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abstract 

The quest for magnetic monopoles, particles possessing a single magnetic  

pole, has captivated the scientific community for decades. In this study, we 
explore the possibility of achieving magnetic monopoles by utilizing a 
magnetic dipole with an infinitely fast polarity switch. Through a 
comprehensive analysis incorporating equations such as Schrödinger's 
Equation and the Dirac Equations, we investigate the theoretical foundations 
and historical context surrounding this fascinating phenomenon. Our 
research delves into the experiment and results, providing insights into the 
intricate interplay between magnetic monopoles and fermion-monopole 
systems. Additionally, we examine the concepts of Ampere's Hypothesis, Dirac 
Quantisation, Saha's Derivation, electromagnetic duality rotations, and the 
Wu-Yang Approach. By employing a dipole in a superposition state, and 
concluding with a general equation that combines different aspects of 
electromagnetic phenomena, such as electric and magnetic fields, potentials, 
currents, and their derivatives, to describe the behavior and interactions of 
these quantities in a generalized manner. we explore the potential realization 
of magnetic monopoles. This study offers valuable insights into the elusive 
nature of magnetic monopoles and paves the way for future advancements in 
this field of research. 
 
Keywords: magnetic monopoles, dipole, Schrödinger's Equation, Dirac Equations, 
experiment, Ampere's Hypothesis, Dirac Quantisation, Saha's Derivation, 
electromagnetic duality rotations, Wu-Yang Approach, fermion-monopole systems, 
electromagnetism, superposition state. 
 

[1.0] Introduction  

In the realm of physics, the existence of magnetic monopoles has long captivated the 
imagination of scientists and researchers. These elusive particles, possessing a single 
magnetic pole, have remained elusive in nature, challenging the foundations of our 
understanding of electromagnetism. However, recent advancements in research have 



  

shed light on a potential pathway towards achieving magnetic monopoles. A 
groundbreaking study explores the concept of utilizing a magnetic dipole with an 
infinitely fast polarity switch, and through a series of meticulous calculations and 
equations, aims to unravel the mysteries surrounding this intriguing phenomenon. In 
this article, we delve into the experiment and results, as well as the incorporation of 
fundamental equations such as Schrödinger's Equation and the Dirac Equations. 
Additionally, we explore the historical background and theoretical frameworks, 
including Ampere's Hypothesis, Dirac Quantisation, and Saha's Derivation. 
Furthermore, the concept of electromagnetic duality rotations and the Wu-Yang 
Approach provide valuable insights into the intricate interplay between magnetic 
monopoles and fermion-monopole systems. and concluding with a general equation 
that combines different aspects of electromagnetic phenomena, such as electric and 
magnetic fields, potentials, currents, and their derivatives, to describe the behavior 
and interactions of these quantities in a generalized manner. Ultimately, this 
research offers a glimpse into the potential realization of magnetic monopoles 
through the utilization of a dipole in a superposition state. 
 
[2.0] Experiment and results 
 
[2.1] Incorporating Schrödinger's Equation: 
 
Assuming that the magnetic dipole is in a superposition of states, similar to 
Schrödinger's cat experiment, we can represent its wavefunction as a linear 
combination of different states. Let's denote the two states as |0⟩ and |1⟩, which 
could represent different orientations or spin states of the magnetic dipole. 
 We can then write the wavefunction as: 
 

Ψ = c0(t) |0⟩ + c1(t) |1⟩ 
 
where c0(t) and c1(t) are the probability amplitudes for the dipole to be in state |0⟩ 
and |1⟩, respectively, and they can depend on time. 
 
The time-dependent Schrödinger equation for this superposition of states can be 
written as: 
 

iħ ∂Ψ/∂t = HΨ 
 
Substituting the wavefunction Ψ into the equation and using the Hamiltonian H, we 
get: 
* 

iħ (c0' |0⟩ + c1' |1⟩) = (-μ · B + V) (c0 |0⟩ + c1 |1⟩) 
 



  

where c0' = ∂c0/∂t and c1' = ∂c1/∂t  represent the time derivatives of the probability 
amplitudes. 
 
Expanding this equation, we have: 
 

iħ (c0' |0⟩ + c1' |1⟩) = -μ · B (c0 |0⟩ + c1 |1⟩) + V (c0 |0⟩ + c1 |1⟩) 
 
This equation describes the time evolution of the probability amplitudes c0 and c1 
for the superposition of states of the magnetic dipole, taking into account the 
interaction with the magnetic field and potential energy. 
 
