A Novel TFN-based Complex Basic Belief Assignment Generation Method

Junjie Huang ${ }^{\text {a }}$, Fuyuan Xiao ${ }^{\text {a,* }}$
${ }^{a}$ The School of Big Data and Software Engineering, Chongqing University, Chongqing, 401331, China

Abstract

In this paper, a novel TFN-based complex basic belief assignment generation method is proposed to improve decision-making accuracy in complex evidence theory.

Keywords: Complex Evidence Theory, Complex Basic Belief Assignment, Triangular Fuzzy Number

1. NTFN Modeling

The selected instances from training data are represented as follows:

$$
\begin{equation*}
s_{t}^{p}=x_{t}^{p} e^{i y_{t}^{p}}, \quad p \in\{1,2, \ldots, K\} \tag{1}
\end{equation*}
$$

where i is an imaginary unit.
Six elements $a_{t m}, b_{t m}, c_{t m}, a_{t p}, b_{t p}$ and $c_{t p}$ of NTFN of class c with attribute t are defined as:

$$
\begin{align*}
& a_{t m}=\min \left(x_{t}^{p}\right), a_{t p} \tag{2}\\
&=\min \left(y_{t}^{p}\right) \tag{3}\\
& b_{t m}=\frac{1}{K} \sum_{p=1}^{K} x_{t}^{p}, b_{t p}=\frac{1}{K} \sum_{p=1}^{K} y_{t}^{p} \tag{4}\\
& c_{t m}=\max \left(x_{t}^{p}\right), c_{t p}=\max \left(y_{t}^{p}\right)
\end{align*}
$$

The novel triangular fuzzy function is defined as:

$$
\begin{equation*}
\mu_{s}(x, y)=\mu_{s}(x) e^{i \mu_{s}(y)} \tag{5}
\end{equation*}
$$

[^0]\[

$$
\begin{gather*}
\mu_{s}(x)=\left\{\begin{array}{lr}
0, & x<a_{t m} \\
\frac{x-a_{t m}}{b_{t m}-a_{t m}}, & a_{t m}<x<b_{t m} \\
\frac{c_{t m}-x}{c_{t m}-b_{t m}}, & b_{t m}<x<c_{t m} \\
0, & x \geq c_{t m}
\end{array}\right. \tag{6}\\
\mu_{s}(y)=\left\{\begin{array}{lr}
0, & y<a_{t p} \\
\frac{y-a_{t p}}{b_{t p}-a_{t p}}, & a_{t p}<y<b_{t p} \\
\frac{c_{t p}-y}{c_{t p}-b_{t p}}, & b_{t p}<y<c_{t p} \\
0, & y \geq c_{t p}
\end{array}\right. \tag{7}
\end{gather*}
$$
\]

With the above steps NTFNs can be created for each attribute of each class of the dataset.

2. CBBA Generation

For a complex attribute $s_{t}^{p}=x_{t}^{p} e^{i y_{t}^{p}}$ of an instance, the membership value M_{t} are obtained by the NTFN μ_{s} as:

$$
\begin{equation*}
M_{t}\left(c_{m}\right)=\mu_{s}\left(x_{t}^{p}, y_{t}^{p}\right)=\mu_{s}\left(x_{t}^{p}\right) e^{i \mu_{s}\left(y_{t}^{p}\right)} \tag{8}
\end{equation*}
$$

The membership degree \mathbb{H}_{t} of the focus elements in FOD $\Theta=\left\{c_{1}, \ldots, c_{S}\right\}$ is as follows:

$$
\begin{equation*}
\mathbb{H}_{t}\left(\Theta_{i}\right)=\min _{c_{m} \in \Theta_{i}}\left(M_{t}\left(c_{m}\right)\right), \tag{9}
\end{equation*}
$$

where $\Theta_{i} \subseteq \Theta$.
\mathbb{H}_{t} is processed to obtain CBBA M_{t}. When $\left|\sum_{\Theta_{i} \subseteq \Theta} H_{t}\left(\Theta_{i}\right)\right| \geq 1, \mathbb{H}_{t}$ is processed as follows:

$$
\begin{equation*}
\mathbb{M}_{t}\left(\Theta_{i}\right)=\frac{\mathbb{H}_{t}\left(\Theta_{i}\right)}{\sum_{\Theta_{k} \in \Theta} \mathbb{H}_{t}\left(\Theta_{k}\right)}, \quad \forall \Theta_{i} \subseteq \Theta \tag{10}
\end{equation*}
$$

and when $\left|\sum_{\Theta_{i} \in \Theta} \mathbb{H}_{t}\left(\Theta_{i}\right)\right|<1, \mathbb{H}_{t}$ is processed as follows:

$$
\begin{align*}
& \mathbb{M}_{t}(\Theta)=\mathbb{H}(\Theta)+1-\sum_{\Theta_{k} \in \Theta} \mathbb{H}\left(\Theta_{k}\right), \tag{11}\\
& \mathbb{M}_{t}\left(\Theta_{i}\right)=\mathbb{H}\left(\Theta_{i}\right), \quad \Theta_{i} \subset \Theta .
\end{align*}
$$

Then, a CBBA IM_{t} is obtained by complex feature s_{t}^{p}.

[^0]: *Corresponding author: Fuyuan Xiao (doctorxiaofy@hotmail.com)

