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Abstract 

 

In paper [16], we developed the local and global structure of a discrete physical space, 

and constructed and investigated discrete black and white holes using methods 

developed in the field of digital topology.  In this paper, we develop various discrete 

models of the universe, as well as explore the discrete structure of wormholes. 
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1. Introduction 

 

There are currently various models of the continuous universe in physics, but the 

Friedman–Lemaitre–Robertson-Walker (FLRW) models are mainly used.   

In these models, the Universe is either a three-dimensional Euclidean space, or a 

three-dimensional   hypersphere, or a three-dimensional hyperbolic space. 

In recent years, many works have appeared in physics in which a physical space is 

considered not as continuous but as a discrete space (see e.g.  [1-14]). 

In many of these approaches, physical space is a lattice consisting of individual 

points. However, these papers do not give the mathematical structure of lattices, 

including the topology and geometry of these lattices, the relationship between 

different points, and so on. 

Meanwhile, back in 1916, Einstein declared the need to use discrete models of 

physical space and regretted the lack of such models in mathematics [15].   

In this article, we use  digital topology to describe discrete models of the spatial 

universe and wormholes. 

Digital topology as an independent branch of mathematics arose in connection with 

the widespread use of computers. 

In particular, these methods make it possible to create discrete models of continuous 

spaces with the same mathematical properties as the continuous spaces themselves. 

Methods of replacing continuous two-dimensional surfaces with a finite set of two-

dimensional cells were developed  in  works [17-21]. These methods preserve the 

basic mathematical characteristics of continuous two-dimensional surfaces. An 

algebraic approach to constructing discrete models of continuous spaces using 

coverings was studied and developed in papers [22-38]. In this approach, a discrete 

model of continuous space is considered as a simple undirected graph with a certain 

structure. An important feature of this approach is the similarity of the properties of a 
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discrete model with the properties of its continuous analog in terms of algebraic 

topology.  

 

 

2  Preliminaries. Discrete spaces in digital topology 

 

This section is an information section and is a copy of a similar section set out in 

article [16]. In this section, for ease of understanding, we present the basic definitions 

and properties of discrete spaces obtained within the framework of digital topology.  

Our approach for constructing discrete spaces was introduced and studied in works 

[22-38]. 

 

2.1 General definitions and properties 

 

Definition 2.1 

A ‘digital space G=(V,W)’ is a pair of sets V and W.  V={v1,v2,...vn,…} is a 

finite or  countable set of points. W is a set of edges. Each edge (vрvq) 

connects two different points, vрvq. Two edges (vрvq) and (vqvp) are the same. 

Two points can only be connected by one edge: W={ (vрvq),| vр, vqV, vрvq, 

(vрvq)=(vqvp)}. 

Note that digital spaces are called simple undirected graphs in graph theory. We will 

use the terminology of graph theory whenever it is convenient.  For an edge (uv) of G, 

the points u and v are called its endpoints and u and v are incident with (uv).  Points u 

and v are called adjacent or neighbors if they are the endpoints of an edge (uv).  Such 

notions as the connectedness, the adjacency, the dimensionality and the distance on G 

are completely defined by sets V and W (e.g.  [25, 28, 31, 35]). 

Definition 2.2 

The digital space H=(P,S) is called the subspace of the digital space G=(V,W),  

if PV and H is induced by the set of points P. 

Let G and v be a digital space and a point of G. The subspace O(v) induced by 

the set of points of G that are adjacent to v (without v) is called the nearest 

neighborhood or the rim of point v in G, (fig. 1). The subspace O(v)v=U(v) 

is called the ball of v. The joint rim O(uv)=O(u)∩O(v) of points u and v is a 

subspace, each point of which is adjacent to both the point u and the point v. 

According to this definition, H is obtained by removing from G points that are not 

contained in P together with their incident edges.  The space G and subspaces O(u), 

O(v) and O(uv) are shown in fig. 1. 

Contractible digital spaces were defined and studied in [25-27, 32]. To define 

contractible digital spaces, we use the inductive definition.   

Definition 2.3  

The one-point digital space K(1)=v is the contractible space. 

Figure 1.  O(u) and O(v) are the rims of points u and v. O(uv) is the joint  of points u and  

v. 

