of the
corresponding statement si in the code to the right, so each C Aggregation

271

Figure 279: The three diagram creation steps that correspond to the three
sentences of the syllogism.

272

Figure 280: One way to represent the rabbits syllogism in Tumbug.

Box will typically hold connected Tumbug icons such as C Object Circles,
Motion Arrows, attribute-value pairs, etc. Each red dot shown in the code
samples here indicates the statement within the program that is executing,
and there is a corresponding red dot beside the corresponding part of the
Tumbug representation.

Caveat: Tumbug’s ordinary level of representation deals with human life
and human-sized objects, so using Tumbug for computer code would likely be
extravagantly wasteful of space. The same is true of mathematical operations.
Tumbug is similar to a very high order programming language, especially an
object-oriented simulation language, so Tumbug would be most appropriate
for important human-level events that lend themselves to visual simulation.

15.4.1 Sequential code

Sequential code as a flowchart in Tumbug would look like Figure 282. Fig-
ure 283 of a Tumbug representation of sequential flowchart run being traced
suggests why Tumbug is more applicable to machine understanding of a situ-
ation: At each step the entire piece of code is recopied, with the only change
being where the current program statement is, which is indicated by the red
dot. This results in the ability to see not only the current focus (i.e., the
current program statement) but also its context in all the code around it
(i.e., the program).

273

Figure 281: The three diagram creation steps that correspond to the three
sentences of the syllogism.

274

Figure 282: Sequential code in Tumbug is represented by one path composed
largely of Pathway Tubes.

275

Figure 283: Trace of sequential code in Tumbug, with flowchart copied at
each step on right: (S1 S2 S3 S4).

276

15.4.2 Looped code

A loop in the code would cause the collection of steps inside the loop to occur
repeatedly, with each collection occurring sequentially, and the steps within
each loop occurring sequentially, as well. This is shown in Figure 284 and
Figure 285.

15.4.3 Branching code

A conditional statement (such as IF-THEN, IF-THEN-ELSE, or CASE)
causes only one thread of execution to occur, chosen appropriately from the
multiple alternatives given in the program. Tumbug uses a Split Time Arrow
to represent this splitting of possibilities. The result looks very similar to a
flowchart, as shown in Figure 286 and Figure 287.

.

15.5 Natural language representation

This section discusses the more difficult grammatical topics within English
that might cause translation from English into Tumbug to be difficult. Al-
most all these topics are about verbs. The first section covers several of
the simpler topics in a single section; each subsequent section covers one
complicated topic per section.

15.5.1 Categories of verbs

1. Active verbs versus stative verbs
Active verbs are also called ”dynamic verbs.” Active verbs are verbs that

describe obvious actions (e.g., ”to throw,” ”to run,” ”to hit,” ”to jump,” ”to
sing”), whereas stative verbs describe state of being (e.g., ”to know,” ”to
earn,” ”to love,” ”to want,” ”to own”).

Sometimes a third category is included, called ”event verbs.” This is
said to include sentences such as ”Four people died in the crash” and ”It’s
raining again,” but these examples fit well as stative verbs since ”to die” is
a change of state from living to dead, and ”to rain” is a change of state of
weather to wet precipitation.

The differences between these categories is clearly represented in Tum-
bug because actions must either involve motion, whereupon a Motion Arrow
and C Object Circle is used, or be caused or entered via a state diagram,

277

Figure 284: An IF-THEN in Tumbug is represented by two paths, the choice
of which depends on one state.

278

Figure 285: Trace of looped code in Tumbug, with flowchart copied at each
step on right: (S1 S2 S3 S2 S3 S4).

279

Figure 286: An IF-THEN-ELSE in Tumbug is represented by two paths, the
choice of which depends of one state.

280

Figure 287: Trace of branching code in Tumbug, with flowchart copied at
each step on right: (S1 S3 S4).

281

Figure 288: In Tumbug, active verbs use very different arrows than stative
verbs.

whereupon a Causation Arrow and State Circle is used. If color coding is
used then the difference in diagrams is even more obvious since State Circles
have no color whereas C Object Circles do. See Figure 288.

2. Transitive verbs versus intransitive verbs
A transitive verb is one that requires a recipient object for the sentence

to make sense (e.g., ”I pushed the cart,” ”Please bring coffee,” ”Juan threw
the ball”), in contrast to the sentence making without a recipient object
(e.g., ”They jumped,” ”The dog ran,” ”She arrived”). Some verbs can be
either, depending on context (e.g., ”Her husband shaved” versus ”The barber
shaved the customer”). The difference is extremely obvious in Tumbug: if
only the subject’s C Object Circle is present then the verb is transitive, but
if the direct object’s C Object Circle is present as well as the subject’s C
Object Circle then the verb is intransitive. See Figure 289.

3. Linking verbs
Linking verbs do not describe actions or causations of states, but rather

describe an object with either a predicate adjective or a predicate noun. In
Tumbug, a predicate adjective is represented by attribute-value pair that
hangs off an Object Circle, and a predicate noun (also called a ”predicate
nominative”) is represented as a superset that is represented as a C Aggrega-
tion Box that surrounds the predicate noun. The main example of a linking
verb in English is ”to be,” which in Spanish has the two forms ”ser” and
”estar.” Any verb that describes sensory input (e.g., ”to feel ⟨adjective⟩,”
”to smell ⟨adjective⟩),” ”to taste ⟨adjective⟩”) or any verb that describes

282

Figure 289: In Tumbug, transitive verbs use two Object Circles whereas
intransitive verbs use one Object Circle.

impressions (e.g., ”to seem ⟨adjective⟩,” ”to look ⟨adjective⟩,” ”to become
⟨adjective⟩”) is a linking verb. Tumbug inherently does not consider linking
verbs to be verbs in the normal sense since Tumbug does not represent linking
verbs with any type of arrow, only with Attribute Lines. See Figure 290.

4. Helping verbs
”Helping verbs” are also called ”auxiliary verbs.” A helping verb is an

additional verb used with the main verb to convey some type of additional
information. The types of information conveyed can be:

• time tense

– HELPING VERB EXAMPLES: to be, to have, to do

– SENTENCE EXAMPLES:

∗ I am going to the zoo.

· helping verb = ”to be”

· conveyed info = present continuous tense

∗ I have waited a long time for this.

· helping verb = ”to be”

· conveyed info = present continuous tense

∗ I did not want to go home.

· helping verb = ”to do”

· conveyed info = simple past tense

• modality

283

Figure 290: There exist two types of linking verbs, and neither involves an
action or a causation.

– HELPING VERB EXAMPLES: can, could, may, might, will, would

– SENTENCE EXAMPLES:

∗ It might rain.

· helping verb = ”might”

· conveyed info = possibility

∗ Jorgen can skate backwards.

· helping verb = ”can”

· conveyed info = (general) ability

∗ I may delete this later.

· helping verb = ”may”

· conveyed info = possibility

• emphasis

– HELPING VERB EXAMPLES: to do

– SENTENCE EXAMPLES:

∗ I do like the book!

· helping verb = ”to do”

· conveyed info = emphasis

284

Figure 291: ”Helping verbs” is a diverse class of verbs with different uses and
representations in Tumbug.

From a Tumbug perspective, ”helping verb” is an ambiguous concept
based on syntax, not grammar, therefore most helping verb categories can
be ignored in this study. See Figure 291. However, time tenses and modal
verbs are deeper grammatical topics that are discussed in detail elsewhere in
this document, each in its own dedicated section.

5. Regular verbs versus irregular verbs
The issue of whether a verb is regular or irregular is a syntactical issue,

not a semantic issue. Since Tumbug deals with semantics, Tumbug per se
does not consider whether a verb is regular or irregular, which means for
example that there will be no written distinction between the concepts of
”see” and ”saw”: the only difference is implied by the time shown at that
event on the timeline (Time Arrow) as shown in Figure 292. The closest that
Tumbug might approach this distinction is if: (1) software of some type were
translating from Tumbug representation of a sentence in one language to a

285

Figure 292: Tumbug ordinarily distinguishes between past and present via
timeline, therefore Tumbug is not usually concerned with textual descriptions
or their spelling differences since such text is redundant. Therefore the two
diagrams are identical except for the positioning of times on the timeline.

different language; (2) Tumbug were being used to store conjugation rules.
6. Phrasal verbs
A phrasal verb is a verb that includes a preposition (e.g., for, with, to,

up, across) and/or adverb to the verb, which together can create a new mean-
ing that is completely different from the meaning of the original verb alone.
Phrasal verbs are irrelevant in Tumbug, for the same reason that conjuga-
tions are irrelevant in Tumbug: these are spelling, phrasal, or syntactical
differences that are independent of meaning. Some examples are listed in
Figure 293.

A Tumbug diagram of the original verb will usually be very different
than a Tumbug diagram of the same verb made into a phrasal verb.

7. Infinitives
As noted elsewhere, conjugations of verbs by time, number, and person

are essentially meaningless in Tumbug since Tumbug fundamentally uses no
text anyway; such conjugation information can only be inferred by the dia-
gram or its attribute values, which also fundamentally use no text. Since the

286

Figure 293: Examples of phrasal verbs. Tumbug is concerned only with
unique concepts, not with new meanings that have been attributed to groups
of existing words by humans, therefore phrasal verbs have little inherent
meaning to Tumbug.

