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Abstract

In this paper, we will expose the causation of multiple causes acting on a single
variable computed from correlations. Using an example, we will show when strong
or weak correlations between multiple causes and a variable imply a strong or weak
causation between the causes and the variable.
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1 Introduction

In this paper we will present the relationship between the causation and correlations
for multiple causes acting on a variable. We will present the table of magnitudes for
correlations and causation in order to further interpret the notion of strong and weak
correlations and causation. We will then explain the way in which we will study a
problem of two causes acting on a variable. We will describe the fields of correlation
pairs having strong and weak causation. The paper ends with numerical applications
for a problem of two causes acting on a variable. From these numerical applications,
we will be able to relate the notion of strong and weak correlations with the notion of
strong and weak causation.

2



2 Causation of multiple causes acting on a single vari-
able computed from correlations

The causation of multiple causes acting on a single variable computed from correlations
is expressed as follows:

εΩÐ→X = −1
2

ln(1 − K̃X,ΩK̃−1
Ω2 K̃Ω,X)

Where K̃X,Ω is a correlation’s vector between the causes Ω and the variable X and K̃Ω2

is a correlation matrix of causes Ω.

Proof:

εΩÐ→X = h(X) − h(X∣Ω) = 1
2 ln(2.π.e.KX2) − 1

2 ln(2.π.e.KX2∣Ω)

Where h() is the differential entropy Gaussian (see Appendix). KX2 is the variance and
KX2∣Ω is the conditional variance.

In this proof, K̃Ω,X is a correlation vector between X and the set of causes Ω. K̃Ω2

corresponds to the correlation matrix of causes Ω.

In what follows, we will factorize the variance KX2 of the conditional variance KX2∣Ω:

KX2∣Ω = KX2 − KX,Ω.K−1
Ω2 .KX,Ω

KX2∣Ω = KX2 − KX,Ω.(diag−1(KΩ2)) 1
2 .K̃−1
Ω2 .(diag−1(KΩ2)) 1

2 .KΩ,X

KX2∣Ω = KX2 − K
1
2
X2 .K̃X,Ω.K̃−1

Ω2 .K
1
2
X2 .K̃Ω,X

KX2∣Ω = KX2 .(1 − K̃X,Ω.K̃−1
Ω2 .K̃Ω,X)

We obtain:

εΩÐ→X

= h(X) − h(X∣Ω)

= 1
2 ln(2.π.e.KX2) − 1

2 ln(2.π.e.KX2∣Ω)

= 1
2 ln(2.π.e.KX2) − 1

2 ln(2.π.e.KX2 .(1 − K̃X,Ω.K̃−1
Ω2 .K̃Ω,X))

= − 1
2 ln(1 − K̃X,ΩK̃−1

Ω2 K̃Ω,X)
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3 Correlation value range

We will explain the importance of correlations in order to be able to interpret the order
of magnitude in what will follow:

Level of correlation ρmin ρmax

Very strong positive correlation 0.8 1
Fairly strong positive correlation 0.6 0.79

Moderate positive correlation 0.4 0.59
Weak positive correlation 0.2 0.39

Very Weak positive correlation 0 0.19
Very strong negative correlation -1 -0.8
Fairly strong negative correlation -0.79 -0.6

Moderate negative correlation -0.59 -0.4
Weak negative correlation -0.39 -0.2

Very Weak negative correlation -0.19 0
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4 Causation value range

In this section we will give an order of magnitude to the causation. To do this we will
divide the quadratic form 0 ≤ K̃X,ΩK̃−1

Ω2 K̃Ω,X < 1 by 4:

1. 0 ≤ K̃X,ΩK̃−1
Ω2 K̃Ω,X ≤ 0.25 which means we have negligible causation

2. 0.25 < K̃X,ΩK̃−1
Ω2 K̃Ω,X ≤ 0.5 which means we have weak causation

3. 0.5 < K̃X,ΩK̃−1
Ω2 K̃Ω,X ≤ 0.75 which means we have moderate causation

4. 0.75 < K̃X,ΩK̃−1
Ω2 K̃Ω,X < 1 which means we have strong causation

By using the relationship:

εΩÐ→X = −1
2

ln(1 − K̃X,ΩK̃−1
Ω2 K̃Ω,X)

We can build the following table:

Level of causation εmin
ΩÐ→X εmax

ΩÐ→X

negligible causation 0 0.14
Weak causation 0.15 0.35

moderate causation 0.36 0.69
Strong causation 0.7 Ð→
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5 Problem: Causation of two causes acting on a single
variable computed from correlations

In what follows, we will consider a set of two causes Ω = {ω1, ω2} acting on a variable
X as follows:

ω2

ω1

X

To this graph we attribute a matrix of correlations of the causes K̃Ω2 and a weight vector
of correlations K̃X,Ω between the causes Ω and the variable X:

