New Cyclic Periodic Table of Elements and Natural Group Theory

Gang Chen[†], Tianman Chen, Tianyi Chen

7-20-4, Greenwich Village, Wangjianglu 1, Chengdu, P. R. China

[†]Correspondence to: gang137.chen@connect.polyu.hk

Abstract

In this paper, we mainly present the new cyclic periodic table of elements and its creative points. It has the multicyclic form; it shows the growth and development of periodicity of elements; neutron locates at the center of the cyclic periodic table; hydrogen, carbon and silicon belong to the same family; all elements are divided into four categories, ie, metal, π family, nonmetal and 2π family; every d or f layer forms an independent period respectively, the natural end of elements is the 112th element Cn^{*}; and so on. This new cyclic periodic table would be the most reasonable, scientific and beautiful periodic table of elements, it would be the ultimate form of periodic table of elements or the periodic table of elements in the hands of God. Its corresponding revised traditional version also has these features. The natural group theory supporting the cyclic period table is also presented.

Keywords: the cyclic periodic table of elements, neutron, hydrogen, categories of elements, the natural end of elements.

本文将主

要给出新的环形元素周期表及其创新点。它有多环的形式;它显示出了元素周 期性的生长和发育;中子位于环形周期表的中心;H、C和 Si 为同一族元素; 所有元素分为四类,即金属、π族、非金属和 2π族;每个 d 或 f 层分别形成一 个独立的周期;元素的自然终点是 112 号元素 Cn*;等。新的元素周期表可能 是最合理、科学和美的元素周期表,可能是元素周期表的最终形式或上帝手中 的元素周期表。它相应改进的传统版本也具有这些特征。支持环形元素周期表 的自然群理论也一并给出。

关键词:环形元素周期表,中子,氢,元素分类,元素的自然终点。

1. 环形元素周期表

图1.环形元素周期表

以下为小型版环形元素周期表,由于它已经显示出完整版环形元素周期表 的主要特征,所以可作为完整版的代表(图2)。

图 2. 小型版环形元素周期表

2. 环形元素周期表与传统的元素周期表相比的创新

与传统元素周期表比较,环形元素周期表具有以下创新和改进(表1)。

传统元素周期表的问题和错误	环形元素周期表的改进和创新
用方框表格表示元素周期性,未显 示周期性的生长和发育,未解释金 属与非金属从对称到不对称。	用圆周方式表示元素周期性,显示周期性的生 长和发育即从点到线到圆周再到大圆周上有小 圆周,显示金属与非金属从对称(数量相等) 到对称破缺(金属比非金属多)及其原因。
未引入中子,未显示中子与化学元 素的关系,未显示中子的重要性。	引入中子,置于圆心(0族),显示中子与化学 元素的关系,显示中子的重要性。
H的位置错误,置于Li上或悬空。	从原理上证明 H 与 C、Si 等同族。
元素分为金属和非金属两类有误	元素应分为金属、π族、非金属、2π族四类。
用对角线表示的金属与非金属分界 线有误	金属与非金属的分界线为H、C、Si、GeAs、 Sb Te、Po [*] At [*] 、Ts [*] Og [*] ,称为π族。
未用平面坐标表示	用平面极坐标和直角坐标表示,将数学、科学 和美结合,应是最科学与最美的元素周期表。
未显示 d 族和 f 族的周期性	d 族和 f 族的每一层自成周期
只显示了薛定谔方程和泡利不相容 原理确定的电子层模型的 n、l、 m _l 、m _s 四个量子数。	除显示 n、l、m _l 、m _s 四个量子数外,还显示出 一个新的量子数即 2π量子数,2π量子数有 π/2、π、3π/2、2π四个基本取值,表示元素可 分为金属、π族、非金属、惰性元素四类。
七个周期元素的终点是 118 号 Og*	元素电子层的自然终点是 112 号 Cn*
未显示出四种周期性	周期 A (H He),周期 B (s p 族),周期 C (d 族),周期 D (f 族),其中周期 B 为主周期。