287

Figure 294: In Tumbug the infinitive form of a verb will show no tense (i.e.,
no Time Arrow), no quantity (i.e., a Nonquan is shown rather than an Object
Circle or Location Box), and no person (i.e., no relative location of the agent
is implied by the diagram). Here the arrows suggest an appendage moving
upwards, which suggests the infinitive ”to wave.”

infinitive form of a verb is characterized by lack of time, number, and person,
a generic Tumbug diagram that somehow depicts a given action alone is how
an infinitive would appear in Tumbug, as shown in Figure 294.

8. Reflexive verbs
One definition of a ”reflexive verb” is a verb whose direct object is the

same as its subject. For example, a verb used with a reflexive pronoun in a
sentence of the form ”I ⟨verb⟩myself” or ”You ⟨verb⟩ yourself” are necessarily
reflexive verbs, such as the sentence ”I wash myself” as shown in Figure 295.
Verbs that describe actions that are ordinarily done to oneself, such as ”to
wash” or ”to shave,” do not require a reflexive pronoun. In Tumbug, reflexive
verbs are immediately visually recognizable because the action immediately
circles back to the subject. This is a benefit since no confusion about the
meaning of the sentence can occur, unlike in written English.

15.5.2 Active tense versus passive tense

Marvin Minsky mentioned active tense versus active tense (Minsky 1974, p.
33) via the three example sentences in Figure 296, Figure 297, Figure 298.

Tumbug works as beautifully on passive tense as it does on active tense.

288

Figure 295: Top: ”To wash” as a transitive verb. Bottom: ”To wash oneself”
or ”to wash” as a reflexive verb.

Figure 296: Tumbug for ”He kicked the ball.” (active tense)

289

Figure 297: Tumbug for ”The ball was kicked.” (passive tense)

Figure 298: Tumbug for ”There was some kicking today.” (passive tense)

290

If one of the objects is not identified, a completely unlabeled Object Circle
can be used, or a question mark ”?” can either be placed inside an Object
Circle, a lone question mark can be used, or an icon can be labeled with a
lone question mark can be used. The representation method that is most
consistent with the spirit of Tumbug is that of showing a completely unla-
beled Object Circle for a sentence’s Subject because some Subject must have
caused the action: a missing Subject would imply that the Subject either did
not exist or that action arose out of a void, or both, which is logically impos-
sible. In addition, the placing of an unlabeled Object Circle in the diagram
makes it less likely that such passive tense wording can be used to misdirect
the reader, which is often the intent of passive tense. With this Tumbug con-
vention any unaccounted-for object must automatically be brought into the
diagram with an obvious presence that is difficult to ignore. For an example
of this justification, in the sentence ”The ball was kicked,” the Merriam-
Webster definition of ”to kick” is ”to strike out with the foot or feet,” which
means that a visual representation of ”to kick” absolutely must contain some
reference to a foot, which in turn implies the existence of some entity that
had that foot as part of its body, an entity that was capable of striking out
with that foot. This undefined entity is exactly the meaning of an unlabeled
Physical Object Circle, therefore such a Physical Object Circle with a foot
should be used, which has the automatic side benefit of making any implied
unknowns blatantly obvious instead of being hidden via language.

15.5.3 Grammatical time aspects

The basic time ranges in which events are described in natural languages
are, of course: (1) past, (2) present, and (3) future. Most natural languages
add an additional complication to timelines called ”aspect,” however. The
most common aspects are: (1) simple, (2) progressive, (3) perfect, (4) present
progressive. ”Aspect” describes whether a given event happened at a specific
point in time, versus whether a given event happened over a period of time.
Each of these cases is listed in Figure 299 with its overall description and
associated Tumbug diagram. Note that these particular meanings of types of
aspect are not always fixed–natural language is imperfect–but for any specific
interpretation Tumbug will render them faithfully. For example, although
”simple” aspect usually means at a single point in time, it can also refer to
a cluster of points in time.

In this section the time spans that are of interest are emphasized using

291

Figure 299: Aspect is largely only a matter of how long the interval of time
is, over which an action happens.

a thickened Time Arrow in those regions. This practice is not a fixed part of
Tumbug: braces or shaded regions can accomplish the same task of indicating
any specific times spans of interest.

1. Simple aspect
The ”simple” aspect means a single point in time, or sometimes a cluster

of such points, shown here by the thick line that ranges over narrow period
of time. See Figure 300, Figure 301, Figure 302.

2. Progressive aspect
The ”progressive” aspect means the described action occurred over a

Figure 300: (in the past:) ”Ken called (via an information line) yesterday.”

292

Figure 301: (in the present:) ”Ken is calling (via an information line) now.”

Figure 302: (in the future:) ”Ken will call (via an information line) tomor-
row.”

range of time. This situation is shown here by the thick line that ranges over
an extended period of time longer than a single moment. See Figure 303,
Figure 304, Figure 305.

3. Perfect aspect
”Perfect” in grammatical context means ”complete,” meaning the de-

scribed action has stopped. The ”perfect” aspect means an ongoing action
in the past was completed by a certain reference time.

See Figure 306, Figure 307, Figure 308.
Note that in the present perfect the reference time coincides with ”now.”

This differs from the other two perfect tenses (past perfect and future per-
fect), where the reference time is always assumed to be after the time of the
described action, and with both the described action and reference time on
the same side of ”now.”

4. Perfect-progressive aspect
”Perfect” in grammatical context means ”complete,” meaning the de-

scribed action has stopped. The ”progressive” aspect means the described
action occurred over a range of time. The ”perfect-progressive” aspect means
an action over a length of time was completed. See Figure 309, Figure 310,

293

Figure 303: (in the past:) ”Terry was walking his dog yesterday.”

Figure 304: (in the present:) ”Terry is walking his dog now.”

Figure 305: (in the future:) ”Terry will be walking his dog tomorrow.”

294

Figure 306: (perfect in the past / past perfect:) ”The dog had eaten bones
(by the time we got home).”

Figure 307: (perfect in the present / present perfect:) ”The dog has eaten
bones (by now).”

295

Figure 308: (perfect in the future / future perfect:) ”The dog will have eaten
bones (by the time we get home).

Figure 311.
Note that English is ambiguous in this aspect since this aspect does not

necessarily imply that the described action will happen after the reference
time. Some English instructors say the described action is ”expected to con-
tinue,” others say the described action ”may continue.” English obviously has
some flaws for accurate scientific usage. The figures show that the thick line
of event duration continues (via arrow head), which implies the ”expected
to continue” interpretation was intended. Figure 309, Figure 310, and Fig-
ure 311 are identical to the preceding figures except the event duration stops,
which implies the ”may continue” interpretation was intended.

The difference between perfect aspect and progressive-perfect aspect is
summarized in Figure 312, Figure 313, and Figure 314.

5. Discussion of grammar
The preceding sections demonstrate that Tumbug can accurately rep-

resent all the time aspects of English grammar, so well in fact that certain
ambiguities in English time aspects become very clear.

Note that Tumbug representations can be made much more thoroughly
visual than they were in the aforementioned aspect diagrams. For example,
instead of writing ”yesterday,” ”now,” or ”tomorrow” on the timelines, any
type of visual representation could be used instead, such as a clock, a cal-
endar, numbers, or lengths of a cylinder that represents some multiple of
time. Similarly, icons of humans can be used instead of C Object Circles.
Also, details can always be added, such as a human holding a leash that

296

Figure 309: (in the past / past perfect progressive:) ”Denny had been driving
a forklift (and might have continued to do so).”

Figure 310: (in the present / present perfect progressive:) ”Denny has been
driving a forklift (and might still be doing so).”

Figure 311: (in the future / future perfect progressive:) ”Denny will have
been driving a forklift (and might continue to do so).”

297

Figure 312: In unfortunate English language ambiguity, perfect-progressive
aspect can mean either that the described action continued or that it stopped.

Figure 313: A Split Time Arrow can be used to include both possibilities of
”perfect-progressive aspect.”

298

Figure 314: A comparison of the ”perfect aspect” diagram with the Split
Time Arrow diagram of ”perfect-progressive aspect.”

is around the dog’s neck, which would presumably represent an additional
force (represented by a Force Arrow) that constrains the dog’s movement.
Tumbug is ultimately intended to be entirely visual, and it has very nearly
that capability already if the human diagrammer has the time to fill in the
visual details.

