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ABSTRACT 

In the 25 years following the introduction of dark energy to cosmology there has been little progress in 

understanding this phenomenon.  A radical solution is considered -  to change the redshift scale-factor 

relation.   The new relation explains why Concordance Cosmology, using the wrong relation, needs a low 

matter density and dark energy.  An alternative cosmology is described that explains how the new relation 

comes about.  There are solutions to the flatness problem, the coincidence problem and the Hubble tension.  

John Hunter* 

INTRODUCTION 

Since the 1990s there has been apparently 

increasing evidence for a universe with dark 

matter, dark energy and a period of inflation - the 

LCDM model.  The model has (until recently) 

matched observational data well, although there 

are many variable parameters. 

The main features are that LCDM is a solution of 

Einstein’s equations 
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Where the scale factor 𝑎 is related to redshift as 

𝑎 =
1

1+𝑧
      (3) 

LCDM finds, apparently, from observational data, a 

low matter density Ω𝑚 of about 0.3 and a dark 

energy parameter ΩΛ for a flat universe, of 0.7 
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 Figure 1  Composition of the universe, LCDM 

 

However the Hubble tension and other tensions, 

have become challenging for LCDM,  [Riess, 2020]. 

There is also the unexplained nature of the dark 

energy and the coincidence problem. 

These difficulties perhaps indicate that an 

alternative approach is required.   

The layout of this paper is as follows.  In section 1 

the alternative relation is introduced.  By 

considering supernovae data and the clusters of 

galaxies, it’s shown how LCDM (using a wrong 

relation), could incorrectly infer a low matter 

density and a cosmological constant.  

In section 2 it’s shown how the alternative 

approach can resolve the Hubble tension. 

Section 3 describes a possible reason for the new 

relation and an alternative cosmological model. 
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Section 1.   The Alternative relation 

For an expanding universe, with constant 

expansion parameter 

�̇�

𝑎
=  𝐻      (7) 

and for a flat universe, equations (1) and (2) 

reduce to 

3𝐻2 = −4𝜋𝐺 (𝜌 +
3𝑝

𝑐2) + Λ𝑐2
     (8)          

  

3𝐻2 = 8𝜋𝐺𝜌 + Λ𝑐2    (9) 

with the cosmological constant Λ = 0, 

𝜌 =
3𝐻2

8𝜋𝐺
       (10) 

the universe is at the critical density, Ω𝑚 = 1. 

and 

 𝑝 = −𝜌𝑐2    (11) 

It’s shown that this solution with the alternative 

redshift scale-factor relation  

𝑎 =
1

√1+𝑧
     (12) 

has some advantages.  A possible reason for the 

new relation is in section 3. 

From (7) and (12) 

 1 + 𝑧 = 𝑒2𝐻𝑡 =  
1

𝑎2   (13) 

(with the convention from cosmology that positive 

times are into the past). 

1.1 The Redshift of light 

An object, a distance 𝑑 away, would have an 

apparent velocity 𝑣, depending on the redshift. 

𝑣

𝑐
= 𝑧 = 𝑒2𝐻𝑑/𝑐 − 1 ≈ 

2𝐻𝑑

𝑐
   (14) 

𝑣 = 2𝐻𝑑     (15) 

comparing with Hubble’s law, the expansion 

constant 𝐻 is half of the Hubble constant 𝐻0, 

approximately 37.5 kms-1Mpc-1 

𝐻 =
𝐻0

2
      (16) 

The Hubble parameter ℎ is also halved. 

1.2 The Flatness and coincidence problems. 

The flatness problem does not occur.  The universe 

is always naturally at critical density, Ω𝑚 = 1 and  

ΩΛ= 0.  The coincidence problem (that LCDM 

leaves unexplained) does not occur. 

However let’s see what LCDM would conclude, 

from (4), (5) and (10), repeated below  

Ω𝑚 =
𝜌

𝜌𝑐𝑟𝑖𝑡
   (4) 

𝜌𝑐𝑟𝑖𝑡 =
3𝐻(𝑧)2

8𝜋𝐺
  (5) 

𝜌 =
3𝐻2

8𝜋𝐺
     (10)  

Since the 𝐻(𝑧) used in (5), would be twice the true 

value, then the denominator of (4), would be four 

times too large,  so LCDM would conclude, 

incorrectly, from some observations (below), that 

Ω𝑚 = 0.25 (although really 1.0),  Figure 2 

Figure 2  Composition of the universe (new) 

 

 

1.3 Abundancies of the elements 

Measurements of deuterium abundance from 

quasars and Big Bang nuclear synthesis (BBN) give 

the baryon density Ω𝑏ℎ2 = 0.024 [Tytler, 1996].  

