
of electrons, but also to the outer electrons of the atomic cores, which determine the 
direction or type of the crystal lattice. Let's try to connect the outer electrons of an atom 
of a given element with the structure of its crystal lattice, taking into account the need 
for directed bonds (chemistry) and the presence of socialized electrons (physics) 
responsible for the galvanomagnetic properties. 

  
Abstract 
 
The literature generally describes a metallic bond as the one formed by means of mutual bonds between 
atoms' exterior electrons and not possessing the directional properties. However, attempts have been 
made to explain directional metallic bonds, as a specific crystal metallic lattice. 
 
This paper demonstrates that the metallic bond in the densest packings (volume-centered and face-
centered) between the centrally elected atom and its neighbours in general is, probably, effected by 9 
(nine) directional bonds, as opposed to the number of neighbours which equals 12 (twelve) (coordination 
number). 
 
Probably, 3 (three) "foreign" atoms are present in the coordination number 12 stereometrically, and not 
for the reason of bond. This problem is to be solved experimentally. 
 
Introduction 
 
At present, it is impossible, as a general case, to derive by means of quantum-mechanical calculations 
the crystalline structure of metal in relation to electronic structure of the atom. However, Hanzhorn and 
Dellinger indicated a possible relation between the presence of a cubical volume-centered lattice in 
subgroups of titanium, vanadium, chrome and availability in these metals of valent d-orbitals. It is easy to 
notice that the four hybrid orbitals are directed along the four physical diagonals of the cube and are well 
adjusted to binding each atom to its eight neighbours in the cubical volume-centered lattice, the remaining 
orbitals being directed towards the edge centers of the element cell and, possibly, participating in binding 
the atom to its six second neighbours /3/p. 99. 
 
Let us try to consider relations between exterior electrons of the atom of a given element and structure of 
its crystal lattice, accounting for the necessity of directional bonds (chemistry) and availability of combined 
electrons (physics) responsible for galvanic and magnetic properties. 
 
According to /1/p. 20, the number of Z-electrons in the conductivitiy zone has been obtained by the 
authors, allegedly, on the basis of metal's valency towards oxygen, hydrogen and is to be subject to 
doubt, as the experimental data of Hall and the uniform compression modulus are close to the theoretical 
values only for alkaline metals. The volume-centered lattice, Z=1 casts no doubt. The coordination 
number equals 8. 
 
The exterior electrons of the final shell or subcoats in metal atoms form conductivity zone. The number of 
electrons in the conductivity zone effects Hall's constant, uniform compression ratio, etc. 
 
Let us construct the model of metal - element so that external electrons of last layer or sublayers of 
atomic kernel, left after filling the conduction band, influenced somehow pattern of crystalline structure 
(for example: for the body-centred lattice - 8 'valency' electrons, and for volume-centered and face-
centred lattices - 12 or 9). 
 
ROUGH, QUALITATIVE MEASUREMENT OF NUMBER OF ELECTRONS IN CONDUCTION BAND OF 
METAL - ELEMENT. EXPLANATION OF FACTORS, INFLUENCING FORMATION OF TYPE OF 
MONOCRYSTAL MATRIX AND SIGN OF HALL CONSTANT. 
 
(Algorithm of construction of model) 
 
The measurements of the Hall field allow us to determine the sign of charge carriers in the conduction 
band. One of the remarkable features of the Hall effect is, however, that in some metals the Hall 
coefficient is positive, and thus carriers in them should, probably, have the charge, opposite to the 
electron charge /1/. At room temperature this holds true for the following: vanadium, chromium, 
manganese, iron, cobalt, zinc, circonium, niobium, molybdenum, ruthenium, rhodium, cadmium, cerium, 
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praseodymium, neodymium, ytterbium, hafnium, tantalum, wolfram, rhenium, iridium, thallium, plumbum 
/2/. Solution to this  enigma must be given by complete quantum - mechanical theory of solid body.  
Roughly speaking, using the base cases of Born-Karman, let us consider a highly simplified case of one-
dimensional conduction band. The first variant: a thin closed tube is completely filled with electrons but 
one. The diameter of the electron roughly equals the diameter of the tube. 
With such filling of the area at local movement of the electron an opposite movement of the 'site' of the 
electron, absent in the tube, is observed, i.e. movement of non-negative sighting. The second variant: 
there is one electron in the 
tube - movement of only one charge is possible - that of the electron with a negative charge. These two 
opposite variants 
show, that the sighting of carriers, determined according to the Hall coefficient, to some extent, must 
depend on the 
filling of the conduction band with electrons. Figure 1. 