15.5.4 Modal verbs

1. Lists
1.1. Simple lists
The following list is likely a complete list of the modal verbs of American

English and British English, in alphabetical order:

1. be able to

2. can

3. could

4. had best (uncommon, spoken only)

299

5. had better (uncommon)

6. have got to (uncommon)

7. have to

8. may

9. might

10. must

11. needn’t (uncommon)

12. ought to

13. shall

14. should

15. will

16. would

These modal verbs precede regular verbs, and convey the following
modal concepts that modify the context of the regular verbs that follow
them:

1. ability

2. advice

3. conditional - decomposes

4. formal directive

5. future

6. habit in past tense

7. habit, present tense

8. intention

300

9. likelihood/certainty

10. not necessary

11. obligation/correctness/rightness

12. offer/invitation/persuasion

13. permission

14. (polite) request

15. prediction

16. suggestion

17. willpower/intent (after ”I” or ”we” in formal British)

Unfortunately the modal verbs listed above are highly overloaded, mean-
ing that one modal verb can have multiple meanings from the above list. The
above list is a conglomeration of the words used to describe of concept mean-
ings given by different authors on the Internet. Below is the nearly the same
list of modal verbs, with most of their possible conveyed concepts added,
each concept taken from the above list.

1.2. Modal verb ⇒ modal concept

1. be able to

(a) Mike is able to solve complicated math equations. (ability)

(b) Will you be able to walk the dog this afternoon? ((polite) re-
quest)

2. can

(a) She can swim underwater. (ability)

(b) You can’t learn a new language if you don’t practice. (conditional
- decomposes)

(c) I can be with you at 9 a.m. (likelihood/certainty)

(d) Can I give you a hand? (offer/invitation/persuasion)

301

(e) Yes, you can have an ice-cream. (permission)

(f) Can you change this for a different color, please? ((polite) re-
quest)

3. could

(a) He could run the mile in 4 minutes when he was younger. (ability)

(b) If I could be President for one day, I would change the world.
(conditional - decomposes)

(c) I could make friends easily when I was younger. (habit in past
tense)

(d) Mary could have been better than her sister at ballet. (likeli-
hood/certainty)

(e) I could go for you? (offer/invitation/persuasion)

(f) Could you pass me the salt please? ((polite) request)

(g) Could I leave early today, please? (permission)

4. had best

(a) You’d best leave it till Monday. (advice, informal)

5. had better

(a) I had better not buy that coat. (advice, formal)

6. have got to

(a) Drivers have got to get a license to drive a car in the US. (ne-
cessity)

(b) I have got to be at work by 8:30 AM. (obligation/correctness/rightness)

7. have to

(a) We have to wear a uniform at work. (obligation/correctness/rightness)

8. may

(a) She may come later. (likelihood/certainty)

(b) You may go now. (permission)

302

(c) May I speak to Mr. Jones please? ((polite) request)

9. might

(a) The train might be delayed. (likelihood/certainty)

(b) Might I have a glass of water please? ((polite) request)

(c) She might like a jewelry box for her birthday. (suggestion)

10. must

(a) It’s snowing, so itmust be very cold outside. (likelihood/certainty)

(b) Childrenmust do their homework. (obligation/correctness/rightness)

11. needn’t

(a) You needn’t do your homework. (not necessary)

12. ought to

(a) You ought to have your car serviced before the winter. (advice)

13. shall

(a) Pupils shall not use the main entrance. (formal directive)

(b) This time next week I shall be in Scotland. (future)

(c) Shall we tell him? (offer/invitation/persuasion)

(d) We shall not be moved! (willpower/intent)

14. should

(a) You should stop smoking. (advice)

(b) He should be here in 5 minutes. (future)

(c) The government should reduce the sales tax. (ideal/preferred)

(d) Should I turn the heating on? (offer/invitation/persuasion)

(e) Should we invite Sarah and David? (possibility)

15. will

(a) This year Christmas will fall on a Monday. (future)

303

(b) John will always be late! (habit, present tense)

(c) She will come tomorrow. (intention)

(d) You will need to show your boarding pass at the gate. (obliga-
tion/correctness/rightness)

(e) Short hair will suit you. (prediction)

(f) Will you take the dog for a walk please? ((polite) request)

16. would

(a) Tom would do something like that, wouldn’t he? (habit, present
tense)

(b) When I lived in Italy, we would often eat in the restaurant next
to my flat. (habit in past tense)

In particular, requests such as ”Could you pass me the salt please?” are
at the polite end of a spectrum of imperatives, the other end of which would
be a stark imperative such as ”Pass me the salt.” Prediction also involves
a spectrum of likelihood between certainty and non-certainty, such as ”The
total will be 10” versus ”Short hair will suit you.” Note that the ”permis-
sion” concept of some modal verbs is analogous to having a pass, whereas the
”formal directive” concept (in the negative) is the opposite, and analogous
to not having a pass, therefore these two concepts are related.

There are some interesting or important things to know about these
modal verbs: (1) Consensus among linguists is that Future Tense always im-
plies possibility, at least if the agents are people. (2) ”To be able” seems at
first impression like a synonym for ”can” but a little-known English gram-
mar rule renders this first impression untrue since the generality of the event
being discussed dictates which of those two modal verbs must be used. How-
ever, some people maintain that either ”to be able” or ”can” can be used
for a (polite) request, even though politeness usage is rarely mentioned in
conjunction with ”to be able.” The table in Figure 315 includes these extra
meanings for ”to be able,” and includes the implication of possibility with
each use of Future Tense, though with these extra meanings put in paren-
theses.

In summary, the following concept meanings were excluded for the fol-
lowing reasons:

304

• Conditional: irrelevant since ”if-then” has no effect on the concept
included

• Desire: often seems implied, but not listed by anybody as implied, as
in fact is not logically implied

Modal verbs may be redundant, especially in tense, due to prior coverage
by Tumbug. For example, one meaning of ”shall” is mere future tense: In
British English ”I shall” is exactly equivalent to ”I will” in American English,
yet Tumbug already is capable of showing future tense with a timeline so
Tumbug does not need a modal verb to express future tense another way.

In this way the original list of modal concepts is reduced to the following
shorter list of modal concepts:

1. Ability

2. Advice

3. Formal Directive

4. Formality (Formal, Informal)

5. Habit (Past Tense, Present Tense)

6. Ideal

7. Intention

8. Likelihood

9. Obligation

10. Offer

11. Permission

12. Possibility

13. Prediction

14. (polite) Request

15. Suggestion

305

16. Tense

17. Willpower

2. Table of modal verbs versus meanings
Under the assumption that the above list is definitive, a vector that con-

tained all of these attributes would therefore capture all the nuances of every
modal verb in English by inclusion or exclusion of selected modal concepts
within the vector’s components. For example, if the vector’s components
were defined as...

[Ability, Advice, Formal Directive, Formality, Habit, Intention, Likeli-
hood, Obligation, Offer, Permission, Request, Possibility, Prediction, Sug-
gestion, Will]

...then the modal verbs of American English and British English would
be defined as in Figure 315.

3. Tumbug implementation
All of the above lists and summary table of modal verbs converted the

ambiguities of modal verbs into discrete cases arranged as mathematical vec-
tors (= each of the lists) and a matrix (= the table). Tumbug eventually
must be able to visually represent any given modal verb, however, which is
discussed next.

The table in Figure 315 can be regarded as a crossbar switch, where each
row is a specific modal value, and each column is a modal concept. As each
specific modal verb-with-meaning (row) is activated, one or more associated
modal concepts (columns) become activated. If each row is implemented as
an artificial neuron and each column is implemented as an artificial neuron,
then the firing of one row causes the firing of one more columns as dictated by
the connections in crossbar switch. The Figure 316 shows the specific modal
verb-with-meaning ”can (permission)” neuron activating the modal concepts
”Per” (= Permission) and ”Req” (= Request) neurons. Note that a device
other than an artificial neuron could be used instead, such as a light-emitting
diode (LED) as a signaling device.

Similar Figure 317 shows the specific modal verb-with-meaning ”able
to (ability)” neuron activating the modal concept ”Abi” (= Ability) neuron
and the modal concept ”Req” (= Request) neuron.

When only the column header and its choices are considered, this com-
bination of slots appears as a pegboard-like pattern, shown in Figure 318.
Activation of a neuron within one of the vertically protruding banks of neu-
rons could be implemented in various ways, such as: (1) using the vertical,

306

Figure 315: All the modal verbs of English and their meanings. A cell with
parenthesized contents means this extra implication should exist.

307

Figure 316: Tumbug implementation of modal verb-with-meaning ”can (per-
mission).”

308

Figure 317: Tumbug implementation of modal verb-with-meaning ”be able
to (ability).”

309

Figure 318: The skeletal template for any modal verb, which will represent
a single modal verb when appropriate cells are filled in.

perpendicular bank of neurons as shown in the figure; (2) omitting the ver-
tical bank of neurons, and using a neuron firing at a different intensity in
the horizontal bank of neurons, such as firing weakly to represent Informal
versus firing strongly to represent Formal.

When this shape is enhanced with activated neurons in unique locations,
each activated location shown here in white, a uniquely colored variation of
the pegboard pattern results. Each of these unique visual patterns can be
considered a visual representation of a different modal verb.