With the new value for ℎ of about 0.375, half of 

the traditional value, the new value for Ω𝑏 is four 

times larger, about 17% of the universe. 
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1.4 The Matter density 

LCDM has apparent evidence for a low matter 

density.   Late universe, low redshift evidence for a 

low matter density (around 0.25) comes from the 

motion of stars around galaxies and from clusters 

of galaxies [Ferramacho, 2006] and  [Allen, 2007]. 

The low matter density was inferred from the X-

ray gas mass fraction.  The matter density is from 

Ω𝑚 =
Ω𝑏

𝑓𝑔𝑎𝑠(1+0.19ℎ0.5)
    (17) 

[Allen, 2002] The denominator contains ℎ and the 

term 𝑓𝑔𝑎𝑠 that’s determined by measuring the 

mass of gas in a cluster from X-ray luminosity and 

the total mass of the cluster.  An estimate of 𝑓𝑔𝑎𝑠 

was required. 

The main change needed, however, would be to 

the numerator.  Ω𝑏 is calculated from an Ω𝑏ℎ2 

value of 0.024, obtained from the Deuterium to 

Hydrogen ratio in quasars.  Hence Ω𝑏 should be 

four times larger, this increases Ω𝑚 by a similar 

factor to approximately 1.0.   

1.5 Supernovae data 

A new formula for luminosity distance is derived in 

Appendix A 

𝐷𝐿 =
2𝑐

𝐻0
(1 + 𝑧)(√1 + 𝑧 − 1)   (18) 

Plotting the distance moduli for supernovae 

binned data [Betoule, 2014] gives Figure 3 (top), 

with an enlargement (bottom).  It shows the new 

relation, top curve.  LCDM with a matter density of 

0.3 is the middle curve, and matter density of 1.0 

is the bottom curve. 

LCDM has two variable parameters, Ωm and 𝐻0.  

The new relation has only one, 𝐻0.   

Let’s look at binomial expansions for LCDM and 

the new relation.  For the new relation 

𝐷𝑀 =
𝑐

2𝐻
(𝑧 −

𝑧2

4
+ ⋯ )    (19) 

For LCDM 

𝐷𝑀 =
𝑐

𝐻0
(𝑧 −

3𝑚𝑧2

4
+ ⋯ )    (20) 

Details are in Appendix B.  By comparing (19) and 

(20) there is a match if  3𝑚 = 1, where 𝑚 is short 

for Ωm .  Most of the data points are at low values 

of 𝑧, so if LCDM is not correct but is varying the 

matter density to match (19), we would expect it 

to predict an Ωm value of about 1/3.   

The matter density inferred from supernovae 

[Abbot, 2018] is 0.331.  

Figure 3  New relation, LCDM Ωm = 0.3 and 1.0                 

  

 

 

1.6 Anisotropies in the CMBR 

WMAP9 [Hinshaw, 2012] finds Ω𝑚= 0.2815 from 

Ω𝑚ℎ2 = 0.1368 ± 0.005 and a ℎ value of 0.697 ± 

0.02. If ℎ is halved, Ω𝑚 becomes four times as 

large, giving an Ω𝑚 value of 1.126 ± 0.10.   

There is a similar situation for PLANCK data. 



Data from early universe studies and those 

calibrated with supernovae (such as BAO or the 

Cosmic Chronometer method) tend to give matter 

density values towards 0.33, values from local 

studies and lensing give approximately 0.25 

Often studies combine data from different 

methods and find a value between 0.25 and 0.33.  

In a flat universe ΩΛ is wrongly deduced by LCDM 

to be about 0.7, but is really 0. 

It’s possible that there has been a serious and 

longstanding error with our redshift scale-factor 

relation, starting shortly after the development of 

General Relativity in about 1920.   