G 

v u 

O(u) 

v 

O(v) 

u 

O(uv)=O(u)∩O(v) 
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Let G be a contractible space containing n-points, |G|=n and H be a 

contractible subspace of G, HG. Then the space P=Gx, that is obtained by 

gluing a point x to G in such a way that the rim O(x)=H, is a contractible 

space. 

 Contractible digital spaces with a number of points less than or equal to 4 are 

depicted in fig. 2.   

Definition 2.4 

A point v of the digital space G is called simple if the rim O(v) is a 

contractible space.  

Let points v and u of G are adjacent and the joint rim O(vu)=O(v)∩O(u) is a 

contractible space. Then the edge (vu) is called simple. 

Proposition 2.1   

A contractible digital space G can be transformed into a point of G by 

sequentially removing simple points and edges. 

Definition 2.5  

Digital spaces G and H are called homotopy equivalent if G can be obtained 

from H by gluing and (or)  removing simple points and edges. Gluing and 

removing simple points or edges are called contractible transformations. 

Properties of the Euler characteristic and the homology groups of digital spaces were 

studied in [22-27, 31].  It was shown that the Euler characteristics and the homology 

groups of homotopy equivalent digital spaces G and F are equal. 
 

2.2 Digital n-dimensional Manifolds. Basic definitions and properties 

 

This part contains definitions of n-dimensional digital spaces and transformations of 

these spaces. There is abundant literature devoted to the study of different approaches 

to digital lines, surfaces, and spaces used by researchers. Just mention some of them 

[17-21]. A digital n-manifold is a special case of a digital n-surface defined and 

investigated in [26, 28, 30, 34].  

Definition 2.6.   

A 0-dimensional sphere, S
0
, is a disconnected digital space with just two 

points: a and b (fig. 3). 

A connected digital space, S
1
, with a finite number of points is called a one-

dimensional sphere, if the rim of any point v is a zero-dimensional sphere 

O(v)=S
0
.   

A contractible space, D
1
=S

1
-v, is called a digital one-disk (fig. 3) with the 

(spherical) boundary D
1
=O(v) and the interior IntD

1
=D

1
-D

1
. 

Figure 2. Contractible spaces with  the number of points n<5. 

Figure 3.  Zero- and one-dimensional spheres S
0
 and S

1
 and  one-dimensional disks D

1
.  

S
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v 
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1
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1
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A connected digital space S
n
 with a finite number of points is called n-

dimensional sphere, if the rim of any point v is (n-1)-dimensional sphere 

O(v)= S
n-1

 and D
n
=S

n
-v is a contractible space. D

n
=S

n
-v is called a digital n-

disk (fig. 3) with the (spherical) boundary D
n
=O(v) and the interior 

IntD
n
=D

n
-D

n
 (fig. 4). 

Definition 2.7.   

A connected digital space M with a finite number of points is called a closed 

n-dimensional manifold, n>0, if the rim O(v) of any point v is an (n-1)-

dimensional sphere.   

Obviously, if a closed n-manifold is not an n- sphere, then the rim O(v) of any point v 

is not a contractible space. 

Digital models of continuous spaces can be obtained using LCL coverings of these 

spaces [31, 33, 35]. Intersection graphs of LCL coverings are digital models of these 

spaces with the same mathematical characteristics as the continuous spaces 

themselves including the dimension,  the Euler characteristic, the  homology groups 

and so on. 

Digital spaces can be transformed from one space to another by various types of 

transformations. One type of transformation models the connection between 

homotopy  equivalent continuous spaces in classical topology, the other type of 

transformation models the homeomorphism between spaces of classical topology. 

Consider transformations that translate one digital space into another digital space 

with the same mathematical characteristics and properties. At the same time, the 

number of points and edges can vary arbitrarily [32]. 

Definition 2.8 

Let M be a digital space and (vu) be the edge in M. Remove the edge (vu) 

from M and glue the point z to M, where z adjoins points u, v and all points in 

the subspace O(uv)=O(u)∩O(v),  O(z)=v∪u∪O(vu). This pair of contractible 

transformations is called the replacement of an edge by a point or R-

transformation, R: M→N. The obtained space N is denoted by N=RM=(M-

(vu))∪z (fig. 5). 

Figure 4.  Minimal 2- and 3-dimensional spheres and disks. 