Although such a visual pattern might seem to bear no resemblance to
any image a human might associate with a given modal verb, this does not
matter. The reason it does not matter is that the brain routinely uses maps
that do not intuitively correspond to any map in the real world. For exam-
ple, a spatial map exists across the somatosensory cortex that represents its
person’s body, roughly in the same shape as the body in one region (see Fig-
ure 319), and does (or at least could) contain a representation every part of
the body that contains sensors, whether internal or external. Via this map,
stimulation of a given set of neurons is inherently understood by the brain to
represent signals from that corresponding part of the body, not understood
as signals from neurons themselves. In fact, the phenomenon of ”phantom
limbs” has been hypothesized by Dr. Ronald Melzack to be caused by a
”neuromatrix” that is an intermediate biological neural network that some-
times errs in the mapped locations that it forwards to the brain (Melzack
and Wall 1965). There is no reason to believe that collections of neurons can-
not represent nonexistent or abstract concepts such as modal verb meanings
in the same way. Swirly arrays bridge the gap between smooth, irregular,
biological structures, and regular, grid-like, computer data structures.

310

Figure 319: Left: A ”body map” of a human as represented by a human’s
somatosensory cortex, with labeled regions. (Source: Course Hero, Inc.)
Right: A Swirly Array whose cells spatially correspond to each labeled region
on the left.

311

Figure 320: [31] Tumbug for ”You can see the garden through it.”

4. WS150 example: #31 (garden)
”[31] There is a gap in the wall. You can see the garden through it. You

can see the garden through what? POSSIBLE ANSWERS: {the gap, the
wall}”

In Figure 320, the entire diagram for ”can (ability)” is used in place of
text, which renders that modal verb-with-meaning a pure image. Similarly,
an eye icon is used in place of the word ”vision” after ”sensory modality =
”.

Figure 321 shows which of the modal concepts use multiple choices for
their attribute values, and shows additional attributes that could optionally
be used in a choice-like or spectrum-like manner.

15.5.5 Propositional attitudes

1. Lists
A propositional attitude is a mental state held by an agent about a

proposition. The presence of a propositional attitude in a sentence is signaled
by a verb of attitude followed immediately by a clause that begins with
”that,” a clause that the verb governs. Some examples from WS150 are:
”[41] I’m sure that my map will show this building...” has the verb ”to be

312

Figure 321: All modal concepts currently covered by Tumbug, with emphasis
on those that may involve a spectrum of values.

313

sure that” that signals belief. ”[133] Dr. Adams informed Kate that she had
cancer...” has the verb ”to inform that” that signals knowledge. ”[109] Bill
thinks that calling attention to himself was rude to Bert...” has the verb ”to
think that...” that signals belief.

The propositional attitudes listed by Davis are (Davis 1990, ch. 8):

1. belief/believe/believes

2. knowledge

3. knowing whether and what

4. perception/perceive/perceives

Stuart J. Russell and Peter Norvig list some of these and more (Russell
and Norvig 2010, p. 450):

1. belief/believe/believes

2. intends

3. informs

4. knows

5. want/wants

Various online sources list these:

1. assert

2. belief/believe/believes

3. command

4. consider

5. deny

6. desire

7. doubt

314

8. fear

9. hope

10. imagine

11. intend

12. judge

13. know

14. perception/perceive/perceives

15. want/wants

16. wish

2. Tumbug implementation
Iconic representation of propositional attitudes is difficult because of

their artificial nature and because of their quantity. Unlike emotions and
modal verbs, each of which constitute a relatively small quantity of basic
categories that are often grouped by similarity, there exist at least dozens of
propositional attitudes of extremely varied meanings. As a result, a slightly
different way of representing propositional attitudes should be used for Tum-
bug. This document does not recommend any specific solution in the form of
a master icon that shows all propositional attitudes (similar to the Robinson
Icon), though in general it is recommended that the methods of organization
used earlier in this document for emotions and modal verbs be used, namely
(1) generalization of meaning, (2) alphabetization, and (3) dedication of one
neuron per concept. For example, the following categories appear promising,
and cover all the aforementioned listed propositional attitudes:

• emotional motivation: fear, hope

• general motivation: desire, intend, want, wish

• cognitive: believe, consider, deny, doubt, imagine, judge, know, per-
ceive

• communication: assert, inform

315

• grammatical: command

Pro tem, in this document propositional attitudes are represented as
text, namely as Label Strings, placed at the top of a C Aggregation Box
to avoid the need to label a typically short, tilted line stemming from the
agent. Tumbug uses a C Aggregation Box to hold a proposition, and the
C Aggregation Box is given an attribute-value pair in text that contains
the propositional attitude, such as ”belief = true” or ”desirability = false.”
Note that propositional attitudes need not necessarily have discrete true or
false values. For example, ”believe” and ”desire” can span a wide range of
applicability strength, and ”imagine” and ”perceive” are not binary at all.

Note that proposition attitudes are typically based on a multitude of
incoming data from multiple senses, therefore the specific sensory modalities
involved are hidden as an irrelevant detail, and similarly Motion Arrows
representing the flow of objects (such as soup, for taste) or data (such as
light, for vision) are omitted when propositional attitudes are used. Instead,
single Attribute Line connects a C Aggregation Box that summarizes the
impression, perception, belief, knowledge, etc. that the subject has about
what is happening inside the C Aggregation Box.

Also note that a propositional attitude always involves an observer who
is interpreting the situation depicted in the C Aggregation Box. This is
analogous to a cathected emotion, as in the Robinson Icon, meaning that the
observer is investing energy in an object, idea, or person, which in the case
of propositional attitudes is a situation. Therefore a propositional attitude
situation diagrammed in Tumbug must always contain: (1) the observer (Ob-
ject Circle, though often unlabeled), (2) the situation (C Aggregation Box),
(3) the attitude (label over the C Aggregation Box), (4) the link (Attribute
Line) between the observer and the situation.

Figure 322 and Figure 323 demonstrate ”belief” and ”desire,” two of the
most common propositional attitudes in the English language. Memory is
shown as a Data C Object Circle since memory is a virtual phenomenon. (If
desired, memory could be shown housed inside of a skull that is represented
by a Physical C Object Circle.) Memory is shown attached to the human icon
with an Attribute Line, since memory is an attribute of humans. (If desired,
a zoom ability could be used to position this memory inside the head of the
human icon, where the skull is physically located, but the resulting diagram
would be difficult to understand at a glance because of the very small sub-
diagram.) Propositions are also virtual phenomena, so those are also shown

316

as Data C Object Circles. Two causations are shown via Causation Arrows,
one caused by a person’s memory automatically storing a new proposition,
another caused by a person’s mental models automatically assigning a belief
level to the newly stored proposition. Note that nearly the same situation
occurs in the human memory (”memory with mental models and tastes”),
regardless of which of these propositional attitudes is involved.

3. WS150 example: #87 (dishwasher)
Figure 324 shows Tumbug representation of a part of WS150 question

#87, which involves the propositional attitude ”want.” Note that the result
resembles the method used to depict a personal fantasy that is used in Holly-
wood films, where the person doing the visualization is visualizing themself
at an approximate time period while doing what they want to do. Often
films use a wavy fluctuation of the fantasy enactment to clue the viewer that
the scene is fantasy, often done as a smaller frame within the main frame,
whereas in Tumbug the fantasy scenario is contained in an Aggregation Box.

15.6 Tumbug as software

Tumbug was intended to be a diagrammatic KRM that can be drawn in 2D,
but Tumbug would greatly benefit if Tumbug were implemented as a software
tool. Some desirable effects of software implementation of Tumbug would be:

• Correlation Boxes could keep attribute values in sync, automatically,
in the background.

• Motion Arrows could be eliminated because each intended moving ob-
ject would actually move.

• Timelines could be eliminated because flow of time would already be
present and obvious.

• Every intermediate position or state between two endpoints in time
could be explicitly seen.

• Automatic storage of new experiences into memory could be imple-
mented.

• Automatic assignment of propositional attitudes as attributes in mem-
ory could be implemented.

317

Figure 322: Belief: New proposition automatically enters memory, and is
automatically assigned a belief level.

318

Figure 323: Desire: New proposition automatically enters memory, and is
automatically assigned a desirability level.

319

Figure 324: [87] ”Fred wanted to watch TV.”

• Any static zoomed diagrams could be omitted because zooming would
be available on demand.

• Icon libraries could be extensive and readily available, which would
enhance understandability.

• Libraries of scenarios of common actions (e.g., walking, talking, buying)
could save writing time.

• 3D displays would be much more practical.

• Visual aids could be automatically placed on the diagram, such as to
show alignment of objects, if desired.

• All diagrams created by a visual editor that are in a document could
be easily updated in parallel, mostly automatically, to reflect a change
in one diagram or in the text describing that diagram.

Tumbug is only a KRM and intended to be only a foundation for sub-
sequent AGI architectures, but a software version of Tumbug that converted
textual sentences into spatiotemporal icons might already have a few uses,
such as the following:

• A written story could be immediately simulated, especially when writ-
ing a movie script.

320

• Contradictions, especially in legal cases, might be detected via conflict-
ing attribute values.

• An aid to search engines, by allowing objects and actions to be com-
bined to narrow the search, or to search for a specific situation using
general terms that would ordinarily return too many matches.

• An aid to foreign language translation programs.

• Children learning to read could immediately relate words to visual ob-
jects and visual motions.