Section 2.   The Hubble Tension 

Below, the value for 𝐻0 is derived in three 

different ways, from CMB data, BAO and the local 

distance ladder. Compatibility is found at 75-76 

kms-1Mpc-1. 

2.1 The CMB data of PLANCK and WMAP 

From Planck data [Aghanim, 2018], Ω𝑚ℎ2 = 0.1430 

with the new relation we assume that Ω𝑚 = 1, 

then ℎ = 0.37815 and 𝐻0 = 75.63 kms-1Mpc-1 

From WMAP [Hinshaw, 2012], the values are 

Ω𝑚ℎ2 =  0.1367, if Ω𝑚 = 1 then ℎ = 0.3697 and 

𝐻0 = 73.95 kms-1Mpc-1   

We can see why the value of 𝐻0 from the CMB 

data is too low, it’s due to the faulty Ω𝑚 value.  If 

we calculate it from Ω𝑚ℎ2 = 0.1430 as above, but 

this time using the value for Ω𝑚 of 0.316  

[Aghanim, 2018],  (slightly below 1/3 from trying 

to match supernovae data), then the value 

obtained is  𝐻0 = 67.3 kms-1Mpc-1   

2.2 BAO measurements 

BAO measurements parallel to the line of sight 

constrain 𝐻(𝑧).  Due to the changes made in 

Appendix A, the comoving distance for LCDM 
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becomes 
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and we can determine the real expansion 

parameter by putting  

𝑐

2𝐻𝑡𝑟𝑢𝑒√1+𝑧
=

𝑐

𝐻𝐿𝐶𝐷𝑀(𝑧)
    (23) 

The data point with lowest standard deviation 

[Aubourg, 2015] is at 𝑧 = 0.57, the modelling of 

LCDM would need to pass near that point, so 

2𝐻𝑡𝑟𝑢𝑒√1.57 = 𝐻𝐿𝐶𝐷𝑀(0.57)   (24) 

𝐻(𝑧) =  𝐻0√Ω𝑚(1 + 𝑧)3 + Ω𝑘(1 + 𝑧)2 + Ωᴧ   

(25) 

with Ω𝑚 = 0.316, Ω𝑘 = 0  

𝐻𝐿𝐶𝐷𝑀(0.57) = 67.3√0.316(1.57)3 + 1 − 0.316    

2𝐻𝑡𝑟𝑢𝑒 = 74.2 kms-1Mpc-1 

This depends on the parameters used, the above 

parameters are from Planck data.   

BAO is not used alone to find 𝐻0, the method is 

often used with supernovae or CMB data, but 

typically it’s found that (23) makes 2𝐻𝑡𝑟𝑢𝑒   about 

9 to 11% larger than previous BAO results, about 

74. 2 ± 1.2 kms-1Mpc-1 

2.3 Direct local distance method 

Riess [Riess, 2019] recently measured the value of 

𝐻0 directly and found 74.03 kms-1Mpc-1.  A 

deceleration parameter of 𝑞 = −0.55 was used. 

Using 𝑞 = −1 raises the distance ladder value to 

approximately 75 kms-1Mpc-1  (Appendix C) 

2.4 A combined estimate for the Hubble constant 

The data from the methods above and lensing data 

from H0LiCOW [Wong, 2019] are summarised in 

Table 1. 

Table 1  Values of the Hubble constant 

Method    The Hubble Constant 
        (kms-1Mpc-1) 

CMB (WMAP)   73.95 ± 1.4 

CMB (Planck)   75.63 ± 0.29 

BAO   74 .2  ± 1.2 

Local    75.06  ± 1.4  

Lensing   73.3  ± 1.7 

 



The errors in the CMB measurements have been 

lowered as now the only uncertainty is from the 

measurement of Ω𝑚ℎ2, for Planck it’s as low as 

0.0011. 

The amended CMB method from Planck is most 

precise and agreement can be found at a value for 

𝐻0 of about 75-76 kms-1Mpc-1. 

The new redshift scale-factor relation enables us 

to understand the Hubble tension and also why 

LCDM seems to require dark energy.   

In the next section a reason for the different 

relation is proposed and the basis of an alternative 

cosmological model is described. 

Section 3.    Towards a new cosmology 

A reason is given why the alternative redshift 

scale-factor relation could be true. 

