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1. Introduction

Recently, [9] and [8] classified multivectors based on their symmetries1 under

space inversion (main grade involution in geometric algebra) 1̂, time reversal
1′ and reversion (called wedge reversion by them) 1̃. [9] notes in the conclu-

sions that One could perhaps explore charge reversal (Ĉ), parity reversal (P̂ )

and time reversal (T̂ ) in the relativistic context [11]. In the standard model
of elementary particle physics many experiments have confirmed violation of
parity symmetry by the weak interaction, and of ĈP̂ symmetry. However,
strong interactions by themselves do preserve ĈP̂ symmetry [5].

Therefore one aim of this paper is to work in this direction by looking
at the effect of these three symmetries on multivectors of Cl(3, 1), a (geo-

metric) algebra that can be used to express space-time physics, with Ĉ, P̂

and T̂ symmetries, e.g., defined by [6], but here we only focus on the effect
of these transformations on the 16 basis blades that constitute the multivec-
tor basis of Cl(3, 1), and ignore any functional dependence of coefficients in
linear combinations that might express spinors or other physical quantities.
Furthermore, [11] and [6] have a clear preference for the use of Cl(1, 3), while
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Peace License [15].
1Note that [9] and [8] use for space inversion 1̄, and for (wedge) reversion 1†.
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in this work we prefer2 to use Cl(3, 1) because its volume-time subalgebra
{1, e0, e123, e0123} isomorphic to quaternions, where e0 expresses the time di-
rection, at the foundation of the theory of space-time Fourier transforms [17].

[9] and [8] work signature independent for all Clifford algebras of qua-
dratic spaces. We work in an algebra of specific signature and want to take
advantage of the principal reverse3 (see e.g. [17] (2.1.12)), which applied to
Cl(3, 1) acts like the conventional reverse, but in addition changes the sign
of the time vector e0 → −e0. So we focus on the group of eight symmetries
generated by grade involution 1̂, reversion 1̃ and principal reverse4 1′.

An introduction to geometric algebra can be found in [16]. A mathe-
matically very thorough introductory textbook is [23]. The use of geometric
algebra in physics can be found in [11] and more recently in [6]. Computa-
tions, like the ones performed in this paper can be checked with computer
algebra software, e.g. with the MATLAB package [24]. In the field of com-
puter science, the textbook [7] is a standard reference, and [12] shows how to
optimize geometric algebra computations. Extensive surveys of applications
can be found in [2,14,20]. Applications of geometric algebra to crystallogra-
phy can be found in [10,13,19].

This paper is structured as follows. Section 2 studies the symmetries of
Cl(3,1) multivectors under space inversion, reversion and principal reverse.
Section 3 is devoted to aspects of charge conjugation, parity reversal and
time reversal, when Cl(3, 1) is applied in the description of elementary par-
ticle physics. For ease of reference, four tables are included that show the
application space inversion, reversion and principle reverse to the multivec-
tor basis of Cl(3, 1) in Table 1, the composition of the symmetries Ĉ, P̂ and T̂

in Table 2, the application of the symmetries Ĉ, P̂ and T̂ to the multivector
basis of Cl(3, 1) in Table 3, and a reordered version of that in Table 4 in
Appendix A.

2. Symmetries of Cl(3, 1) multivectors generated by space
inversion, reversion and principal reverse

[9] and [8] correctly turn to Clifford algebra in order to generalize the no-
tion of cross product that only exists in three dimensions to arbitrary di-
mensions. In this context [18], for crystallographers it may be of interest
to know that J. G. Grassmann (Justus G. was the father of Hermann G.
Grassmann) originally introduced the characterization of crystal planes by
orthogonal vectors, now commonly denoted with Miller indices (see Erhard

2Another notable work using Cl(3, 1) in elementary particle physics is, e.g. [25].
3The principal reverse is in geometric algebra the equivalent of matrix transposition, see [1].
4The reader should be aware that therefore in this work we do not use a priori the notion
of time reversal of [9] and [8], which there also has the symbol 1′. Although we do obtain

