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Abstract
We considered Weinberg-like equations in the article [1] in order to construct

the Feynman-Dyson propagator for the spin-1 particles. This construction is based
on the concept of the Weinberg field as a system of four field functions differing
by parity and by dual transformations. We also analyzed the recent controversy in
the definitions of the Feynman-Dyson propagator for the field operator containing
the S = 1/2 self/anti-self charge conjugate states in the papers by D. Ahluwalia
et al [2] and by W. Rodrigues Jr. et al [3, 4]. The solution to this mathematical
controversy is obvious. I proposed the necessary doubling of the Fock Space (as
in the Barut and Ziino works), thus extending the corresponding Clifford Alge-
bra. However, the logical interrelations of different mathematical foundations with
physical interpretations are not so obvious. In this work we present some insights
with respect to this for spin 1/2 and 1.

Meanwhile, the N. Debergh et al article considered our old ideas of doubling
the Dirac equation, and other forms of T- and PT-conjugation [5]. Both algebraic
equation Det(p̂ −m) = 0 and Det(p̂ +m) = 0 for u− and v− 4-spinors have
solutions with p0 = ±Ep = ±

√
p2 +m2. The same is true for higher-spin

equations (or they may even have more complicated dispersion relations). Mean-
while, every book considers the equality p0 = Ep for both u− and v− spinors
of the (1/2, 0)⊕ (0, 1/2)) representation only, thus applying the Dirac-Feynman-
Stueckelberg procedure for elimination of negative-energy solutions. The Fock
space can be doubled on the quantum-field (QFT) level. In this article we give
additional bases for the development of the correct theory of higher spin particles
in QFT. It seems, that it is imposible to consider the relativistic quantum mechan-
ics appropriately without negative energies, tachyons and appropriate forms of the
discrete symmetries, and their actions on the corresponding physical states.

1 Introduction.

The algebraic equations Det(p̂ − m) = 0 and Det(p̂ + m) = 0 for
u− and v− 4-spinors have solutions with p0 = ±Ep = ±

√
p2 +m2.



The recent problems of superluminal neutrinos, negative-mass squared
neutrinos, various schemes of oscillations including sterile neutrinos, re-
quire attention. The problem of the lepton mass splitting (e, µ, τ ) has
long history. This suggests that something missed in the foundations
of relativistic quantum theories. Modifications seem to be necessary in
the Dirac sea concept, and in the even more sophisticated Stueckelberg
concept of the backward propagation in time. The Dirac sea concept is
intrinsically related to the Pauli principle. However, the Pauli principle
is intrinsically related to the Fermi statistics and the anticommutation
relations of fermions. Recently, the concept of the bi-orthonormality
has been proposed; the (anti) commutation relations and statistics are
assumed to be different for neutral particles [6]. We propose the rele-
vant modifications in the basics of the relativistic quantum theory below.
Next, Sakharov in 1967, Ref. [7], introduced the idea of two universes
with opposite arrows of time, born from the same initial singularity (i.e.
Big Bang). Next, the authors of [5] constructed (within the framework
of the present-day quantum field theory) negative-energy fields for spin-
1/2 fermions. Currently, the predominating consensus is existence of the
dark matter (DM) and the dark energy (DE) paradigm. Numerous pos-
sible candidates have been proposed for the DM, but to the date, search
for these candidates was not successful. “There is growing favor with
the idea that new ideas need to be considered until an answer is found.”
“A paradigm shift that allows the serious consideration of negative mass
is a real possibility.” However, see [8] on the relation of inertial and
gravitational masses.

The paper is composed in the following way: Introduction, General
Frameworks, Negative-energy and Tachyonic Solutions for the spin 1,
and Conclusions. In the main text the Dirac spinor formalism is given.

2 The General Frameworks.

2.1 The Dirac formalism with negative energies.

The Dirac equation is:

[iγµ∂µ −m]Ψ(x) = 0 . (1)

The γµ are the Clifford algebra matrices, (µ, ν = 0, 1, 2, 3):

γµγν + γνγµ = 2gµν , (2)



gµν is the metrics of the Minkowski space. Usually, everybody uses the
following definition of the field operator [9,10] in the pseudo-Euclidean
metrics:

Ψ(x) =
1

(2π)3

∑
h

∫
d3p

2Ep

[uh(p)ah(p)e
−ip·x+vh(p)b

†
h(p)]e

+ip·x] , (3)

as given ab initio. After actions of the Dirac operator at exp(∓ipµxµ)
the 4-spinors ( u− and v− ) satisfy the momentum-space equations: (p̂−
m)uh(p) = 0 and (p̂ +m)vh(p) = 0, respectively; h is the polarization
index. It is easy to prove from the characteristic equations Det(p̂ ∓
m) = (p20 − p2 −m2)2 = 0 that the solutions should satisfy the energy-
momentum relation p0 = ±Ep = ±

√
p2 +m2.

