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Abstract

Based on the results of the Michelson–Morley experiment [1] and the direct measurement of the speed of light in
two directions, we can conclude that the movement of the Earth in relation to the Sun and the movement of the solar
system in relation to the center of the galaxy do not affect the measurement of the speed of light in the vicinity of the
Earth. But on the other hand, based on results of the Michelson–Morley experiment and the direct measurement
of the speed of light in two directions we cannot know with certainty whether the Earth’s rotation around its axis
affects the measurement of the speed of light in one direction. Thus, instead of the motion by which the Earth’s
surface moves in relation to the Sun, we will observe the angular motion by which the Earth rotates on its axis
relative to distant stars. Instead of measuring the speed of light in two directions, we will measure the speed of light
in one direction.
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1. Introduction

We can state that it has already been proven by the Michelson − Gale experiment [2] that the rotation of the
Earth affects the measurement of the speed of light. Therefore, it would be logically correct to consider the
Michelson–Morley experiment on the one side and the Michelson−Gale experiment the other side as the two com-
plementary experiments. Instead of that, we made the logical mistake ignoring the results of the Michelson−Gale
experiment, giving greater importance to the Michelson–Morley experiment. Things are quite different. Based on
the results of the Michelson−Gale experiment [2], we can predict the result of the Michelson–Morley experiment
[1], but not the other way around. It has also already been proven [3] that the velocity of light, with respect to
an observer resting on the Earth surface, is c + v between New York and San Francisco and c − v between San
Francisco and New York, where v ≈ 280[m/sec]. The speed of rotation of the Earth at the latitude of those cities is
≈ 360[m/sec].

2. Angular velocity

We will start with a brief introduction about angular velocity and after that derive the formula for the addition of
angular velocities in the case that the center of the circle moves along an arbitrary curve. After that, we will apply
the obtained results to calculate the Earth’s angular velocity in relation to the stars.
The Angular motion can be defined as the motion of the point A along a Angular path, Figure[1]. We will mark the
center of the circle with O, and with P the fixed point outside the circle. We will define a rectangular coordinate
system so that the point O is its origin and the positive x− axis is determined by the direction OP
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Figure 1: Point A moves with a uniform angular velocity relative to the fixed point O

The angle between the positive x − axis and the direction OA will be denoted by θ. We will define the angle θ
as a function of time.

θ = 6 (OP,OA) (1)

θ = θ(t) (2)

Angular velocity ω is defined as the change in the angle of rotation of the point A with respect to time.

ω(t) =
δθ

δt
= θ

′
(t) (3)

if
(
ω

′
(t) = 0

)
=⇒ (ω(t) = ω) (4)

If
(
ω

′
(t) = 0

)
then we will say that point A moves with a uniform angular velocity.

r = OA (5)

θ = ωt (6)

OA = r(t) = r [cos(θ), sin(θ)] = r [cos(ωt), sin(ωt)] (7)

v = rω (8)

v(t) =
δr(t)

δt
= rω[− sin(ωt), cos(ωt)] = v[− sin(θ), cos(θ)] (9)

3. Addition of angular velocities

We will define a rectangular coordinate system noted by (K) so that the point O is its origin and the positive
x−axis is determined by the direction OZ. The point Z is the ”infinitely” distant point, Figure[2]. We will define a
rectangular coordinate system noted by (K ′) so that the point S is its origin and the positive x′−axis is determined
by the direction OS. We will define a rectangular coordinate system noted by (K ′′) so that the point S is its origin
and the positive x− axis is determined by the direction SZ.

Let us assume that the point S moves with a uniform angular velocity w1 about the point O and the point A
moves with a uniform angular velocity w0 about the point S .
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Figure 2: The point S moves with a uniform angular velocity w1 about the point O and the point A moves with a
uniform angular velocity w0 about the point S.