In LCDM the scale factor determines the distance 

between galaxies - there is now an important 

distinction with the new model.   

The changing scale factor 𝑎 now applies not only 

to space, but to matter too, and all distances.  This 

includes atoms, people, the sizes of stars, galaxies 

and the distances between all objects – they all 

now depend on the scale factor.  All physical 

constants which contain length dimensions are 

changed by the changing scale factor too. 

Every quantity 𝑄 with 𝑛 length dimensions 

changes according to 𝑄𝑎𝑛 so, for example  

Table 2  Changes of physical quantities 

Physical Quantity Change with time 

Planck’s constant ℎ ℎ𝑒2𝐻𝑡  

Masses                 𝑚 𝑚          constant 

Fine structure     𝛼  
constant                   

𝛼            constant 

Gravitational       𝐺 
constant  

𝐺𝑒3𝐻𝑡  

Pressure               𝑝 𝑝𝑒−𝐻𝑡    

Speed of light     𝑐 𝑐𝑒𝐻𝑡   

Density                𝜌 𝜌𝑒−3𝐻𝑡   

 

With 𝑡 in the table being positive into the future.  

 With this system all measurable quantities and all 

physics equations remain unchanged as time 

passes. It’s global conformal transformation, a 

continuous and ongoing expansion. 

This model universe is expanding yet static.  

Expanding in the sense that there is a continuous 

expansion (of all length scales) – but static in the 

sense that it would be impossible for any observer 

to measure the expansion locally.  For them the 

universe could be regarded as static - for example 

𝐺 appears constant in time if measured locally.   

Measurements at a distance would also yield a null 

result.  If we tried to measure any change in the 

fine structure constant 𝛼 [Murphy, 2016], for 

distant stars, since Plancks constant ℎ, the relative 

permittivity of free space 𝜀0  and the speed of light 

𝑐  all change, the exponential factors cancel and 𝛼 

is left unchanged. 

Figure 4  Cartoon to show the expanding universe 

  

The universe would always appear to be at critical 

density from (10), if the correct value of the 

expansion constant 𝐻 is used.   

3.1 Redshift 

 The continuing expansion of all length scales 

causes a redshift as follows.  

If the energy of a photon emitted (subscript 1) 

from a distant star towards an observer is 

conserved. 

ℎ0𝑓0 = ℎ1𝑓1     (26) 



Since Planck’s constant was lower in the past, 

there is a redshift of received light according to  

𝑓0 = 𝑓1
ℎ1

ℎ0
     (27) 

𝜆0 = 𝜆1𝑒2𝐻𝑡      (28) 

This leads to a new redshift  scale-factor relation.  

The redshift of received light is given by  

𝑧 =
𝜆1𝑒2𝐻𝑡−𝜆1

𝜆1
     (29) 

1 + 𝑧 = 𝑒2𝐻𝑡 =  
1

𝑎2    (30) 

so 

𝑎 =
1

√1+𝑧
     (31) 

An object, a distance 𝑑 away, would have an 

apparent velocity 𝑣, depending on the redshift. 

𝑣

𝑐
= 𝑧 = 𝑒2𝐻𝑑/𝑐 − 1 ≈ 

2𝐻𝑑

𝑐
   (32) 

𝑣 = 2𝐻𝑑     (33) 

comparing with Hubble’s law, the expansion 

constant is half of the Hubble constant 

approximately 37.5 kms-1Mpc-1 

𝐻 =
𝐻0

2
      (34) 

The same equations as (12-16) of section 1. 

3.2 Gravity 

In Appendix D  it’s suggested that gravity is caused 

by the expansion, with 𝐺 having the value to 

conserve energy as the expansion occurs, giving a 

very natural explanation of why the universe is at 

critical density, equation (10) .  

 It’s also suggested that the strength of gravity 

reduces when the mass to radius ratio of a region 

of matter approaches 𝑐2 𝐺⁄ . 

Although apparently static on the largest scales, in 

this model there is a great deal of motion on a 

smaller scale.  The Big Bangs occur when large 

quantities of matter collapse under gravity and 

then ‘bounce’.  So although apparently static in 

terms of scale factor, the universe is in a dynamic 

equilibrium. 