 
 
Figure 1. Schematic representation of the conduction band of two different metals. (scale is not 
observed). 
 
a) - the first variant; 
b) - the second variant. 
The order of electron movement will also be affected by the structure of the conductivity zone, as well as 
by the temperature, admixtures and defects. Magnetic quasi-particles, magnons, will have an impact on 
magnetic materials. 
Since our reasoning is rough, we will further take into account only filling with electrons of the conductivity 
zone. Let us fill the conductivity zone with electrons in such a way that the external electrons of the 
atomic kernel affect the formation of a crystal lattice. Let us assume that after filling the conductivity zone, 
the number of the external electrons on the last shell of the atomic 
kernel is equal to the number of the neighbouring atoms (the coordination number) (5). 
The coordination number for the volume-centered and face-centered densest packings are 12 and 18, 
whereas those 
for the body-centered lattice are 8 and 14 (3). 
 
The below table is filled in compliance with the above judgements. 

 Element 
RH

 .
 10

10 
(�

3
/K) 

Z. 
(number) 

Z kernel 
(number) 

Lattice type 

Na -2,30 1 8 body-centered  

Mg -0,90 1 9 volume-centered 

Al -0,38 2 9 face-centered 

Al -0,38 1 12 face-centered 

K -4,20 1 8 body-centered 

Ca -1,78 1 9 face-centered 

Ca T=737K 2 8 body-centered 

Sc -0,67 2 9 volume-centered 

Sc -0,67 1 18 volume-centered 



Ti -2,40 1 9 volume-centered 

Ti -2,40 3 9 volume-centered 

Ti T=1158K 4 8 body-centered 

V +0,76 5 8 body-centered 

Cr +3,63 6 8 body-centered 

Fe +8,00 8 8 body-centered 

Fe +8,00 2 14 body-centered 

Fe  =1189K 7 9 face-centered 

Fe  =1189K 4 12 face-centered 

Co +3,60 8 9 volume-centered 

Co +3,60 5 12 volume-centered 

Ni -0,60 1 9 face-centered 

Cu -0,52 1 18 face-centered 

Cu -0,52 2 9 face-centered 

Zn +0,90 2 18 volume-centered 

Zn +0,90 3 9 volume-centered 

Rb -5,90 1 8 body-centered 

Y -1,25 2 9 volume-centered 

Zr +0,21 3 9 volume-centered 

Zr  =1135! 4 8 body-centered 

Nb +0,72 5 8 body-centered 

Mo +1,91 6 8 body-centered 

Ru +22 7 9 volume-centered 

Rh +0,48 5 12 face-centered  

Rh +0,48 8 9 face-centered 

Pd -6,80 1 9 face-centered  

Ag -0,90 1 18 face-centered 

Ag -0,90 2 9 face-centered  

Cd +0,67 2 18 volume-centered 

Cd +0,67 3 9 volume-centered 

Cs -7,80 1 8 body-centered  

La -0,80 2 9 volume-centered 

Ce +1,92 3 9 face-centered 

Ce +1,92 1 9 face-centered 

Pr +0,71 4 9 volume-centered 

Pr +0,71 1 9 volume-centered 

Nd +0,97 5 9 volume-centered 

Nd +0,97 1 9 volume-centered 

Gd -0,95 2 9 volume-centered 

Gd T=1533K 3 8 body-centered 

Tb -4,30 1 9 volume-centered 



Tb  =1560! 2 8 body-centered 

Dy -2,70 1 9 volume-centered 

Dy  =1657! 2 8 body-centered 

Er -0,341 1 9 volume-centered 

Tu -1,80 1 9 volume-centered 

Yb +3,77 3 9 face-centered  

Yb +3,77 1 9 face-centered  

Lu -0,535 2 9 volume-centered 

Hf +0,43 3 9 volume-centered 

Hf  =2050!  4 8 body-centered  

Ta +0,98 5 8 body-centered  

W +0,856 6 8 body-centered 

Re +3,15 6 9 volume-centered 

Os <0 4 12 volume-centered 

Ir +3,18 5 12 face-centered 

Pt -0,194 1 9 face-centered 

Au -0,69 1 18 face-centered 

Au -0,69 2 9 face-centered 

Tl +0,24 3 18 volume-centered 

Tl +0,24 4 9 volume-centered 

Pb +0,09 4 18 face-centered 

Pb +0,09 5 9 face-centered 

Where Rh is the Hall's constant (Hall's coefficient) Z is an assumed number of electrons released by one 
atom to the conductivity zone. Z kernel is the number of external electrons of the atomic kernel on the last 
shell. The lattice type is the type of the metal crystal structure at room temperature and, in some cases, at 
phase transition temperatures (1). 
 
Conclusions 
 
In spite of the rough reasoning the table shows that the greater number of electrons gives the atom of the 
element to the conductivity zone, the more positive is the Hall's constant. On the contrary the Hall's 
