A convergent subsequence of $\theta_n(x+iy)$ in a half strip

Young Deuk Kim
Faculty of Liberal Education
Seoul National University
Seoul 08826, Korea
(yk274@snu.ac.kr)

January 14, 2024

Abstract

For $\frac{1}{2} < x < 1$, y > 0 and $n \in \mathbb{N}$, let $\theta_n(x+iy) = \sum_{i=1}^n \frac{\operatorname{sgn} q_i}{q_i^{x+iy}}$, where $Q = \{q_1, q_2, q_3, \cdots\}$ is the set of finite product of distinct odd primes and $\operatorname{sgn} q = (-1)^k$ if q is the product of k distinct primes. In this paper we prove that there exists an ordering on Q such that $\theta_n(x+iy)$ has a convergent subsequence.

2020 Mathematics Subject Classification; 30B50.

1 Introduction

Let \mathbb{N} be the set of natural numbers and P be the set of odd primes.

Definition 1.1. For an ordering on $P = \{p_1, p_2, p_3, \dots\}$ and $m \in \mathbb{N}$, let

$$P_m = \{p_1, p_2, \cdots, p_m\}.$$

Definition 1.2. Let Q be the set of finite products of distinct odd primes.

 $Q = \{p_1 p_2 \cdots p_k \mid k \in \mathbb{N} \text{ and } p_1, p_2, \cdots, p_k \text{ are distinct primes in } P\}$ and, for each $m \in \mathbb{N}$, let

 $U_m = \{p_1 p_2 \cdots p_k \mid k \in \mathbb{N} \text{ and } p_1, p_2, \cdots, p_k \text{ are distinct primes in } P_m\}.$

Notice that U_m depends on the choice of ordering on P and $U_m \subset U_{m+1}$.

Lemma 1.3. The number of elements of U_m is $2^m - 1$.

Proof. Since

$$U_m = \{p_1, \dots, p_m, p_1 p_2, \dots, p_{m-1} p_m, p_1 p_2 p_3, \dots, p_1 p_2 \dots p_m\},\$$

the number of elements of U_m is

$$\binom{m}{1} + \binom{m}{2} + \dots + \binom{m}{m} = 2^m - 1.$$

Definition 1.4. Let

$$Q_1 = U_1$$
 and $Q_m = U_m - U_{m-1}$ for each $m = 2, 3, 4, \cdots$.

Notice that

$$Q_m = \{ p_m, p_m q \mid q \in U_{m-1} \}, \qquad \bigcup_{i=1}^m Q_m = U_m$$
 (1)

and Q_1,Q_2,Q_3,\cdots are mutually disjoint. Notice also that the number of elements of Q_m is

$$(2^m - 1) - (2^{m-1} - 1) = 2^{m-1}.$$

Example 1.5. In the increasing ordering on P, we have

$$p_1 = 3, p_2 = 5, p_3 = 7, \cdots$$

Therefore

$$Q_1 = \{3\}, \ Q_2 = \{5, \ 3 \cdot 5\}, \ Q_3 = \{7, \ 3 \cdot 7, \ 5 \cdot 7, \ 3 \cdot 5 \cdot 7\}, \cdots$$

Definition 1.6. An ordering on P and the following two conditions (C1)-(C2) induce a unique ordering on $Q = \{q_1, q_2, q_3 \cdots\}$.

- (C1) i < j if $q_i < q_j$ and $q_i, q_j \in Q_m$ for some m.
- (C2) i < j if $q_i \in Q_m$, $q_j \in Q_n$ for some m < n

Note that any ordering on P induces a unique ordering on Q in this way.

Example 1.7. Suppose that P has the increasing ordering. In the induced ordering on Q, we have

$$q_1=3,\ q_2=5,\ q_3=15,\ q_4=7,\ q_5=21,\ q_6=35,\ q_7=105,\ q_8=11,\cdots$$

Definition 1.8. For each $q = p_1 p_2 \cdots p_k \in Q$, let

$$\operatorname{sgn} q = (-1)^k$$

where p_1, p_2, \dots, p_k are distinct odd primes.