表1. 传统元素周期表和环形元素周期表的比较

3. 传统元素周期表的改进

以下为与环形元素周期表相对应的改进版传统元素周期表(也可简称改进版 元素周期表),根据环形元素周期表的创新作了相应的改进(**图 3**)[1]。可以认 为环形元素周期表是元素周期表的本原,传统周期表是适合人类阅读和理解的 方框形式,简单说传统方框形式的元素周期表是环形周期表的展开。从数学上 说,一个是平面极坐标和直角坐标形式,一个是方框表格形式,所以从数学上 说存在两个版本是合理的,一个更能表现周期性,一个更适用性更好。用约 2015年底一位数学教授朋友的评论来说是:"所谓周期,就是圆,就是 2π"。

周\族																		.0		
	2								K						 10 			1.0087		
	$\partial \mathcal{H}(r, t) = \hat{\mathcal{H}}(r, t)$								(ad	Ca	-			IVA π				VIIIA 2π		
1	$In - \Psi(\mathbf{r}, t) = H \Psi(\mathbf{r}, t)$.3.	N	a	1		1	1			2		
				Ol					8	WO				H				He		
			e a						0 7 Be Li					Ist				1s ²		
	IA π/2	ПА	2π	$2\pi = (\frac{1}{2})^2$					5 0				IIIA	1.0078	VA	VIA	VIIA $3\pi/2$	4.003		
	3	3 4 e'c							Si C H n He Ne A ⁻ Kr				5	6	7	8	9	10		
	Li	Be	2 2 2						s z				В	C	N	0	F	Ne		
2	2s ¹	$2s^2$		$e^2 e$	e	e		a o F				2s ² 2p ¹	$2s^22p^2$	$2s^22p^3$	$2s^{2}2p^{4}$	2s ² 2p ⁵	$2s^22p^6$			
	6.941	9.012	$=e - \frac{1}{2} - \frac{3}{3} - \frac{4}{4} - \frac{1}{3} -$							S		/	10.81	12.01	14.01	16.00	19.00	20.18		
	11	12		$(\bar{-})^{2}$	$(-)^{3}$	<u>-)</u> ′			S CI				13	14	15	16	17	18		
	Na	Mg		1	2	3			Br				Al	Si	P	S	CI	Ar		
3	351	352											3s ² 3p ¹	3s23p2	3s23p3	3s ² 3p ⁴	3s ² 3p ⁵	3s ² 3p ⁶		
	22.99	24.31	IIIB	IVB	VB	VIB	VIIB #'		VIIIB		IB	IIB 2 ^π	26.98	28.09	30.97	32.06	35.45	39.95		
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36		
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
4	4s ¹	4s ²	3d14s2	3d ² 4s ²	3d34s2	3d54s1	3d54s2	3d64s2	3d74s2	3d84s2	3d104s1	3d104s2	4s ² 4p ¹	4s ² 4p ²	4s ² 4p ³	4s ² 4p ⁴	4s ² 4p ⁵	4s ² 4p ⁶		
	39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.96	79.90	83.80		
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54		
5	Rb	Sr	Y	Zr	Nb	Mo	Tc*	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe		
5	5s ¹	5s ²	4d15s2	4d ² 5s ²	4d35s2	4d55s1	4d55s2	4d75s1	4d85s1	4d10	4d105s1	4d105s2	5s ² 5p ¹	5s ² 5p ²	5s ² 5p ³	5s ² 5p ⁴	5s ² 5p ⁵	5s ² 5p ⁶		
	85.47	87.62	88.91	91.22	92.91	95.96	97/98	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3		
	55	56	57-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86		
6	Cs	Ba	71	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po*	At*	Rn*		
	6s ¹	6s ²	La-	5d ² 6s ²	5d36s2	5d46s2	5d56s2	5d66s2	5d76s2	5d%6s1	5d106s1	5d106s2	6s ² 6p ¹	6s ² 6p ²	6s ² 6p ³	6s ² 6p ⁴	6s ² 6p ⁵	6s ² 6p ⁶		
	132.9	137.3	Lu	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	209	210	222		
	87	88	89-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118		
7	Fr*	Ra*	103	Rf*	Db*	Sg*	Bh*	Hs*	Mt*	Ds*	Rg*	Cn*	Nh*	FI*	Mc*	Lv*	Ts*	Og*		
	7s ¹	7s ²	Ac*-	6d ² 7s ²	6d ³ 7s ²	6d ⁴ 7s ²	6d57s2	8d67s2	6d77s1	6d97s1	6d ¹⁰ 7s ¹	6d10782	7s ² 7p ¹	7s ² 7p ²	7s ² 7p ³	7s ² 7p ⁴	7s ² 7p ⁵	7s ² 7p ⁶		
	223	226	Lr	265	268	271	273/4	276	278	281	283	285	287	289	291	292	292	294		
Ra	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71		原子序数			
刊利	La	Ce	Pr	Nd	Pm*	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		元素符号			
T	5d16s2	4f15d16s2	4f36s2	4f46s2	4f56s2	4f66s2	4f ⁷ 6s ²	4f75d16s2	4f96s2	4f106s2	4f ¹¹ 6s ²	4f126s2	4f136s2	4f146s2	4f145d16s2	一一· 外围电子层排布				
糸	138.9	140.1	140.9	144.2	145	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0	—— 相对原子量				
141-5	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	*为放	射性元素			
锕	Ac*	Th*	Pa*	U*	Np*	Pu*	Am*	Cm*	Bk*	Cf	Es*	Fm*	Md*	No*	Lr*	斜体数据为放射性元素				
T	6d17s2	6d ² 7s ²	5f26d17s2	5f36d17s2	5f46d17s2	5f67s2	5f ⁷ 7s ²	5f76d17s2	5f97s2	5f107s2	5f117s2	5f127s2	5f137s2	5f147s2	5f146d17s2	2 最稳定同位素的原子量				
杀	227	232.0	231	238.0	237	244	243	247	247	251	252	257	258	261	264	创作	: 陈刚博士			
				· · · · · · · · · · · · · · · · · · ·													2.0			

