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Abstract 

The Monty Hall Problem, which involves probability, uncertainty and information is solved using information theory.  When the 

host opens one or more doors that don’t contain the prize, he adds information to the remaining unselected doors.  Information 

theory shows that the added information increases the likelihood that the prize is behind an unselected door.  The method was 

applied to a generalization of the Monty Hall Problem and showed that the probability or winning the prize is increased by 

switching doors.      
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Nomenclature 

I    - information 

M    -  number of doors Monty Hall opens 

N    -  number of doors 

n    -  number of events 

p    -  probability 

pi    -  probability of ith event 

S    -  entropy 

SF    -  final entropy 

Si    -  initial entropy 

V    -  number of events associated with information  

W    -  number of possible answers associated with entropy 

 

1. Introduction 

The Monty Hall Problem is named after a TV game show where the contestant could win a car, if he chose one of 

three doors correctly.  The correct door revealed the winning choice of a car and the other two doors each revealed 

a goat that signifies an incorrect choice.  Without prior knowledge, it is assumed that each door has a probability of 

1/3, therefore the contestant could choose any one of the three doors and be equally likely to win the car.  

However, prior to opening his chosen door, the game show moderator, Monty Hall, opens one of the two remaining 

doors that always reveals a goat.  Monty Hall knows which door contains the car, so he always opens a door that 

reveals a goat.  At this point the contestant is given a choice of switching his original door choice to the remaining 
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unopened door.  What should the contestant do to increase his odds of winning the car?  Since there are only two 

unopened doors (his original choice and the remaining unopened door) most people believe the odds for each 

door are the same at 50 percent each.  Therefore, there wouldn’t be any advantage to switching doors.  

Nevertheless, by switching doors the contestant increases his odds of winning the car from 1/3 to 2/3, so the 

contestant should always switch doors.  This problem caused much controversy and discussion among both laymen 

and scholars due to logical and probability considerations.  Numerous explanations were given in papers and on 

internet platforms.   

The current work provides a completely new method of resolving the Monty Hall Problem using information 

theory, which is appropriate for the problem and elucidates the issue that causes many to incorrectly answer the 

question.  A short introduction to entropy and information theory is presented to familiarize the read with the 

concepts.  Information theory is then applied to the Monty Hall Problem and its generalization.  

    

2. Entropy and Information Theory Concepts 

Entropy is a quantity that represents disorder or uncertainty in a system and has notable application in the area of 

thermodynamics.  For example, when heat energy flows of a hot object to a cooler object entropy increases.  Heat 

cannot flow from a cooler object to a hotter object, since the entropy would decrease, which is not permitted by 

the 2nd Law of Thermodynamics.  Entropy has numerous applications in various areas, one of which involves 

probability and chance.  Entropy is a quantitative measure of our lack of information.  The logarithm function is 

used in quantifying entropy and information, since it insures the additivity of the respective quantities.  If there are 

W possible answers of equal probability, then the associated entropy is given by eq. (1), where ln() represents the 

natural logarithm function. 

𝐒 = ln(𝐖)      (1) 

More generally, if we have one of n events that occur with probabilities p1, p2, p3, p4, p5…pn, subject to the 

normalization condition, 

∑ 𝑝𝑖 = 1𝑛
1  ,     (2) 

then the entropy is given by eq. (3). 

𝐒 = −∑ 𝑝𝑖 ln(𝑝𝑖)
𝑛
1      (3) 

For example, if n = 5 and each pi is equal to 1/5, then eq. (3) reduces to eq. (4), which agrees with eq. (1) with W = 

5.   
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Entropy can be reduced by adding Information, I, so that the final entropy is given by the initial entropy plus the 

added information, as shown in eq. (5).   

𝐒𝐅 = 𝐒𝐈 + I      (5) 

Information equivalent to one correct choice out of V choices of equal probability is quantified by eq. (6). 

𝐈 = − ln(𝐕) = ln (
1

𝐕
)      (6) 

If the information in eq.(6) is added to the entropy in eq. (1), the final entropy is reduced, as shown in eq. (7). 

𝐒𝐅 = ln(𝐖) − ln(𝐕) = ln (
𝐖

𝐕
) = ln (

1

𝐕/𝐖
)     (7)  



The probability associated with SF in eq. (7) is given by V/W.  If V equals W, then the information reduces the final 

entropy to zero, as given by eq. (8), since the natural logarithm of 1 is 0.  This is equivalent to having complete 

knowledge of the correct choice, with a probability of 1. 

𝐒𝐅 = ln (
𝐖

𝐖
) = ln(1) = 0      (8)  

  

3. Application to the Monty Hall Problem 

In the Monty Hall Problem, one of three closed doors conceals the prize, which is a car and each of the other two 

doors has a goat.  Since the location of the car is assumed to be random, each door has a probability of 1/3 of 

concealing the car.  The probability of the contestant’s choice of one door is 1/3, which has an associated entropy 

given by eq. (9).   

𝐒 = ln (
1

𝑝
) = ln (

1

1/3
) = ln(3)     (9) 

Since Monty Hall knows where the car is located, he opens one of the remaining two doors that always contains a 

goat.  In opening the door Monty Hall provides information given by -ln(2), since he has a choice of two doors.  

Initially, the remaining unopened door has an entropy of ln(3), just as the contestant’s original choice.  However, 

the information added by Monty Hall decreases the entropy of the unopened door to ln(3/2), as shown in eq. (10). 