Definition 1.9. Suppose that an ordering is given on $Q = \{q_1, q_2, q_3, \dots\}$. For $\frac{1}{2} < x < 1, y > 0$ and $n \in \mathbb{N}$, let

$$\theta_n(x+iy) = \sum_{i=1}^n \frac{\operatorname{sgn} q_i}{q_i^{x+iy}}$$

In this paper we prove

Theorem 1.10. For each $\frac{1}{2} < x < 1$ and y > 0, there exists an ordering on P such that, under the induced ordering on Q, $\theta_n(x+iy)$ has a convergent subsequence.

2 Preliminary Theorems

We need the following theorem in the proof of Theorem 1.10.

Theorem 2.1 ([1]). Suppose that y > 0, $0 \le \alpha < 2\pi$ and 0 < K < 1. Let P^+ be the set of primes p such that $\cos(y \ln p + \alpha) > K$ and P^- the set of primes p such that $\cos(y \ln p + \alpha) < -K$. Then we have

$$\sum_{p \in P^+} \frac{1}{p} = \infty \quad and \quad \sum_{p \in P^-} \frac{1}{p} = \infty.$$

From the argument in the proof of the Riemann rearrangement theorem, we have

Theorem 2.2 ([4],[5]). For a series $\sum_{i=1}^{\infty} a_i$ of real numbers, suppose that

$$\lim_{i \to \infty} a_i = 0$$

 $and \ let$

$$a_i^+ = max\{a_i, 0\}$$
 and $a_i^- = -min\{a_i, 0\}.$ (2)

If

$$\sum_{i=1}^{\infty} a_i^+ = \sum_{i=1}^{\infty} a_i^- = \infty$$

then there exists a rearrangement such that the series $\sum_{i=1}^{\infty} a_i$ is convergent.

We need the Lévy-Steinitz theorem which is a generalization of the Riemann rearrangement theorem and Theorem 2.2.

Lévy-Steinitz theorem ([5]). The set of all sums of rearrangements of a given series of vectors

$$\sum_{i=1}^{\infty} v_i$$

in \mathbb{R}^n is either the empty set or a translate of subspace i.e., a set of the form $\mathbf{v} + M$, where \mathbf{v} is a vector and M is a subspace. If the following two conditions (a)-(b) are satisfied then it is nonempty i.e., it has convergent rearrangements.

- (a) $\lim_{i\to\infty} \mathbf{v}_i = \mathbf{0}$
- (b) For all vector \mathbf{w} in \mathbb{R}^n ,

$$\sum_{i=1}^{\infty} (\mathbf{v}_i, \mathbf{w})^+ \quad and \quad \sum_{i=1}^{\infty} (\mathbf{v}_i, \mathbf{w})^-$$

are either both finite or both infinite, where we use the notations in eq. (2) and $(\mathbf{v}_i, \mathbf{w})$ is the Euclidean inner product of \mathbf{v}_i and \mathbf{w} .

The Coriolis test is useful in the proof of Theorem 1.10..

Coriolis Test ([6]). If z_i is a sequence of complex numbers such that

$$\sum_{i=1}^{\infty} z_i \quad and \quad \sum_{i=1}^{\infty} |z_i|^2$$

are convergent, then

$$\prod_{i=1}^{\infty} (1+z_i)$$

converges.

3 Proof of Theorem 1.10

Definition 3.1. Suppose that P has the increasing ordering. For $\frac{1}{2} < x < 1$ and y > 0, let

$$\rho(x+iy) = \frac{1}{2^{x+iy}} + \sum_{i=1}^{\infty} \frac{1}{p_i^{x+iy}}$$

$$= \frac{\cos(y \ln 2) - i \sin(y \ln 2)}{2^x} + \sum_{i=1}^{\infty} \frac{\cos(y \ln p_i) - i \sin(y \ln p_i)}{p_i^x}$$

Lemma 3.2. $\rho(x+iy)$ has a convergent rearrangement and therefore

$$\sum_{i=1}^{\infty} \frac{1}{p_i^{x+iy}} \tag{3}$$

has a convergent rearrangement, too. In other words, P has an ordering such that eq. (3) is convergent.