We will derive a formula for the summation of the angular velocities.

r = SA (10)

θ0 = 6 (SX ′, SA) (11)

θ0 = ω0t (12)

θ1 = 6 (OX,OS) = 6 (SX, SX ′) (13)

θ1 = ω1t (14)

(15)

If the angular velocity w1 has the same direction as the angular velocity w0, we will have the following equations:

θ = θ0 + θ1 (16)

w = w0 + w1 (17)

(18)

If the angular velocity w1 has the opposite direction in relation to the angular velocity w0, then it is obvious that
we have the following equations

θ = θ0 − θ1 (19)

w = w0 − w1 (20)

The velocity v(t) with which the point A moves in relation to the coordinate system (K ′′) is given by the following
equations:

θ(t) = wt (21)

r(t) = SA = r [cos(θ(t)), sin(θ(t))] = r [cos(ωt), sin(ωt)] (22)

v(t) =
δr(t)

δt
= rω[− sin(ωt), cos(ωt)] (23)

The velocity v(t) with which the pointA moves in relation to the coordinate system (K ′) is given by the following
equations:
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θ(t) = w0t (24)

r(t) = SA = r [cos(θ), sin(θ)] = r [cos(w0t), sin(w0t)] (25)

v(t) =
δr(t)

δt
= rw0[− sin(w0t), cos(w0t)] (26)

The velocity v(t) with which the pointA moves in relation to the coordinate system (K) is given by the following
equations:

OS = R (27)

θ(t) = wt (28)

r(t) = OA + SA (29)

r(t) = R [cos(θ1), sin(θ1)] + r [cos(θ), sin(θ)] = R [cos(w1t), sin(w1t)] + r [cos(wt), sin(wt)] (30)

v(t) =
δr(t)

δt
= Rw1[− sin(w1t), cos(w1t)] + rw[− sin(wt), cos(wt)] (31)

4. Addition of angular velocities-general formula

Let a R(t) be ”sufficiently” differentiable curve. We consider the point S that moves along the curve R and the
point A that moves uniformly on a circle whose center is given by point S, Figure[3]. Let us assume that the point S
moves with a uniform angular velocity w1 about the point O and the point A moves with a uniform angular velocity
w0 about the point S.
We will define a rectangular coordinate system noted by (K) so that the point O is its origin and the positive x−axis
is determined by the direction OZ. The point Z is the ”infinitely” distant point. We will define a rectangular coordi-
nate system noted by (K ′′) so that the point S is its origin and the positive x−axis is determined by the direction SZ.
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Figure 3: The point S moves along the curve R

In relation to the coordinate system (K), We have the following equations

r = SA (32)

R(t) = OS = [Rx(t),Ry(t)]] (33)

vR(t) = Ṙ(t) = [Ṙx(t), Ṙy(t)] (34)

| vR(t) |=| Ṙ(t) | (35)

R̈(t) = [R̈x(t), R̈y(t)] (36)

The curvature of R at t denoted by κ is given by

κ =
| Ṙ(t)× R̈(t) |
| Ṙ(t) |3

=
| Ṙx(t)R̈y(t)− Ṙy(t)R̈x(t) |

| Ṙ(t) |3
(37)
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The radius of curvature at t, denoted by ρ is given by

1

ρ
= κ (38)

S1S = ρ (39)

Let us denote by ωR(t) the angular velocity with which the point S moves along the circle whose center is the point
S1.

| vR(t) |= ωRρ (40)

ωR(t) =
| vR(t) |

ρ
=| Ṙ(t) | κ =

| Ṙ(t)× R̈(t) |
| Ṙ(t) |2

=
| Ṙx(t)R̈y(t)− Ṙy(t)R̈x(t) |

Ṙ
2

x(t) + Ṙ
2

y(t)
(41)

If we apply equation (23) in relation to the coordinate system (K ′′) we have the following equations

ω(t) = ωr + ωR(t) (42)

| v(t) |= ω(t)r (43)

5. Angular velocity at which the center of the Earth moves relative to
the Sun

Denote by (Q) ”The Geocentric-Equatorial Coordinate System” Figure[4]. Its origin Oq is at the center of the Earth,
the fundamental plane is the equator and the positive xq points in the vernal equinox direction. The zq points in
the direction of the north pole. By the definition the Coordinate System (Q) is non-rotating with the respect to the
stars.
Denote by (P ) ”The Heliocentric-Ecliptic Coordinate System”. Its origin Op is centered on the center of mass of the
solar system, and the fundamental plane coincides with the ecliptic plane of the Earth’s revolution about the Sun.
Its xp − axis has the same direction as xq − axis.