it for multivectors that have e0 as a factor, by the product of reversion 1̃ and principal
reverse 1′ (our notation).
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Scholz [26], pp. 37–46). J. G. Grassmann’s work, including his mathemat-
ical school textbooks, provided H. G. Grassmann with fertile ideas for his
new concepts of algebra (including exterior algebra), solely defined by the
relations of its elements, from which G. Peano distilled the modern con-
cept of vectors. Grassmann’s pioneering approach was so far ahead of its
time that only a few bright minds (like R. W. Hamilton, F. Klein and S.
Lie) recognized its genius during his lifetime, late in Grassmann’s life. But
the young Cambridge-educated genius W. K. Clifford was truly exceptional,
and published in 1878 (one year after Grassmann’s death) his seminal paper
‘Applications of Grassmann’s Extensive Algebra’ in Am. J. Math. [4]. It ele-
gantly unified the earlier works of Hamilton on quaternions and Grassmann’s
metric-free algebra of extension to geometric algebras (now known as Clif-
ford algebras), by simply adding in the Clifford (or geometric) product the
inner product of vectors (necessary for measurements) and the outer product
of Grassmann. Unknowingly perhaps, [9] and [8] thus return to the origins
of both crystallography and modern algebra in their search for a dimension
independent mathematical framework.

The unit blade basis of the geometric algebra Cl(3, 1) is given by one
scalar, four vectors, six bivectors, four trivectors and one pseudoscalar quad-
vector I,

{1, e0, e1, e2, e3, e01, e02, e03, e23, e31, e12, e023, e031, e012, e123, I = e0123}, (1)

with

e20 = −1, e21 = e22 = e23 = 1, ej · ek = 0 ∀ j ̸= k. (2)

We then have for j, k ∈ {1, 2, 3}, j ̸= k,

e20j = 1, e2jk = −1, e20jk = 1, e2123 = −1, e20123 = −1. (3)

We define the main grade involution (space inversion) for M ∈ Cl(3, 1)
by

1̂M = M̂ =

4∑
k=0

(−1)k⟨M⟩k, (4)

where ⟨M⟩k is the grade k part of M . This is equivalent to reversing the
direction of every vector ei → −ei, i ∈ {0, 1, 2, 3} in the expression for M .

The reversion (reversing the geometric product order of all geometric
products of vectors) of M is defined as

1̃M = M̃ =

4∑
k=0

(−1)
1
2k(k−1)⟨M⟩k. (5)

The product of grade involution and reversion leads to Clifford conju-
gation

1̄M = M = 1̂1̃M = 1̃1̂M =

4∑
k=0

(−1)
1
2k(k+1)⟨M⟩k. (6)

Finally, the principal reverse 1′M = M ′ of M ∈ Cl(3, 1) is defined
identical to the reversion with additionally changing each occurrence of the
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Table 1. Action of involutions of group (7) on all 16 basis
elements (1) of Cl(3, 1). Tp. = type with scalar S, time vec-
tor V0 multiple of e0, space vector V , bivector B0 with e0
factor, space bivector B, trivector T0 with e0 factor, space
trivector T and pseudoscalar quadvector Q. Bas. = basis el-
ement.

Tp. Bas. 1̂ 1̃ 1̄ 1′ 1̂′ 1̃′ 1̄′

S 1 e e e e e e e

V0 e0 o e o o e o e
e1 o e o e o e o

V e2 o e o e o e o
e3 o e o e o e o

e01 e o o e e o o
B0 e02 e o o e e o o

e03 e o o e e o o
e23 e o o o o e e

B e31 e o o o o e e
e12 e o o o o e e

e023 o o e e o o e
T0 e031 o o e e o o e

e012 o o e e o o e
T e123 o o e o e e o

Q e0123 e e e o o o o

time basis vector e0 to −e0. In a general Clifford algebra simply every unit
basis vector is multiplied by its own square.

These involutions generate by composition the following Abelian group
of involutions

G = {1, 1̂, 1̃, 1̄, 1′, 1̂′, 1̃′, 1̄′}. (7)

In Table 1 all seven involutions (apart from the identity) of the group
(7) are applied to the blade basis (1) of Cl(3, 1). Since the involutions only
involve sign changes, the letter e for even indicates no sign change and the
letter o for odd indicates a sign change.

The eight principal types S, V0, V, B0, B, T0, T and Q denoted in Table
1 are all uniquely characterized by the action of the elements of the group of
involutions (7). It is now of course possible to follow the pattern established
by [9] and [8] and regard linear combinations of principal types as new types,
for which the action of the the group of involutions (7) would then be called
mixed m. For example if we add scalars and quadvectors we would get the
type SQ = S +Q with the group action given by a new line in Table 1 that
has the seven entries (in the same order as in the table)

e e e m m m m. (8)
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Another example is that a combination of SB0B or of SB0BQ has the seven
group action entries

e m m m m m m. (9)

This method leads, similar to Table 3 of [8], again to distinguish exactly 51
types of multivectors characterized by the action of the group of involutions
(7).