constant is negative for the elements which have released one or two electrons to the conductivity zone, 
which doesn't contradict to the conclusions of Payerls. A relationship is also seen between the 
conductivity electrons (Z) and valency electrons (Z kernel) stipulating the crystal structure.  
The phase transition of the element from one lattice to another can be explained by the transfer of one of 
the external electrons of the atomic kernel to the metal conductivity zone or its return from the 
conductivity zone to the external shell of the kernel under the 
influence of external factors (pressure, temperature). 
We tried to unravel the puzzle, but instead we received a new puzzle which provides a good explanation 
for the physico-chemical properties of the elements. This is the "coordination number" 9 (nine) for the 
face-centered and volume-centered lattices. 
This frequent occurrence of the number 9 in the table suggests that the densest packings have been 
studied insufficiently. 
Using the method of inverse reading from experimental values for the uniform compression towards the 
theoretical calculations and the formulae of Arkshoft and Mermin (1) to determine the Z value, we can 
verify its good agreement with the data listed in Table 1. 
The metallic bond seems to be due to both socialized electrons and "valency" ones - the electrons of the 
atomic kernel. 
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Appendix 1 
 
Metallic Bond in Densest Packing (Volume-centered and face-centered) 
 
It follows from the speculations on the number of direct bonds ( or pseudobonds, since there is a 
conductivity zone between the neighbouring metal atoms) being equal to nine according to the number of 
external electrons of the atomic kernel for densest packings that similar to body-centered lattice (eight 
neighbouring atoms in the first coordination sphere). Volume-centered and face-centered lattices in the 
first coordination sphere should have nine atoms whereas we actually have 12 ones. But the presence of 
nine neighbouring atoms, bound to any central atom has indirectly been confirmed by the experimental 
data of Hall and the uniform compression modulus (and from the experiments on the Gaase van Alfen 
effect the oscillation number is a multiple of 
nine. 
In Fig.1,1. d, e - shows coordination spheres in the densest hexagonal and cubic packings. 

 
 
Fig.1.1. Dense Packing. 
It should be noted that in the hexagonal packing, the triangles of upper and lower bases are 
unindirectional, whereas in the hexagonal packing they are not unindirectional. 
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Appendix 2 
 
Theoretical calculation of the uniform compression modulus (B). 
 
B = (6,13/(rs/ao))

5
* 10

10
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2
 

 
Where B is the uniform compression modulus ao is the Bohr radius rs - the radius of the sphere with the 



volume being equal to 
the volume falling at one conductivity electron.  
rs=(3/4p n)

1/3
, p=3,14 

Where n is the density of conductivity electrons. 
 
Table 1. Calculation according to Ashcroft and Mermine Element Z rs/ao theoretical calculated 

 
Z rs/a0 B theoretical B calculated 

Cs 1 5.62 1.54 1.43 

Cu 1 2.67 63.8 134.3 

Ag 1 3.02 34.5 99.9 

Al 3 2.07 228 76.0 

Table 2. Calculation according to the models considered in this paper 

 
Z rs/a0 B theoretical B calculated 

Cs 1 5.62 1.54 1.43 

Cu 2 2.12 202.3 134.3 

Ag 2 2.39 111.0 99.9 

Al 2 2.40 108.6 76.0 

Of course, the pressure of free electrons gases alone does not fully determine the compressive strenth of 
the metal, nevertheless in the second calculation instance the theoretical uniform compression modulus 
lies closer to the experimental one (approximated the experimental one) this approach (approximation) 
being one-sided. The second factor the effect of "valency" or external electrons of the atomic kernel, 
governing the crystal lattice is evidently required to be taken into consideration. 
 