S
2
 S

3
 

V 

D
2
=S

2
-v 

V 

D
3
=S

3
-v 

u v 

M 

Figure 5.  The replacement of the edge (uv) by the point z or  R-transformation N=RM. 
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Obviously, the R-transformation increases the number of points in the digital space 

M.  

Definition 2.9 

Let M be a digital space, (vu) be the edge in M and any point x belonging to 

O(u)-O(v) is not adjacent to any point y belonging to O(v)-O(u).    

Remove the points u and v from M and glue the point z to M, such that z is 

adjacent to all points in the subspace O(u)∪O(v), O(z)= O(u)∪O(v). 

This pair of contractible transformations is called the contraction of points u 

and v or C-transformation. CM=(M∪z)-{u,v} and the points u and v are called  

a simple pair {u,v} of  points  (fig. 6). 

Obviously, the C-transformations reduce the number of points in the digital space M. 

The properties of R- and C-transformations have been studied in a number of papers.  

In paper [34], the contraction of simple pairs of points was applied for classification 

of digital n-manifolds. The following result can be used to study properties of closed 

digital n-manifolds. 

Proposition 2.2. 

Let M be a closed digital n- manifold, n>0 and N=CM (N=RM) be the space 

obtained from M by C-transformations (R-transformations). Then N and M are 

homeomorphic (N is closed digital n- manifold with the same mathematical 

properties as M). 

The join  of two discrete spaces makes it possible to obtain a new space with new 

properties . This is especially important for discrete closed manifolds. 

Definition 2.10 

The join G⊕H of two discrete spaces G=(X,U) and H=(Y,W) is the space that 

contains G, H and all edges joining every point in G with every point in H [29, 

30, 31]. 

The following result was proven in [30].  

Proposition 2.3 

For example, at the initial moment, the discrete models under consideration 

contain 8 Let G
n
 and H

m
  be discrete closed  n- and m-dimensional spaces. 

Then their join  G
n⊕H

m
 is a discrete closed (n+m+1)-dimensional manifold.  

z 

N=CM 

Figure 6.  The contraction of points u and v or C-transformation. N=CM. 

u v 

M 

Figure 7.  The join of two one-dimensional spheres S
1
1 and S

1
2 is a three-dimensional 

sphere S
3
. 

 

S
1
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1
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In fig. 7,  the join of two one-dimensional spheres S
1
1 and S

1
2 is a three-dimensional 

sphere S
3
. 

This property can be used to construct various models of a discrete physical universe.  

Consider a method for obtaining closed discrete spaces from discrete spaces with  

boundaries by gluing two discrete spaces with boundaries  along their boundaries [29, 

30, 31]. 

Proposition 2.4  

Let G=IntG∪∂G  and  H=IntH∪∂H be discrete  n-dimensional spaces with  the 

same boundaries ∂G=∂H.   Boundaries ∂G and ∂H are closed  (n-1)-

dimensional spaces.  Glue G and H along their boundaries in such a way that 

each point on the boundary ∂G is the same as the corresponding point on the 

boundary ∂H. Then the obtained space  W=IntG⋃∂G⋃IntH  is a closed 

discrete  n-dimensional space without  boundary. 

In fig. 8, G and H are minimal three-dimensional disks with a boundary that is a two-

dimensional sphere S
2
 . Gluing G and H along the boundary we get a minimal three-

dimensional sphere W, which contains eight points. This is a closed three-dimensional 

space. 

 

3  Continuous models of the universe with wormholes 

 

3.1 Mathematical constructions and of spaces 

 

Let's consider at the beginning several mathematical constructions and spaces. 

3.1.1. A g-holed torus.  In topology, a genus g surface is the connected sum of 

g  distinct tori.   

Obviously, a genus g surface is a closed 2-dimensional manifold (without boundary).  

A genus zero surface is the 2-sphere S
2
, a genus one surface is the torus itself,  a 

Figure 8.  G and H are minimal 2-d disks with boundary S
2
.  W is   the minimal 3-d sphere. 