16 A few deep implications of Tumbug

16.1 SCOVA: an extension to OAV triples

It is remarkable that all of Tumbug’s Building Blocks generalize to only five
Basic Building Blocks (BBBs):

• (O) Object-like concepts. (objects and aggregations of objects)

• (A) Attribute-like concepts. (adjectives and adverbs)

• (V) Value-like concepts. (values, ranges of values, and wildcards)

• (C) Change-like concepts. (time, motion, causation, state changes, and
functions).

• (S) System-like concepts. (systems composed of any mixed combination
of the above types)

Since three of these concepts (O, A, V) are already addressed by stan-
dard OAV triples, this suggests that the OAV triple form of knowledge rep-
resentation could be augmented if the other two concepts (C, S) of this doc-
ument were added. With letters rearranged, this combination of concepts
{O, A, V, C, S} can be spelled ”SCOVA,” which could be the name of a
new KRM. The main difference between SCOVA and OOP would be that
whereas change in OOP is often done by message passing between objects,
change in SCOVA would be an additional component that would reduce

321

Figure 325: Some commonly mentioned, simple combinations of the SCOVA
components. From left-to-right, starting on the top row, these are named in
this document: OC, AVC, OAV, OAVC.

message passing and would eliminate functions (”methods”) defined inside
of OOP software objects.

Some of the simplest, most common, most useful, and most meaningful
combinations of these give SCOVA components mentioned in this document
are shown in Figure 325. The names used here attempt to keep the more
familiar abbreviation ”OAV” at the beginning of each longer abbreviation.
”S” is not often used until Phase 2.

Side conjecture: Since the number of Basic Building Blocks of Tumbug,
namely SCOVA, are five in number, and since the layers of the neocortex are
six in number (I. molecular layer, II. external granular layer, III. external
pyramidal layer, IV. internal granular layer, V. Internal pyramidal layer,
and VI. multiform layer), it is conceivable that each layer of the neocortex is
assigned one of the five components of SCOVA. If true, this would confirm
the suspicion of Jeff Hawkins that the existence of those six layers is a major
clue to intelligence (Hawkins 2004, p. 51, 69), since the implication would
then be that the neocortex has somehow managed to implement what appear
to be the five naturally arising building blocks of representation.

Side conjecture: Since the number of Basic Building Blocks of Tumbug,

322

namely SCOVA, are five in number, and since the number of main types of
neocortical neurons are six in number (1. pyramidal cells, 2. fusiform cells,
3. stellate cells, 4. basket cells, 5. cells of Cajal-Retzius, and 6. cells of
Martinotti), it is conceivable that each layer of the neocortex is assigned one
of the five components of SCOVA.

16.2 Mathematical implications

The main mathematical implication found during this study is that mathe-
matics is a disembodied form of Tumbug.

The Correlation Boxes of Tumbug make clear the relationship between
Tumbug and mathematics: mathematics is concerned only about the nu-
merical values of attributes of objects, whereas Tumbug puts those numbers
into context and gives them meaning with respect to the entire diagrammed
system. This is why a single number in mathematics has no relationship to
the real world unless it is associated with a variable that is defined, espe-
cially if units of measurement are supplied (e.g., centimeters, joules, years,
radians, mean, etc.). This is also why mathematics is considered abstract:
it strips away all meaning and structure from the real world except for nu-
merical values. This in turn suggests that mathematics is the wrong tool for
implementing AGI, since AGI must simulate the real world with all of its
structures, complexities, fuzziness, and vagueness. This, in fact, is said to
be exactly the reason that microworld research (Partridge 1991, p. 95) of
early AI failed, which included famous systems such as the SHRDLU pro-
gram (which operated in the virtual blocks world), Shakey the robot (which
operated inside a special, uncluttered building), FREDDY the stationary
robot (which operated on a steerable platform), the SAM program (which
operated in the virtual world of textual stories), and the FRUMP program
(which operated in the virtual world of wire-service news reports).

As an example, Figure 132 is the earlier Tumbug representation of a
bottle that poured water into a cup, and Figure 326 shows the Tumbug
equivalent of the same system with everything stripped away except for the
mathematical components.

Note that any sense of time is removed (i.e., the timeline is removed), any
sense of the meaning of the variables is removed (i.e., the objects and their
inner partitions are removed), and the physical contact between the objects
is removed (i.e., the stream of water is removed). All the mathematical
system knows is the values for the variables, how to transform one variable’s

323

Figure 326: [24] A Tumbug diagram with a Correlation Box that has every-
thing except the math stripped away.

value into the other variable’s value (via the function f), and maybe the
variable names (which in the computer are ultimately only numerical memory
addresses, not even text, and certainly the computer does not understand
how the text relates to anything in the real world). These observations
lend credence to the various claims that mathematics is the wrong tool for
describing the real world, and therefore the wrong tool for AGI, e.g., (Devlin
1997, p. 283), (Wolfram 2002, p. 821).

17 Insights from Tumbug

17.1 CD theory and Parts of Speech

The core of CD theory, described earlier in this document, is Roger Schank’s
insight that oftentimes several similar words refer to the same concept, but
the words differ only because of the Part of Speech for which they are used.
(In this document on this topic, the only Parts of Speech of interest are
noun, adjective, verb, and adverb.) For example, ”quick” is the word form
when used as an adjective, but ”quickly” is the word form when used as an
adverb, ”quickness” is the word form when used as a noun, and ”quicken”
is the word form when used as a verb. Obviously the same concept and
same root word are referenced, viz. ”quick,” but the word becomes distorted

324

due only to English grammatical rules, a situation that is neither logical nor
efficient when representing meaning in a diagrammatic form. (In speech,
however, where a sentence diagram must be converted to a 1D temporal
chain for audio communication, this is very efficient.) Some English words
that function this way in at least three Parts of Speech are listed in the table
in Figure 327.

It is understandable that a natural language would need to modify the
root word to succinctly flag its use in the sentence, otherwise a grammatically
correct sentence such as ”Quick quickness quickly quickened” (see Figure 328
would be rendered as ”Quick quick quick quick.” However, in a diagram
that represents meaning, this is inefficient practice since essentially the same
word appears in quadruplicate. This suggests an interesting insight about
language: objects, actions, and attributes can be described by the same
concept. This means that a single concept, say represented by variable Q,
can appear as a description of any object, action, or attribute, as illustrated
in Figure 329.

The reverse situation generates another implication: The Part of Speech
usage of concept Q depends only on the type of structure that Q is identifying.
See Figure 330. In particular: (1) If Q is identifying a given C Object Circle
then Q must be rendered as a noun in spoken or written language. (2) If
Q is identifying a given Motion Arrow, then Q must be rendered as a verb
in spoken or written language. (3) If Q is identifying a given Attribute
Line then Q must be rendered as an adjective or adverb, depending only
on whether the Attribute Line is attached to an C Object Circle or Motion
Arrow, respectively. Otherwise, Q is one of the unlabeled core concepts of
which Schank described as the foundation of CD theory.

There exists at least one caveat to the above observation, however: Since
Motion Arrows are 2D rather than 1D, it must be specified whether the action
described by a Motion Arrow is moving toward versus away from the state Q
specified. In English the de facto convention is clear: Motion toward state Q
is always implied, never in the reverse direction. For example, the verb ”to
embolden” means to become bold, not to stray from being bold. Similarly,
the verb ”to beautify” means to make something beautiful, not to cause
something to be no longer beautiful.

325

Figure 327: The rules of English often require a concept to change its concept
name slightly, according to which Part of Speech it is adopting at any given
moment.

326

Figure 328: Tumbug for ”Quick quickness quickly quickened,” which is gram-
matically correct. Parts of Speech rules of English dictate that the concept’s
basic word must change form in many cases, however.

Figure 329: In a very general view, any single concept represented by variable
”Q” can occupy any slot for any structure or attribute, regardless of Parts
of Speech rules of English, and regardless of whether a word formally exists
for every Part of Speech variation of that concept.

327

Figure 330: The Part of Speech associated with core concept Q is dependent
only on the structure at which is appears.

328

18 Pros and cons of Tumbug

18.1 The main strengths of Tumbug

• Tumbug is likely the first purely visual representation ever used in com-
puter science.

• Tumbug initiates a totally new, unexplored category of WS and CSR
approaches.

• Tumbug clearly distinguishes between active tense and passive tense.

• Tumbug clearly distinguishes between simple aspect and progressive
aspect.

• Tumbug clearly distinguishes between prefect and perfect-progressive
aspect.

• Tumbug has better representational power than CD theory.

• Tumbug appears to implement the ”universal language representation”
needed in natural language processing (NLP).

• Tumbug closely approaches the ability of a visual simulator, therefore
probably also closely approaches the way that humans think about
events.

18.2 Possible weaknesses of Tumbug

1. It is not clear in a Tumbug diagram with a timeline which phases
of the event should be documented, especially in how much detail.
For example, an eating (INGEST) action for a human usually involves
details such as chewing and swallowing, but these details are probably

329

not important enough to document. As another example, reaching the
top of the stair for a human usually involves traversing each step along
the way, which is likely an irrelevant detail for most purposes.