An outward pressure is generated by these 

‘bounces’ preventing the universe from collapsing 

inwards and allowing it to remain static on the 

large scale. 

The universe is eternal in this model, with no 

beginning.  The age of the oldest stars would be 

limited, however,  by the time it takes for regions 

of matter such as galaxies to collapse and bounce. 

The horizon problem is a problem for the Big Bang 

model, with a definite start of time.  In the new 

model there is no beginning of time, and no 

particular single Big Bang event, although there 

would have been many enormous explosive 

events, and perhaps one larger than the others. 

Other problems faced by LCDM might be 

overcome by this approach.  The James Webb 

Space Telescope (JWST) has recently discovered 

what’s been called ‘impossible early galaxies’  

[Treu, 2022].  In an eternal universe these ‘early’ 

galaxies could exist. 

Figure 5  The Fermi bubbles 

 

The gigantic Fermi Bubbles, Figure 5,  

approximately the same size as the Milky Way, 

whose origin isn’t understood, may be fuelled by a 

strong outflow of matter.  (Image credit:  Nasa 

Goddard).   

Phenomena such as galactic jets, and other 

bouncing, or ejection phenomena, throughout the 

entire universe, may be able to mimic the 

successes of Big Bang Theory such as the Cosmic 

Microwave Background Radiation and the 

abundancies of the elements.   

The growth of structure is discussed in Appendix E.



Summary  

It is possible that there has been a serious and longstanding misunderstanding of the redshift scale-factor 

relation, starting in about 1920.  A different redshift scale-factor relation and a new cosmological model is 

proposed.  The Hubble tension occurring in LCDM could be due to the faulty relation. 

The advantages of the new model are as follows.  It is simple philosophically, with time symmetry (Appendix F) 

and scaling symmetry.  There is no need for a cosmological constant, dark energy or inflation and no 

coincidence problem.  The flatness and horizon problems are naturally solved.
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Appendix A.   Luminosity distance 

𝐷𝑀 = ∫
𝑐

𝑎(𝑡)
𝑑𝑡

0

𝑡
     (A1) 

from (12)          𝑎 =
1

√1+𝑍
        (A2) 

𝑑𝑎

𝑑𝑡
=

𝑑𝑎

𝑑𝑧
×

𝑑𝑧

𝑑𝑡
= −

1

2(1+𝑧)3/2 ×
𝑑𝑧

𝑑𝑡
   (A3) 

𝐻(𝑧) = 𝐻 =
�̇�

𝑎
=

−1

2(1+𝑧)
×

𝑑𝑧

𝑑𝑡
   (A4) 

𝑑𝑡 =
−1

2𝐻(1+𝑧)
𝑑𝑧     (A5) 

𝐷𝑀 = ∫
𝑐

2𝐻√1+𝑧

𝑧

0
𝑑𝑧    (A6) 

𝐷𝑀 =
2𝑐

𝐻0
(√1 + 𝑧 − 1)    (A7) 

 

 Appendix B.   Binomial expansions 

𝐷𝑀 =
2𝑐

𝐻0
(√1 + 𝑧 − 1)  

for the new relation (A7).  Omitting 𝑐 𝐻0⁄  , the 

binomial expansion, for small 𝑧 is 

= 2 (1 +
1

2
𝑧 −

1

8
𝑧2 + ⋯ − 1)   (B1) 

= 𝑧 −
1

4
𝑧2     (B2) 

For LCDM 

𝐷𝑀 = ∫
𝑐

𝐻(𝑧)
𝑑𝑧

𝑧

0
  

= ∫
𝑐

𝐻0√Ω𝑚(1+𝑧)3+Ω𝑘(1+𝑧)2+Ωᴧ  
𝑑𝑧

𝑧

0
   (B3) 

a flat universe approximation, again omitting 𝑐 𝐻0⁄  

and using 𝑚 for Ω𝑚  

= ∫ (𝑚(1 + 𝑧)3 + 1 − 𝑚)−1/2𝑑𝑧
𝑧

0
   (B4) 

= ∫ (𝑚(1 + 3𝑧 + 3𝑧2 + ⋯ ) + 1 − 𝑚)−1/2𝑑𝑧
𝑧

0
  

= ∫ (1 + 3𝑚𝑧 + 3𝑚𝑧2)−1/2𝑑𝑧 
𝑧

0
   (B5) 

= ∫ (1 −
3

2
𝑚𝑧 + ⋯ ) 𝑑𝑧 

𝑧

0
    (B6) 

= 𝑧 −
3𝑚

4
𝑧2     (B7) 

Comparing (B2) and (B7) there is a match for low 𝑧 

if Ω𝑚 is 1/3.  Most of the supernovae are at low 𝑧.   