The general scheme of construction of the field operator has been
presented in [11]. In the case of the (1/2, 0) ⊕ (0, 1/2) representation
we have:

Ψ(x) =
1

(2π)3

∫
d4p δ(p2 −m2)e−ip·xΨ(p) =

=
1

(2π)3

∑
h

∫
d4p δ(p20 − E2

p)e
−ip·xuh(p0,p)ah(p0,p) = (4)

=
1

(2π)3

∫
d4p

2Ep

[δ(p0 − Ep) + δ(p0 + Ep)]

[θ(p0) + θ(−p0)]e−ip·x
∑
h

uh(p)ah(p) =

=
1

(2π)3

∑
h

∫
d4p

2Ep

[δ(p0 − Ep) + δ(p0 + Ep)][
θ(p0)uh(p)ah(p)e

−ip·x + θ(p0)uh(−p)ah(−p)e+ip·x]
=

1

(2π)3

∑
h

∫
d3p

2Ep

θ(p0)[
uh(p)ah(p)|p0=Epe

−i(Ept−p·x) + uh(−p)ah(−p)|p0=Epe
+i(Ept−p·x)] ,

where ah, b
†
h are the annihilation/creation operators, and in the textbook

cases

uh(p) =

(
exp(+σ ·φ/2)ϕh

R(0)
exp(−σ ·φ/2)ϕh

L(0)

)
(5)



cosh(φ) = Ep/m, sinh(φ) = |p|/m. The 2-spinors are ϕ↑↓
L (0) =(

1
0

)
,

(
0
1

)
, ϕh

R = ∓Θ[1/2]ϕ
−h
L , Θ[1/2] =

(
0 −1
1 0

)
. During the cal-

culations above we had to represent 1 = θ(p0) + θ(−p0) in order to
get positive- and negative-frequency parts [12]. Moreover, during these
calculations we did not yet assume, which equation this field operator
(namely, the u− spinor) satisfies, with negative- or positive- mass?1 In
general, we should transform uh(−p) to vh(p). The procedure is the
following one [13]. In the Dirac case we should assume the following
relation in the field operator:∑

h

vh(p)b
†
h(p) =

∑
h

uh(−p)ah(−p) . (6)

We need Λµλ(p) = v̄µ(p)uλ(−p). By direct calculations, we find

−mb†µ(p) =
∑
λ

Λµλ(p)aλ(−p) . (7)

Hence, Λµλ = −im(σ · n)µλ, n = p/|p|, and

b†µ(p) = i
∑
λ

(σ · n)µλaλ(−p) . (8)

Multiplying (6) by ūµ(−p) we obtain

aµ(−p) = −i
∑
λ

(σ · n)µλb†λ(p) . (9)

The equations are self-consistent. In the (1, 0)⊕(0, 1) representation the
similar procedure leads to the different situation:

aµ(p) = [1− 2(S · n)2]µλaλ(−p) . (10)

This signifies that in order to construct the Sankaranarayanan-Good field
operator [35], it satisfies [γµν∂µ∂ν − (i∂/∂t)

E
m2]Ψ(x) = 0, we need addi-

tional postulates. For instance, one can try to construct the left- and the
right-hand side of the field operator separately each other [12].

We have, in fact, uh(Ep,p) and uh(−Ep,p) originally, which satisfy
the equations: [

Ep(±γ0)− γ · p−m
]
uh(±Ep,p) = 0 . (11)

1Moreover, since bispinors are, in general, complex-valued, we can even use the different basis such as
uα = column(i 0 0 0) etc. instead of the well-accustomed one.



Due to the properties U †γ0U = −γ0, U †γiU = +γi with the unitary
matrix

U =

(
0 −1
1 0

)
= γ0γ5 (12)

in the Weyl basis,2 we have in the negative-energy case:[
Epγ

0 − γ · p−m
]
U †uh(−Ep,p) = 0 . (13)

Thus, unless the unitary transformations do not change the physical con-
tent, we have that the negative-energy spinors γ5γ0u(−Ep,p) (see (13))
satisfy the accustomed “positive-energy” Dirac equation. Their explicite
forms γ5γ0u(−Ep,p) are different from the textbook “positive-energy”
Dirac spinors. From the first sight (just Ep → −Ep) they are the follow-
ing ones:

ũ(p) =
N√

2m(−Ep +m)


−p+ +m

−pr
p− −m
−pr

 , (14)

˜̃u(p) =
N√

2m(−Ep +m)


−pl

−p− +m
−pl

p+ −m

 . (15)

We use tildes because we do not yet know their polarization properties.
It is not even clear, which helicity operator, σ3/2 or (σ · n)/2, or some
other should be used after T− conjugation [5]. Next,

Ep =
√

p2 +m2 > 0, p0 = ±Ep, p
± = Ep ± pz, pr,l = px ± ipy. (16)

What about the ṽ(p) = γ0u transformed with the γ0 matrix? They are
not equal to the previous “negative-energy” 4-spinors vh(p) = γ5uh(p)?
Obviously, they also do not have well-known forms of the usual v−
spinors in the Weyl basis, differing by phase factor and in the sign at the
mass term. The normalizations of these 4-spinors are to (±2N2).

