A convergent subsequence of $\theta_{n}(x+i y)$ in a half strip

Young Deuk Kim
Faculty of Liberal Education
Seoul National University
Seoul 08826, Korea
(yk274@snu.ac.kr)

January 20, 2024

Abstract

For $\frac{1}{2}<x<1, y>0$ and $n \in \mathbb{N}$, let $\theta_{n}(x+i y)=\sum_{i=1}^{n} \frac{\operatorname{sgn} q_{i}}{q_{i}^{x+i y}}$, where $Q=\left\{q_{1}, q_{2}, q_{3}, \cdots\right\}$ is the set of finite product of distinct odd primes and $\operatorname{sgn} q=(-1)^{k}$ if q is the product of k distinct primes. In this paper we prove that there exists an ordering on Q such that $\theta_{n}(x+i y)$ has a convergent subsequence. 2020 Mathematics Subject Classification; 11M26.

1 Introduction

Let \mathbb{N} be the set of natural numbers and P be the set of odd primes.
Definition 1.1. For an ordering on $P=\left\{p_{1}, p_{2}, p_{3}, \cdots\right\}$ and $m \in \mathbb{N}$, let

$$
P_{m}=\left\{p_{1}, p_{2}, \cdots, p_{m}\right\}
$$

Definition 1.2. Let Q be the set of finite products of distinct odd primes.

$$
Q=\left\{p_{1} p_{2} \cdots p_{k} \mid k \in \mathbb{N} \text { and } p_{1}, p_{2}, \cdots, p_{k} \text { are distinct primes in } P\right\}
$$

and, for each $m \in \mathbb{N}$, let

$$
U_{m}=\left\{p_{1} p_{2} \cdots p_{k} \mid k \in \mathbb{N} \text { and } p_{1}, p_{2}, \cdots, p_{k} \text { are distinct primes in } P_{m}\right\}
$$

Notice that U_{m} depends on the choice of ordering on P and $U_{m} \subset U_{m+1}$.
Lemma 1.3. The number of elements of U_{m} is $2^{m}-1$.

Proof. Since

$$
U_{m}=\left\{p_{1}, \cdots, p_{m}, p_{1} p_{2}, \cdots, p_{m-1} p_{m}, p_{1} p_{2} p_{3}, \cdots, p_{1} p_{2} \cdots p_{m}\right\}
$$

the number of elements of U_{m} is

$$
\binom{m}{1}+\binom{m}{2}+\cdots+\binom{m}{m}=2^{m}-1
$$

Definition 1.4. Let

$$
Q_{1}=U_{1} \text { and } Q_{m}=U_{m}-U_{m-1} \text { for each } m=2,3,4, \cdots .
$$

Notice that

$$
\begin{equation*}
Q_{m}=\left\{p_{m}, p_{m} q \mid q \in U_{m-1}\right\}, \quad \bigcup_{i=1}^{m} Q_{m}=U_{m} \tag{1}
\end{equation*}
$$

and $Q_{1}, Q_{2}, Q_{3}, \cdots$ are mutually disjoint. Notice also that the number of elements of Q_{m} is

$$
\left(2^{m}-1\right)-\left(2^{m-1}-1\right)=2^{m-1}
$$

Example 1.5. In the increasing ordering on P, we have

$$
p_{1}=3, p_{2}=5, p_{3}=7, \cdots
$$

Therefore

$$
Q_{1}=\{3\}, Q_{2}=\{5,3 \cdot 5\}, Q_{3}=\{7,3 \cdot 7,5 \cdot 7,3 \cdot 5 \cdot 7\}, \cdots
$$

Definition 1.6. An ordering on P and the following two conditions (C1)-(C2) induce a unique ordering on $Q=\left\{q_{1}, q_{2}, q_{3} \cdots\right\}$.
(C1) $i<j$ if $q_{i}<q_{j}$ and $q_{i}, q_{j} \in Q_{m}$ for some m.
(C2) $i<j$ if $q_{i} \in Q_{m}, q_{j} \in Q_{n}$ for some $m<n$
Note that any ordering on P induces a unique ordering on Q in this way.
Example 1.7. Suppose that P has the increasing ordering. In the induced ordering on Q, we have
$q_{1}=3, q_{2}=5, q_{3}=15, q_{4}=7, q_{5}=21, q_{6}=35, q_{7}=105, q_{8}=11, \cdots$.
Definition 1.8. For each $q=p_{1} p_{2} \cdots p_{k} \in Q$, let

$$
\operatorname{sgn} q=(-1)^{k}
$$

where $p_{1}, p_{2}, \cdots, p_{k}$ are distinct odd primes.