Op

xp ≡ xq

yp

zp zq
(Q′)

yq

(P )

Oq

ϕ

ϕ

xq

yq

zq

(Q)

R

A

θp

vp(θp)

Figure 4: Ecliptic Coordinate System (P) and Equatorial Coordinate System (Q)

Let ϕ = 23.43693 ∗Π/180 denotes Earth’s axial tilt Figure[4].

Denote by (Q′) the coordinate system created by rotating the coordinate system (P ) around the xp − axis by
an angle ϕ in the negative direction.
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yearsec = 365.2422 ∗ 24 ∗ 3600[sec] (44)

OpOq = AU = 1.495978707e11[m] (45)

R = OpOq (46)

ωp =
2Π

yearsec
= 1.9910637973E − 07 (47)

θp = 6 (Opxp, OpOq) =
2Πt

yearsec
= ωpt (48)

vp = Rωp = 29785.89
[ m
sec

]
(49)

Rp(θp) = OpOq (50)

Rp(θp) = R[cos(θp), sin(θp), 0] = R[cos(ωpt), sin(ωpt), 0] (51)

Conversion from Ecliptic Coordinates to Equatorial Coordinates is defined as follows:

A1 =

1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

 (52)

(53)

We will transform the coordinates of the vector Rp(t) from the coordinate system (P ) to the coordinate system (Q′).
The vector obtained by this transformation we denote with Rq(t).

Rq(t) = A1Rp(t) (54)

Rq(t) =

Rx(t)
Ry(t)
Rz(t)

 = R

1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

cos(ωpt)
sin(ωpt)

0

 = R

 cos(ωpt)
cos(ϕ) sin(ωpt)
sin(ϕ) sin(ωpt)

 (55)

We can find the first and second derivative of the vector Rq(t).

Ṙq =
δRp

δt
= Rωp

 − sin(ωpt)
cos(ϕ) cos(ωpt)
sin(ϕ) cos(ωpt)

 = Rωp

 − sin(θp)
cos(ϕ) cos(θp)
sin(ϕ) cos(θp)

 (56)

R̈q =
δṘq

δt
= −Rω2

p

 cos(ωpt)
cos(ϕ) sin(ωpt)
sin(ϕ) sin(ωpt)

 = −Rω2
p

 cos(θp)
cos(ϕ) sin(θp)
sin(ϕ) sin(θp)

 (57)

In relation to the coordinate system (Q′), we define the three curves that we will denote by Rxy(t), Ryz(t) and
Rzx(t).

Rxy(t) =

Rx(t)
Ry(t)

0

 (58)

Ryz(t) =

 0
Ry(t)
Rz(t)

 (59)

Rzx(t) =

Rx(t)
0

Rz(t)

 (60)
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The angular velocity noted by ωpxy(t) of the curve Rxy(t) is given by equation

ωpxy =
| ṘxR̈y − ṘyR̈x |

Ṙ2
x + Ṙ2

y

=
R2ω3

p

(
sin2(θp) cos(ϕ) + cos2(θp) cos(ϕ)

)
R2ω2

p

(
sin2(θp) + cos2(θp) cos2(ϕ)

) =
cos(ϕ)

1− sin2(ϕ) cos2(θp)
ωp (61)

ωpxy(t) =
cos(ϕ)

1− sin2(ϕ) cos2(ωpt)
ωp (62)

(63)

The angular velocity noted by ωpyz(t) of the curve Ryz(t) is given by equation

ωpyz =
| ṘyR̈z − ṘzR̈y |

Ṙ2
y + Ṙ2

z

=
−R2ω3

p (cos(ϕ) cos(θp) sin(ϕ) sin(θp)− sin(ϕ) cos(θp) cos(ϕ) sin(θp))