K̃Ω2 = ( 1 ρω1ω2

ρω1ω2 1 ) and K̃X,Ω = (ρω1X , ρω2X)

Then we will present a field of correlations K̃X,Ω = (ρω1X , ρω2X) for which there is a
strong causation:

0.7 ≤ εΩÐ→X = −1
2

ln(1 − K̃X,ΩK̃−1
Ω2 K̃Ω,X) ≤ 1.15

We will also show the representation for a weak causation:

0.15 ≤ εΩÐ→X = −1
2

ln(1 − K̃X,ΩK̃−1
Ω2 K̃Ω,X) ≤ 0.35

For correlation’s field K̃X,Ω = (ρω1X , ρω2X) , we select correlation pairs to expose the
following situations:

1. When we have a pair of very strong and fairly strong correlations between the
causes Ω and the variable X implies a strong causation between the causes and
the variable.

2. When we have a pair of weak correlations between the causes Ω and the vari-
able X implies a strong causation between the causes and the variable.

3. When we have a pair of fairly strong correlations between the causes Ω and
the variable X implies a weak causation between the causes and the variable.

4. When a pair of weak correlations between the causes Ω and the variable X
implies a weak causation between the causes and variable.
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6 Correlation and strong causation between two causes
and a single variable

In what follows we will consider the matrix of causes K̃Ω2 :

K̃Ω2 = ( 1 0.8
0.8 1 )

From the previous matrix, we will now represent the pairs of correlations K̃X,Ω having
a strong causation 0.7 ≤ εΩÐ→X ≤ 1.15:

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

Mat[,1]

M
at

[,2
]

Figure 1: Pairs of correlations K̃X,Ω having a strong causation 0.7 ≤ εΩÐ→X ≤ 1.15

From this graph we will select two points:K̃X,Ω = (0.76,0.86) and K̃X,Ω = (0.21,−0.34).
We will compute the causation value εΩÐ→X for the two points:

εΩÐ→X = −1
2

ln{1 − (0.76,0.86).( 1 0.8
0.8 1 )

−1

.(0.76
0.86)} = 0.7012119

εΩÐ→X = −1
2

ln{1 − (0.21,−0.34).( 1 0.8
0.8 1 )

−1

.( 0.21
−0.34)} = 0.7155297

We can therefore describe two situations:

1. A pair of fairly and very strong correlations between the causes and the vari-
able implies a strong causation between the causes and variable.

2. A pair of weak correlations between the causes and the variable implies a
strong causation between the causes and the variable.
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7 Correlation and weak causation between two causes
and a single variable

In what follows we will consider the same matrix of causes K̃Ω2 :

K̃Ω2 = ( 1 0.8
0.8 1 )

From the previous matrix, we will now represent the pairs of correlations K̃X,Ω having
a weak causation 0.15 ≤ εΩÐ→X ≤ 0.35:
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Figure 2: Pairs of correlations K̃X,Ω having a weak causation 0.15 ≤ εΩÐ→X ≤ 0.35

From this graph we will select two points:K̃X,Ω = (0.70,0.62) and K̃X,Ω = (0.22,−0.20).
We will compute the causation value εΩÐ→X for the two points:

εΩÐ→X = −1
2

ln{1 − (0.7,0.62).( 1 0.8
0.8 1 )

−1

.( 0.7
0.62)} = 0.3465736

εΩÐ→X = −1
2

ln{1 − (0.22,−0.20).( 1 0.8
0.8 1 )

−1

.( 0.22
−0.20)} = 0.2909023

We can therefore describe two situations:

1. A pair of fairly strong correlations between the causes and the variable implies
a weak causation between the causes and the variable.

2. A pair of weak correlations between the causes and the variable implies a weak
causation between the causes and the variable.
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8 Conclusion

In this paper we have exposed the existing relationship between the notion of causation
and correlation for multiple causes acting on a variable. Using an example of two
causes acting on a variable, we have shown the different situations that can occur:

1. When we have a pair of very strong and fairly strong correlations between the
causes Ω and the variable X implies a strong causation between the causes and
the variable.

2. When we have a pair of weak correlations between the causes Ω and the vari-
able X implies a strong causation between the causes and the vaiable.

3. When we have a pair of fairly strong correlations between the causes Ω and
the variable X implies a weak causation between the causes and the variable.