Definition 1.9. Suppose that an ordering is given on $Q=\left\{q_{1}, q_{2}, q_{3}, \cdots\right\}$. For $\frac{1}{2}<x<1, y>0$ and $n \in \mathbb{N}$, let

$$
\theta_{n}(x+i y)=\sum_{i=1}^{n} \frac{\operatorname{sgn} q_{i}}{q_{i}^{x+i y}}
$$

In this paper we prove
Theorem 1.10. For each $\frac{1}{2}<x<1$ and $y>0$, there exists an ordering on P such that, under the induced ordering on $Q, \theta_{n}(x+i y)$ has a convergent subsequence.

2 Preliminary Theorems

We need the following theorem in the proof of Theorem 1.10.
Theorem 2.1 ([1]). Suppose that $y>0,0 \leq \alpha<2 \pi$ and $0<K<1$. Let P^{+} be the set of primes p such that $\cos (y \ln p+\alpha)>K$ and P^{-}the set of primes p such that $\cos (y \ln p+\alpha)<-K$. Then we have

$$
\sum_{p \in P^{+}} \frac{1}{p}=\infty \quad \text { and } \quad \sum_{p \in P^{-}} \frac{1}{p}=\infty
$$

From the argument in the proof of the Riemann rearrangement theorem, we have

Theorem 2.2 ([4],[5]). For a series $\sum_{i=1}^{\infty} a_{i}$ of real numbers, suppose that

$$
\lim _{i \rightarrow \infty} a_{i}=0
$$

and let

$$
\begin{equation*}
a_{i}^{+}=\max \left\{a_{i}, 0\right\} \quad \text { and } \quad a_{i}^{-}=-\min \left\{a_{i}, 0\right\} . \tag{2}
\end{equation*}
$$

If

$$
\sum_{i=1}^{\infty} a_{i}^{+}=\sum_{i=1}^{\infty} a_{i}^{-}=\infty
$$

then there exists a rearrangement such that the series $\sum_{i=1}^{\infty} a_{i}$ is convergent.
We need the Lévy-Steinitz theorem which is a generalization of the Riemann rearrangement theorem and Theorem 2.2.
Lévy-Steinitz theorem ([5]). The set of all sums of rearrangements of a given series of vectors

$$
\sum_{i=1}^{\infty} \boldsymbol{v}_{i}
$$

in \mathbf{R}^{n} is either the empty set or a translate of subspace i.e., a set of the form $\mathbf{v}+M$, where \mathbf{v} is a vector and M is a subspace. If the following two conditions (a)-(b) are satisfied then it is nonempty i.e., it has convergent rearrangements.
(a) $\lim _{i \rightarrow \infty} \mathbf{v}_{i}=\mathbf{0}$
(b) For all vector \mathbf{w} in \mathbb{R}^{n},

$$
\sum_{i=1}^{\infty}\left(\mathbf{v}_{i}, \mathbf{w}\right)^{+} \quad \text { and } \quad \sum_{i=1}^{\infty}\left(\mathbf{v}_{i}, \mathbf{w}\right)^{-}
$$

are either both finite or both infinite, where we use the notations in eq. (2) and $\left(\mathbf{v}_{i}, \mathbf{w}\right)$ is the Euclidean inner product of \mathbf{v}_{i} and \mathbf{w}.

The Coriolis test is useful in the proof of Theorem 1.10..
Coriolis Test ([6]). If z_{i} is a sequence of complex numbers such that

$$
\sum_{i=1}^{\infty} z_{i} \quad \text { and } \quad \sum_{i=1}^{\infty}\left|z_{i}\right|^{2}
$$

are convergent, then

$$
\prod_{i=1}^{\infty}\left(1+z_{i}\right)
$$

converges.

3 Proof of Theorem 1.10

Definition 3.1. Suppose that P has the increasing ordering. For $\frac{1}{2}<x<1$ and $y>0$, let

$$
\begin{aligned}
\rho(x+i y) & =\frac{1}{2^{x+i y}}+\sum_{i=1}^{\infty} \frac{1}{p_{i}^{x+i y}} \\
& =\frac{\cos (y \ln 2)-i \sin (y \ln 2)}{2^{x}}+\sum_{i=1}^{\infty} \frac{\cos \left(y \ln p_{i}\right)-i \sin \left(y \ln p_{i}\right)}{p_{i}^{x}}
\end{aligned}
$$

Lemma 3.2. $\rho(x+i y)$ has a convergent rearrangement and therefore

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{p_{i}^{x+i y}} \tag{3}
\end{equation*}
$$

has a convergent rearrangement, too. In other words, P has an ordering such that eq. (3) is convergent.