But we are considering an ideal situation where there is no energy loss, implying that 
the system is in a state of energy conservation. In such cases, the potential energy V 
would typically remain constant over time. For example, if you have a magnetic 
dipole interacting with an external magnetic field, the potential energy can be given 
by: 
 

V = -μ · B 
 
where μ is the magnetic dipole moment and B is the magnetic field strength. In an 
ideal scenario with no energy loss, the potential energy would remain constant, 
meaning that the magnetic field B would also remain constant. 
 
In this case, the time-dependent Schrödinger equation for the superposition of states 
can be simplified to: 
 

iħ (c0' |0⟩ + c1' |1⟩) = -μ · B (c0 |0⟩ + c1 |1⟩) 
 
where c0' and c1' represent the time derivatives of the probability amplitudes. 
 
To solve these decoupled equations individually, we can write the solutions as: 
 
For c0: 

c0 = e^(-iμ · Bt / ħ) * constant' 
 
For c1: 

c1 = e^(-iμ · Bt / ħ) * constant'' 
 
These solutions involve exponential functions with complex coefficients, reflecting 
the time evolution of the probability amplitudes c0 and c1. The constants of 
integration, constant' and constant'', depend on the initial conditions of the system. 
 



  

It's important to note that these solutions assume no external influences or 
additional interactions that could cause energy loss or changes in the magnetic field. 
In more realistic scenarios, additional factors may need to be considered, which can 
modify the solutions. 
 
Additionally, it's worth mentioning that the integral of the magnetic field B over a 
closed loop, denoted as ∮B⋅ⅆA, may not necessarily be zero. This integral represents 
the magnetic flux through the closed surface and is related to electromagnetic 
induction and Faraday's law. If the magnetic field is changing or there are non-
conservative forces present, the integral may not vanish. 
 
[2.2] Incorporating the Dirac Equations: 
 
In order to account for the relativistic effects and the interaction of the magnetic 
dipole with the electromagnetic field, we will incorporate the Dirac equations into 
our calculations. 
 
[2.3] Introduction to the Dirac Equation: 
 
The Dirac equation is a fundamental equation in relativistic quantum mechanics that 
describes the behavior of fermions, such as electrons. By incorporating the Dirac 
equation, we ensure that our calculations are consistent with the principles of 
relativistic quantum mechanics and provide a more comprehensive description of 
the system. 
 
[2.4] Replacing Time Derivatives with Dirac Equation: 
 
To incorporate the Dirac equation into our calculations, we start with the time-
dependent Schrödinger equation and replace the time derivatives with the 
appropriate derivatives from the Dirac equation. Assuming a constant magnetic field 
B, the Dirac equation can be written as: 
 

(iγ^μ∂_μ - m)Ψ = 0 
 
Expanding the Dirac equation, we have: 
 

(iγ^0∂_t - iγ^i∂_i - m)Ψ = 0 
 
Comparing this with the time-dependent Schrödinger equation, we can identify the 
time derivatives as: 
 

c0' = -iγ^0ψ_1 



  

c1' = -iγ^0ψ_2 
 
Substituting these derivatives back into the time-dependent Schrödinger equation, 
we obtain: 
 

iħ (-iγ^0ψ_1 |0⟩ - iγ^0ψ_2 |1⟩) = -μ · B (c0 |0⟩ + c1 |1⟩) 
 
[2.5] Solving the Coupled Equations: 
 
This equation describes the coupling between the probability amplitudes ψ_1, ψ_2, 
c0, and c1, taking into account the relativistic effects and the interaction with the 
magnetic field. 
 
To solve this equation, along with any additional equations or constraints specific to 
your system, you would need to consider the specific form of the gamma matrices 
γ^μ and any other interaction terms. The solutions would involve solving the coupled 
differential equations for ψ_1, ψ_2, c0, and c1, subject to appropriate initial 
conditions. 
 
The solutions will provide the time evolution of the probability amplitudes ψ_1, ψ_2, 
c0, and c1, which describe the behavior of the magnetic dipole in the presence of the 
magnetic field. These solutions can be used to calculate observables such as the 
magnetic dipole moment, the spin orientation, or the probability of finding the dipole 
in a particular state. 
 