2The properties of the U− matrix are opposite to those of P †γ0P = +γ0, P †γiP = −γi with
the usual P = γ0, thus giving

[
−Epγ0 + γ · p−m

]
Puh(−Ep,p) = − [p̂+m] ṽ?(p) = 0. While,

the relations of the spinors vh(Ep,p) = γ5uh(Ep,p) are well-known, it seems that the relations of the
v− spinors of the positive energy to u− spinors of the negative energy are frequently forgotten, ṽ?(p) =
γ0uh(−Ep,p).



One can prove that the matrix

P = eiθγ0 = eiθ
(

0 12×2

12×2 0

)
(17)

can be used in the parity operator as well as in the original Weyl basis.
However, if we would take the phase factor to be zero we obtain that
while uh(p) have the eigenvalue +1, but after space inversion operation
(R = (x → −x,p → −p))

PRũ(p) = PRγ5γ0u↑(−Ep,p) = −ũ(p) , (18)

PR˜̃u(p) = PRγ5γ0u↓(−Ep,p) = −˜̃u(p) . (19)

Perhaps, one should choose the phase factor θ = π. Thus, we again con-
firmed that the relative (particle-antiparticle) intrinsic parity has physical
significance only.

Similar formulations have been presented in Refs. [14], and [15]. The
group-theoretical basis for such doubling has been given in the papers by
Gelfand, Tsetlin and Sokolik [16], who first presented the theory in the 2-
dimensional representation of the inversion group in 1956 (later called as
“the Bargmann-Wightman-Wigner-type quantum field theory” in 1993).
M. Markov wrote long ago two Dirac equations with the opposite signs
at the mass term [14].

[iγµ∂µ −m] Ψ1(x) = 0 , (20)
[iγµ∂µ +m] Ψ2(x) = 0 . (21)

In fact, he studied all properties of this relativistic quantum model (while
he did not know yet the quantum field theory in 1937). Next, he added
and subtracted these equations:

iγµ∂µφ(x)−mχ(x) = 0 , (22)
iγµ∂µχ(x)−mφ(x) = 0 . (23)

Thus, φ and χ solutions can be presented as some superpositions of the
Dirac 4-spinors u− and v−. These equations, of course, can be identified
with the equations for the Majorana-like λ− and ρ−, which we presented
in Ref. [17] on the basis of postulates [18].

The four-component Majorana-like spinors are

λ(p) =

(
ϑΘϕ∗

L(p)
ϕL(p)

)
, (24)



see Θ[1/2] above. They become eigenspinors of the charge conjugation
operator Sc with eigenvalues ±1 if the phase ϑ is set to ± i:

Sc λ(p)
∣∣∣
ϑ=±i

= ±λ(p)
∣∣∣
ϑ=±i

. (25)

In a similar way one can construct ρ− spinors on using ϕR.
Of course, the signs at the mass terms depend on, how do we associate

the positive- or negative- frequency solutions with λ and ρ:

iγµ∂µλ
S(x)−mρA(x) = 0 , (26)

iγµ∂µρ
A(x)−mλS(x) = 0 , (27)

iγµ∂µλ
A(x) +mρS(x) = 0 , (28)

iγµ∂µρ
S(x) +mλA(x) = 0 , (29)

S and A are self- and anti-self charge conjugate states. Neither of them
can be regarded as the Dirac equation. However, they can be written in
the 8-component form as follows:

[iΓµ∂µ −m] Ψ
(+)

(x) = 0 , (30)
[iΓµ∂µ +m] Ψ

(−)
(x) = 0 , (31)

with

Ψ(+)(x) =

(
ρA(x)
λS(x)

)
,Ψ(−)(x) =

(
ρS(x)
λA(x)

)
, and Γµ =

(
0 γµ

γµ 0

)
.(32)

It is easy to find the corresponding projection operators, and the Feynman-
Stueckelberg propagator.