Revised Periodic Table of Elements

图 3. 改进版元素周期表

以上改进版元素周期表中加入了小型版环形元素周期表,以显示两者之间 的关系,还加入了薛定谔方程(Schrodinger Equation)和 2π-e 公式。薛定谔方 程和泡利不相容原理是原子的电子层模型、元素化学性质和传统元素周期表的 基础。2π-e公式是自然群理论的基础,元素应是一种自然群,我们最初是从2πe公式得到灵感才构建出新的环形元素周期表,即当时感到元素周期表和2π-e 公式具有微妙的相似性。2π-e公式为1(及其衍生出的自然数)、e和2π的本质 的、纯粹的关联,元素周期律则包含自然数律(原子序数即质子数为按顺序的 自然数,中子数和总核子数也是自然数)、指数律(元素化学性质根据电负性呈 指数变化)和周期律,它们在本质上分别与1、e和2π关联,因此2π-e公式应 是元素周期律的基本公式,或者说,如果我们有足够的洞察力,我们可透过元 素周期表最终看到三个数1、e和2π或2π-e公式。

红色和背景加深表示我们作的主要改进和得到的重要结论,它们是:引入中 子,作为唯一的0族元素;H置于C之上,与CSi等是一族;引入π族和2π族、 π'族和2π'族,π"族和2π"族的概念,表示一个周期的中间分界元素和终点元素, 即图中背景加深的元素;112号元素Cn*是元素电子层的自然终点(简称元素的 自然终点)。另外,以上的环形元素周期表和传统元素周期表都是电子层元素周 期表,除此外还有基于原子核的幻数元素周期表[2]