Literature: 
 

1. Solid state physics. N.W. Ashcroft, N.D. Mermin. Cornell University, 1975 

  

Of course, the pressure of free-electron gases alone does not completely determine the resistance of 
the metal to compression, nevertheless in the second case of calculation the theoretical modulus of all-
round compression lies closer to the experimental one, on the one hand. Obviously, it is necessary to 
take into account the second factor-the effect on the module of the "valence" or outer electrons of the 
atomic core, which determine the crystal lattice. 

While still studying at the institute, I tried to explain the phase transitions in barium titanate. Since 
then I have been working on the nature of crystal lattices and different properties of chemical elements. It 
turned out that when heated, the crystal lattices of lithium and beryllium behave approximately like 
scandium and titanium lattices. 

I consider the main achievement of my work that the real first coordination number for atoms in single 
crystals of pure metals (fcc and geocrystalline lattices) was determined equal to 9. This number was 
deduced from the physical and chemical properties of crystals. About bond electrons in single crystals of 
metals, which determine the type of crystal lattice. For potassium, sodium, rubidium, cesium in the 
conduction band, 1 electron and 8 bond electrons each - the Hall constant is negative (in the conduction 
band, one electron from an atom), the type of bcc lattice ... each selected atom has 8 neighbors in the 
crystal lattice ... Nickel, copper, silver, platinum, palladium and gold have an fcc lattice ... crystallization 
requires 15 bond electrons from an atom ... let's look at nickel as an example 1s2 2s2 2p6 3s2 3p6 3d8 
4s2 external electrons in total 16 (3p6 3d8 4s2) one went into the conduction band 15 entered into 



communication with neighboring atoms ... this one electron from the conduction band is checked by the 
Hall constant, if it is negative, then there are 1-2 electrons in the conduction band, and if it is positive, 
then more. Magnesium 2 electrons are bonded to the nucleus, 9 bond electrons (GEK) and one electron 
in the conduction band - Hall constant is negative, aluminum 2 electrons are bonded to the nucleus, 9 
bond electrons (FCC) and two electrons in the conduction band - Hall constant is negative. 

Let us summarize the results of the work. According to my constructions, for almost all metals, 
conduction electrons (their number), bond electrons, which mainly determine the type of crystal lattice 
and electrons associated with the nucleus, are determined, possibly with small errors. Band theory of a 
metal from the side of its crystal lattice. The conduction band, the valence electron band of the bond 
between atoms and the zone of the nucleus with the rest of the electrons. In metal crystals, atoms are 
united not only by the socialization of conduction electrons, but also by bond electrons, which were 
revealed in my work. In other words, the valencies of atoms in single crystals of some metals can be 15, 
14, 9, 8 and probably less. In alloys, the valences of these atoms can most likely change downward. For 
some single crystal elements, I may be mistaken in counting bond electrons, which affect the formation of 
a particular type of crystal lattice. However, it seems to me that such a pattern exists. 
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Three kinds of electrons in metal 
crystals. Band theory of a metal from the 

side of its crystal lattice. 

 
  

The main problem is that using X-rays, the types of crystal lattices of different 
metals were determined, and why they are such and not others is not yet known. For 
example, copper crystallizes in the fcc lattice, and iron in the bcc lattice, which, when 
heated, becomes fcc and this transition is used in heat treatment of steels. 