𝐒𝐅 = 𝐒𝐢 + 𝐈 = ln(3) − ln(2) = ln (
3

2
) = ln (

1

2/3
)   (10) 

The probability associated with the final entropy of the unopen door is 2/3, as shown in eq. (10).  Therefore, the 

contestant should switch to the remaining unopened door to increase his chance of winning the car from 1/3 to 

2/3.   

Suppose the game involved four doors instead of three and after the contestant chooses one door, Monty Hall 

opens a nonwinning door.  Should the contestant switch to one of the two unopened doors?  Once again, the 

problem can be solved using information theory.  The probability of the car being behind an unopened door is ½, 

since we have two available doors out of a total of four doors.  The associated entropy for the ½ probability is ln(2).  

When Monty Hall opens one door, he actually chose two available doors out of the remaining three doors for a 

probability of 2/3.  The information associated with the 2/3 probability is -ln(3/2), so the final entropy is obtained 

by adding the information to the original entropy, as shown in eq. (11). 

𝐒𝐅 = 𝐒𝐢 + 𝐈 = ln(2) − ln (
3

2
) = ln (

4

3
) = ln (

1

3/4
)   (11)  

The probability associated with the entropy in eq. (11) is ¾, which is shared between the two doors.  Therefore, 

each of the remaining two doors has a probability of 3/8 of containing the car.  Since 3/8 is greater than the original 

door probability of ¼, the contestant should switch doors.   

If Monty Hall opened two of the remaining three doors instead of just one door, he actually chose just one 

available door out of the original three doors.  This 1/3 probability has an associated information of -ln(3).  The 

probability of one remaining available door is ¼, so the associated entropy is ln(4).  Using these changes in eq.(11) 

yields eq. (12). 

𝐒𝐅 = 𝐒𝐢 + 𝐈 = ln(4) − ln(3) = ln (
4

3
) = ln (

1

3/4
)   (12)  



From eq. (12), the probability of the remaining door is ¾.  Therefore, the contestant can increase his chances of 

winning the car from ¼ to ¾ by switching doors.    

The Monty Hall Problem can be generalized by considering N doors with only one door having the desired car.  The 

contestant chooses one door with a probability of 1/N of containing the car.  Monty Hall then reveals the content of 

M doors that only contain goats.  The contestant is then given the choice of switching doors with any of the 

remaining N–1-M doors.  Does the contestant increase his chances of winning the car by switching doors?  The 

probability that the car is contained in one of the N-1-M doors is given by (N-1-M)/N.  The associated entropy is 

given by eq. (13). 

𝐒 = ln (
1

𝑝
) = ln (

𝐍

𝐍−𝟏−𝐌
)     (13) 

By opening M of the remaining N-1 unopened doors, Monty Hall provides information associated with the 

probability (N-1-M)/(N-1), which has an information value given by eq. (14). 

𝐈 = −ln (
𝐍−𝟏

𝐍−𝟏−𝐌
) = ln (

𝐍−𝟏−𝐌

𝐍−𝟏
)    (14) 

The final entropy, SF, is found by adding the information in eq. (14) to the entropy in eq. (13).    

𝐒𝐅 = 𝐒 + 𝐈 = ln [(
𝐍

𝐍−𝟏−𝐌
) (

𝐍−𝟏−𝐌

𝐍−𝟏
)] = ln (

𝐍

𝐍−𝟏
) = ln (

𝟏

(𝐍−𝟏)/𝐍
)  (15)  

Eq. (15) indicates that the final probability of the car being contained in the group of N-1-M doors is given by (N-

1)/N.  Since it is assumed that the doors in the group have equal probability, one can find that probability of a 

single door by dividing by the number of doors, as shown in eq. (16). 

p = (
𝟏

𝐍−𝟏−𝐌
) (

𝐍−𝟏

𝐍
) = [

𝐍−𝟏

𝐍(𝐍−𝟏−𝐌)
]    (16) 

The probability in eq. (16) is always greater than the probability of the initial choice, which is 1/N, as long as M is 

greater than zero.  Therefore, the contestant should always switch doors in the generalized Monty Hall Problem.  If 

N = 3 and M = 1, eq. (16) yields a probability of 2/3, which is in agreement with the original Monty Hall Problem in 

eq. (10).  Eq. (16) also agrees with the results for the four door Monty Hall case which was examined above. 

 

4. Conclusion 

Information theory was used to solve the Monty Hall Problem and the generalized Monty Hall problem.  The 

related probabilities were used to quantify the associated entropies and information.  By always opening a 

nonwinning door, Monty Hall adds a quantity of information that lowers the entropy of the remaining unselected 

door.  The lower entropy increases the probability that the car is behind the unselected door.  It should be noted 

that the added information cannot change the probability of the contestant’s original door selection, since it is not 

a door that Monty Hall is permitted to open.  Therefore, the contestant should always switch his door choice to 

increase chances of winning the car from 1/3 to 2/3.  

The probability for the generalized Monty Hall Problem was also developed.  Results indicated that the information 

added by Monty Hall when he opened nonwinning doors served to decrease the entropy of the remaining 

unopened doors.  The associated probability of each unopened door was found to be greater than the original 

selected door.  Therefore, switching doors is always beneficial to the contestant.         

 

 