The results on the eight principal multivector types and 43 further mul-
tivector types of [8] can be fully transferred to Cl(3, 1) with the following
map, where the index 31 stands for Cl(3, 1), and the index GF for the au-
thors Gopalan and Fabrykiewicz of [9] and [8], respectively. First we state
the map of the seven involutions

1̄GF → 1̂31, 1′GF → 1̃′31, 1†GF → 1̃31, 1′†GF → 1′31,

1̄′GF → 1̄′31, 1̄†GF → 1̄31, 1̄′†GF → 1̂′31. (10)

Next the map for the multivector type labels

S′
GF → S31, VGF → V0 31, V ′

GF → V31, BGF → B0 31,

B′
GF → B31, TGF → T0 31, T ′

GF → T31, SGF → Q31. (11)

With the two maps (10) and (11) all results of Table 3 of page 383 of [8]
can now be transferred to a classification of Cl(3, 1) multivectors into a total
of 51 types, including the eight principal types (which appear in the first
column of Table 1). The grades in Table 3 of page 383 of [8] are then of
course restricted to {0, 1, 2, 3, 4}, S having grade zero and Q having grade
four. For example, the label S′V BT ′ of No. 43 in Table 3 of page 383 of [8]
is mapped to SV0B0T , etc.

3. On symmetries of Cl(3, 1) related to elementary particles:
charge conjugation, parity reversal and time reversal

In this section we apply the symmetry operations of charge conjugation Ĉ,
parity reversal P̂ and time reversal T̂ expressed in the geometric algebra
Cl(3, 1) for the description of space-time as they can, e.g., be found in [6],
page 283. There the application is to spinors (even grade valued multivec-
tor functions R1,3 → Cl+(1, 3)) including reflection at the time axis e0 of
the argument of the spinor. Here we prefer to work instead with Cl(3, 1)
as explained in the introduction. And we restrict ourselves to only study
the action of the three symmetry operations on the constant basis elements
(1) of Cl(3, 1). Following [6], page 283, we therefore define for multivectors
M ∈ Cl(3, 1)

ĈM = Me1e0, P̂M = e0Me0, T̂M = Ie0Me1, (12)

where M is not restricted to the even grade subalgebra. The associativity of
the geometric product has as immediate consequence that the composition
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of these three symmetry operations is also associative, e.g.,

Ĉ(P̂ (T̂M)) = (ĈP̂ )T̂M = Ĉ(P̂ T̂M) = ĈP̂ T̂M, (13)

so it is not necessary to write brackets to indicate the order of composition,
and we generally drop brackets when composing the symmetry operations as
in the last expression above. We further find that

ĈĈM = Me10e10 = M, P̂ P̂M = e20Me20 = M,

T̂ T̂M = Ie0Ie0Me21 = e2123M = −M, (14)

which shows that

Ĉ2 = 1, P̂ 2 = 1, T̂ 2 = −1. (15)

Computation further shows the following commutation relations

P̂ T̂M = T̂ P̂M = IĈM, T̂ ĈM = −ĈT̂M = −IP̂M,

ĈP̂M = −P̂ ĈM = −IT̂M = e0Me1 ⇒ T̂M = IĈP̂M. (16)

Moreover,

ĈP̂ T̂M = IM, ĈP̂ T̂ ĈP̂ T̂M = −M. (17)

and applying the above commutation relations leads to

ĈP̂ T̂ = P̂ T̂ Ĉ = −P̂ ĈT̂ = ĈT̂ P̂ = −T̂ ĈP̂ = T̂ P̂ Ĉ, (18)

and

ĈĈP̂ T̂M = P̂ T̂M, P̂ ĈP̂ T̂M = −ĈT̂M, T̂ ĈP̂ T̂M = ĈP̂M. (19)

Putting all this information together we can represent all possible composi-
tions of the symmetry operators Ĉ, P̂ and T̂ in Table 2, where the symmetry
operations in the top row are applied first to M ∈ Cl(3, 1), followed by the
symmetry operations in the first column.

Inspection of the table shows that under the following map from the
three symmetry operations and their compositions to the elements of the
geometric algebra of space Cl(3, 0), which itself is isomorphic to Cl+(3, 1), the

even subalgebra of Cl(3, 1), the Ĉ, P̂ , T̂ composition table Table 2 is seen to be
isomorphic to the multiplication table of the basis elements {1, e1, e2, e3, e12,
e31, e23, e123} of Cl(3, 0) itself.