Proof. Recall that $\frac{1}{2}<x<1$ and $y>0$. Let

$$
\mathbf{v}_{1}=\left(\frac{\cos (y \ln 2)}{2^{x}},-\frac{\sin (y \ln 2)}{2^{x}}\right)
$$

and, for $i \in \mathbb{N}$, let

$$
\mathbf{v}_{i+1}=\left(\frac{\cos \left(y \ln p_{i}\right)}{p_{i}^{x}},-\frac{\sin \left(y \ln p_{i}\right)}{p_{i}^{x}}\right)
$$

Since P has the increasing ordering, we have

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \mathbf{v}_{i}=\mathbf{0} \tag{4}
\end{equation*}
$$

Let

$$
\mathbf{w}=r(\cos \alpha, \sin \alpha)
$$

be a vector in \mathbb{R}^{2}, where $r \geq 0$ and $0 \leq \alpha<2 \pi$. If $r=0$ then $\left(\mathbf{v}_{i}, \mathbf{w}\right)=0$ for all $i \in \mathbb{N}$ and therefore

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left(\mathbf{v}_{i}, \mathbf{w}\right)^{+}=\sum_{i=1}^{\infty}\left(\mathbf{v}_{i}, \mathbf{w}\right)^{-}=0 \tag{5}
\end{equation*}
$$

Suppose that $r>0$. We have

$$
\begin{aligned}
\mathbf{v}_{1} \cdot \mathbf{w} & =\frac{r \cos (y \ln 2) \cos \alpha-r \sin (y \ln 2) \sin \alpha}{2^{x}} \\
& =\frac{r \cos (y \ln 2+\alpha)}{2^{x}}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{v}_{i+1} \cdot \mathbf{w} & =\frac{r \cos \left(y \ln p_{i}\right) \cos \alpha-r \sin \left(y \ln p_{i}\right) \sin \alpha}{p_{i}^{x}} \\
& =\frac{r \cos \left(y \ln p_{i}+\alpha\right)}{p_{i}^{x}}
\end{aligned}
$$

Let P^{+}be the set of primes p such that $\cos (y \ln p+\alpha)>\frac{1}{2}$ and P^{-}the set of primes p such that $\cos (y \ln p+\alpha)<-\frac{1}{2}$. From Theorem 2.1, we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left(\mathbf{v}_{i}, \mathbf{w}\right)^{+} \geq & \sum_{p \in P^{+}} \frac{r \cos (y \ln p+\alpha)}{p^{x}} \\
& \geq \frac{r}{2} \sum_{p \in P^{+}} \frac{1}{p^{x}} \geq \frac{r}{2} \sum_{p \in P^{+}} \frac{1}{p}=\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left(\mathbf{v}_{i}, \mathbf{w}\right)^{-} \geq & -\sum_{p \in P^{-}} \frac{r \cos (y \ln p+\alpha)}{p^{x}} \\
& \geq \frac{r}{2} \sum_{p \in P^{-}} \frac{1}{p^{x}} \geq \frac{r}{2} \sum_{p \in P^{-}} \frac{1}{p}=\infty
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left(\mathbf{v}_{i}, \mathbf{w}\right)^{+}=\sum_{i=1}^{\infty}\left(\mathbf{v}_{i}, \mathbf{w}\right)^{-}=\infty \tag{6}
\end{equation*}
$$

From eq. (4), (5), (6) and Lévy-Steinitz theorem, we know that the series of vectors in \mathbb{R}^{2}

$$
\sum_{i=1}^{\infty} \mathbf{v}_{i}
$$

has a convergent rearrangement, and therefore $\rho(x+i y)$ has a convergent rearrangement.

