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By assuming that the Ricci curvature tensor consists of a subset (scalar) field, we propose that Newton’s
second law of gravitation in (2+1)-dimensional space-time, a linear equation, could have hidden nonlinearity.
This subset field satisfies a non-linear subset field theory where in the case of an empty space-time or the
weak field, it reduces to Newton’s linear theory of gravitation.
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I. INTRODUCTION

It is commonly believed that there exists no nonlinear-
ity in Newton’s theory of gravitation (Newtonian field
equation, Newton’s second law of gravitation)1–6. It is
because explicitly Newton’s theory of gravitation is writ-
ten in a linear form. Related to the general theory of
relativity, Newton’s theory of gravitation is the weak-
field limit of Einstein’s non-linear theory of gravitation.
So, how could nonlinearity exist in Newton’s theory of
gravitation?

We assume that the curvature tensor (the set of the
solutions of Einstein field equations) in an empty space-
time consists of a subset field, a scalar field. An empty
space-time here means that there is no matter present
and there is no physical fields exist except the weak
gravitational field. The weak gravitational field does
not disturb the emptiness. But other fields disturb the
emptiness7.

A subset field is locally equal to the curvature ten-
sor i.e. the curvature tensor can be obtained by patch-
ing together subset fields (except in a zero-measure set)
but globally different. The difference between the subset
fields and the curvature tensor in an empty space-time
is global instead of local since the subset fields obey the
topological quantum condition but the curvature tensor
does not.

Newton’s theory of gravitation expressed using the cur-
vature tensor satisfies a linear field equation only, but a
subset field satisfies linear and non-linear field equations.
Both, the curvature tensor and a subset field, satisfy a
linear field equation in the case of the weak field of grav-
itation. It means that, in the case of the weak field, a
non-linear subset field theory reduces to Newton’s linear
theory of gravitation.

Inspired by the works of Ranada8,9, we assume that
the Riemann curvature tensor could consist of the subset
fields and we propose that Newton’s second law of grav-
itation in (2+1)-dimensional empty space-time, a linear
equation, could have hidden nonlinearity. This nonlinear-
ity could exist because Newton’s theory of gravitation in

an empty space-time is the weak-field limit of a non-linear
subset field theory. To the best of our knowledge1–6, the
formulation of hidden nonlinearity in Newton’s theory of
gravitation has not been done yet.

II. THE NEWTONIAN LIMIT

In the general theory of relativity, the motion of test
bodies in (3+1)-dimensional curved space-time is gov-
erned by the geodesic equation which can be written as1,2

d2xα

dτ2
+
∑
µ,ν

Γαµν
dxµ

dτ

dxν

dτ
= 0 (1)

where xα(τ) is the world line of the particle in global
inertial coordinates, and α, µ, ν = 0, 1, 2, 3.

In the Newtonian limit, we treat that the motion
of a body is much slower than the speed of light. It
has the consequence that the proper time, τ , may be
approximated by the coordinate time, t. So, for the
time-time components, µ, ν = t, we may approximate
dxµ/dτ , dxν/dτ in the second term of eq.(1) as (1, 0, 0, 0).
It means that the space-space components are vanish.
Thus, eq.(1) becomes2

d2xα

dt2
= −Γαtt (2)

We have for the space components, α = 1, 2, 31,2

Γαtt =
∂φ

∂xα
(3)

i.e. the Christoffel symbol, Γαtt, is related to the gradient
of the gravitational (scalar) potential, φ. Here, again, due
to the motion of a body being much slower than the speed
of light, the time derivatives of φ have been neglected.

In the case of (1+1)-dimensional space-time, by sub-
stituting eq.(3) into (2), the motion of a body is governed
by the equation2

~a = −~∇φ (4)



where ~∇ is the gradient operator with respect to 1-
dimensional space and

~a =
d2~x

dt2
(5)

is the acceleration of a body relative to global inertial
coordinates of flat metric2.