Ĉ → e1, P̂ → e2, T̂ Ĉ → e3,

ĈP̂ → e12, T̂ → e31, ĈP̂ T̂ → e23, P̂ T̂ → e123. (20)

The consequence is that the composition of charge conjugation Ĉ, parity
reversal P̂ and time reversal T̂ forms an algebra that is isomorphic to Cl(3, 0)
and Cl+(3, 1).

Finally, we add a table Table 3 showing the application of charge con-
jugation Ĉ, parity reversal P̂ and time reversal T̂ to all elements of the basis
of Cl(3, 1) given in (1).

We state a handful of immediate observations about Table 3.
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Table 2. Table of all compositions of symmetry operators
Ĉ, P̂ and T̂ , where operations in the top row are applied
first to M followed by an operation from the first column.
For example: combining T̂ Ĉ from the top row with ĈP̂ from
the first column (6th row) shows that ĈP̂ T̂ ĈM = P̂ T̂M .

1st: 1 Ĉ P̂ T̂ Ĉ ĈP̂ T̂ ĈP̂ T̂ P̂ T̂
2nd:

1 1 Ĉ P̂ T̂ Ĉ ĈP̂ T̂ ĈP̂ T̂ P̂ T̂

Ĉ Ĉ 1 ĈP̂ −T̂ P̂ −T̂ Ĉ P̂ T̂ ĈP̂ T̂

P̂ P̂ −ĈP̂ 1 ĈP̂ T̂ −Ĉ P̂ T̂ T̂ Ĉ T̂

T̂ Ĉ T̂ Ĉ T̂ −ĈP̂ T̂ 1 P̂ T̂ Ĉ −P̂ ĈP̂

ĈP̂ ĈP̂ −P̂ Ĉ P̂ T̂ −1 ĈP̂ T̂ −T̂ −T̂ Ĉ

T̂ T̂ T̂ Ĉ P̂ T̂ −Ĉ −ĈP̂ T̂ −1 ĈP̂ −P̂

ĈP̂ T̂ ĈP̂ T̂ P̂ T̂ −T̂ Ĉ P̂ T̂ −ĈP̂ −1 −Ĉ

P̂ T̂ P̂ T̂ ĈP̂ T̂ T̂ ĈP̂ −T̂ Ĉ −P̂ −Ĉ −1

Table 3. Application of charge conjugation Ĉ, parity re-
versal P̂ and time reversal T̂ (top row) defined in (12), to all
elements of the basis (first column) of Cl(3, 1) given in (1).

Basis 1 Ĉ P̂ T̂ Ĉ ĈP̂ T̂ ĈP̂ T̂ P̂ T̂
1 1 −e01 −1 e0123 e01 e23 e0123 −e23
e0 e0 e1 −e0 e123 −e1 −e023 e123 e023
e1 e1 e0 e1 −e023 e0 e123 e023 e123
e2 e2 −e012 e2 −e031 −e012 e3 e031 e3
e3 e3 e031 e3 −e012 e031 −e2 e012 −e2
e01 e01 −1 e01 −e23 −1 −e0123 e23 −e0123
e02 e02 e12 e02 −e31 e12 −e03 e31 e03
e03 e03 −e31 e03 −e12 −e31 e02 e12 −e02
e23 e23 −e0123 −e23 −e01 e0123 −1 −e01 1
e31 e31 −e03 −e31 −e02 e03 e12 −e02 −e12
e12 e12 e02 −e12 −e03 −e02 −e31 −e03 e31
e023 e023 e123 −e023 −e1 −e123 e0 −e1 −e0
e031 e031 e3 −e031 −e2 −e3 −e012 −e2 e012
e012 e012 −e2 −e012 −e3 e2 e031 −e3 −e031
e123 e123 e023 e123 e0 e023 −e1 −e0 −e1
e0123 e0123 −e23 e0123 1 −e23 e01 −1 e01

• The maps Ĉ, P̂ and T̂ map even grade elements to even grade elements
and odd grade elements to odd grade elements, i.e., they preserve even
and odd grade multivector subspaces of Cl(3, 1).

• The map P̂ only leads to sign changes.
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• The rows for the even basis elements {1, e01, e23, e0123} all contain
these four elements twice, they form together a commutative subalgebra
generated by {e01, e23}. The operators Ĉ, T̂ and their composition T̂ Ĉ,
applied to any of the four elements {1, e01, e23, e0123}, generate the other
three.