3. 自然群理论

基于 2π-e 公式及其相关公式我们建立了如下所述的自然群理论,其中除了 e 的 Taylor 展开式外,其余公式都是我们在 2013 年自己推导出的。

$$\begin{split} &1 = 4\gamma_{c} + \frac{4\gamma_{1}}{1(1+1)} + \frac{4\gamma_{2}}{2(2+1)} + \frac{4\gamma_{3}}{3(3+1)} + \cdots \\ &1 = |B_{1}| \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{|B_{2n}|(\pi/2)^{2n}}{(2n)!} = \sum_{n=1}^{\infty} \frac{|B_{2n}|(\pi/2)^{2n}}{(2n)!} \\ &= -|B_{1}| \frac{3\pi}{2} + \sum_{n=1}^{\infty} \frac{|B_{2n}|(3\pi/2)^{2n}}{(2n)!} \\ &N + 1 \sim -|B_{1}| + \sum_{n=1}^{N/2} \frac{|B_{2n}|(2\pi)^{2n}}{(2n)!} \\ &e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots \\ &2\pi = (\frac{e}{e^{\gamma_{c}}})^{2} = e^{2} \frac{e^{2}}{(\frac{2}{1})^{3}} \frac{e^{2}}{(\frac{3}{2})^{5}} \frac{e^{2}}{(\frac{4}{3})^{7}} \cdots \\ &\gamma_{c} = \lim_{N \to \infty} (\int_{1}^{N+1} \log(x) \, dx - \sum_{n=1}^{N} \log(n) - \frac{\log(N+1)}{2}) \\ &\gamma_{s} = \lim_{N \to \infty} (\sum_{n=1}^{N} \frac{1}{n^{s}} - \int_{1}^{N+1} \frac{1}{x^{s}} \, dx) - \frac{1}{2}, \ s \in \mathbb{N}, \ B: \ Bernoulli \ Numbers \end{split}$$

自然群理论叙述为: 1、e、2π 是最重要的数学常数,它们的以上展开式具有相似性,都有一个基本元和与自然数相关的级数求和或求积项,这似乎构成了一种群,由于与自然数相关,我们把这种形式称为自然群。

对自然群的形象比喻为,如同一个乐队,有指挥、首席和其他乐队成员, 也像羊群有牧羊人、领头羊和跟随的羊。

我们认为元素、基本粒子、四种相互作用以及物质、暗物质和暗能量等应是 自然群。由此我们模仿自然群构建了新的环形元素周期表、新的基本粒子列表 和宇宙的构成图等[1,3]。在我们的环形周期表中,中子n就像是乐队指挥,H 和 He 就像是乐队首席,其它元素就像是其它乐队成员。

4. 关于环形元素周期表和改进版传统元素周期表的说明

元素周期律是指元素的性质随原子序数递增从金属到非金属发生周期性变化, 将元素列表以更好地显示元素周期律称为元素周期表。传统的方框形元素周期 表以及前人设计的各种形状的元素周期表有以下主要问题:未引入中子和未显 示中子的重要性,氢元素的位置错误,金属和非金属的分界线错误,元素分为 金属和非金属两种有误,周期应以圆周方式表示,应显示周期性的生长和发育, 应与数学结合等。

作者基于自己于 2013-2014 年推导出的 2π-e 公式及其相关公式和由此构建的 自然群理论,经三、四年的反复思考和改进,以圆周形式表示元素周期,并与 平面极坐标和直角坐标相结合,也与传统的方框形元素周期表相结合并对其进 行改进,由此发现和创作了新的环形元素周期表和改进版传统元素周期表,它 们具有以下所述的创新。