R2ω2
p

(
sin2(θp) + cos2(θp) cos2(ϕ)

) = 0 (64)

The angular velocity noted by ωpzx(t) of the curve Rzx(t) is given by equation

ωpzx =
| ṘzR̈x − ṘxR̈z |

Ṙ2
x + Ṙ2

z

=
R2ω3

p

(
cos2(θp) sin(ϕ) + sin2(θp) sin(ϕ)

)
R2ω2

p

(
sin2(θp) + cos2(θp) sin2(ϕ)

) =
sin(ϕ)

1− cos2(ϕ) cos2(θp)
ωp (65)

ωpzx(t) =
sin(ϕ)

1− cos2(ϕ) cos2(ωpt)
ωp (66)

(67)

6. Angular velocity at which the Earth’s surface moves relative to the
stars

First, we will find the angular velocity with which the Earth’s surface moves in relation to the Sun.

S yq

xq

zq

θq wxy

wzx

(Q)

F

•

Z

A

Figure 5: Angular velocity at which the Earth’s surface moves relative to the stars
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daysec = 24 ∗ 3600[sec] (68)

SA = 6.3781e6[m] (69)

r = SA (70)

ωq =
2Π

daysec
= 7.27221E − 05 (71)

θq = 6 (Sxq, SA) =
2Πt

daysec
= ωqt (72)

vq = rωq = 463.83
[ m
sec

]
(73)

r(θq) = r(ωqt) =

rx(t)
ry(t)

0

 =

r cos(θq)
r sin(θq)

0

 =

r cos(ωqt)
r sin(ωqt)

0

 (74)

We can find the first and second derivative of the vector r(t).

ṙ(t) =
δrq
δt

= rωq[− sin(ωqt), cos(ωqt), 0] = rωq[− sin(θq), cos(θq), 0] (75)

r̈(t) =
δṙq
δt

= −rω2
q [cos(ωqt), sin(ωqt), 0] = −rω2

q [cos(θq), sin(θq), 0] (76)

In relation to the coordinate system (Q), we will define three curves that we will denote by rxy(t), ryz(t) and
rzx(t).

rxy(t) =

rx(t)
ry(t)

0

 (77)

ryz(t) =

 0
ry(t)
rz(t)

 (78)

rzx(t) =

rx(t)
0

rz(t)

 (79)

if we denote the corresponding angular velocities with ωqxy(t), ωqyz(t) and ωqzx(t) then it is easy to prove that
we have the following equations

ωqxy(t) = ωq (80)

ωqyz(t) = 0 (81)

ωqzx(t) = 0 (82)

Coordinate systems (Q) and (Q′) are two coordinate systems that have different centers but equal corresponding
axes (we assume that the axes are vectors), Figure[4]. Now, we will find the angular velocities ωxy, ωyz and ωzxwith
which the Earth’s surface moves in relation to the stars, Fig[5].

ωxy = ωpxy + ωqxy = ωpxy + ωq =
cos(ϕ)

1− sin2(ϕ) cos2(θp)
ωp + ωq (83)

ωyz = ωpyz + ωqyz = 0 (84)

ωzx = ωpzx + ωqzx = ωpzx =
sin(ϕ)

1− cos2(ϕ) cos2(θp)
ωp (85)

It is obvious that the angular velocity with which the solar system moves in relation to the center of the Galaxy is
very small, so we can leave it out of the calculations.
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7. The speed at which a point on the Earth’s surface moves relative to
the stars

We will calculate the speeds with which the a point on the Earth’s surface moves in relation to the center of the
Earth and the center of the solar system.