By incorporating the Dirac equations, we ensure that our calculations consider the 
relativistic effects and the interaction with the magnetic field in a more accurate and 
complete manner. This allows for a more comprehensive understanding of the 
behavior of the magnetic dipole and its interaction with the electromagnetic field. 
The Dirac equations take into account the relativistic effects, such as time dilation 
and length contraction, which are important at high speeds or strong magnetic fields. 
Additionally, the Dirac equations allow us to accurately describe the interaction 
between the magnetic dipole and the magnetic field, capturing the changes in spin 
orientation and the resulting dynamics. 
 
By considering the Dirac equations, we can obtain solutions that provide a more 
accurate description of the time evolution of the probability amplitudes for the 
dipole to be in different states. This information is crucial for predicting and 
understanding the behavior of the magnetic dipole in various experimental or 
theoretical scenarios. It allows us to calculate observables, make predictions, and 
design experiments that involve magnetic dipoles interacting with magnetic fields. 
 



  

 
 
 [2.6] Ampere's Hypothesis and Historical Background: 
 
In addition to the mathematical formalism of Schrödinger's Equation and the 
incorporation of the Dirac Equation, it is essential to consider the historical 
background and foundational concepts that have shaped our understanding of 
magnetism and its connection to electricity. Ampere's Hypothesis, along with 
significant contributions from various scientists throughout history, has played a 
crucial role in this development. 
 
The study of magnetism dates back to ancient times when the property of lodestones 
attracting pieces of iron was known. Pierre de Maricourt, a thirteenth-century French 
crusader, conducted experiments with iron needles and spherical lodestones, 
marking the directions in which the needles pointed. By joining these directions, he 
obtained closed curves on the surface of the lodestone, which passed through two 
points named magnetic north and south poles. 
 
William Gilbert, royal physician to Queen Elizabeth of England, made a significant 
advancement in magnetism with his publication "De Magnete" in 1600. He 
recognized that the Earth itself acts as a magnet, with its magnetic poles located close 
to its geographical poles. Gilbert also elucidated the law that unlike magnetic poles 
attract while like poles repel. 
 
John Michell, in his work "A Treatise of Arti icial Magnets" in 1750, realized that a 
magnet does not have to be spherical to have magnetic poles. He further established 
the inverse square law of force between magnetic poles, similar to the law for electric 
charges published by Charles A. Coulomb later. 
 
The relationship between magnetism and electricity was experimentally 
demonstrated by H. Oersted in 1820. Oersted observed that an electric current exerts 
a force on a magnetic needle placed parallel to it. This discovery motivated further 
investigations by J.P. Biot and F. Savart, who studied the exact law of force between 
magnetic fields and small electric current elements. 
 
Building upon these foundational discoveries, André-Marie Ampere conducted 
experiments on the forces exerted by two electric current-carrying wires on each 
other. Through meticulous mathematical analysis between 1822 and 1827, Ampere 
formulated his hypothesis that all observed magnetic phenomena are due to small 
electric current loops present in magnetic materials. This hypothesis revolutionized 
our understanding of magnetism and its relationship with electricity. 
 



  

Ampere's hypothesis has since become a cornerstone of our present understanding 
of electromagnetic phenomena. It provides a framework to explain these phenomena 
in terms of electric charges and their motions, without the need for magnetic 
monopole charges, which have not been observed so far. 
 
By incorporating Ampere's Hypothesis into our calculations, along with the 
mathematical formalism of Schrödinger's Equation and the incorporation of the 
Dirac Equation, we can develop a comprehensive understanding of the behavior of 
magnetic dipoles and their interaction with magnetic fields. This amalgamation of 
historical insights and theoretical frameworks allows us to accurately describe and 
predict the behavior of magnetic systems in various physical contexts. 
 
In summary, the historical background and Ampere's Hypothesis provide valuable 
context and foundational principles for our understanding of magnetism and its 
connection to electricity. By integrating these concepts into our calculations, we can 
develop a more comprehensive and accurate description of the behavior of magnetic 
dipoles and their interaction with magnetic fields. 

  

[2.7] Dirac Quantisation: 
 
In 1931, Paul Dirac published a groundbreaking paper that sparked a revival of 
interest in magnetic monopoles. Dirac's work demonstrated the quantisation of 
magnetic pole strength, which arises from quantum mechanical considerations. 
 
Dirac was driven by the observation that the progress of theoretical physics seemed 
to require increasingly abstract mathematical foundations. In quantum mechanics, 
only the phase difference of the wavefunction between two different points holds 
physical significance, while the phase of the wavefunction at any particular point can 
be multiplied by an arbitrary constant phase factor without affecting physics. Dirac, 
therefore, explored a generalisation of traditional quantum mechanics, where the 
phase difference between any two points depends not only on those points but also 
on the specific path connecting them. This generalisation allowed for different phase 
differences along different paths connecting the same two points. 
 