 

 

v 

 

W=v∪S
2∪u 

 
u 

 

G= v∪S
2

 

 

v 

 

H= u∪S
2

 

 
u 

 

0-holed torus 

S
2
  

 

1-holed torus 
 

2-holed torus 
 

3-holed torus 
 

Figure 9.   g-holed tori, g=0, 1, 2, 3. 
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genus two surface is the connected sum of two tori  and so on. A genus g surface is 

also called a g-holed torus or a 2-sphere with g handles  (fig. 9). Note that in 

mathematics, a g-holed torus and a 2-sphere with g-handles are homeomorphic 

spaces. 

3.1.2  A solid g-holed torus. A solid torus is a torus plus the volume  inside 

the torus. 

A solid torus (toroid) is the three-dimensional manifold with a boundary.  The 

boundary of a toroid is the torus, i.e. is the two-dimensional closed space.  Therefore, 

a solid g-holed torus (g-holed toroid)  is a 3-dimensional manifold with the boundary. 

The boundary is the solid  g-holed torus  is the 2-dimensional closed manifold.  

Topologically, a solid g-holed torus can also be represented as a 3-ball (3-

dimensional disk)  with g solid handles.  
3.1.3  The double of a manifold. In topology, if G is a connected n-manifold 

with boundary ∂G, its double D(G)  is obtained by gluing two copies of G 

together along their common boundary ∂G.    

That is, the double of G is  D(G)=G × { 1 , 2 }   where ( x , 1 ) ∼ ( x , 2 ) for all x ∈ 

∂G.  In other words, D(G)=G∪fG  where f:∂G→∂G is an identity map. By 

construction, D(G) is a closed  3-manifold (without boundary).  

In figure 10,  G is a 2-disc with boundary ∂G  which is a 1-sphere,  G×1 and G×2 are 

two copies of G and D(G) is the double of G. D(G) is a 2-sphere.  Similarly,  B and H 

are a 2- manifolds with boundary,  D(B)  and D(H) are  double of B and H. By 

construction, D(B)  and D(H) are closed 2-manifolds. D(B) is a 1-holed torus,  D(H) 

is a 2-holed torus.  

Let G be a solid n-holed torus, that is,  G is a 3-ball  with g solid handles.  

The double D(G) is a closed  3-manifold (without boundary),  D(G)=G∪fG  where 

f:∂G→∂G is an identity map. Since the double of a 3-ball is the 3-sphere S
3
, then 

D(G) is a closed three-dimensional manifold containing a three-dimensional sphere S
3
 

and g wormholes attached  to S
3
. D(G) is a model of a continuous universe with g 

wormholes.  

Let's now consider the application of these mathematical structures to the description 

of the model of a continuous universe with wormholes. 

 

3.2   A continuous universe as a hypersphere S
3
.  

 

G×1 
 

G×2 
 

D(G) 
 

G 
 

∂G 
 

B×2 
 

B×1 
 

D(B) 
 

B 
 

∂B 
 ∂B 

 

Figure 10. . G is a 2-disc.  A one-sphere ∂G is  the  boundary of G.  G×1 and G×2 are  copies of 

G.  D(G) is the double of G.  D(G) is a two- sphere.  B is a 2- manifold with boundary.  D(B) is 

the double of B. D(B) is a torus.  H a 2- manifold with boundary.  D(H) is the double of H. 

D(H) is a 2-holed torus. 

 

H×1 
 

H×2 
 

D(H) 
 

H 
 

∂H 
 ∂H 

 

∂H 
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One of the  continuous models the universe is a closed expanding model of the 

universe,  which  is mathematically described by an expanding three-dimensional 

sphere. 

Let G be a solid 0-holed torus, i.e. is a 3- dimensional  ball (cube, disk) without  

handles.  

Therefore, the double of G is  the 3-dimensional  sphere  S
3
, D(G)=S

3
. 

In fig. 11, G is a solid 0-holed torus (a ball). G=IntG∪∂G,  G×1=IntG∪∂G and G×2=IntG 

∪∂G are balls. Glue G×1 and G×2 along their boundaries ∂G in such a way that each 

point on ∂G in G×1  is the same as the corresponding point on ∂G in G×2. The 

obtained space D(G)= IntG∪∂G∪IntG a three-dimensional sphere S
3
. D(G) is a model 

of a continuous closed universe without wormholes. 

 

3.3  A continuous universe as a three-dimensional torus. 

 

A torus model of the universe was proposed in 1984. According to this model, 

topologically the universe is a three -dimensional torus. 