• The rows for the other even basis blades, i.e., the four bivectors {e02, e03,
e31, e12} all contain precisely these bivectors twice, i.e., they exclude the
bivectors {e01, e23}, and they obviously do not form a subalgebra. The

operators Ĉ, T̂ and their composition T̂ Ĉ, applied to any of the four
bivectors, generate the other three.

• The rows for the four odd basis blades {e0, e1, e023, e123} all contain

these four elements twice. The operators Ĉ, T̂ and their composition
T̂ Ĉ, applied to any of the four elements {e0, e1, e023, e123}, generate the
other three.

• The rows for the other four odd basis blades {e2, e3, e031, e012} all con-

tain these four elements twice. The operators Ĉ, T̂ and their composition
T̂ Ĉ, applied to any of the four elements {e2, e3, e031, e012}, generate the
other three.

• Thus Table 3 has four groups (two with even blades and two with odd
blades, respectively) of four rows, and inside each group each of the
four rows contains the same set of elements twice in different positions.
Within each group of four, the operators Ĉ, T̂ and their composition
T̂ Ĉ, applied to any of the four elements present in that group, generate
the other three elements.

• The four groups can be clustered together by reordering Table 3, see
Table 4 in the appendix. This reveals that each group of four contains
two pairs of dual elements (dual with respect to multiplication with ±I),
where the duality is element by element from left to right in each pair
of rows.

• The reordered table Table 4 also reveals that (up to a sign ±1) every row
can be obtained from the first row (starting with 1) by multiplication
with the first element of each row. The same applies to the relation of
the first column with every other column (using multiplication of the
first column with the elements in the top row of each column).

4. Conclusion

In this work we have pursued the application of elementary symmetries of
the geometric algebra Cl(3, 1) that can describe space-time. Inspired by [9]
and [8], we chose three involutions of space inversion, reverse and principal
reverse and studied the Abelian group thus generated and its action on the
multivectors of Cl(3, 1). We found that similar to [8], a classification in eight
principal and further 43 types of multivectors is thus possible, leading to a
total of 51 types. Then we looked at algebraic aspects of applying charge
conjugation, parity reversal and time reversal to the multivector basis of
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Cl(3, 1). We found that the composition of the symmetry operations Ĉ, P̂ and

T̂ forms an algebra isomorphic to Cl(3, 0) and Cl+(3, 1), and we commented

on the structures found when Ĉ, P̂ and T̂ are applied to the complete set of
basis blades of Cl(3, 1). It may be interesting to apply both approaches in
Clifford space gravity [3], and the study of elementary particles using a new
embedding of octonions in geometric algebra [21,22].
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Table 4. Reordered table (compare Table 3) of application

of charge conjugation Ĉ, parity reversal P̂ and time reversal
T̂ (top row) defined in (12), to all elements of the basis (first
column) of Cl(3, 1) given in (1). Double rows contain dual
elements (one above the other). The top half contains only
even elements, the bottom half only odd elements.

Basis 1 Ĉ P̂ T̂ Ĉ ĈP̂ T̂ ĈP̂ T̂ P̂ T̂

1 1 −e01 −1 e0123 e01 e23 e0123 −e23
e0123 e0123 −e23 e0123 1 −e23 e01 −1 e01
e01 e01 −1 e01 −e23 −1 −e0123 e23 −e0123
e23 e23 −e0123 −e23 −e01 e0123 −1 −e01 1

e02 e02 e12 e02 −e31 e12 −e03 e31 e03
e31 e31 −e03 −e31 −e02 e03 e12 −e02 −e12
e03 e03 −e31 e03 −e12 −e31 e02 e12 −e02
e12 e12 e02 −e12 −e03 −e02 −e31 −e03 e31

e0 e0 e1 −e0 e123 −e1 −e023 e123 e023
e123 e123 e023 e123 e0 e023 −e1 −e0 −e1
e1 e1 e0 e1 −e023 e0 e123 e023 e123
e023 e023 e123 −e023 −e1 −e123 e0 −e1 −e0

e2 e2 −e012 e2 −e031 −e012 e3 e031 e3
e031 e031 e3 −e031 −e2 −e3 −e012 −e2 e012
e3 e3 e031 e3 −e012 e031 −e2 e012 −e2
e012 e012 −e2 −e012 −e3 e2 e031 −e3 −e031

Appendix A. Reordered table of Ĉ, P̂ and T̂ application to
multivector basis of Cl(3, 1)
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