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Abstract—In this short study, we aim to gain deeper insights
to Keswani’s algorithm [1] for sequential minimax optimisation,
by comparing the behaviour with 2 other algorithms : Gradient
Descenet Ascent (GDA) and Optimistic Mirror Descent (OMD).

I. INTRODUCTION

We consider differentiable sequential games with two play-

ers: a leader who can commit to an action, and a follower

who responds after observing the leader’s action. Particularly,

we focus on the zero-sum case of this problem which is also

known as minimax optimization, i.e.,

min
x∈Rn

max
y∈Rm

f (x,y)

Unlike simultaneous games, many practical machine learn-

ing algorithms, including generative adversarial networks

(GANs) [2] [3] , adversarial training [4] and primal-dual

reinforcement learning [5], explicitly specify the order of

moves between players and the order of which player acts

first is crucial for the problem. In particular, min-max optimi-

sation is curcial for GANs [2], statistics, online learning [6],

deep learning, and distributed computing [7]. Therefore, the

classical notion of local Nash equilibrium from simultaneous

games may not be a proper definition of local optima for

sequential games since minimax is in general not equal to

maximin. Instead, we consider the notion of local minimax [8]

which takes into account the sequential structure of minimax

optimization.

II. MODELS AND METHODS

The vanilla algorithm for solving sequential minimax opti-

mization is gradient descent-ascent (GDA), where both players

take a gradient update simultaneously. However, GDA is

known to suffer from two drawbacks.

1) It has undesirable convergence properties: it fails to

converge to some local minimax and can converge to

fixed points that are not local minimax [9] [10]

2) GDA exhibits strong rotation around fixed points, which

requires using very small learning rates[11] [12] to

converge.

Recently, there has been a deep interest in minmax prob-

lems, due to [9] and other subsequent works. Jin et al. [8]

actually provides great insights to the work.

For the project, we try to implement the algorithm by

Keswani et. al. [1] , and try to deduce various aspects of it.

III. INSIGHT INTO KESWANI’S ALGORITHM

The algorithm essentially makes response function :

max
y∈Rm

f (.,y) tractable by selecting y-updates (maxplayer) in

greedy manner by restricting selection of updated (x,y) to

points along sets P(x,y) (which is defined as set of endpoints

of paths such that f(x,.) is non-decreasing). There are 2 new

things that this algorithm does to make computation feasible:

1) Replace P(x,y) with Pε(x,y) (endpoints of paths along

which f(x,.) increases at some rate ε > 0 (which makes

updates to y by any ’greedy’ algorithm (as Algorithm

2) feasible)

2) Introduce a ’soft’ probabilistic condition to account for

discountinous functions.

Fig. 1: Keswani’s Algorithm adapted from the original paper

(Algorithm 2 is the optimisation algorithm to compute max-

player updates.)

IV. EXPERIMENT

In this experiment, we compare the convergence behaviour

of various functions using our MATLAB Code with three

different optimizers, a) GDA, B) OMD c) Keswani’s Algo-

rithm [1]. The functions chosen are the typical examples from

recent ICML,ICLR papers on min-max optimisation, with

some specific properties associated with them.

We choose the following functions for this experiment:

1) F1(x,y)=−3x2
−y2+4xy[1][9] : specified in [1] and has

stationary point at (0,0), GDA, OMD and Extra-gradient

(EG) do not converge on it as shown in [9]

2) F2(x,y) = 3x2 + y2 +4xy[1][9] :
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3) F3(x,y) = (4x2
− (y−3x+0.05x3)2

−0.1y4)e−0.01(x2+y2)

[1] : specified in [1] and has stationary point at (0,0),

GDA,OMD and EG do not converge on it as shown in

[9]

4) F4(x,y) = xy− 1
3
y3[13]

5) F5(x,y) = x2 +3sin(x)sin(y)−4y2
−10sin(y)[14]

6) F6(x,y) = 10xy[15]

7) F7(x,y) = 0.5x2 +10xy+0.5y2[15]

8) F8(x,y) = 10xy− y2[15]

9) F9(x,y) = sin(x+ y)[8] : No strategic Nash equilibrium

(global or local) chat

10) F10(x,y) = 0.2xy− cos(y)[8] : Global minmax can nei-

ther be local minimax nor a stationary point , Twice dif-

ferentiable s.t. the point is Evtushenko minimax (defined

in [6]) for W1, but not for W2; W1 = [−1,1]× [−2π,0]
and W2 = [−1,1]× [−2π,2π]

11) F11(x,y)=−0.03x2+0.2xy−cos(y)[8] : the function has

Evshenko minimax (defined in [8]) optima in [-1,1] ×

[-2π ,2π] at (0,−π) which is non-stationary point and

does not satisfy condition at Jim et al.

V. SETUP AND RESULTS

In this experiment, we compare the result and time taken

by keswani’s algorithm VS Standard algorithms (GDA and

OMD), and try to comment on the types of functions for which

the Keswani’s algorithm is suitable.

The code is uploaded on the github link. There are 3 MAT-

LAB files : GDA.m, OMD.m and OurAlgorithm.m. The files

contain all the code that needs to be run. The relevant functions

are implemented at the end of the files. To run Function 1,

one can uncomment the section : expression under %%%F1

in function z=value(x,y), expression under %%%nabla yF1

in function g=xGrad(x,y) and under %%%nable yF1 under

function g=yGrad(x,y)

We use eta=0.05 and sigma=0.5 for keswani’s algorithm.

Delta = 0.03 and epsilon=0.001. Max-reject = 20. T=20000

for keswani algorithm and 401 (usually) for GDA and OMD.

The usual iterations are 400, however, if we see some trend

(eg. cycling, mode-collapse) forming, we increase iterations to

complete that trend.