2. The functions currently allowed in the Correlation Boxes are not re-
quired to be invertible functions. For example, the allowed function y =
x2 over the real numbers is not invertible because then x = ±√

y. This
allowance is currently assumed to be necessary since general intelligence
would need to be able to access the total picture of how a function (or
system) behaves, and would presumably be able to compensate for the
many-to-one maps, or to decide on its own which values to accept from
multiple possibilities. However, some drawbacks of allowing arbitrary
functions are: (1) increased complexity of the mapping, (2) lack of
clear-cut direction of correlation (viz., positive or negative), (3) possi-
ble inability of the system to make rapid, accurate guesses about the
type of correlation involved between newly encountered variables be-
cause of the extra caution the system must exercise in order to remain
general, (4) possible inability of the system to fill in missing functions
by unsupervised examination of its own newly stored knowledge.

3. There can probably never be a canonical form of every sentence that
is to be rendered in Tumbug. Even if the shortcut notations, such as
for motion or neglect of a C Aggregation Box, are ignored, there still
may not be a clear-cut standard form for some reason. There may be,
but this is not clear. A convincing argument that canonical forms are
difficult for any KRM to produce is given by William A. Woods (Woods
1975, pp. 16-21).

4. Several problematic situations occur when attempting to represent sit-
uations spatially. For example, how would one diagram ”a small cluster
of points in time” along a timeline without showing an exact number
of points in the representation, and without showing their exact tem-
poral order? Or how would one diagram a list of unsorted numbers in
a generic way, without showing a specific number of numbers, or any
of their values? How would one show in a generic way that a given set
of jigsaw puzzle pieces needed to be placed together tightly but with-
out forcing, and without showing the number of puzzle pieces or their
shapes? The author has solved a number of such representational prob-
lems, therefore Tumbug can represent at least some such complications,

330

but that topic is out of scope for this document. More generally, such
problems qualify as representation of mathematical concepts, which has
been barely addressed in this study.

5. Some Tumbug icons are difficult to generalize easily from 1D to 2D. For
example, a 1D sound broadcasting line is difficult to draw as fanning
out into 2D space from a point. Similarly, a moving appendage such as
an arm is difficult to describe with straight arrows, since most likely the
appendage will swing on joints, which implies usage of arrows swinging
through an angle. Most such problems could be resolved sufficiently
with a software implementation of Tumbug without too much difficulty,
but such software does not exist yet.

6. The differences and overlap of action verbs and stative verbs is not
completely clear. For example, the verb ”to eat” would probably be
most accurately classified as an action verb since eating involves food
moving to the mouth, the motions of chewing and swallowing, and the
food moving to the stomach. However, from a wider perspective the
detailed motions of eating are not very important. For example, some
animals such as starfish eat by egesting their stomachs around their
victims instead of using their mouths to hold and chew food, so overall
the act of eating is to change the state of the eater and food so that
the food becomes located inside the eater for nutrition purposes. Also,
a phrase such as ”the photocopier ate my document” is immediately
understandable, despite not involving any living organism, mouth, or
stomach. The author’s prediction is that Marvin Minsky may have
been correct: it is very possible the brain uses several types of KRMs,
including motion diagrams, state diagrams, and verbatim images, and
that the brain links these representations in a coordinated way through
learning.

18.3 Programs writing programs

A KRM like Tumbug is probably the most promising approach to provide
a future means for machines to write computer programs or self-modifying
code because Tumbug’s ability to store spatiotemporal images verbatim re-
duces information lost in the transition from the real world to the virtual
world. Currently, the real world consists of spatiotemporal images that need

331

Figure 331: Programs struggle to write other programs partly due to their
lost spatiotemporal information. As a result, programs need a programmer
to cause a program to exist in the virtual world, based on the programmer’s
ability to understand the real world well enough to abstract it and to repre-
sent that abstraction.

to be converted to a numerical-textual format that the virtual world of digital
computers can store and manipulate easily, which typically requires time to
be discretized, images to be discretized, details to be omitted that initially
seemed irrelevant to the programmer (but that may be deemed important
later), shape information to be lost, and cause-effect information (that only a
human would understand well) to be lost, as shown in Figure 331. Currently,
computers cannot truly understand the real world, even when outfitted with
video cameras, radar, and lidar. Even with multisensory input, comput-
ers cannot make commonsense conclusions about occluded objects or about
interactions between physical objects. Computers also suffer additional prob-
lems from multisensory integration.

In contrast, a machine that could store information in the same spa-
tiotemporal organization as the real world would automatically eliminate
the programmer, at least as a data type translator, as shown in Figure 332.

332

Figure 332: Programs whose representation matched that of the real world
would not need a programmer.

That would free the programmer to focus on writing behavioral programs
instead of also needing to convert between data types. The language of the
real world obviously consists of spatiotemporal images across various sensory
modalities, not abstractions like numbers, text, and algorithms. An immedi-
ate consequence of having such an internal representation that matched the
representation of the real world is that presumably a program could then
write other programs as shown in Figure 333, which could be considered the
ultimate goal of computer programming.

19 Discussion of Tumbug

The two main categories of approaches to ANI are symbolic AI and sub-
symbolic AI. Symbolic methods refer to text and are typically implemented
with rule-based expert systems, logic programming, and semantic nets. Sub-
symbolic methods refer to non-text are usually implemented with neural
networks. Tumbug is closer to a symbolic approach, but uses icons instead
of symbols. Since Tumbug’s icons have great freedom of placement, unlike

333

Figure 333: A virtual world that matched the real world could host a program
to write other programs.

text, Tumbug is more flexible than text, and therefore more powerful than
text for representation. Thus Tumbug represents a new category of approach
that has not been pursued, which in itself seems promising.

Was the design of Tumbug intended to imply that the brain is literally
moving around circular icons? No. The circular icons are merely the sim-
plest pictorial concept of a generic ”thing.” In practice all that would be
needed to implement a circular icon would be a fuzzy cluster of one to sev-
eral neurons whose summarized attributes include coordinates of the thing
they represent, combined with a possibly crude method of distinguishing one
location (or state) from another. In this sense, Tumbug circular icons could
be considered part of a fuzzy system, as in fuzzy logic, where the exact size,
shape, boundaries, and curvature of the icons are irrelevant.

Tumbug can be considered a fuzzy system, but the fuzziness is created
through simpler diagrams, not membership functions. In a sense, ⟨percentage
of fuzziness⟩ = 1 - ⟨percentage of detail present in a diagram⟩).

Is not the design of Tumbug’s representation of modal verbs and emo-
tions spatially arbitrary? Yes, but so are biological systems. The same patch
of skin with pressure sensors can be placed anywhere on the surface of the

334

body, but in one position it could represent pressure on a foot whereas in
another position it could represent pressure on the neck. In biological sys-
tems the only difference in meaning is based on that patch’s location on the
body map that is stored in the cortex. In a computer, labels substitute for
locations in such a body map. For virtual concepts such as modal verbs, such
a design suggests that humans can physically ”feel” the difference between
two different modal verb meanings using the same hardware that humans
use to feel the difference between two physical body locations.

The late Marvin Minsky may or may not have agreed with the approach
being used by Tumbug. Although Minsky strongly advocated emphasis on
KRMs as the foundation of AGI, his recommended approach was to combine
existing KRMs and to focus on the management system that would coordi-
nate those KRMs (GBH Archives 1990), whereas the Tumbug approach has
so far been to find a single, universal KRM that could represent every pos-
sible concept, and to eschew the unnatural, nonvisual KRMs that have been
developed so far for use only in digital computers. In Pei Wang’s terminology,
Minsky’s approach may have tended toward the hybrid approach whereas the
Tumbug approach definitely takes the unified approach. However, Minsky’s
opinion still retains its merit: note that Tumbug has naturally gravitated
toward appending specific computer science KRMs such as SCOVA + state
diagram as in Figure 203, and state diagram + image as in Figure 138. If
such lower level KRMs are what Minsky envisioned, then Tumbug is already
tending toward Minsky’s envisioned ”missing link” of AGI.

Conjecture: Humans have a part of the brain that allows humans to feel
virtual concepts in the same way that a part of the brain feels physical sensa-
tions. This conjecture fits Jeff Hawkins’ mentioned observation that the same
cortical structure is used throughout the brain, regardless of sensory modal-
ity. Tumbug suggests that this observation can be generalized to state that
the same cortical structure might be used for virtual concepts as is used for
sensory modality, i.e., that understanding a virtual concept is architecturally
equivalent to understanding a sensory modality.

20 Summary

The main premise of this project is that if the proper KRM is used then the
most difficult parts of AGI system design are automatically and greatly sim-
plified. The proposed KRM for that purpose is a visual, iconic system called

335

Tumbug that was designed by the author. Tumbug is the research topic of
this Phase 1, which is part of a larger research project that aims at producing
full AGI. The full envisioned research project has five phases that are col-
lectively called The Visualizer Project. Older but unpublished results from
initial excursions into Phase 2 and Phase 3 algorithms appear to confirm the
premise that Tumbug is a promising foundation for AGI. Tumbug consists
of about 30 Building Blocks (icons) that generalize to only five Basic Build-
ing Blocks, which turn out to be essentially the three components of OAV
triples, namely Object (O), Attribute (A), and Value (V), plus two additional
components called Change (C) and System (S). Change is a general concept
that includes concepts such as time, motion, force, and cause-and-effect, and
System is any legally assembled combination of Tumbug’s Building Blocks.