The connection with the Dirac spinors has been found [17, 19]. For
instance,

λS↑ (p)
λS↓ (p)
λA↑ (p)
λA↓ (p)

 =
1

2


1 i −1 i
−i 1 −i −1
1 −i −1 −i
i 1 i −1



u+1/2(p)
u−1/2(p)
v+1/2(p)
v−1/2(p)

 , (33)

provided that the 4-spinors have the same physical dimension. Thus, we
can see that the two 4-spinor systems are connected by unitary trans-
formations, and this represents itself rotations of the spin-parity basis.
However, it is usually assumed that the λ− and ρ− spinors describe the
neutral particles, meanwhile u− and v− spinors describe the charged



particles. Kirchbach et al. [19] found the amplitudes for neutrinoless
double beta decay (00νβ) in this scheme. It is obvious from (33) that
there are some additional terms in 00νβ comparing with the standard
formulation. One can also re-write the above equations into the two-
component forms. Thus, one obtains the Feynman-Gell-Mann [20] equa-
tions.

Barut and Ziino [15] proposed yet another model. They considered
γ5 operator as the operator of the charge conjugation. Thus, the charge-
conjugated Dirac equation has the different sign comparing with the or-
dinary formulation:

[iγµ∂µ +m]Ψc
BZ = 0 , (34)

and the so-defined charge conjugation applies to the whole system,
fermion+electromagnetic field, e → −e in the covariant derivative. The
superpositions of the ΨBZ and Ψc

BZ also give us the “doubled Dirac
equation”, as the equations for λ− and ρ− spinors. The concept of
the doublings of the Fock space has been developed in the Ziino works
(cf. [16, 21]) in the framework of the quantum field theory. In their case
the charge conjugate states are simultaneously the eigenstates of the chi-
rality. Next, it is interesting to note that for the Majorana-like field oper-
ator (ν refers to neutrino) we have

ν
ML

(xµ) =

∫
d3p

(2 π)3
1

2Ep

∑
η

[
λSη (p

µ) aη(p
µ) e− i p·x + λAη (p

µ) a†η(p
µ) e+ i p·x] .
(35)

Hence, [
ν

ML

(xµ) + CνML †
(xµ)

]
/2 =

=

∫
d3p

(2π)3
1

2Ep

∑
η

[(
iΘϕ∗ η

L
(pµ)

0

)
aη(p

µ)e−ip·x+

+

(
0

ϕη
L(p

µ)

)
a†η(p

µ)eip·x
]
,[

ν
ML

(xµ)− CνML †
(xµ)

]
/2 = (36)

=

∫
d3p

(2π)3
1

2Ep

∑
η

[(
0

ϕη
L
(pµ)

)
aη(p

µ)e−ip·x+

+

(
−iΘϕ∗

L
η(pµ)

0

)
a†η(p

µ)eip·x
]
,



which, thus, naturally lead to the Ziino-Barut scheme of massive chi-
ral fields, Ref. [15]. Next, the relevant paper is Ref. [22]. It is obvi-
ous to merge u(p) and v(p) spinors in one doublet of “positive energy”
and v(p) and u(p) spinors, in another doublet of “negative energy” ,
as Markov and Fabbri did. However, the point of my paper is that
both u(p0,p) and v(p0,p) contains contributions to both positive- and
negative- energies, cf. [23].

2.2 The Feynman-Dyson propagators for neutral particles (locality
or non-locality?).

We study the problem of construction of causal propagators in both
higher-spin theories and the spin S = 1/2 Majorana-like theory. The
hypothesis is: in order to construct the analogues of the Feynman-Dyson
propagator we need actually four field operators connected by the dual
and parity transformation. We use the standard methods of quantum
field theory. So, the number of components in the causal propagators is
enlarged accordingly. The conclusion is discussed in the last Section:
if we would not enlarge the number of components in the fields (in the
propagator) we would not be able to obtain the causal propagator.

Accordingly to the Feynman-Dyson-Stueckelberg ideas, a causal prop-
agator SF has to be constructed on using the formula (e.g., Ref. [10,
p.91])

SF (x2, x1) =
∑
σ

∫
d3p

(2π)3
m

Ep

×
[
θ(t2 − t1) a u

σ(p)uσ(p)e−ip·x

+ θ(t1 − t2) b v
σ(p)vσ(p)eip·x

]
, (37)

where x = x2 − x1, m is the particle mass, pµ = (Ep,p), uσ, vσ are
the 4-spinors, θ(t) is the Heaviside function. In the spin S = 1/2 Dirac
theory, it results in

SF (x) =

∫
d4p

(2π)4
e−ip·x p̂+m

p2 −m2 + iϵ
, (38)

provided that the constants a and b are determined by imposing

(i∂̂2 −m)SF (x2, x1) = δ(4)(x2 − x1) , (39)



namely, a = −b = 1/i; ∂2 = ∂/∂x2, ϵ defines the rules of work near the
poles.

However, attempts to construct the covariant propagator in this way
have failed in the framework of the Weinberg theory, Ref. [24], which is
a generalization of the Dirac ideas to higher spins. For instance, on the
page B1324 of Ref. [24] Weinberg writes:

“Unfortunately, the propagator arising from Wick’s theorem is NOT
equal to the covariant propagator except for S = 0 and S = 1/2. The
trouble is that the derivatives act on the ϵ(x) = θ(x)− θ(−x) in ∆C(x)
as well as on the functions3 ∆ and ∆1. This gives rise to extra terms
proportional to equal-time δ functions and their derivatives. . . The cure
is well known: . . . compute the vertex factors using only the original
covariant part of the Hamiltonian H; do not use the Wick propagator
for internal lines; instead use the covariant propagator.