Proof. Recall that $\frac{1}{2} < x < 1$ and y > 0. Let

$$\mathbf{v}_1 = \left(\frac{\cos(y\ln 2)}{2^x}, -\frac{\sin(y\ln 2)}{2^x}\right)$$

and, for $i \in \mathbb{N}$, let

$$\mathbf{v}_{i+1} = \left(\frac{\cos(y \ln p_i)}{p_i^x}, -\frac{\sin(y \ln p_i)}{p_i^x}\right).$$

Since P has the increasing ordering, we have

$$\lim_{i \to \infty} \mathbf{v}_i = \mathbf{0}. \tag{4}$$

Let

$$\mathbf{w} = r(\cos \alpha, \sin \alpha)$$

be a vector in \mathbb{R}^2 , where $r \geq 0$ and $0 \leq \alpha \leq 2\pi$. If r = 0 then $(\mathbf{v}_i, \mathbf{w}) = 0$ for all $i \in \mathbb{N}$ and therefore

$$\sum_{i=1}^{\infty} (\mathbf{v}_i, \mathbf{w})^+ = \sum_{i=1}^{\infty} (\mathbf{v}_i, \mathbf{w})^- = 0.$$
 (5)

Suppose that r > 0. We have

$$\mathbf{v}_1 \cdot \mathbf{w} = \frac{r \cos(y \ln 2) \cos \alpha - r \sin(y \ln 2) \sin \alpha}{2^x}$$
$$= \frac{r \cos(y \ln 2 + \alpha)}{2^x}$$

and

$$\mathbf{v}_{i+1} \cdot \mathbf{w} = \frac{r \cos(y \ln p_i) \cos \alpha - r \sin(y \ln p_i) \sin \alpha}{p_i^x}$$
$$= \frac{r \cos(y \ln p_i + \alpha)}{p_i^x}$$

Let P^+ be the set of primes p such that $\cos(y\ln p + \alpha) > \frac{1}{2}$ and P^- the set of primes p such that $\cos(y\ln p + \alpha) < -\frac{1}{2}$. From Theorem 2.1, we have

$$\sum_{i=1}^{\infty} (\mathbf{v}_i, \mathbf{w})^+ \geq \sum_{p \in P^+} \frac{r \cos(y \ln p + \alpha)}{p^x}$$
$$\geq \frac{r}{2} \sum_{p \in P^+} \frac{1}{p^x} \geq \frac{r}{2} \sum_{p \in P^+} \frac{1}{p} = \infty$$

and

$$\sum_{i=1}^{\infty} (\mathbf{v}_i, \mathbf{w})^- \geq -\sum_{p \in P^-} \frac{r \cos(y \ln p + \alpha)}{p^x}$$
$$\geq \frac{r}{2} \sum_{p \in P^-} \frac{1}{p^x} \geq \frac{r}{2} \sum_{p \in P^-} \frac{1}{p} = \infty.$$

Therefore

$$\sum_{i=1}^{\infty} (\mathbf{v}_i, \mathbf{w})^+ = \sum_{i=1}^{\infty} (\mathbf{v}_i, \mathbf{w})^- = \infty.$$
 (6)

From eq. (4), (5), (6) and Lévy-Steinitz theorem, we know that the series of vectors in \mathbb{R}^2

$$\sum_{i=1}^{\infty} \mathbf{v}_i$$

has a convergent rearrangement, and therefore $\rho(x+iy)$ has a convergent rearrangement. \Box

Lemma 3.3. Let z = x + iy. For all $m \in \mathbb{N}$, we have

$$\prod_{i=1}^m \left(1 - \frac{1}{p_i^z}\right) - 1 = \sum_{q \in Q_1} \frac{\operatorname{sgn} q}{q^z} + \sum_{q \in Q_2} \frac{\operatorname{sgn} q}{q^z} + \dots + \sum_{q \in Q_m} \frac{\operatorname{sgn} q}{q^z}.$$