We see from eq.(4), in Newton’s point of view, test
bodies are in motion with acceleration or gravitational
field. It means that there exists the gravitational forces
act upon test bodies. The gravitational forces cause test
bodies to orbit on ”a curved line” in a flat space-time.
On the other side, roughly speaking, we could say that
eq.(1) shows the trajectories of test bodies following the
geodesic ”straight line” in the curved space-time. These
points of view are the important difference between Ein-
stein’s general theory of relativity (1) and its Newtonian
limit (4).

By using eq.(4), we can write Newton’s second law of
gravitation in (1+1)-dimensional space-time as

~F = m ~a = −m~∇φ (6)

where ~F is the gravitational force, m is mass, and ~a is
the gravitational field (gravitational acceleration) and φ
is the gravitational potential. We see from eq.(6) that
the difference in the gravitational potential shows the
existence of acceleration or gravitational field. The exis-
tence of the gravitational force affects the test bodies to
move with the acceleration. In analogy to the relation be-
tween the electromagnetic potential and the electromag-
netic fields as shown e.g. in the Aharonov-Bohm effect10,
probably we could generalize or interpret from eq.(6) or
(4) that the gravitational potential is more fundamental
than the gravitational field.

III. WEAK-FIELD LIMIT OF GRAVITATION

In the limit of weak gravitational fields, low velocities
or static3 (of gravitational sources), and small pressure,
the general theory of relativity reduces to Newton’s the-
ory of gravitation1.

In the case of the weak field, the metric tensor in (3+1)-
dimensional space-time can be written as

gµν = ηµν + hµν (7)

where ηµν is the Minkowski metric, hµν is small pertur-
bation, |hµν | << 1. Small perturbation have values4

htt = −2φ, htµ = hµt = 0, hµν = −2 δµν φ (8)

so the related metric can be written as

ds2 = (1− 2φ) dx2 − (1 + 2φ) dt2 (9)

Linearization (we ignore the non-linear terms of
connection3) of the Ricci curvature tensor, due to the
weak field, yields1

Rµν = ∂αΓαµν − ∂νΓαµα (10)

This equation is identical to Abelian field strength in
electrodynamics where the curvature (the Ricci tensor),
Rµν , is identical to the field strength tensor, Fµν , and
the connection (Christoffel symbol), Γαµα, is identical to
the gauge potential, Aµ.

By considering the importance of eq.(3), so we could
understand how the gravitational potential affects the ge-
ometry of space-time, the time-time components of Ricci
curvature tensor (10) can be written as1

Rtt = ∂αΓαtt − ∂tΓαtα (11)

where the second term in the right-hand side of (11) is as-
sumed zero, ∂tΓ

α
tα = 0 (due to the test body of the grav-

itational source moving very slowly or static). Eq.(11)
becomes

Rtt = ∂αΓαtt (12)

By substituting (3) into (12) we obtain Newton’s the-
ory of gravitation written below1,5,6

Rtt = ∇2φ (13)

where ∇2 = ~∇ · ~∇ (div of grad) denotes the Laplace
operator or Laplacian of (3-dimensional) space2, and

∇2φ = 4πρ (14)

is Poisson’s equation1,2, ρ is the mass density.
By substituting eq.(14) into eq.(13) we obtain New-

ton’s theory of gravitation expressed as Newtonian field
equation1

Rtt = 4πρ (15)

We see that Newton’s theory of gravitation (13) and New-
tonian field equation (15) are obtained by assuming that
the gravitational source is moving very slowly or static
and the gravitational field is weak. Eq.(15) shows us that
by choosing time-time components of the Ricci tensor, we
can recover Poisson’s equation (14).