The propagator proposed in Ref. [25] is the causal propagator. How-
ever, the old problem remains: the Feynman-Dyson propagator is not
the Green function of the Weinberg equation. As mentioned, the covari-
ant propagator proposed by Weinberg propagates kinematically spurious
solutions [25].

The aim of this subsection is to consider the problem of constructing
the propagator in the framework of the model given in [26]. The concept
of the Weinberg field doubles has been proposed there. It is based on the
equivalence between the Weinberg field and the antisymmetric tensor
field, which can be described by both Fµν and its dual F̃µν . These field
functions may be used to form a parity doublet. An essential ingredient
of my consideration is the idea of combining the Lorentz and the dual
transformation. For the functions ψ(1)

1 and ψ(1)
2 , connected with the first

one by the dual (chiral, γ5 = diag(13×3),−13×3)) transformation, the
equations are4

(γµνpµpν +m2)ψ
(1)
1 =0 , (40)

(γµνpµpν −m2)ψ
(1)
2 =0 , (41)

with µ, ν = 1, 2, 3, 4. For the field functions connected with ψ(1)
1 and

3In the cited paper ∆1(x) ≡ i [∆+(x) + ∆+(−x)] and ∆(x) ≡ ∆+(x)−∆+(−x) have been used.
i∆+(x) ≡ (1/(2π)3)

∫
(d3p/2Ep) exp(ip · x) is the particle Green function.

4I have to use the Euclidean metrics here in order a reader to be able to compare the formalism with
the classical cited works. In the next Sections we turn to the pseudo-Euclidean metrics on using simple
correspondence rules.



ψ
(1)
2 by the γ5γ44 transformations the set of equations is written:[

γ̃µνpµpν −m2
]
ψ

(2)
1 =0 , (42)[

γ̃µνpµpν +m2
]
ψ

(2)
2 =0 , (43)

where γ̃µν = γ44γµνγ44 is connected with the S = 1 Barut-Muzinich-
Williams γµν matrices [27, 28]. In the cited paper I have used the plane-
wave expansion. The corresponding ‘bispinors’ in the momentum space
coincide with the Tucker-Hammer ones within a normalization.5 Their
explicit forms are

u
σ (1)
1 (p) = v

σ (1)
1 (p) =

1√
2

[
m+ (S · p) + (S·p)2

(E+m)

]
ξσ[

m− (S · p) + (S·p)2
(E+m)

]
ξσ

 (44)

and

u
σ (1)
2 (p) = v

σ (1)
2 (p) =

1√
2

 [
m+ (S · p) + (S·p)2

(E+m)

]
ξσ[

−m+ (S · p)− (S·p)2
(E+m)

]
ξσ

 (45)

where ξσ are the 3-component objects (the analogs of the Weyl spinors).
Thus, u(1)2 (p) = γ5u

(1)
1 (p) and u(1)2 (p) = −u(1)1 (p)γ5. The bispinors

u
σ (2)
1 (p) = v

σ (2)
1 (p) =

1√
2

 [
m− (S · p) + S·p)2

(E+m)

]
ξσ[

−m− (S · p)− (S·p)2
(E+m)

]
ξσ

(46)

u
σ (2)
2 (p) = v

σ (2)
2 (p) =

1√
2

[
−m+ (S · p)− (S·p)2

(E+m)

]
ξσ[

−m− (S · p)− (S·p)2
(E+m)

]
ξσ

(47)

satisfy Eqs. (42) and (43) written in the momentum space. Thus, u(2)1 (p) =

γ5γ44u
(1)
1 (p), u(2)1 = u

(1)
1 γ5γ44, u

(2)
2 (p) = γ5γ44γ5u

(1)
1 (p) and u(2)2 (p) =

−u(1)1 γ44.
5They also coincide with the Ahluwalia et al. ones within a unitary transformation [2].