Lemma 3.3. Let $z=x+i y$. For all $m \in \mathbb{N}$, we have

$$
\prod_{i=1}^{m}\left(1-\frac{1}{p_{i}^{z}}\right)-1=\sum_{q \in Q_{1}} \frac{\operatorname{sgn} q}{q^{z}}+\sum_{q \in Q_{2}} \frac{\operatorname{sgn} q}{q^{z}}+\cdots+\sum_{q \in Q_{m}} \frac{\operatorname{sgn} q}{q^{z}}
$$

Proof. We use induction on m. If $m=1$, it is clear. Suppose that it is true for $m=k-1$. We will show that it is true for $m=k$. From eq. (1), we have

$$
\begin{aligned}
\prod_{i=1}^{k}\left(1-\frac{1}{p_{i}^{z}}\right) & =\left(\prod_{i=1}^{k-1}\left(1-\frac{1}{p_{i}^{z}}\right)\right)\left(1-\frac{1}{p_{k}^{z}}\right) \\
& =\left(1+\sum_{q \in Q_{1}} \frac{\operatorname{sgn} q}{q^{z}}+\cdots+\sum_{q \in Q_{k-1}} \frac{\operatorname{sgn} q}{q^{z}}\right)\left(1-\frac{1}{p_{k}^{z}}\right) \\
& =\left(1+\sum_{q \in Q_{1}} \frac{\operatorname{sgn} q}{q^{z}}+\cdots+\sum_{q \in Q_{k-1}} \frac{\operatorname{sgn} q}{q^{z}}\right) \\
& =\left(1+\sum_{q \in Q_{1}} \frac{-\frac{1}{p_{k}^{z}}\left(1+\sum_{q \in Q_{1}} \frac{\operatorname{sgn} q}{q^{z}}+\cdots+\sum_{q \in Q_{k-1}} \frac{\operatorname{sgn} q}{q^{z}}\right)-\frac{1}{p_{k}^{z}}\left(1+\sum_{q \in U_{k-1}} \frac{\operatorname{sgn} q}{q^{z}}\right)}{} \begin{array}{l}
1+\sum_{q \in Q_{1}} \frac{\operatorname{sgn} q}{q^{z}}+\cdots+\sum_{q \in Q_{k-1}} \frac{\operatorname{sgn} q}{q^{z}}+\sum_{q \in Q_{k}} \frac{\operatorname{sgn} q}{q^{z}}
\end{array}\right.
\end{aligned}
$$

Now we can prove Theorem 1.10.

Proof of Theorem 1.10

By Lemma 3.2, we can choose an ordering on P such that

$$
\sum_{i=1}^{\infty} \frac{1}{p_{i}^{x+i y}}
$$

is convergent. From now on, we assume that P has the chosen ordering, and Q has the induced ordering.

Since $\frac{1}{2}<x<1$,

$$
\sum_{i=1}^{\infty}\left|\frac{1}{p_{i}^{x+i y}}\right|^{2}=\sum_{i=1}^{\infty} \frac{1}{p_{i}^{2 x}}
$$

is convergent. Therefore, by the Coriolis test,

$$
\prod_{i=1}^{\infty}\left(1-\frac{1}{p_{i}^{x+i y}}\right)
$$

is convergent. By Lemma 3.3, Lemma 1.3 and eq. (1), we have

$$
\begin{aligned}
\prod_{i=1}^{m}\left(1-\frac{1}{p_{i}^{x+i y}}\right)-1 & =\sum_{q \in Q_{1}} \frac{\operatorname{sgn} q}{q^{x+i y}}+\sum_{q \in Q_{2}} \frac{\operatorname{sgn} q}{q^{z}}+\cdots+\sum_{q \in Q_{m}} \frac{\operatorname{sgn} q}{q^{x+i y}} \\
& =\sum_{q \in U_{m}} \frac{\operatorname{sgn} q}{q^{x+i y}} \\
& =\sum_{i=1}^{2^{m}-1} \frac{\operatorname{sgn} q_{i}}{q_{i}^{x+i y}}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\theta_{2^{m}-1}(x+i y)=\sum_{q \in U_{m}} \frac{\operatorname{sgn} q}{q^{x+i y}} \tag{7}
\end{equation*}
$$

is a convergent subsequence of $\theta_{n}(x+i y)$.

References

[1] Y. D. Kim, On the sum of reciprocals of primes, preprint, https://vixra.org/abs/2401.0054.
[2] Y. D. Kim, Ordinality and Riemann Hypothesis, preprint, arXiv: 2311.00003 v 1 .
[3] Roland van der Veen and Jan van de Craats, The Riemann Hypothesis A Million Dollar Problem, Anneli Lax New Mathematical Library, MAA Press 2015.
[4] B. Riemann, Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Abh. kgl. Ges. Wiss. Göttingen 13, 87-132 (1867) $=$ Gesammelte mathematische Werke (Leipzig 1876), 213-253.
[5] P. Rosenthal, A remarkable Theorem of Levy and Steinitz, The American Mathematical Monthly 94(4) (1987), 342-351.
[6] E. Wermuth, Some Elementary Properties of Infinite Products, The American Mathematical Monthly 99(6) (1992), 530-537.