Usually in the literature, the metallic bond is described as carried out through the 
socialization of the outer electrons of the atoms and does not possess the property of 
directionality. Although there are attempts (see below) to explain the directional metal 
bond since the elements crystallize into a specific type of lattice. The main types of 
crystal lattices of metals are body-centered cubic; face-centered cubic; hexagonal 
close-packed. It is still impossible in the general case to deduce the crystal structure of 
a metal from the electronic structure of the atom from quantum-mechanical calculations, 
although, for example, Ganzhorn and Delinger pointed out a possible connection 
between the presence of a cubic body-centered lattice in the subgroups of titanium, 
vanadium, chromium and the presence of valence d-orbitals in the atoms of these 
metals. It is easy to see that the four hybrid orbitals are directed along the four solid 
diagonals of the cube and are well suited for connecting each atom with its 8 neighbors 
in a body-centered cubic lattice. In this case, the remaining orbitals are directed to the 
centers of the unit cell faces and, possibly, can take part in the bond of the atom with its 
six second neighbors. The first coordination number (K.CH.1) \ "8 \" plus the second 
coordination number (K.CH.2) \ "6 \" in total is \ "14 \". Let us show that the metallic 
bond in the closest packing (HEC and FCC) between a centrally selected atom and its 
neighbors, in the general case, is presumably carried out through 9 (nine) directional 
bonds, in contrast to the number of neighbors equal to 12 (twelve) the first (coordination 
number) ... The second (K.P. 2 \ '' 6 \ '' in total is \ '' 18 \ ''. 

In the literature, there are many factors affecting crystallization, so I decided to 
remove them as much as possible, and the metal model in the article, let's say, is ideal, 
i.e. all atoms are the same (pure metal), crystal lattices without inclusions, without 
interstices, without defects, etc. Using the Hall effect and other data on properties, as 
well as calculations by Ashcroft and Mermin, for me the main factor determining the 
type of lattice turned out to be the outer electrons of the core of an atom or ion, which 
resulted from the transfer of some of the outer electrons to the conduction band. It 
turned out that the metallic bond is due not only to the socialization of electrons, but 
also to the outer electrons of the atomic cores, which determine the direction or type of 
the crystal lattice. 



 

How did I start to build models of ideal single crystals of pure metals? Ideal 
crystals for getting away from dependence on lattice defects, impurities and other 
inclusions. Using simple examples, we will show that one bond for a diamond at a 
density packing 34% and coordination number 4 account for 34%: 4 = 8.5%. The cubic 
primitive lattice has a packing density of 52% and coordination number 6 accounts for 
52%: 6 = 8.66%. For a cubic body-centered lattice, the packing density is 68% and 
coordination number 8 accounts for 68%: 8 = 8.5%. For a cubic face-centered lattice, 
the packing density is 74% and the coordination number 12 is 74%: 12 = 6.16% (!!!), 
and if 74%: 9 = 8.22%. For a hexagonal lattice, the packing density is 74% and the 
coordination number 12 is 74%: 12 = 6.16%, and if 74%: 9 = 8.22%. (!!!) Obviously, 
these 8.66-8.22% carry some physical meaning. The remaining 26% are multiples of 
8.66 and 100% hypothetical packing density is possible with 12 bonds. But is such a 
possibility real? The outer electrons of the last shell or subshells of the metal atom form 
the conduction band. The number of electrons in the conduction band affects the Hall 
constant, the compression ratio, etc. Let us construct a model of an element metal so 
that the remaining, after filling the conduction band, the outer electrons of the last shell 
or subshells of the atomic core in some way affect the structure of the crystal structure 
(for example: for the bcc lattice-8 "valence" electrons, and for HEC and FCC -12 or 9). 
As a result of studying the lattices of chemical elements, we can say that the bcc lattices 
of light elements are formed by 8 bond electrons, and heavy 14 electrons of the atomic 
core. FCC lattices are formed by 9 bond electrons for light elements and 15 for heavy 
ones. 

Then I began to fill the conduction band with external electrons. One of the 
remarkable features of the Hall effect is, however, that in some metals the Hall 
coefficient is positive, and therefore the carriers in them should apparently have a 
charge opposite to the charge electron. This property required clarification. Option one: 
a thin closed tube, completely filled with electrons except one. With such a filling of the 
zone, with the local movement of an electron, the opposite movement of the \ "place \" 
of the electron, which has not filled the tube, is observed, that is, the movement of a 
non-negative charge. Option two: there is one electron in the tube, therefore, only one 
charge, a negatively charged electron, can move. It can be seen from these two 
extreme variants that the sign of the carriers determined by the Hall coefficient should, 
to some extent, depend on the filling of the conduction band with electrons. Let us fill 
the conduction band with electrons so that the outer electrons of the atomic cores 
influence on the formation of a type of crystallization lattice. Let us assume that the 
number of external bond electrons on the last shell of the atomic core, after filling the 
conduction band, is equal to the number of neighboring atoms (coordination number) in 
the crystal lattice. It turned out that the metallic bond is due not only to the socialization 