IV. SUBSET FIELDS PROPERTY AND MAPS S3 → S2

Let us consider maps of subset fields (consisting of
complex scalar fields) from a finite radius r to an infi-
nite radius implying from the stronger field to the weak
field. A scalar field has properties that, by definition, its
value for a finite r depends on the magnitude and the
direction of the position vector, ~r, but for an infinite r it
is well-defined9 (it depends on the magnitude only). In
other words, for an infinite r, a scalar field is isotropic.
Throughout this article, we will work with the classical
scalar field.

The property of such scalar fields can be interpreted
as maps S3 → S28 where S3 and S2 are 3-dimensional
and 2-dimensional spheres respectively i.e. after identify-
ing via stereographic projection, 3-dimensional physical
space, R3 ∪ {∞}, with the sphere S3 and the complete
complex plane, C ∪ {∞}, with the sphere S2.
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Let us discuss the maps above more formally. Assume
that we have a scalar field as a function of the position
vector, ea(~r), with a property that can be interpreted
using the non-trivial Hopf map written below8,9

ea(~r) : S3 → S2 (16)

These maps S3 → S2 can be classified in homotopy
classes labeled by the value of the corresponding Hopf in-
dexes, integer numbers, and the topological invariants8,9.
The other names of the topological invariants are the
topological charge, and the winding number (the de-
gree of a continuous mapping)11. The topological charge
which is independent of the metric tensor could be inter-
preted as energy12.

We see there exists (one) dimensional reduction in such
maps. We consider this dimensional reduction as a conse-
quence of the isotropic (well-defined) property of a scalar
field for an infinite r. The property of a scalar field as
a function of space seems likely in harmony with the
property of space-time itself. Space-time could be lo-
cally anisotropic but globally isotropic (the distribution
of matter-energy in the universe is assumed to be homo-
geneous).

V. NON-LINEAR AND LINEARIZED RICCI THEORIES

We assume that a subset field, a component of the
curvature, ea, as a map of the gravitational theory in
(3+1) to (2+1)-dimensional space-time written below

ea(~r, t) : M3+1 →M2+1 (17)

where M denotes manifold. This map (17) differs from a
time-independent map in eq.(16). This problem could be
solved by interpreting some of the quantities that appear
in Hopf’s theories as Cauchy’s initial time values13.

By considering that the field strength tensor is identi-
cal to the curvature10, we could write8,9 the Ricci curva-
ture tensor which its components satisfy the map (17) as
follows

Raµν ≈
∂µe

a∗∂νe
a − ∂νea

∗
∂µe

a

(1 + ea∗ea)2
(18)

where ea is a subset of Ricci curvature tensor, and ea
∗

is the complex conjugate of ea. Eq.(18) is the non-linear
equation where the nonlinearity is shown by the ea

∗
ea

term in the denominator. The superscript index a in ea

represents a set of indices that label the components of
the subset field.

In the case of the weak field, the subset field is very
small, |ea∗ea| << 1, so eq.(18) reduces to a linear field
equation as written below

Raµν ≈ ∂µea
∗
∂νe

a − ∂νea
∗
∂µe

a (19)

We assume that this equation is identical to the electro-
magnetic field strength tensor, Fµν = ∂µAν − ∂νAµ. It
means that the linearized Ricci theory (10) could be in-
terpreted as the same as the Ricci theory in the case of
the weak field (19).

VI. POTENTIAL AND CLEBSCH VARIABLES

Small perturbations of metric or linearized metric per-
turbations in eq.(7) take a role as ”potentials” in the
weak field or the linearized gravitation4. Roughly speak-
ing, it (more precisely the Christoffel symbol, a connec-
tion) is identical to the potential in electromagnetism
which consists of electric (scalar) and magnetic (vector)
potentials4. In the language of a wave, the small pertur-
bation of metric can be written as4

hab = ρab e
i~k·~r (20)

where ρab is amplitude and ~k is wave vector. In empty
space, the space of a weak field, the amplitude is con-
stant.