Let me check, if the sum of four equations[
γµν∂µ∂ν −m2

] ∫ d3p

(2π)32Ep

[
θ(t2 − t1) a u

σ (1)
1 (p)u

σ (1)
1 (p)eip·x + θ(t1 − t2) b v

σ (1)
1 (p)v

σ (1)
1 (p)e−ip·x

]
+

[
γµν∂µ∂ν +m2

] ∫ d3p

(2π)32Ep

[
θ(t2 − t1) a u

σ (1)
2 (p)u

σ (1)
2 (p)eip·x + θ(t1 − t2) b v

σ (1)
2 (p)v

σ (1)
2 (p)e−ip·x

]
+

[
γ̃µν∂µ∂ν +m2

] ∫ d3p

(2π)32Ep

[
θ(t2 − t1) a u

σ (2)
1 (p)u

σ (2)
1 (p)eip·x + θ(t1 − t2) b v

σ (2)
1 (p)v

σ (2)
1 (p)e−ip·x

]
+

[
γ̃µν∂µ∂ν −m2

] ∫ d3p

(2π)32Ep

[
θ(t2 − t1) a u

σ (2)
2 (p)u

σ (2)
2 (p)eip·x + θ(t1 − t2) bv

σ (2)
2 (p)v

σ (2)
2 (p)e−i·px

]
= δ(4)(x2 − x1) (48)

can be satisfied by the definite choice of a and b. The relation ui(p) =
vi(p) for bispinors in the momentum space had been used in Ref. [26]. In
the process of calculations I assume that the 3-“spinors” are normalized
to δσσ′ . The simple calculations give

∂µ∂ν
[
a θ(t2 − t1) e

ip(x2−x1) + b θ(t1 − t2) e
−ip(x2−x1)

]
=

−
[
a pµpνθ(t2 − t1) exp [ip(x2 − x1)] + b pµpνθ(t1 − t2) exp [−ip(x2 − x1)]

]
+a

[
− δµ4δν4δ

′(t2 − t1) + i(pµδν4 + pνδµ4)δ(t2 − t1)
]

exp [ip · (x2 − x1)] + b [δµ4δν4δ
′(t2 − t1)+

i(pµδν4 + pνδµ4)δ(t2 − t1)] exp [−ip(x2 − x1)] ; (49)

and

u
(1)
1 u

(1)
1 =

1

2

(
m2 Sp ⊗ Sp

Sp ⊗ Sp m2

)
, (50)

u
(1)
2 u

(1)
2 =

1

2

(
−m2 Sp ⊗ Sp

Sp ⊗ Sp −m2

)
, (51)

u
(2)
1 u

(2)
1 =

1

2

(
−m2 Sp ⊗ Sp

Sp ⊗ Sp −m2

)
, (52)

u
(2)
2 u

(2)
2 =

1

2

(
m2Sp ⊗ Sp

Sp ⊗ Sp m2

)
, (53)

where

Sp = m+ (S · p) + (S · p)2

E +m
, (54)

Sp = m− (S · p) + (S · p)2

E +m
(55)



are the Lorentz boost matrices. Due to

[Ep − (S · p)]Sp ⊗ Sp = m2 [Ep + (S · p)] , (56)
[Ep + (S · p)]Sp ⊗ Sp = m2 [Ep − (S · p)] , (57)

one can conclude: the generalization of the notion of causal propagators
is admitted by using the Wick-like formula for the time-ordered particle
operators provided that a = b = 1/4im2. It is necessary to consider
all four equations, Eqs. (40)-(43). Obviously, this is related to the 12-
component formalism, which I presented in [26].

The S = 1 analogues of the formula (38) for the Weinberg propaga-
tors follow immediately. In the Euclidean metrics they are:

S
(1)
F (p)∼− 1

i(2π)4(p2+m2−iϵ)
[
γµνpµpν−m2

]
, (58)

S
(2)
F (p)∼− 1

i(2π)4(p2+m2−iϵ)
[
γµνpµpν+m

2
]
, (59)

S
(3)
F (p)∼− 1

i(2π)4(p2+m2 − iϵ)

[
γ̃µνpµpν+m

2
]
, (60)

S
(4)
F (p)∼− 1

i(2π)4(p2+m2−iϵ)
[
γ̃µνpµpν−m2

]
. (61)

The controversy in the case of λ− and ρ− spinors of the (1/2, 0) ⊕
(0, 1/2) representation is: I cited Ahluwalia et al., Ref. [2]:6 “To study
the locality structure of the fields Λ(x) and λ(x), we observe that field
momenta are

Π(x) =
∂LΛ

∂Λ̇
=

∂

∂t

¬
Λ (x), (62)

and similarly π(x) = (∂/∂t)
¬
λ (x). The calculational details for the

two fields now differ significantly. We begin with the evaluation of the
equal time anticommutator for Λ(x) and its conjugate momentum

{Λ(x, t), Π(x′, t)} = i

∫
d3p

(2π)3
1

2m
eip·(x−x′)

×
∑
α

[
ξα(p)

¬
ξα (p)− ζα(−p)

¬
ζα (−p)

]
︸ ︷︷ ︸

=2m[I+G(p)]

.

6The notation should be compared with the cited papers.