- (1) 以圆周的形式表示元素周期,并以平面极坐标和直角坐标结合的形式表示。 周期的形象表示是圆,数学表示是2π,用圆表示周期特别形象、合适和 美,平面极坐标和直角坐标的形式能更好表示元素的分类和演化。但对于 环形元素周期表,我们应该注意某一周期终点的惰性元素的下一个元素是 跳到下一周期的碱金属元素,例如 Ne 的下一个元素是 Na,所以圆环在第 一象限实际上应表示为螺旋上升线。
- (2) 将中子n引入周期表并置于圆心。中子应是一种特殊的元素,宇宙大爆炸 时产生氢原子和中子,由于单独的中子不稳定,所以中子在原子核中与质

子一起存在,但恒星演化也会产生中子星。由于元素很可能是自然群,中 子正好作为其基本元,即中子在元素周期表中的作用就像乐队指挥在乐队 中的作用。因此我们在改进版传统元素周期表中也引入了中子n,其置于 He之上,并称为0族元素,且是唯一的0族元素,因为中子n在环形元 素周期表中位于圆心位置,圆心相当于0维的圆。传统观点认为中子并不 是化学元素,我们受这种传统思维的影响,也是在创作出环形元素周期表 三个月后才意识到中子应该置于圆心位置。

- (3) 第1周期只有H和He两种元素,H、n和He位于一条直线上。H和He相当于构成一维的圆,即一条线段或两个点,此时周期性就像刚出生,还没有发育完整,金属和非金属还没有发育出来,即H和He既不是金属,也不是非金属。H和He位于极坐标系的π和2π的位置,所以称为π族和2π族元素,π族相当于金属和非金属的分界线,2π族是惰性元素。就像一棵树苗的树干产生了两个主分支,分别为H和He,H更容易分化,会分化出金属、非金属和其它π族元素,He不分化,只会衍生出2π族的其它惰性元素即Ne、Ar、Kr、Xe和Rn*。另外,从自然群的观点看,H和He在元素周期表中的作用就像乐队中首席的作用。
- (4) 元素的周期性是生长发育出来的,s和p层元素一起形成主周期(s-p周期),d和f层元素各自形成副周期(d或f周期)。中子n是周期性的起点,相当于一棵树的种子或树苗;第一周期只有H和He两个个元素,相当于树苗的树干上长出了了两个主分支;第2周期含s、p族共8个元素形成完整的主周期,包括三个金属LiBeB、π族的C、三个非金属NOF和2π族的Ne,此时金属和非金属的数量是对称的,第4周期的情况相同,这就像是主分支分化出树枝(注意2π族没有分化);第四周期上发育出了3d周期,即3d元素自成周期,且3d元素位于金属区,这就像树枝上再分化小树枝,第4周期的π族元素为GeAs,但它们分别向金属和非金属分化,所以第4周期有14个金属和3个非金属;同理4d、4f、5d、5f、6d族也自成周期;周期性的发育产生了金属和非金属的对称以及对称破缺,即金属与非金属从对称(一样多)到不对称(金属比非金属多)。
- (5) H与C、Si等为同一族,即π族,为金属与非金属的分界线。完整的金属 与非金属分界线为H、C、Si、GeAs、SbTe、Po*At*和Ts*Og*,后几个

7

成对的元素中前一个偏金属,后一个偏非金属,实际上它们可分别划归金 属和非金属。C、Si、GeAs、SbTe、Po*At*和Ts*Og*这些元素可作为H 的直系分化元素,H还分化出了除2π族外的其它元素。相应地在改进版 传统元素周期表中,H置于C之上。H在元素周期表中的合适位置,传统 和主流的观点是置于Li之上,有的观点是H位置悬空待定(因为觉得放 在Li、C或F上都有点道理),有文献报道主张H置于C上[4]。从环形元 素周期表可看出,我们从原理上说明在传统周期表中H应该置于C上。