In analogy to eq.(20), we consider the subset field,
ea(~r, t), as the scalar ”sub-potential” and we propose that
the subset field could be written as14

ea(~r, t) = ρa(~r, t) eiq(~r,t) (21)

where ρa(~r, t) is the amplitude, q(~r, t) is the phase. As
(20), we could interpret the subset field, ea(~r, t), as the
perturbation or disturbance where the physical distur-
bance is the real part of ea(~r, t)15.

The related ”potential” (identical to the Christoffel
symbol, a connection) is

eνa = fa ∂νq (22)

where the function of amplitude could be written as

fa = −1/
{

2π[1 + (ρa)2]
}

(23)

We call the functions, fa(~r, t) and q(~r, t) as the Clebsch
variables13 or Gaussian potentials16,17. These Clebsch
variables are related to any divergenceless vector field8.
An example of a divergenceless vector field is vorticity,

~ω, in hydrodynamics17 or the magnetic field, ~B, where
~∇· ~B = 0. The Clebsch variables are not uniquely defined
(many different choices are possible for them)8. We see
from eq.(23) that eνa could be viewed as vector potential.
Here, eνa is not a total derivative, otherwise it would be
a pure gauge13. The subscript index ν in eνa represents
space-time coordinates.

By using eq.(22), Ricci tensor (19) could be written
as13

Raµν ≈ ∂µ(fa ∂νq)− ∂ν(fa ∂µq) (24)

This is the Ricci tensor written in terms of the Clebsch
variables. Equation (23) is equivalent to eq.(10).

In analogy to Rtt of the weak-field and Newtonian limit
(11), (12), we consider (24) as

Ratt ≈ ∂α(fa ∂αq)− ∂t(fa ∂tq) (25)

where the index α denotes the space component (space
coordinate). The second term on the right-hand side of
(25) is equal to zero because, in the Newtonian limit, it is
assumed that the speed of the body as the gravitational
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source is very slow compared to the speed of light. So
eq.(25) becomes

Ratt ≈ ∂α(fa ∂αq) (26)

The first ∂α in eq.(26) means divergence and the second
∂α gradient.

VII. HIDDEN NONLINEARITY IN NEWTON’S
SECOND LAW OF GRAVITATION

By substituting eq.(3) into (2) we have

d2xα

dt2
= − ∂φ

∂xα
= −∂αφ (27)

where ∂α denotes gradient. In the case of 1-dimensional
space, eq.(27) can be written as

d2~x

dt2
= −dφ

d~x
(28)

This equation (28) is the same as eq.(4). In analogy to
(5), (27), let us define

d2xα

dt2
≡ aα (29)

By substituting eq.(29) into (27) we obtain

aα = −∂αφ (30)

Eq.(13) can be written as

Rtt = ∂α∂αφ (31)

where α = 1, 2, denotes 2-dimensional space and ∂α =
∂/∂xα denotes divergence. We see from eq.(31) that the
divergence of the gradient of a scalar function is a scalar,
so Rtt is a scalar. By substituting eq.(30) into eq.(31) we
obtain

Rtt = ∂α(−aα) = −∂αaα (32)

By integrating both sides of eq.(32) with respect to xα,
we find that

aα = −
∫
Rtt dxα (33)

By substituting eq.(33) into (6) and replace ~a by aα, ~F
by Fα, we obtain

Fα = −m
∫
Rtt dxα (34)

where Fα is the gravitational force defined in (2+1)-
dimensional space-time and Rtt is given by eq.(11).

By substituting eq.(26) into (34) i.e. by replacement
Rtt by Ratt, we obtain

Fα ≈ −m
∫
∂α(fa ∂αq) dxα (35)

Eq.(35) is the equation of Newton’s second law of gravi-
tation in (2+1)-dimensional space-time written using the
Clebsch variables.

VIII. DISCUSSION AND CONCLUSION

Roughly speaking, the general theory of relativity is
Einstein’s (non-linear) theory of gravitation, space, and
time18. It describes the interplay between the local dis-
tribution of matter-energy and the curvature of space-
time19. In the limit of weak gravitational fields, low ve-
locities of the test body or the gravitational sources, and
small pressure, the general theory of relativity reduces to
Newton’s linear theory of gravitation1.