Appendix C .  The Direct local distance method 

Riess [Riess, 2019] recently measured the value of 

𝐻0 directly and found 74.03 kms-1Mpc-1 

Details of the calculations used are in [Riess, 2016].  

The derived value for 𝐻0 is proportional to 

𝑋 = 1 +
1

2
(1 − 𝑞0)𝑧 −

1

6
[1 − 𝑞0 − 3𝑞0

2 + 𝑗0]𝑧2  

Equation (C1), see also equations (4) and (5) of 

[Riess, 2016],  𝑞0 is the deceleration parameter  

𝑞0 = −
𝑎�̈�

�̇�2     (C2) 

A value of 𝑞0 of - 0.55 is used to determine the 

local value of 𝐻0 and a jerk parameter 𝑗0 = 1 

In the new model from (7) 

𝑎 = 𝑒−𝐻𝑡   

so 𝑞0 =  − 1  and the jerk parameter is still  𝑗0 = 1 

For the new model 𝑋 simplifies to  

𝑋𝑛𝑒𝑤 = 1 + 𝑧     (C3) 

For the local method it simplifies to 

𝑋𝑙𝑜𝑐𝑎𝑙 = 1 + 0.775𝑧 − 0.27375𝑧2   (C4) 

𝑋 is then determined from 600 supernovae with 

redshifts between 0.023 and 0.15 (Figure 8 of 

[Riess, 2016], page 47).  The average redshift is 

approximately 𝑧 = 0.06 and from (C3) and (C4) 

𝑋𝑛𝑒𝑤 𝑋𝑙𝑜𝑐𝑎𝑙⁄  at 𝑧 = 0.06 is 1.01385  

So the new estimate of 𝐻0 is 74.03 × 1.01385 = 

75.06 kms-1Mpc-1 

Appendix D.  The strength of gravity 

The type of expansion proposed in this model 

ensures conservation of energy as the universe 

expands - (without any slowing of the expansion 

due to gravity). 

Imagine a mass 𝑚,  it’s rest energy varies during 

the expansion (in the absence of gravity) as 

 𝑚𝑐2𝑒2𝐻𝑡     (D1) 

Energy would not be conserved. 



With gravity included however, the total energy of 

the mass varies as  

(𝑚𝑐2 −
𝐺𝑀𝑚

𝑅
) 𝑒2𝐻𝑡      (D2) 

where the second term represents contributions 

from the rest of the universe of mass 𝑀 and radius 

𝑅.  Small numerical constants are omitted for 

simplicity.  Energy can be conserved if the quantity 

in the bracket of (D2) is zero. 

𝐺 =
𝑅𝑐2

𝑀
      (D3) 

Formula (10), from the Friedman equations can be 

regarded as a necessary condition  

𝐺 =
3𝐻2

8𝜋𝜌
        (D4) 

It is to conserve energy as the universe expands.  

Gravity and the value of 𝐺 is caused by the 

expansion, but does not change the rate of 

expansion - that remains constant. 

For a large stationary mass  

(𝑚𝑐2 −
𝐺𝑀𝑚

𝑅
−

𝐺𝑚2

𝑟
) 𝑒2𝐻𝑡     (D5) 

and using (D3) 

𝐺𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =
𝑐2

𝑀

𝑅
+

𝑚

𝑟

=
𝐺

1+
𝐺𝑚

𝑟𝑐2

    (D6) 

a reduction in the strength of gravity for regions of 

matter where 𝑚/𝑟 approaches 𝑐2 𝐺⁄ .  These 

arguments give an indication that a future 

gravitational theory, or reinterpretation of General 

Relativity, should include the feature that the 

strength of gravity reduces for dense regions of 

matter. 

The above formula is for a large stationary mass, 

it’s interesting to wonder however, that, as the 

earth gets nearer or further away from the sun 

over a year, whether a cyclic change in 𝐺 would be 

measured. 