By using a single pictorial KRM that consists of only about 30 Building
Blocks, Tumbug can represent an extremely wide span of topics in mathe-
matics, logic, algorithms, physics, human motivations, and human activities.
Tumbug is a radically different type of KRM in that Tumbug can be made
fully visual without use of text or numbers, which sets Tumbug apart from
all other AI approaches such as expert systems, neural networks (whose units
require labeling with text), cellular automata (whose units require labeling
with text), and any variations of these. In short, Tumbug can probably
visually represent any topic or concept that the average person is likely to
encounter. This unified representation method could allow various computer
systems, whether based on natural language, data base records, numbers,
computer code, knowledge graphs, or images, to be integrated without the
need for conversion at their interfaces. Several examples taken from sentences
of the Winograd Schema are shown. For additional practical applications,
Tumbug seems to be particularly well-suited for natural language translation,
and possibly also for universal computer code representation in the style of
.NET.

Tumbug appears to be an improvement on the Conceptual Dependency
KRM of Roger Shank in that Tumbug’s Building Blocks are far more univer-
sal and general, such as objects, motions, and attributes rather than detailed
and largely human-based actions such as ingest, expel, and grasp. Tumbug
could be the basis of ”The Language of Thought” that Jerry Fodor conjec-
tured in 1975, a hypothesized language often called ”Mentalese.”

336

Figure 334: The research plan. This document completes Phase 1. The
developed KRM from this phase (viz., Tumbug) will be used in all expected
future phases of this research.

21 Future Research Plan

21.1 The Visualizer Project

A ”visualizer” is defined here as a type of processor whose native KRM
is imageoids, in contrast to a ”computer,” whose native KRM is numbers.
Therefore computers and visualizers are different processing architectures
that each have their own unique niche of problems that they can solve par-
ticularly competently.

This article completes and documents Phase 1 of a 5-phase research
project called the Visualizer Project that aims to produce AGI in the form
of a design for a visualizer. Tumbug is the foundation of all the phases that
are expected to follow. The author believes that the design of a bona fide
AGI system will be produced by the end of the fifth phase, though probably
not yet coded at that time. Figure 334 shows all the anticipated phases of
the Visualizer Project.

One inherent limitation of Phase 1 is it is difficult to state when a collec-
tion of Building Blocks is ”complete” because there is no theoretical limit to
the number of Tumbug Building Blocks, only a practical limit, usually based
on the frequency of usage within a given domain, and also there has not been
a need in Phase 1 to fully explore some recently introduced Building Blocks.

337

A few Tumbug Building Blocks were introduced in this document largely
because they are expected to be needed sometime in future, especially for
spatial reasoning (especially Correlation Boxes and 1D Markers), for reducing
textual descriptions from Tumbug (especially Value Bars), for coding imple-
mentation (especially 0D Markers and Zoom Boxes), for a learning algorithm
(especially Data Set Boxes), or for mathematical theorems (especially C-A
Aggregation Boxes), but so far there has not been sufficient need to justify
the time required to thoroughly explore those constructs.

It is expected that the need for several new Building Blocks will arise
from the need to represent certain concepts from mathematics, especially
from calculus (concepts such as ”continuous” and ”limit”), group theory,
topology (concepts such as ”connectedness”), probability (concepts such as
”likelihood,” ”heuristics,” ”permutation,” and ”combination”), statistics (con-
cepts such as ”distribution”), algebra (concepts such as ”invertible func-
tion”), and geometry (concepts such as ”alignment,” ”area,” ”volume,” and
”dimension”), as well as from puzzle solving (concepts such as ”ordered,”
”random,” ”path,” and ”to flush fit”) and science/engineering topics in gen-
eral (concepts such as ”density,” ”cluster,” ”complexity,” ”independent,”
”coupled,” and ”representation”).

21.2 Roadmap of the next phases

The Visualizer Project is not just a theoretical conjecture with no results
and no motivating clues. The following subsections describe existing docu-
mentation, existing discoveries, and expectations of the next phases.

21.2.1 Phase 2 (non-spatial reasoning)

The basic algorithm for Phase 2 was already developed and documented in
2022 (Atkins 2022) with several complete examples diagrammed step-by-step
during the CSR solution process. That article was not accepted for publi-
cation, however. In that year the author believed that the Tumbug-SOAV
approach was already capable of solving 82% of WS150 problems, namely all
of WS150’s Non-spatial Reasoning Problems. Now that an extensive Tum-
bug introduction exists in the form of this Phase 1 document, presumably
the older article describing the algorithm needs only to be rewritten with
finer details, preferably also with more examples, without needing to include
a description of Tumbug as well, in order to complete Phase 2.

338

21.2.2 Phase 3 (spatial reasoning)

A few Phase 3 results already exist, as well. The 2022 Tumbug article al-
ready mentioned the discovery that two of the nine Spatial Reasoning Non-
Algorithmic problems from WS150 appear to be solvable by a more gen-
eralized version of Tumbug. If this generalization can be generalized even
further, then the 82% solvability of WS150 problems by Tumbug would in-
crease to at least 97%, probably to 100%. An article documenting the more
general algorithm would likely use the same organization as a newly revised
Phase 2 article.

21.2.3 Phase 4 (learning)

It is likely that the needed learning algorithm will ultimately be based on the
Descriptive Boxes described in this document. A bridge needs to be made
from the real world, currently representable in Tumbug by Verbatim Boxes,
to the semi-computerized format of Descriptive Boxes, in order for Tumbug
to work directly with real-world data without the need of a programmer. The
author has already developed visual versions of several spatial prepositions
such as ”near,” ”above,” ”to,” and ”inside,” so this phase definitely has the
potential to move quickly, as well.

21.2.4 Phase 5 (visualizer)

A visualizer will need several additional components and techniques even if
trainable CSR were produced. The author has already published one of these
techniques and has publicly discussed a second technique that is believed to
be needed. Additional components of a visualizer were already described in
a research proposal written by the author in 2014, but that proposal was not
awarded.

22 References

Allerton, D.J. 2006. ”Verbs and their Satellites.” In The Handbook of English
Linguistics, edited by Bas Aarts and April McMahon, 146-179. Malden, MA:
Blackwell Publishing.

339

Atkins, Mark. 2000. ”S-96: A Semantic Net Implemented With Synchro-
nized Neurons for Binding and Inferencing.” Ph.D. dissertation, Florida Tech,
Melbourne, Florida.

Atkins, Mark. 2019. ”Two Approaches Toward Graphical Definitions of
Knowledge and Wisdom.” DaKM 2020 conference, Vienna, Austria.

Atkins, Mark A. 2022. ”A promising visual approach to solution of 82% of
Winograd Schema problems via Tumbug Visual Grammar.” Unpublished.

Atkins, Mark A. 2023. Important things to know before learning any foreign
language. Unpublished.

Baez, Albert V. 1967. The New College Physics: A Spiral Approach. San
Francisco: W. H. Freeman and Company.

Bailey, James. 1996. After Thought: The Computer Challenge to Human
Intelligence. New York, NY: BasicBooks.

Beckmann, Petr. 1971. A History of Pi. New York: The Golem Press.

Berthoz, Alain. 2000. The Brain’s Sense of Movement. Cambridge, Mas-
sachusetts: Harvard University Press.

Brooks, Rodney A. 1992. ”Intelligence without representation.” In Founda-
tions of Artificial Intelligence, edited by David Kirsh, 139-159. Cambridge,
Massachusetts: The MIT Press.

Cercone, Nick, and Gordon McCalla. 1987. ”What is Knowledge Repre-
sentation?” In The Knowledge Frontier: Essays in the Representation of
Knowledge, edited by Nick Cercone and Gordon McCalla, 1-43. New York:
Springer-Verlag.

Chang, Le, and Doris Y. Tsao. 2017. ”The code for facial identity in the
primate brain.” Cell. 2017 June 01; 169(6): 1013–1028.e14.

Chubb, Charles. 1995. ”Motion Perception.” In Early Vision and Beyond,
edited by Thomas V. Papathomas, 109-112. Cambridge, Massachusetts: The

340

MIT Press.

Coppin, Ben. 2004. Artificial Intelligence Illuminated. Sudbury, Mas-
sachusetts: Jones and Bartlett Publishers.

Davis, Ernest. 1990. Representations of Commonsense Knowledge. San Ma-
teo, California: Morgan Kaufmann Publishers.

Davis, Ernest. 2018. Collection of Winograd Schemas.

Davis, Ernest, and Gary Marcus. 2015. ”Commonsense reasoning and com-
monsense knowledge in artificial intelligence.” Communications of the ACM,
58(9), 92-103. https://doi.org/10.1145/2701413.

Devlin, Keith. 1997. Goodbye, Descartes: The End of Logic and the Search
for a New Cosmology of the Mind. New York: John Wiley & Sons.