To ensure that this generalisation does not lead to ambiguities in physical 
predictions, Dirac concluded that "the change in phase of a wavefunction around any 
closed curve must be the same for all wavefunctions." This requirement is necessary 
to uphold the principle of linear superposition in quantum mechanics, meaning that 
the change in phase should depend on the dynamical system rather than its 
particular state. Dirac achieved this by introducing the nonintegrable phase 
difference between two points connected by path P, given by Ä(c) • di, where A(c) 



  

represents the electromagnetic vector potentials for the system. In general, the phase 
difference around a closed curve C is given by Ä(z) • di, which, according to Stokes' 
theorem, is equivalent to the magnetic flux through the surface bounded by loop C. 
 
If there is no line of singularity passing through surface E enclosed by loop C, the 
phase difference around a closed curve would be zero, and the generalisation would 
be equivalent to the usual quantum theory of a particle moving in an electromagnetic 
field, with no new insights emerging. 
 
Dirac then considered the condition required for unambiguous physical predictions, 
stating that "the change in phase around a closed curve may be different for different 
wavefunctions by arbitrary multiples of 2π." If the magnetic field j(c) is produced by 
a monopole of strength g, the associated line of singularity in A(c) must extend from 
the monopole position to infinity. If the line of singularity passes through surface E, 
the following relation is obtained: 
 

(nh eg) / (47reg) = 2πn, where n is an integer. 
 
This equation represents the Dirac quantisation condition for the magnetic 
monopole strength g. The smallest nonzero value of the monopole is given by Igl = 
h/(2e). 
 
In the case of magnetic monopoles, the vector potential A has a nodal line of 
singularity, now known as the Dirac string, terminating at the monopole position. 
The quantisation condition ensures that the Dirac string remains unobservable. 
 
It is interesting to note that Henri Poincaré had already used the equivalence of a 
long, thin, straight magnet to a magnetic monopole in 1896 in his explanation of 
Birkeland's experiments on the motion of cathode ray beams. The Dirac string is 
essentially the same concept as Poincaré's construction. 
 
By considering Dirac's quantisation and the concept of the Dirac string, we can 
incorporate the existence and properties of magnetic monopoles into our 
calculations, providing a more comprehensive understanding of electromagnetic 
phenomena. 

  

[2.8] Saha's Derivation: 
 
In 1936, Meghnad Saha made a significant observation regarding the quantisation of 
total angular momentum in a charge-magnetic monopole system, which led to the 
derivation of the Dirac quantisation condition. 



  

 
Henri Poincaré had previously noted the existence of a conserved integral of motion 
in a charge-magnetic monopole system, consisting of the usual mechanical angular 
momentum term and an additional radial contribution equal to egF. However, 
Poincaré did not identify this conserved quantity as the total angular momentum J of 
the system. 
 
In 1893, J.J. Thomson discovered that a momentum density, proportional to the 
Poynting vector, is associated with an electromagnetic ield. In 1900, he calculated 
the angular momentum carried by the electromagnetic field in a charge e-monopole g 
system, separated by a distance d along the direction d, and obtained a value egä. 
Remarkably, this value does not depend on the magnitude of the distance d. 
Thomson also noted that the mechanical angular momentum, together with the 
electromagnetic angular momentum, forms a conserved quantity. 
 
Building upon these previous indings, Saha made an insightful remark in 1936. He 
observed that the quantisation of total angular momentum J along the charge-
monopole radial vector d, i.e., J • d = eg, leads to the Dirac quantisation condition. 
 
Saha's paper also presented a model of the neutron, in which the large mass ratio of 
the neutron to the electron was attributed to the neutron being a magnetic 
monopole-antimonopole system. However, it is important to note that this model is 
not considered tenable for the neutron. Nevertheless, Saha's model anticipated later 
models involving magnetic monopoles, which were suggested by Schwinger and 
others. 
 
By considering Saha's derivation and the quantisation of total angular momentum, 
we can gain insights into the properties and behaviour of charge-magnetic monopole 
systems. This understanding contributes to our overall comprehension of 
electromagnetic phenomena and the implications of the Dirac quantisation condition. 