We would expect, from (D6), an annual cyclic 

variation in 𝐺 of amplitude 1.69 × 10−10𝐺 .  In 

[Matsuo, 2013] such a variation of the Earth’s 

gravity field has been noted, (Fig 1a of Matsuo).  

It’s from Satellite Laser Ranging (SLR) data - and 

has the same amplitude and period.   

Figure D1  Variation of Earth’s Gravitational Field 

 

These variations are being interpreted as being 

due to mass redistributions of ice and water, but 

might possibly be showing a variation of 𝐺. 

Appendix E.  Large Scale Structure 

Measurements of the growth of large scale 

structure measure the quantity 𝑓𝜎8(𝑧) where 

𝑓(𝑧) is the growth factor and 𝜎8 is the amplitude 

of the matter fluctuations on a scale of 8 Mpc. 

Figure E2 shows an approximately constant value 

for 𝑓𝜎8(𝑧) with little or no variation with redshift.   

In the new model, 𝑓(Ω𝑚) is predicted to be 

constant at  −1 + √5 2⁄ ≈ 0.5811  as follows  

From perturbation theory, in the growth factor 𝐷 

is a solution of 

�̈� + 2𝐻(𝑧)�̇� −
3

2
Ω𝑚𝐻0

2(1 + 𝑧)3𝐷 = 0  (E1) 

In the new model Ω𝑚 remains constant at 1.0 

and 𝐻(𝑧) = 𝐻   

�̈� + 2𝐻�̇� −
3

2
𝐻2𝐷 = 0      (E2) 

for a solution of the form  𝐷 = 𝑒𝑘𝐻𝑡  

𝑘2 + 2𝑘 −
3

2
= 0     (E3) 

𝑘 = √(5 2⁄ ) − 1 ≈ 0.5811   (E4) 

𝑓(Ω𝑚) =
1

𝐻

�̇�

𝐷
= 𝑘    (E5) 



so in the new model 𝑓(𝑧) is constant at about 

0.5811 

Figure E1  𝜎8 against Ω𝑚 from cosmic shear  

 

Data from KV450 and Figure E1 [Hildebrandt, 

2018], show that 𝜎8 is about 0.81, so 𝑓𝜎8(𝑧) is 

constant ≈ 0.47 a good match to the data of 

Figure E2, [Guzzo, 2018].  

Figure E2  Growth parameter against redshift 

 

 

Appendix F.  Time symmetry and antimatter 

The universe in the new model is infinitely old. 

There are explosive or bounce events due to 

collapsing matter reaching the critical mass/radius 

ratio, perhaps one larger than others, as described 

in Appendix D and section 3.  However there is no 

definite beginning of time.   

Other areas of physics have laws with time 

symmetry.   If we do a time reversal 

𝑡 → −𝑡      (F1) 

𝐻 → −𝐻     (F2) 

the equations of the model look the same, e.g. 

𝑎 = 𝑒𝐻𝑡  

and gravity would still be attractive, from (D4)  

𝐺 =
3𝐻2

8𝜋𝜌
    

 As the fundamental laws of electromagnetism and 

atomic physics are time symmetric, then in a time 

reversed universe, after a ‘big bounce’ then stars, 

galaxies and planets would form and life would 

evolve, just the same as a forward time universe. 

The model is unchanged by a change of time 

direction. 

To conserve the measured CPT symmetry, a time 

reversed universe would have a charge 

conjugation and a parity reversal.  It would be an 

antimatter universe. 

One of the problems of Big Bang cosmology is that 

we are left with the question of why there is more 

matter than antimatter.   

In the new cosmology, there is no distinction 

between a +𝑡 matter universe and a −𝑡 

antimatter universe.  It is valid to claim that we are 

living in the −𝑡 antimatter universe. 

So perhaps the fact that we normally only observe 

matter isn’t a mystery after all.  Even in a time 

reversed universe, we would still observe time 

flowing forward and observe matter to be normal 

matter (instead of antimatter), there would be a 

redshift and gravity would still be attractive. 

The mystery of why there is more matter than 

anti-matter disappears.  We could equally well be 

asking ourselves, why is there more antimatter 

than matter? 

 