The term containing G(p) vanishes only when x − x′ lies along the ze
axis (see Eq. (24) [therein], and discussion of this integral in Ref. [31])

x− x′ along ze : {Λ(x, t), Π(x′, t)}
= iδ3(x− x′)I. (63)

The anticommutators for the particle/antiparticle annihilation and cre-
ation operators suffice to yield the remaining locality conditions,

{Λ(x, t), Λ(x′, t)} = O, {Π(x, t), Π(x′, t)} = O. (64)

The set of anticommutators contained in Eqs. (63) and (64) establish
that Λ(x) becomes local along the ze axis. For this reason we call ze as
the dark axis of locality.”

Next, I cite Rodrigues et al., Ref. [3]: “We have shown through ex-
plicitly and detailed calculation that the integral of G(p) appearing in
Eq. (42) of [2] is null for x− x′ lying in three orthonormal spatial
directions in the rest frame of an arbitrary inertial frame e0 = ∂/∂t.

This shows that the existence of elko spinor fields does not implies in
any breakdown of locality concerning the anticommutator of
{Λ(x,t),Π(x′, t} and moreover does not implies in any preferred space-
like direction field in Minkowski spacetime.”

Who is right? In 2013 W. Rodrigues [4] changed a bit his opinion.
He wrote: “When ∆z ̸= 0, Ĝ(x− x′) is null the anticommutator is local
and thus there exists in the elko theory as constructed in [2] an infinity
number of “locality directions”. On the other hand Ĝ(x− x′) is a distri-
bution with support in ∆z = 0. So, the directions ∆ = (∆x,∆y, 0) are
nonlocal in each arbitrary inertial reference frame e0 chosen to evaluate
Ĝ(x− x′)”, thus accepting the Ahluwalia et al. viewpoint.

Meanwhile, I suggest to use the 8-component (or 16-component) for-
malism in similarity with the 12-component formalism of this subsec-
tion. If we calculate7

S
(+,−)
F (x2, x1)=

∫
d3p

(2π)3
m

Ep

[
θ(t2−t1) a Ψσ

±(p)Ψ
σ

±(p)e
−ip·x

+ θ(t1 − t2) b Ψ
σ
∓(p)Ψ

σ

∓(p)e
ip·x

]
=

∫
d4p

(2π)4
e−ip·x (p̂±m)

p2 −m2 + iϵ
, (65)

7For Ψσ
± see Eq. (33).



we easily come to the result that the corresponding Feynman-Dyson
propagator gives the local theory in the sense:∑

±

[iΓµ∂
µ
2 ∓m]S

(+,−)
F (x2 − x1) = δ(4)(x2 − x1). (66)

However, physics should choose only one correct formalism. It is not
clear, why two correct mathematical formalisms lead to different phys-
ical results? First of all, we should check, whether this possible non-
locality in the propagators has influence on the physical observables such
as the scattering amplitudes, the energy spectra and the decay widths. If
not, we may find some unexpected symmetries in relativistic quantum
mechanics/field theory. This is the task for future publications. How-
ever, it is already obvious if we would not enlarge the number of com-
ponents in the fields (in the propagator) we would not be able to obtain
the formally causal propagators for higher spins and/or for the neutral
particles.

The dilemma of the (non)local propagators for the spin S = 1 has also
been analized in [33] within the Duffin-Kemmer-Petiau (DKP) formal-
ism or the Dirac-Kähler formalism [32]. However, the propagators given
in [33] are those in the generalized Duffin-Kemmer-Petiau formalism, in
fact. They are not in the Weinberg-Tucker-Hammer formalism. More-
over, the problem of the massless limit was not discussed in the DKP
formalism, which is non-trivial (like that of the Proca formalism [34]).

We should use the obtained set of Weinberg propagators (58-61) in
the perturbation calculus of scattering amplitudes. In Ref. [29] the am-
plitude for the interaction of two 2(2S + 1) bosons has been obtained
on the basis of the use of one field only and it is obviously incomplete,
see also Ref. [28]. But, it is interesting to note that the spin structure
was proved there to be the same, regardless we consider the two-Dirac-
fermion interaction or the two-Weinberg S = 1-boson interaction. How-
ever, the denominator slightly differs (1/∆⃗2 → 1/2m(∆0 −m)) in the
cited papers [29] from the fermion-fermion case, where (∆0, ∆⃗) is the
momentum-transfer 4-vector in the Lobachevsky space. More accurate
considerations of the fermion-boson and boson-boson interactions in the
framework of the Weinberg theory has been reported elsewhere [30].
So, the conclusion of this subsection is: one can construct analogs of the
Feynman-Dyson propagators for the 2(2S + 1) model and, hence, local
theories provided that the Weinberg states are quadrupled (S = 1 case),
and the neutral particle states are doubled.



3 Negative-energy and Tachyonic Solutions.

What is the physical sense of the presented mathematical formalism?
Why did we consider four field functions in the propagator for spin-1 in
Ref. [1, 21]? Let us make some additional observations for spin-1/2 and
spin 1.