We share our code here: https://github.com/

ShashwatGupta2001/CS439-Optimisation4ML-2023.git

A. Function 1:

(a) GDA (b) OMD (c) Keswani’s
Algorithm

Fig. 2: F1(x,y) =−3x2
− y2 +4xy

Result: a) GDA and b) OMD : how was showed in [9] not

converges. Instead of that, diverges. c) Keswani’s Algorithm:

Convergence to the point (0,0) .

B. Function 2:

(a) GDA (b) OMD (c) OURs

Fig. 3: F2(x,y) = 3x2 + y2 +4xy

Result: a) GDA : Don’t converge to the global min-max.

(0,0). b) OMD: Don’t converge to the global min-max. (0,0).
c) Keswani’s Algorithm: Converge to (0,0). that is the global

min-max

C. Function 3:

(a) GDA (b) OMD (c) Keswani’s
Algorithm

Fig. 4: F3(x,y)= (4x2
−(y−3x+0.05x3)2

−0.1y4)e−0.01(x2+y2)

Result: a) GDA and b) OMD do not converge but cycld

around (0,0) c) Keswani’s Algorithm: Converge to (0,0). that

is the global min-max.

D. Function 4:

(a) GDA (b) OMD (c) OURs

Fig. 5: F4(x,y) = xy− 1
3
y3

Results: a) GDA: starts converging to a point but ends

up diverging. b) OMD: Converge to (0,0). c) Keswani’s

Algorithm: starts converging to the saddle point and ends in

divergence. The behaviour of a. and b. seems just like motion

of planets, prompting to explore the mathematical similarity

between vectors here to vectors that arise in gravitational field.

E. Function 5:

(a) GDA (b) OMD (c) Keswani’s
Algorithm

Fig. 6: F5(x,y) = x2 +3sin(x)sin(y)−4y2
−10sin(y)

Result: GDA Converges to (x,y)=(0.7429,-0.73747) in

0.607s. OMD also converges to (0.7429,-0.7375). Both the
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points are similar. But they differ from Keswani’s algorithm,

which converges to (x,y) = (0.6134,-0.7539) in just 353

iterations.

F. Function 6:

(a) GDA (b) OMD (c) Keswani’s
Algorithm

Fig. 7: F6(x,y) = 10xy

Result: Surprisingly, for the function (similar to 8), the GDA

and Keswani diverge, however OMD converges to (0,0) also.

G. Function 7:

(a) GDA (b) OMD (c) Keswani’s
Algorithm

Fig. 8: F7(x,y) = 0,5x2 +10xy+0.5y2

Result: Surprisingly, for the function (similar to 6 and 8),

the GDA and Keswani diverge, however OMD converges to

(0,0) also. (result similar to 6)

H. Function 8:

(a) GDA (b) OMD (c) Keswani’s
Algorithm

Fig. 9: F8(x,y) = 10xy− y2

Result: The GDA Algorithm traverses to infinity (x,y) =

(4.824591e+12,-8.489846e+12) in about 0.6 s. The OMD

algorithm however, converges to (0,0) ((x,y)=(2.073641e-60,-

3.133129e-60) to be exact) in 0.16 s. Keswani’s algorithm also

converges to Origin, in 0.3706s (with t=51993 and i=66).

I. Function 9:

(a) GDA (b) OMD (c) Keswani’s
Algorithm

Fig. 10: F9(x,y) = sin(x+ y)

Result: The GDA Algorithm does not traverse far and

essentially remains confined to the point. This is mainly

because the problem can not be solved using strategy based

Nash equilibrium. OMD also does not travel far as well.

Keswani’s algorithm seems to travel some distance and reach

(x,y) = (5.500,8.636) which is a local max point (with i=21)

and stays there.

J. Function 10:

(a) GDA (b) OMD (c) Keswani’s
Algorithm

Fig. 11: F10(x,y) = 0.2xy− cos(y)

Result: a) GDA : Cycles through for this function.Thus,

we do not get any sensible x-value for the convergence. b)

OMD: Cycles around the optimal point. Thus no convergence

c) Keswani’s Algorithm: Diverges to infinity straightaway,

conveying that there is no such minimax point (no i is

accepted and all iterations were run). For initialisation at (0,0),

the algorithm increases iterations (i), but does not seem to

converge, so stays close to initialised point.

K. Function 11:

(a) GDA (b) OMD (c) Keswani’s
Algorithm

Fig. 12: F11(x,y) =−0.03x2 +0.2xy− cos(y)

Result: GDA cycles through for this function.Though the

function is similar to 10, we find that the function initially

loops for a half-cycle and then diverges. The reported x,y

values are (-2.390e+03,3.406e+03). OMD, just like GDA,

curves then diverges. The reported x,y values are (-28.273,-

35.884). Keswani’s Algorithm: Just like 10, the algorithm

moves around the initialisation point. A different initialisation

eg. (0,0) does not do any better.

VI. CONCLUSION AND FUTURE WORK

This research builds upon Keswani’s work and opens new

avenues for exploration, from the work of Keswani and our

conclusions.

1) Exploring Stricter Bounds: We used the Keswani’s

bound.However as mentioned by them, we could explore

proving linear bounds for more efficiency. .

2) Incorporating Different Function Categories: Our study

leveraged a specific category of functions to generate

insights. A next step, to broaden this scope could be

introducing other categories of functions.

3) Comparison of Optimizers’ Performance: Keswani’s al-

gorithm employed a specific optimizer (Algorithm 2)
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SGD (Stochastic Gradient Descent) for its computations.

Future research could focus on comparing the perfor-

mance and effects of different optimizers on the algo-

rithm’s performance. Our repo has a jupyter notebook

to compare the effect of different optimizers on GDA

and Keswani’s algorithm.
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