- (6) 元素分为中子n(0族)和化学元素,化学元素分为金属、π族、非金属和2π族共四类。π族为金属与非金属的过渡,2π族为惰性元素,H属于π族。金属中包括π/2族的碱金属LiNaKRbCsFr*,非金属中包括3π/2族的卤素FCl。d周期中有π'族和2π'族,f周期中π"族和2π"族。这些在改进版传统元素周期表中用不同背景加深标出,
- (7) 发现了 2π 量子数。薛定谔方程解 H 原子,得到 n、l、m₁量子数,加上泡 利不相容原理 m_s,共四个量子数,与周期数和族数相对应。从环形元素 周期表可看出,应还有一个表现元素群体性质的 2π 量子数,其有四个基 本取值,即 π/2、π、3π/2 和 2π,例如 Li、C、F、Ne 可标示如下: Li (π/2)2s¹、C (π)2s²2p²、F (3π/2)2s²2p⁵、Ne (2π)2s²2p⁶。
- (8) 元素的自然终点是 112 号元素 Cn^{*}。环形元素周期表的上半部分为金属,下半部分为非金属,金属比非金属多,而且,随着周期数增加,非金属往金属漂移,这是因为原子增大,原子核对最外层电子的控制会减弱。由于这样的效应,118 号元素 Og^{*}已经从 2π 族漂移到 π 族,即它已经不是一个惰性元素,所以它作为第 7 周期的终点和所有元素的终点已经不合适,此时 6d 族的最后一个元素即 112 号元素 Cn^{*}是 2π′族元素,应是合理的第 7 周期和所有元素的自然终点。我们可这样理解,元素就像一棵树,H和He 是两个主分支,He 分化出的 Ne、Ar、Kr、Xe 和 Rn^{*}都是 2π 族元素,都是本周期的终点(树的不同生长阶段的树梢即最高点),但由于 Og^{*}变为 π 族,它不能再作为终点,所以 2π′族的 112 号元素 Cn^{*}成为新的终点(整个树的树梢)。另外,112 号元素 Cn^{*}为元素的自然终点还有一个例证,即与它同族的 5d 的最后一个元素 Hg (也为 2π′族)已经是液体,说明 Hg 原子之间相互作用小,原子为对称的球形。其化学性质相对惰性,已经可

8

以作为第6周期的终点,即第6周期有两个终点即 Hg 和 Rn*。Cn*的形态则可能像 Hg 一样是液体或熔点很低的固体。

- (9) 元素中有四种周期,即周期A(HHe)、周期B(s、p族)、周期C(d族)和 周期D(f族),周期A(HHe)只是形成了周期的雏形,周期B可称为为主 周期(对应主族元素),周期C、D可称为副周期(对应副族元素)。这是 由于元素周期性的生长和发育产生的,上面也有论述。主周期与副周期的 关系可形象比喻为,太阳系中有太阳和行星构成的太阳系,还有行星和其 卫星构成的行星系。
- (10) 元素主要集中于环形元素周期表的左边(第三、四象限),尤其是左上 (第二象限),即金属区,就像碱金属LiNaKRbCsFr*是元素中的一个 吸引端。这是因为以下原因:H主要负责分化,衍生出了这些元素,He 则只衍生出2π族的NeArKrXe和Rn*;d、f族在金属区分化出来,产生 很多金属;随着原子序数增加,原子核对电子的控制能力减弱,金属性增 强,元素从非金属区向金属区漂移。这些在上面也有论述。如果元素以 112个作统计(第113-118号不计入),H分化出了105个元素(加上自身 共106个元素),He分化出NeArKrXeRn*5个元素(加上自身共6个元 素),105=1×3×5×7,与spdf轨道数对应;如果以元素周期表七个周 期所有的118个元素统计,H及其分化衍生出的元素共112个,He及其衍 生出的元素共6个。这些数字的巧合也是有趣的,可能不完全是巧合,是 有一定道理的,例如H已经分化出了112个元素(包括自身),所以想再 合成超过118号的元素就会非常困难,甚至不可能。