Let  G is a solid 1-holed torus G (fig. 12). The boundary ∂G is a 1-holed torus, i.e. a 

simple torus. ∂G is a closed  2-manifold (without boundary). G×1 and G×2 are  copies 

of G.  D(G) is the double of G. D(G)  is obtained by gluing two copies of G together 

along their common boundary ∂G. Thus,  D(G) is a closed three-dimensional 

manifold without boundary containing a three-dimensional sphere S
3
 and one 

wormhole attached  to S
3
. D(G) is a model of a continuous closed universe without 

boundary with one wormhole. Topologically D(G) is a three -dimensional torus. 

 

3.4   A continuous universe as a hypersphere S
3
 with n wormholes 

 

Consider a mathematical model of a continuous universe, which is a three-

dimensional sphere with n wormholes. 

Let G be a solid g-holed torus, which can be represented as a 3-ball (3-dimensional 

disk)  with g solid handles. The boundary  ∂G  of G is the g-holed torus, i.e. is the 2-

dimensional closed manifold. The double of G,  D(G)=G∪fG,  is obtained by gluing 

two copies of G together along their common boundary ∂G.  D(G) is a closed  three-

G×1 
 

G×2 
 

G  
 

∂G
 

D(G)=G∪fG  
 

Figure 11. G is a solid 0-holed torus (a ball). The boundary ∂G is a 2-sphere S
2
. 

G×1 and G×2 are  copies of G.  D(G) is the double of G  i.e. a 3-sphere S
3
. 

Figure 12. G is a solid  1-holed torus (toroid). The boundary ∂G is a torus. 

G×1 and G×2 are  copies of G.  D(G) is the double of G i.e.  a three -dimensional torus.
 

G×1 
 

G×2 
 

D(G)=G∪fG  
 G 

 

∂G
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dimensional manifold containing a three-dimensional sphere S
3
 and g wormholes 

attached  to S
3
. 

In figure 13, G is a solid 3-holed torus G. The boundary ∂G is a 3-holed torus, i.e. a 

closed  2-manifold (without boundary). D(G) is the double of G. D(G)  is obtained by 

gluing two copies of G together along their common boundary ∂G.  

Thus, D(G) is a closed three-dimensional manifold without boundary containing a 

three-dimensional sphere S
3
 and three wormholes attached  to S

3
. D(G) is a model of a 

continuous closed universe without boundary with three wormholes. 

Unfortunately, in physics, such models of the universe have never been proposed or 

studied from the point of view of observations and physical processes occurring in the 

universe. 

 

 4  Discrete models of the universe with wormholes 

 

4.1   Discrete  3-dimensional dicks (balls) 

 

In papers [25, 30, 31, 33, 35, 38] it  is  shown how to construct discrete models of n-

dimensional continuous objects and manifolds. These models retain topological 

properties of their continuous counterparts. 

In order to build a discrete model of the universe with wormholes, we can first build 

the discrete model of a solid n-holed torus and then glue two discrete models along 

their boundaries. 

As in the continuous case, at the beginning we construct a discrete model of a solid n-

holed torus G with the boundary ∂G.  Then we construct the double of G by gluing 

two copies of G together along their common boundary ∂G.   D(G)=G∪fG,  where 

f:∂G→∂G is an identity map. By construction, D(G) is a discrete closed  3-manifold 

(without boundary). D(G) is a discrete model of a closed 3-dimensional universe with 

n wormholes. 

We use the same approach that we used in work [16]. 

The discrete three-dimensional disks  A and B are shown in Figure 14. All of them are 

homotopy equivalent to one another.  

A solid 3-holed 

torus G 
 

D(G)=G∪fG  
 

Figure 13. G is a solid 3-holed torus G. The boundary ∂G is a 3-holed torus. 

G×1 and G×2 are  copies of G.  D(G) is the double of G.
 

O(c)      A=c∪O(c)      
a 

b 
a 

b 

a 
b 

a 
b  

a 
b 

a 
b 

a 
b 

a 
b  

B      

c      

Figure 14.  Discrete 3-d  disks A and B. O( c ) is the rim of  point c. 
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The surface of A is a discrete  two-dimensional sphere O(c) with 14 points. Point c is 

located inside O(c) and is adjacent to any point in O(c). Topologically,  A is a discrete 

3-d ball (cube). 