Eq.(4) is the basic equation of Newton’s theory of grav-
itation and the general theory of relativity does indeed
reduce to Newton’s theory of gravitation in the appro-
priate limit. Note that although the predictions of the
general theory of relativity agree with those of Newton’s
theory of gravitation, the underlying point of view is rad-
ically difference2.

In the general theory of relativity point of view, the
mass-energy of the sky object e.g. the Sun produces a
curvature of the space-time. The Earth is in free mo-
tion without acceleration (there is no forces act upon the
Earth). The Earth travels on a geodesic ”straight line”
of the curved space-time to orbit the Sun. It is shown
by the geodesic equation (1). In Newton’s point of view,
the Sun creates the a gravitational field (gravitational ac-
celeration) as shown in eq.(4) that exerts a gravitational
force upon the Earth. This gravitational force causes the
Earth to orbit (on curved line) the Sun rather than move
in a straight line2 in a flat space-time.

Newton’s theory of gravitation, i.e. the curvature, Rtt,
expressed using the Christoffel symbol (12), satisfies a
linear field equation only, but a subset field (expressed
using the Clebsch variables) satisfies linear and non-linear
field equations. Both satisfy a linear field equation in
the case of the weak field of gravitation. It means that,
in the case of the weak field, a non-linear subset field
theory reduces to Newton’s linear theory of gravitation
i.e. the non-linear Ricci curvature tensor (18) reduces to
the linearized Ricci curvature tensor (19).

The linearized Ricci curvature tensor (19) is locally
equivalent to eq.(10), but globally different. Eq.(10) is
no longer valid globally. The difference between the sub-
set fields and Ricci curvature tensor in empty space is
global instead of local since the subset fields obey the
topological quantum condition but Ricci curvature ten-
sor does not.

In analogy to Hopf map (16), we assume that a sub-
set (scalar) field or a component of Ricci curvature ten-
sor as a map of gravitational theory in (3+1) to (2+1)-
dimensional space-time (17). This map (17) differs from
a time-independent Hopf map (16). This problem could
be solved by interpreting some of the quantities that ap-
pear in Hopf’s theories as Cauchy’s initial time values13.

It implies there exists (one) dimensional reduction in
such a map (17). We consider this dimensional reduction
as a consequence of the isotropic (well-defined) property
of a subset field for an infinite r (infinite distance from the
source) where the gravitational field is weak. It implies
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also that the linearized Ricci curvature tensor and the
derived Newton’s theory of gravitation can be formulated
in (2+1)-dimensional space-time.

The related ”potential” (22) which is identical to the
Christoffel symbol, a connection, can be written using the
Clebsch variables8,13 or Gaussian potentials16,17. These
Clebsch variables are related to any divergenceless vector
field8. An example of a divergenceless vector field is vor-

ticity, ~ω, in hydrodynamics17 or the magnetic field, ~B,

where ~∇ · ~B = 0. The Clebsch variables are not uniquely
defined (many different choices are possible for them)8.
The related potential (22) could be viewed as vector po-
tential. This vector potential is not a total derivative,
otherwise, it would be a pure gauge13.

By using the related potential (22), Ricci curvature
tensor (24) and its time-time components in the case of
the weak-field and Newtonian limit (25), (26), can be
formulated using the Clebsch variables. In turn, the time-
time components of Ricci tensor (26) are useful when we
construct Newton’s second law of gravitation (35).

We could say that Newton’s second law of gravitation
(35) contains the hidden nonlinearity. The hidden nonlin-
earity is contained in the Clebsch variables. The hidden
nonlinearity in Newton’s second law of gravitation or, in
general in Newton’s theory of gravitation, has deep con-
sequences as it could be related to the existence of the
topological object (gravitational knot)20.
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