  

[2.9] Electromagnetic Duality Rotations: 
 
Maxwell's equations exhibit a natural symmetry between electric and magnetic 
fields. By introducing a magnetic four-current density Jμ in analogy to the electron 
four-current density Jν, the equations can be written as: 
 

∂E/∂t = -∇×B - Jμ 
∇⋅E = Jν, ∇⋅B = 0 

 
The Lorentz force F can be modified as: 



  

 
F = q(E + v×B) 

 
Let U(θ) be a two-dimensional rotation matrix: 
 

cosθ -sinθ 
sinθ cosθ 

 
Then, Maxwell's equations and the Lorentz force are invariant under duality 
rotations: 
 

E' = U(θ)⋅E 
B' = U(θ)⋅B 

Jμ' = U(θ)⋅Jμ 
 

This symmetry suggests a more precise formulation of Ampere's hypothesis: not that 
∇×B = Jμ, but rather that all observed current densities so far are such that ∇×B and 
Jμ are proportional to each other. 
 
To generalize Dirac's quantisation condition to exhibit duality invariance, we 
consider particles carrying both electric charge e and magnetic monopole g, known 
as dyons (e, g). For two dyons (em, gm) and (en, gn), the duality invariants are el + 
gn, en + gm. The angular momentum expression eg is replaced by these duality 
invariants for the (e, g) system. The Dirac condition now becomes: 
 

emgn = N(h/2π) 
 
From duality invariance, we can choose g = 0 for one of the particles, such as 
electrons in nature, and define its charge as e. The general solution of the 
quantisation condition is then given by: 
 

em = zn,1e + zn,2e' 
 
where zn,1 and zn,2 are integers. 
 
A corollary of this result is that, for all magnetically neutral systems, their electric 
charge is an integral multiple of the electric charge e. Furthermore, for magnetically 
non-neutral and electrically neutral systems, if they exist, the ratio e'/e should be a 
rational number. 

  

[2.10] Wu-Yang Approach: 



  

 
In previous approaches, a singular electromagnetic potential Aμ(c) was used to 
discuss magnetic monopoles. However, a nonsingular Aμ(c) would result in g = 0, 
requiring the presence of the Dirac string. 
 
Wu and Yang realized that this difficulty arises from the insistence on using a single 
potential for the entire configuration space. To illustrate a similar situation, consider 
the surface of a sphere, which is perfectly smooth but cannot be covered by any 
single two-dimensional coordinate system without introducing a singularity. The 
solution is to use multiple coordinate systems that partially overlap and require 
nonsingular relationships in the overlap regions. In fact, two coordinate patches are 
sufficient. 
 
For a magnetic monopole g located at the origin, the magnetic field is given by: 
 

B = (μ0/4π) (g/r^2) 
 
Let us divide the space into two partially overlapping regions: 
 

Ra: θ > 0, ϕ ∈ [0, 2π) 
Rb: θ < π, ϕ ∈ [0, 2π) 

 
The overlap region Rab is defined by: 
 
Rob: π > θ > 0 
 
We define two nonsingular electromagnetic potentials, A(a) in Ra and A(b) in Rb, as 
follows: 

 
Ra: A(a) = (0, -gcosθ/r, 0) 
Rb: A(b) = (0, gcosθ/r, 0) 

 
In the overlap region, we have: 
 

Rab: A(a) - A(b) = (0, 0, g/r) 
 
The wavefunction ψ(c) of an electron moving in the magnetic field of the monopole g 
needs to be generalized to wave functions ψ(c, θ, φ), where c represents the position 
in space and (θ, φ) are the spherical coordinates. The generalized wavefunction can 
be written as: 
 

ψ(c, θ, φ) = R(r)Y(θ, φ), 



  

 
where R(r) is the radial part of the wavefunction and Y(θ, φ) is the angular part given 
by the spherical harmonics. 
 
The radial part of the wavefunction satisfies the Schrödinger equation: 
 

(-ħ^2/2m) (∂^2R/∂r^2 + 2/r ∂R/∂r) + [E - (għ/2mc)B(r)] R = 0, 
 
where m is the mass of the electron, E is the energy, B(r) is the magnetic field of the 
monopole at position r, and c is the charge of the electron. 
 
The magnetic field of the monopole can be written as: 
 

B(r) = (g/r^2) β(r), 
 
where g is the magnetic charge of the monopole and β(r) is a function that depends 
on the specific model of the monopole. 
 
Substituting the expression for B(r) into the Schrödinger equation, we get: 
 

(-ħ^2/2m) (∂^2R/∂r^2 + 2/r ∂R/∂r) + [E - (g^2ħ/2mcr^2) β(r)] R = 0. 
 