ϕ = 23.43693 ∗Π/180 = 4.0905107146E − 01 (86)

cos(ϕ) = 9.1749866161E − 01 (87)

sin(ϕ) = 3.9773886653E − 01 (88)

ωp = 1.9910637973E − 07 (89)

vp = 29785.89
[ m
sec

]
(90)

r ∈ {0, 6.3781 e6} [m] (91)

ωq = 7.27221E − 05 (92)

We will assume that

r = 6.3781 e6[m] (93)

vq = rωq = 463.83
[ m
sec

]
(94)

First we will find the speed with which an arbitrary point on the Earth’s surface moves in relation to the geocentric
coordinate system (Q) Fig [5].

Applying equation (83) we will find the speed with which a point on the Earth’s equator moves in the west-east
direction

vxy(θp) = ωxyr = (ωpxy(θp) + ωq) r =

(
cos(ϕ)

1− sin2(ϕ) cos2(θp)
ωp + ωq

)
r (95)

vxy(θp) ≤ vxy(0) ≈ 465.21[m/sec] (96)

vxy(θp) ≥ vxy
(

Π

2

)
≈ 464.99[m/sec] (97)

After that, applying equation (85) we will find find the maximum and minimum speed with which an arbitrary
point moves in the north-south direction

vzx(θp) = ωpzy(θp)r =

(
sin(ϕ)

1− cos2(ϕ) cos2(θp)
ωp

)
r (98)

vzx(θp) ≤ vzx(0) ≈ 3.19[m] (99)

vzx(θp) ≥ vzx
(

Π

2

)
≈ 0.51[m] (100)

Now we will find the speed with which the point A moves in relation to the heliocentric coordinate system (Q′)
Fig [4],Fig [5]

OpA = OpOq + OqA (101)

v(t) =
δOpA(t)

δt
= Ṙq(t) + ṙq(t) (102)

v(t) = vp

 − sin(ωpt)
cos(ϕ) cos(ωpt)
sin(ϕ) cos(ωpt)

+ vq

− sin(ωqt)
cos(ωqt)

0

 (103)
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8. The two-way speed of light in the vicinity of the Earth

Now we will analyze how the movement of the Earth’s surface in relation to the stars affects the measurement of the
speed of light in the vicinity of the Earth. Denote by ∆t the time it takes for the signal to travel from point A to
point B and back from point B to point A.

Now we can find two-way speed of light denoted by cH .

l = AB (104)

cH =
2l

∆t
(105)

Denote by t+ the time it takes for the signal to travel from point A to point B and by t− the time it takes for the
signal to travel from point B to point A. The values of t+ and t− are still unknown.

c+ =
l

∆t+
(106)

c− =
l

∆t−
(107)

Let’s define the constant speed c as the arithmetic mean of the c+ and the c−

c+ = c+ v (108)

c− = c− v (109)

c =
c+ + c−

2
(110)

Based on equation (110), it is obvious that if we want to accurately calculate the constant c, then it is necessary to
know the speeds c+ and c−

∆t+ =
l

c+ v
(111)

∆t− =
l

c− v
(112)

∆t = ∆t+ + ∆t− =
l

c+
+

l

c−
=
l(c+ + c−)

c+c−
(113)

cH =
2l

∆t
(114)

cH =
2l

∆t
=

2c+c−
c+ + c−

=
c2 − v2

c
= c− v2

c
(115)

When we measure cH , the speed of light in two directions, we actually measure the harmonic mean of the c+ and
the c−. Based on equation (114), it is obvious that we do not need to know the c+ nor c− in order to be able to
calculate cH .

We will assume that cH is known and we will compare its value with the value of unknown constant c.

∆c = c− cH =
v2

c
(116)
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Suppose we measure the two-way speed of light regarding to the heliocentric coordinate system (Q′) and apply
Equation (103).

cH = 299, 792, 458[m/sec] (117)

c ≈ cH (118)

t = 0 (119)

v(0) = 29785.89[0, cos(ϕ), sin(ϕ)] + 465[0, 1, 0] (120)

e = [0, 1, 0] (121)

vxy = v(0) · e ≈ 27792.34[m/sec] (122)

∆cxy =
v2xy
c
≈ 2.57[m/sec] (123)

e = [0, 0, 1] (124)

vz = v(0) · e ≈ 11847[m/sec] (125)

∆cz =
v2z
c
≈ 0.47[m/sec] (126)

It was measured that the two-way speed of light in the vicinity of the Earth is equal to cH . Since the measurement
error is less than 1 [m/sec], then taking into account the values for ∆cxy and ∆cz we can conclude that the movement
of the Earth’s surface in relation to the coordinate system (Q′) does not affect the measurement of the speed of light
in two direction. If we took into account the movement of the solar system in relation to the center of the galaxy, it
would mean that the vxy and vz actually would have significantly greater values.