The discrete 3-dimensional disk B is the union of some number of A-cubes obtained 

by gluing their faces together in pairs. It is easy to verify that the surface of B is a 

discrete two-dimensional sphere and B is a three-dimensional discrete disk (ball). 

 

4.2  A discrete model of a continuous spherical three-dimensional universe S
3
 

 

As in the continuous case, consider discrete solid 0-holed torus G (disk)  (fig. 15). The 

boundaries ∂G is the discrete  0-holed torus, i.e. is the discrete two-dimensional 

sphere.  G×1 and  G×2 are copies of G containing ∂G.  Therefore, as in the continuous 

case, the double of G is  the discrete 3-dimensional  sphere  S
3
, D(G)=S

3
 (fig. 15). 

In fig. 15, G is a discrete  solid 0-holed torus (a ball). G=IntG∪∂G,  G×1=IntG∪∂G 

and G×2=IntG ∪∂G are discrete  balls. Glue G×1 and G×2 along their boundaries ∂G 

in such a way that each point on ∂G in G×1  is the same as the corresponding point on 

∂G in G×2. The obtained space D(G)= IntG∪∂G∪IntG a discrete  three-dimensional 

sphere S
3
. D(G) is a discrete model of a continuous closed universe without 

wormholes. Note that the minimum number of points in a discrete three-dimensional 

sphere is eight.  The minimal discrete 3-d sphere is shown in fig. 4. 

 

 

4/3  Discrete model of the Universe which is a three-dimensional torus 

 

As mentioned above, the   torus model of the universe was proposed in 1984. As in 

the continuous case, consider a discrete solid 1-holed torus G (fig.  16). The  boundary 

a 
b 

a 
b 

a 
b 

a 
b 

∂G
 

G
 

a 
b 

a 
b 

a 
b 

a 
b 

G×1 
 

a 
b 

a 
b 

a 
b 

a 
b 

G×2 
 

∂G
 

∂G
 

D(G)=G∪fG  
 

Figure 15. G is a discrete solid 0-holed torus (a 3- disk). The boundary ∂G is a discrete 2-sphere 

S
2
.  G×1 and G×2 are  copies of G.  D(G) is the double of G  i.e. a discrete 3-sphere S

3
. 

 

D(G)=G∪fG  
 

G      

∂G
 

G×1      

∂G
 

G×2      

∂G
 

Figure 16. G is a discrete solid 1-holed torus. G×1 and G×2 are  copies of G.  D(G) is the double 

of G.  D(G)   is  a  discrete three-dimensional torus. 
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∂G is a discrete  1-holed torus, i.e. is the discrete two-dimensional closed space.   As 

in the continuous case, the double of G is  the discrete 3-dimensional  closed  space.   

Geometrically, this space is a discrete three-dimensional sphere S
3
 with one handle 

attached to S
3
.  In other words, it is a discrete model of a closed three-dimensional 

spherical universe with a single wormhole. 

In figure 16,   G is  a discrete  solid  1-holed  torus.   D(G) is a discrete closed 

universe with one wormhole in this universe.  The minimum number of points in a 

discrete three-dimensional torus is twenty. 

 

4.4   Discrete model of the Universe which is a three-dimensional sphere with n 

wormhole 

 

Let's build  a discrete model of a continuous universe, which is a three-dimensional 

sphere with n wormholes. For example n=4 In figure 17, G is a discrete solid 4-holed 

torus G. The boundary ∂G is a discrete 4-holed torus, i.e. a closed  2-manifold 

(without boundary). G×1 and G×2 are  copies of G.  D(G) is the double of G. D(G)  is 

obtained by gluing two copies of G together along their common boundary ∂G.  

Thus,  D(G) is a discrete closed three-dimensional manifold without boundary 

containing a three-dimensional sphere S
3
 and four wormholes attached  to S

3
. D(G) is 

a model of a discrete closed universe without boundary with four wormholes.  

 

Hypothesis 

 

Dark matter in the universe is a hypothetical form of matter that does not emit 

electromagnetic radiation and does not interact with it. 

There are many hypotheses explaining the nature of dark matter. 

In article [16], we hypothesized that the source of dark matter in the universe are the 

points forming the structure of the discrete universe. 
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