5. 元素周期表中金属和非金属的比例

从环形元素周期表可看出,元素的周期性是逐渐发育出来的。第1周期只有 H和He两个元素,金属和非金属还未产生(超对称);第2、3周期各有3个金 属和3个非金属元素,此时金属和非金属处于对称阶段,二者比值为1/1;从第 4周期开始,在主周期上发育出了3d副周期,3d副周期又处于4s-p主周期的金 属段,再加上金属与非金属分界线的漂移(次要原因),所以金属与非金属比例 变为14/3=4.7,出现了对称破缺;第5、6周期金属与非金属失衡更严重;第7 周期则与第6周期差不多,说明周期性的发育和对称破缺走到了尽头。总之, 周期性就像树一样是生长发育出来的,可称"周期树",可形象称为处于"种子"、 "小树"和"大树"三阶段,分别相应于超对称、对称、对称破缺三种状态,而对 称破缺的主要原因是主周期上发育出了副周期,就像大树枝上长出了树枝,其 次的原因是金属往非金属的漂移。

将元素周期表中第1-4周期的金属和非金属数量列表(表2),并与四种相互 作用对应,这样也许可以对弱相互作用中宇称不守恒的机制进行解释,即从对 称到不对称和从守恒到不守恒的原因应是周期性的生长和发育以及其中元素的 分化、衍生和漂移。按照我们的理论,元素和四种相互作用都是自然群,所以 这种比较应是合理的和有价值的。

	第	1周期	第	2周期	第	3周期	第4周期		
化学元素	金属	非金属	金属 非金属		金属	非金属	金属	非金属	
化于儿系	0	0	3	3	3	3	14	3	
	无	对称	Ž	付称	5	付称	不对称(14/3)		
	j	重力	电磁	相互作用	强	相互作	弱相互作用		
相互作用	-	长程	-	长程	\$	短程	超短程		
	无	宇称	宇利	弥守恒	宇利	称守恒	宇称不守恒		

表 2. 第 1-4 周期元素中金属和非金属的比例及与四种相互作用的对应

6. 讨论与结论

2022年11月,作者意识到元素或原子在我们宏观世界中有一个对应物,就 是一棵树,树干和树枝就像是原子核,树叶则像是核外电子。因此,我们应该 分别构建原子核元素周期表和电子层元素周期表,两者应不相同但具有相关性 和相似性。从我们构建的原子核幻数周期表[2]和本文公开的环形元素周期表来 看,二者中的H和He都分别分化出元素,而且H分化得更多,二者确定的元 素的自然终点都是112号元素 Cn*,二者中 Cd Hg Cn*都为同族元素,所以二者 可谓殊途同归,互相完美印证,就像树枝和树叶的关系。我们再作一个比喻, 如果我们要确定一棵树的最高点(树梢),那么树枝和树叶都要是最高的,尽管 我们只需要一个就行,但互相印证,会更加说明两者都是正确的。

总之,我们发现并创作了新的环形元素周期表(电子层元素周期表),并改进了传统的元素周期表,发现了元素周期性的生长和发育,将中子引入元素周

期表,证明H与C、Si等为同一族,将元素分为金属、π族、非金属和2π族, 并确定112号元素Cn*是元素的自然终点,这些结果也与我们发现和创作的原 子核的幻数元素周期表互相印证。

参考文献

- 1. 《陈氏元素周期表与自然群理论》,版权登记号:国作登字-2018-L-00472808
- 2. 科技论文预印本文章, 链接: vixra.org/abs/2312.0055
- 3. 科技论文预印本文章, 链接: vixra.org/author/gang_chen
- 4. Marshall W. Cronyn, J. Chem. Ed., 80(8), 947-951, 2003.

Note: This paper is written in Chinese. It was originally written in Chinese from Oct.18,2017 to Dec.15, 2017, and was registered for copyrightonDec. 15, 2017. The original paper inppt formatfor registering copyright consisted of several parts such as 2π -e formula, the natural group theory, the theory of 840 degrees and thenew cyclic periodic table of elements along with its corresponding revised traditional version. Actually, these parts were found and written out by us time to time from 2013 to 2015.