4. When a pair of weak correlations between the causes Ω and the variable X
implies a weak causation between the causes and variable.
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A Appendix

A.1 Differential entropy of a Gaussian random vector

Theorem: Given random vector x⃗ = (x1, x2, ..., xn) with a multivariate Gaussian
distribution:

PX(x⃗) = N (µX ,KX2) = (2π)− n
2 ∣KX2 ∣− 1

2 exp{−
(x⃗ − µ⃗X)tK−1

X2 (x⃗ − µ⃗X)
2

}

with a mean vector µX and a covariance matrix KX2 then the differential entropy is
equal to:

h(X) = 1
2

ln(2πe)n∣KX2 ∣

Proof:

h(X)

= −∫
+∞

−∞
pX(x⃗) ln{pX(x⃗)}Ð→dx

= −∫
+∞

−∞
pX(x⃗)[−1

2
(x⃗ − µX)tK−1

X2 (x⃗ − µX) − ln(
√

2π)n∣KX2 ∣ 1
2 ]Ð→dx

= 1
2 EX[∑

i j
(x⃗i − µXi)t(K−1

X2 )i j(x⃗ j − µX j)] +
1
2

ln(2π)n∣KX2 ∣

= 1
2 EX[∑

i j
(x⃗i − µXi)t(x⃗ j − µX j)(K−1

X2 )i j] +
1
2

ln(2π)n∣KX2 ∣

= 1
2∑

i j
EX[(x⃗ j − µX j)t(x⃗i − µXi)](K−1

X2 )i j +
1
2

ln(2π)n∣KX2 ∣

= 1
2∑

i j
[(KX2) ji(K−1

X2 )i j] +
1
2

ln(2π)n∣KX2 ∣

= 1
2∑

j
[(KX2) j j(K−1

X2 ) j j] +
1
2

ln(2π)n∣KX2 ∣

= 1
2∑

j
I j j +

1
2

ln(2π)n∣KX2 ∣

= n
2 +

1
2 ln(2π)n∣KX2 ∣

= 1
2 ln(2πe)n∣KX2 ∣
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A.2 Conditional differential entropy of two Gaussian random vec-
tors

Theorem: Given two concatenated Gaussian random vectors x⃗ = (x⃗1, x⃗2) , of size
k1 and k2 respectively, with a multivariate Gaussian distribution:

PX(x⃗) = N (µX ,KX2) = (2π)− n
2 ∣KX2 ∣− 1

2 exp{−
(x⃗ − µ⃗X)tK−1

X2 (x⃗ − µ⃗X)
2

}

with a mean vector µX and a covariance matrix KX2 .

In this case, the conditional differential entropy h(X1∣X2) is equal to :

h(X1∣X2) =
1
2

ln(2πe)k1 ∣KX2
1 ∣X2

∣

Proof:

h(X1∣X2) = −∫
+∞

−∞ ∫
+∞

−∞
pX1X2(x⃗1, x⃗2) ln{pX1∣X2(x⃗1, x⃗2)}

Ð→
dx1
Ð→
dx2

We know the conditional probability PX1∣X2 can be expressed as follows:

PX1∣X2(x⃗1, x⃗2) = (2π)−
k1
2 ∣KX2

1 ∣X2
∣− 1

2 exp{−
(x⃗1− ⃗νX1/X2

)t K−1
X2

1 ∣X2
(x⃗1− ⃗νX1/X2

)
2 }

So we can write:

h(X1∣X2)

= −∫
+∞

−∞ ∫
+∞

−∞
pX1X2(x⃗1, x⃗2)[−

1
2
(x⃗1−νX1∣X2)tK−1

X2 (x⃗1−νX1∣X2)−ln(
√

2π)k1 ∣KX2
1 ∣X2

∣ 1
2 ]Ð→dx1

Ð→
dx2

= 1
2 EX1X2[∑

i j
{(x⃗1)i − ν(X1∣X2)i}t(K−1

X2
1 ∣X2

)i j{(x⃗1) j − ν(X1∣X2) j}] +
1
2

ln(2π)k1 ∣KX2
1 ∣X2

∣

= 1
2 EX1X2[∑

i j
{(x⃗1)i − ν(X1∣X2)i}t{(x⃗1) j − ν(X1∣X2) j}(K−1

X2
1 ∣X2

)i j] +
1
2

ln(2π)k1 ∣KX2
1 ∣X2

∣

= 1
2∑

i j
EX1X2[{(x⃗1) j − ν(X1∣X2) j}t{(x⃗1)i − ν(X1∣X2)i}](K−1

X2
1 ∣X2

)i j +
1
2

ln(2π)k1 ∣KX2
1 ∣X2

∣

= 1
2∑

i j
(KX2

1 ∣X2
) ji)(K−1

X2
1 ∣X2

)i j) +
1
2

ln(2π)k1 ∣KX2
1 ∣X2

∣

= 1
2∑

j
(KX2

1 ∣X2
) j j)(K−1

X2
1 ∣X2

) j j) +
1
2

ln(2π)k1 ∣KX2
1 ∣X2

∣

= 1
2∑

j
I j j +

1
2

ln(2π)k1 ∣KX2
1 ∣X2

∣

= k1
2 +

1
2 ln(2π)k1 ∣KX2

1 ∣X2
∣

= 1
2 ln(2πe)k1 ∣KX2

1 ∣X2
∣
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