We have 4 solutions in the original Dirac equation for u− and 4 so-
lutions for v = γ5u (remember we have p0 = ±Ep = ±

√
p2 +m2).

See, for example, Ref. [36]. In the S = 1 Weinberg equation [24]
we have 12 solutions.8 Apart p0 = ±Ep we have taquionic solutions
p0 = ±E ′

p = ±
√

p2 −m2, i. e. m → im. This is easily to be checked
on using the algebraic equations and solving them with respect to p0:

Det[γµpµ ±m] = 0 , (67)

and
Det[γµνpµpν ±m2] = 0 , (68)

where γµν are again the Barut-Muzinich-Williams 6 × 6 covariantly-
defined matrices [24, 27]. In construction of field operator we generally
need u(−p) = u(−p0,−p,m) which should be transformed to v(p) =
γ5u(p) = γ5u(+p0,+p,m). On the other hand, when we calculate the
parity properties we need p → −p. The u(p0,−p,m) satisfies

[γ̃µνpµpν −m2]u(p0,−p,m) = 0 . (69)

The u(−p0,p,m) “spinor” satisfies:

[γ̃µνpµpν −m2]u(−p0,+p,m) = 0 , (70)

that is the same as above. The tilde signifies γ̃µν = γ00γ
µνγ00 that is

analogoues to the S = 1/2 case γ̃µ = γ0γ
µγ0. The u(−p0,−p,m)

satisfies:
[γµνpµpν −m2]u(−p0,−p,m) = 0 . (71)

This case is different from the spin-1/2 case where the spinor u(−p0,p,m)
satisfies

[γ̃µpµ +m]u(−p0,+p,m) = 0 , (72)

and u(p0,−p,m),

[γ̃µpµ −m]u(p0,−p,m) = 0 , (73)
8In Ref. [28] we have causal solutions only for the S=1 Tucker-Hammer equation.



and
[γµpµ +m]u(−p0,−p,m) = 0 . (74)

In general we can use either u(−p0,+p,m) or u(p0,−p,m) to con-
struct the causal propagator in the spin-1/2 case. However, a) u(−p0,+p,m)
satisfies the similar equation as u(+p0,−p,m) and b) we have the inte-
gration over p. This integration is invariant with respect to p → −p:

SF (x2, x1) =
∑
σ

∫
d3p

(2π)3
m

Ep

(75)

[θ(t2 − t1) a u
σ(p)uσ(p)e−ip·(x2−x1) + θ(t1 − t2) b v

σ(p)vσ(p)e+ip·(x2−x1)] .

So the results for the causal propagator (S = 1/2)

SF (x) =

∫
d4p

(2π)4
e−ip·x p̂±m

p2 −m2 + iϵ
(76)

do not change physics observables regardless the use of one or another
Dirac equation.

The situation is somewhat different for spin 1. The tachyonic solu-
tions of the original Weinberg equation

[γµνpµpν −m2]u(p0,+p,m) = 0 (77)

are just the solutions of the equation with the opposite square of m →
im):

[γµνpµpν +m2]u(p0,+p, im) = 0 . (78)

We cannot transform the propagator of the original equation (77) to that
of (78) just by the change of the variables as in the spin-1/2 case. The
mass square changed the sign, just as in the case of v− “spinors”. When
we construct the propagator we have to take into account this solution
and the superposition u(p,m) and u(p, im), and corresponding equa-
tions.

The conclusion is paradoxical: in order to construct the causal prop-
agator for the spin 1 we have to take acausal (tachyonic) solutions of
homogeneous equations into account. It is not surprising that the propa-
gator is not causal for the Tucker-Hammer equation because it does not
contain the tachyonic solutions. Probably, this statement is valid for all
higher spins.



4 The Conclusions.

First of all, the point of my paper is: there are “negative-energy solu-
tions” in that is previously considered as “positive-energy solutions” of
relativistic wave equations, and vice versa. Their explicit forms have
been presented. For example in the S = 1/2 case both algebraic equa-
tion Det(p̂ − m) = 0 and Det(p̂ + m) = 0 for u− and v− 4-spinors
have solutions with p0 = ±Ep = ±

√
p2 +m2. The same is true

for higher-spin equations. Meanwhile, every book applies the Dirac-
Feynman-Stueckelberg procedure for elimination of negative-energy so-
lutions. The recent Ziino works (and, independently, the articles of sev-
eral other authors) show that the Fock space can be doubled. We re-
consider this possibility on the quantum-field level for both S = 1/2 and
higher spin particles. Next, the relations to the previous works have been
found. For instance, the doubling of the Fock space and the correspond-
ing solutions of the Dirac equation, and those of higher-spin equations
obtained additional mathematical bases in this paper. The tachyonic so-
lutions seem to play crucial role in construction of the propagators for
higher spins. .
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