Dreyfus, Herbert L. 1979. What Computers Can’t Do, Revised Edition: The
Limits of Artificial Intelligence. New York, N.Y.: Harper & Row, Publishers.

Eade, James. 1996. Chess For Dummies. Foster City, CA: IDG Books
Worldwide.

Fischler, Martin A., and Oscar Firschein. 1987. Intelligence: The Eye, the
Brain, and the Computer. Reading, Massachusetts: Addison-Wesley Pub-
lishing Company.

GBH Archives. 1990. “The Machine That Changed The World: Interview
with Marvin Minsky.”

Gleick, James. 1987. Chaos: Making a New Science. New York, New York:
Viking Penguin.

Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha. 1996. The Java
Language Specification, Second Edition. Boston: Addison-Wesley.

Harris, Laurence R., and Michael R.M. Jenkin. 1997. ”Computational and
psychophysical mechanisms of visual coding.” In Computational and Psy-

341

chophysical Mechanisms of Visual Coding, edited by Michael Jenkin and
Laurence Harris, 1-19. New York, NY: Cambridge University Press.

Haugeland, John. 1985. Artificial Intelligence: The Very Idea. Cambridge,
Massachusetts: The MIT Press.

Hawkins, Jeff. 2004. On Intelligence. New York: Times Books.

Hofstadter, Douglas R. 1979. Gödel, Escher, Bach: an Eternal Golden Braid.
New York: Basic Books.

Hogan, James P. 1997. Mind Matters: Exploring the World of Artificial In-
telligence. New York: The Ballantine Publishing Group.

Huang, Bin, Siao Tang, Guangyao Shen, Guohao Li, Xin Wang, and Wenwu
Zhu. 2020. ”Commonsense Learning: An Indispensable Path towards Human-
centric Multimedia.” HuMA’20, October 12, 2020, Seattle, WA, USA.

Jenkin, Heather L. 1997. ”A historical review of the imagery debate.” In
Computational and Psychophysical Mechanisms of Visual Coding, edited by
Michael Jenkin and Laurence Harris, 268-295. New York, NY: Cambridge
University Press.

Kaku, Michio. 2011. Physics of the Future: How Science Will Shape Human
Destiny and Our Daily Lives By the Year 2100. New York: Doubleday.

Khinchin, A. Ya. 1964. Continued fractions. Chicago: University of Chicago
Press.

Kocijan, Vid, Ernest Davis, Thomas Lukasiewicz, Gary Marcus, and Leora
Morgenstern. 2022. ”The Defeat of the Winograd Schema Challenge.”
https://arxiv.org/abs/2201.02387 (accessed September 3, 2022)

Kolln, Martha, and Robert Funk. 2006. Understanding English Grammar,
Seventh Edition. New York: Pearson Education.

Kosslyn, Stephen M., William L. Thompson, and Giorgio Ganis. 2006. The
Case for Mental Imagery. New York: Oxford University Press.

342

Kurzweil, Raymond. 1990. The Age of Intelligent Machines. Cambridge,
Massachusetts: Massachusetts Institute of Technology.

Kurzweil, Ray. 1999. The Age of Spiritual Machines: When Computers Ex-
ceed Human Intelligence. New York, New York: Viking Penguin.

Lettvin, J. Y. H. R. Maturana, W. S. McCulloch, and W. H. Pitts. 1959.
”What the Frog’s Eye Tells the Frog’s Brain.” Proceedings of the IRE (Vol-
ume: 47, Issue: 11, November 1959).

Luger, George F., and William A. Stubblefield. 1998. Artificial Intelligence:
Structures and Strategies for Complex Problem Solving, Third Edition. Read-
ing, MA: Addison Wesley Longman.

Lytinen, Steven L. 1992. ”Conceptual Dependency and its Descendants.”
Computers & Mathematics with Applications, Vol. 23, No. 2-5, pp. 51-73.
Great Britain: Pergamon Press.

MacLean, Paul D. 1990. The Triune Brain in Evolution. New York: Plenum
Press.

Maor, Eli. 1994. e: The Story of a Number. Princeton, New Jersey: Prince-
ton University Press.

Markman, Arthur B. 1999. Knowledge Representation. Mahwah, New Jer-
sey: Lawrence Erlbaum Associates.

Marr, David. 1982. Vision: A Computational Investigation into the Hu-
man Representation and Processing of Visual Information. Cambridge, Mas-
sachusetts: The MIT Press.

Melzack, Ronald, and Patrick D. Wall. 1965. ”Pain Mechanisms: A New
Theory: A gate control system modulates sensory input from the skin before
it evokes pain perception and response.” Science, Vol. 150, Issue 3699, 19
Nov 1965, pp. 971-979, DOI: 10.1126/science.150.3699.97.

Minsky, Marvin. 1974. A Framework for Representing Knowledge. Memo

343

No. 306.

Minsky, Marvin. 1986. The Society of Mind. New York: Simon and Schuster.

Newell, Allen. 1990. Unified Theories of Cognition. Cambridge, Mas-
sachusetts: Harvard University Press.

O’Neill, Gerard K. 1981. 2081: A Hopeful View of the Human Future. New
York: Simon and Schuster.

Orban, Guy A. 2008. ”Higher Order Visual Processing in Macaque Extras-
triate Cortex.” Physiological Reviews. January 2008, pp. 59-89.

Partridge, Derek. 1991. A New Guide to Artificial Intelligence. Norwood,
New Jersey: Ablex Publishing Corporation.

Pezzulo, Giovanni. 2007. ”Anticipation and Future-Oriented Capabilities
in Natural and Artificial Cognition.” In 50 Years of Artificial Intelligence:
Essays Dedicated to the 50th Anniversary of Artificial Intelligence, edited
by Max Lungarella, Fumiya Iida, Josh Bongard, and Rolf Pfeifer, 257-270.
Berlin, Germany: Springer-Verlag.

Reichgelt, Han. 1991. Knowledge Representation: An AI Perspective. Nor-
wood, New Jersey: Ablex Publishing Corporation.

Reisberg, Daniel, and Fridrike Heuer. 2005. ”Visuospatial Images.” In The
Cambridge Handbook of Visuospatial Thinking, edited by Priti Shah and
Akira Miyake, 35-80. New York, NY: Cambridge University Press.

Rieger, Chuck. 1975. ”The Commonsense Algorithm as a Basis for Com-
puter Models of Human Memory, Inference, Belief and Contextual Language
Comprehension.” Theoretical Issues in Natural Language Processing.

Robinson, David L. 2009. ”Brain function, emotional experience and per-
sonality.” The Netherlands Journal of Psychology. pp. 152–167.

Rorvig, Mordechai. 2021. ”Supersized AI”. New Scientist. October 9, 2021,
pp. 37-40.

344

Russell, Stuart J., and Peter Norvig. 2010. Artificial Intelligence: A Modern
Approach, Third Edition. Upper Saddle River, New Jersey: Prentice Hall.

Sabbatini, Renato M.E. 1998. ”The mind, artificial intelligence and emo-
tions: Interview with Marvin Minsky.”

Schank, Roger C. 1972. ”Conceptual Dependency: A Theory of Natural
Language Understanding.” Cognitive Psychology 3, 552-631.

Schank, Roger C. 1975. ”The Primitive ACTs of Conceptual Dependency.”
In Theoretical Issues in Natural Language Processing.

Schank, Roger C. 1976. ”The Role of Memory in Language Processing.” In
The Structure of Human Memory, edited by Charles N. Cofer, 162-189. San
Francisco: W. H. Freeman and Company.

Shastri, Lokendra, and Venkat Ajjanagadde. 1990. “From simple associa-
tions to systemic reasoning: A connectionist representation of rules, variables
and dynamic bindings.” Behavioral and Brain Sciences, 16(3), January 1990,
pp. 417–494.

Simpson, Patrick K. 1990. ”Neural Networks for Sonar Signal Processing,”
In Handbook of Neural Computing Applications, edited by Alianna Maren,
Craig Harston, and Robert M. Pap, 319-335. San Diego, California: Aca-
demic Press.

Sowa, John F. 2000. Knowledge Representation. Pacific Grove, CA: Brooks
Cole Publishing Co.

Tveter, Donald R. 1998. The Pattern Recognition Basis of Artificial Intelli-
gence. Los Alamitos, California: The Institute of Electrical and Electronics
Engineers.

Winston, Patrick Henry. 1998. On To Smalltalk. Reading, Massachusetts:
Addison-Wesley.

Wolfram, Stephen. 2002. A New Kind of Science. Champaign, IL: Wolfram

345

Media.

Woods, W.A. 1975. ”What’s in a link: Foundations for Semantic Networks.”
Bolt Beranek and Newman.

Woods, William A. 1986. ”Important Issues in Knowledge Representation.”
Proceedings of the IEEE, 74(10), October 1986, pp. 1322-1334.

346

23 arXiv response

Figure 335: December 22, 2023: Submission to arXiv with date stamp.

347

Figure 336: December 21, 2023: arXiv e-mail stating that posting is sched-
uled for December 25, 2023.

348

Figure 337: December 26, 2023: arXiv indicates that article is still on hold.

349