Suppose we measure the two-way speed of light along the equator regarding to the geocentric coordinate system
(Q) and apply Equation (96).

vxy = 465[m/sec] (127)

∆c =
v2xy
c
≈ 7.2E − 04[m/sec] = 0.72[mm/sec] (128)

In this case, the difference ∆c between the c and the measured value cH is less than 1 [mm/sec]. Since the difference
∆c is practically immeasurable, it means that it is impossible to know how the movement of the Earth’s surface in
relation to the coordinate system (Q) affects the measurement of the speed of light in two direction. Obviously, the
movement of the solar system in relation to the center of the galaxy does not significantly affect the value of vxy.

9. The one way speed of light in the vicinity of the Earth

Measuring the speed of light in one direction is not so important to get a more accurate value for the constant c, as
it is to answer the question about the constancy of the one-way speed of light regarding to the coordinate system
(Q). We proved in paper [4] that measuring the speed of light in one direction is possible by proving two things:

i) Synchronization between two clocks can be established without the assumption that the one-way speed of light
must be isotropic in any given inertial frame(actually in the vicinity of the Earth).

ii) Slow movement of the clock does not significantly affect the measurements.

Based on the obtained measurements, there are three possibilities:

i) The results are inconsistent. This means that due to the slow movement of the clocks, it would be impossi-
ble to maintain their synchronization, so measuring the speed in one direction is impossible.

ii) The speed of light is invariant regardless of the direction of measurement. This would show that the postu-
late about the constant speed of light is correct, at least in the vicinity of the Earth.
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iii) The speed of light depends on the direction of measurement. That would mean that we would have to re-
ject the postulate about the constancy of light in all inertial frames of reference, because it is not valid in the vicinity
of the Earth.

Regardless of the measurement result, we still cannot make a final conclusion. Because we don’t know what the
result would be if the experiment were done in a place where gravity is almost equal to zero.

10. Discussion

The First Postulate of Special Relativity [5], can be formulated in the following way: ”The laws of physics are the
same and can be stated in their simplest form in all inertial frames of reference”. Based on that, we can assume that
the result of the Michelson–Morley experiment would be the same no matter how we choose the inertial frame of
reference. All the ”lab” experiments, which are directly or indirectly related to the speed of light, were made in the
vicinity of the Earth, where its gravitational field is much stronger compared to the solar or galactic gravitational
field. Whether the reference frame is determined by the sum of all gravitational fields acting on it? What would be
the outcome of the Michelson–Morley experiment if it was performed in an artificial satellite in a solar orbit far
from any planet? If there is no gravitational field, what should be taken as a reference frame? Aether (the ”material”
that fills the universe)? The Second Postulate of Special Relativity [5], can be formulated in the following way: ”The
speed of light in vacuum is the same in all inertial reference frames”. Using Maxwell′s equations, it follows that the
speed of electromagnetic waves c in empty space is given by the following equation.

c =

√
1

ε0µ0
(129)

where

ε0 − vacuum permittivity (in the vicinity of the Earth) (130)

µ0 − vacuum permeability (in the vicinity of the Earth) (131)

Are the values of ε0 and µ0 invariant with respect to gravity? If the answer is negative, then the question arises
whether the speed of light that we measure in an artificially created vacuum near the Earth is equal to the speed of
light in space (aether) where gravity is (almost) equal to zero? We can only hope that in the near future we will
start conducting experiments in space far from the Earth, so that the possible influence of its gravity on the outcome
of the experiment would be nullified and in that way give a precise answer to those questions.
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