Proof. We use induction on m. If m = 1, it is clear. Suppose that it is true for m = k - 1. We will show that it is true for m = k. From eq. (1), we have

$$\begin{split} \prod_{i=1}^k \left(1 - \frac{1}{p_i^z}\right) &= \left(\prod_{i=1}^{k-1} \left(1 - \frac{1}{p_i^z}\right)\right) \left(1 - \frac{1}{p_k^z}\right) \\ &= \left(1 + \sum_{q \in Q_1} \frac{\operatorname{sgn} q}{q^z} + \dots + \sum_{q \in Q_{k-1}} \frac{\operatorname{sgn} q}{q^z}\right) \left(1 - \frac{1}{p_k^z}\right) \\ &= \left(1 + \sum_{q \in Q_1} \frac{\operatorname{sgn} q}{q^z} + \dots + \sum_{q \in Q_{k-1}} \frac{\operatorname{sgn} q}{q^z}\right) \\ &- \frac{1}{p_k^z} \left(1 + \sum_{q \in Q_1} \frac{\operatorname{sgn} q}{q^z} + \dots + \sum_{q \in Q_{k-1}} \frac{\operatorname{sgn} q}{q^z}\right) \\ &= \left(1 + \sum_{q \in Q_1} \frac{\operatorname{sgn} q}{q^z} + \dots + \sum_{q \in Q_{k-1}} \frac{\operatorname{sgn} q}{q^z}\right) - \frac{1}{p_k^z} \left(1 + \sum_{q \in U_{k-1}} \frac{\operatorname{sgn} q}{q^z}\right) \\ &= 1 + \sum_{q \in Q_1} \frac{\operatorname{sgn} q}{q^z} + \dots + \sum_{q \in Q_{k-1}} \frac{\operatorname{sgn} q}{q^z} + \sum_{q \in Q_k} \frac{\operatorname{sgn} q}{q^z} \end{split}$$

Now we can prove Theorem 1.10.

Proof of Theorem 1.10

6

By Lemma 3.2, we can choose an ordering on P such that

$$\sum_{i=1}^{\infty} \frac{1}{p_i^{x+iy}}$$

is convergent. From now on, we assume that P has the chosen ordering, and Q has the induced ordering.

Since $\frac{1}{2} < x < 1$,

$$\sum_{i=1}^{\infty} \left| \frac{1}{p_i^{x+iy}} \right| = \sum_{i=1}^{\infty} \frac{1}{p_i^{2x}}$$

is convergent. Therefore, by the Coriolis test,

$$\prod_{i=1}^{\infty} \left(1 - \frac{1}{p_i^{x+iy}} \right)$$

is convergent. By Lemma 3.3, Lemma 1.3 and eq. (1), we have

$$\prod_{i=1}^{m} \left(1 - \frac{1}{p_i^{x+iy}} \right) - 1 = \sum_{q \in Q_1} \frac{\operatorname{sgn} q}{q^{x+iy}} + \sum_{q \in Q_2} \frac{\operatorname{sgn} q}{q^z} + \dots + \sum_{q \in Q_m} \frac{\operatorname{sgn} q}{q^{x+iy}}$$

$$= \sum_{q \in U_m} \frac{\operatorname{sgn} q}{q^{x+iy}}$$

$$= \sum_{i=1}^{2^m - 1} \frac{\operatorname{sgn} q_i}{q_i^{x+iy}}.$$

Therefore $\theta_{2^m-1}(x+iy)$ is a convergent subsequence of $\theta_n(x+iy)$.

References

- [1] Y. D. Kim, On the sum of reciprocals of primes, preprint, arXiv.
- [2] Y. D. Kim, Ordinality and Riemann Hypothesis, preprint, arXiv: 2311.00003v1.
- [3] Roland van der Veen and Jan van de Craats, *The Riemann Hypothesis A Million Dollar Problem*, Anneli Lax New Mathematical Library, MAA Press 2015.
- [4] B. Riemann, Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Abh. kgl. Ges. Wiss. Göttingen 13, 87–132 (1867) = Gesammelte mathematische Werke (Leipzig 1876), 213-253.
- [5] P. Rosenthal, A remarkable Theorem of Levy and Steinitz, The American Mathematical Monthly **94**(4) (1987), 342-351.
- [6] E. Wermuth, Some Elementary Properties of Infinite Products, The American Mathematical Monthly 99(6) (1992), 530-537.