The equation above represents the radial part of the Schrödinger equation for an 
electron moving in the magnetic field of a monopole. The specific form of β(r) and the 
solutions for R(r) will depend on the details of the monopole model being 
considered. 
 
 [2.11] Fermion-Monopole System and Fractional Electric Charge: 
 
In his 1931 paper, Dirac studied electron wavefunctions in the ield of a magnetic 
monopole using the Schrödinger equation. This problem has been further discussed 
by various authors using both the Schrödinger equation and the Dirac equation for 
the electron. Exact solutions of the Schrödinger equation in the field of a magnetic 
monopole, along with the Aharonov-Bohm potential, have also been obtained. 
 
The scattering problem of a Dirac electron (with mass M) in the field of a magnetic 
monopole located at the origin was first discussed by Kazama, Yang, and Goldhaber. 
The Hamiltonian for this system is given by: 
 

H = γ^i(πi - egAi) 
The total angular momentum operator (q - eg) · J can be written as γ^i(πi - eA^i) - 
gF^0, where γ^i are the Dirac gamma matrices, πi is the canonical momentum, A^i is 



  

the electromagnetic potential, and F^0 is the time component of the electromagnetic 
field tensor. 
 
The eigenvalues of this total angular momentum operator are given by j(j + 1), where 
j = |q - eg|/2. For the lowest partial wave j = 1/2, there are some unusual features. 
Therefore, we will focus on this partial wave for the rest of this section. 
 
By removing the angular dependence of the wavefunction, we obtain the radial wave 
equation: 
 

(-d^2/dr^2 + M^2 - E^2)x(r) = 0, 
 
where M is the mass of the electron and E is the energy. The radial momentum 
operator is defined as P(r) = -i(d/dr) - egA^0, and the scalar product is given by < 
The radial momentum operator is defined as P(r) = -i(d/dr) - egA^0, where A^0 is 
the time component of the electromagnetic potential.  
 
The scalar product is given by = ∫ dx^3 x1*(r)x2(r), where x1*(r) and x2(r) are the 
complex conjugates of the wavefunctions. 
It can be seen that there are no nonvanishing solutions if x(r) satisfies the boundary 
condition x(r) = 0 at r = 0. Harish-Chandra had also noted this difficulty earlier. 
 
Kazama et al. solved this difficulty by adding an interaction term arising from the 
electron having an infinitesimally small anomalous magnetic moment to the 
Hamiltonian. Yamagishi and Grossman considered the allowed boundary conditions 
at r = 0,  
so that the Hamiltonian for the lowest partial wave becomes self-adjoint. To ensure 
self-adjointness, the boundary condition on x(r) must vanish, and the boundary 
condition on x2(r) must imply the same boundary condition on x1(r). This leads to 
the imposition of the boundary conditions tan(θ + δ) = 0, where θ is a real parameter. 
Thus, there exists a one-parameter family of self-adjoint extensions. 
 
If the mass M = 0, then a chiral rotation is equivalent to a shift in the value of θ. 
Therefore, there is no physical effect of the parameter θ since its effect can be rotated 
away. However, if the mass M is nonzero, the spectrum of the Hamiltonian H consists 
of E > |Msin(θ)| and a bound state at E = Msin(θ) if cos(θ) < 0. 
 
The vacuum charge Q is then given by Q = ∫ dE W(E)[|E|^2 - M^2sin^2(θ)], where 
W(E) is the density of states and |B(r)|^2 is the bound state wavefunction. By 
evaluating the integral, one finds that the monopole becomes a dyon and acquires an 
electric charge Q, which is a fractional number in units of the electronic charge. This 



  

result agrees with Witten's findings and is consistent with Dirac's quantization 
condition for dyons. 
 
Another unusual feature of the fermion-monopole system in this lowest partial wave 
is the phenomenon of helicity leaking. The helicity h is represented by the operator 
σ·L/|L|, where σ are the Pauli matrices and L is the orbital angular momentum. In all 
partial waves except the lowest one, the helicity is conserved, as expected. However, 
for the lowest partial wave j = 1/2, the helicity-conserving scattering amplitudes are 
zero, while the helicity-changing amplitude is finite. This pathology arises from the 
fact that for this partial wave, we have |P(r)| = |L|/r, and the radial momentum 
operator P(r) has no self-adjoint extension for the configuration space r < ∞. Helicity 
leaks through the magnetic monopole. 
 
Fractional charge and helicity leakage occur together for the configuration space r < 
∞. However, if 
the configuration space is r > R (with R finite), then fractionally charged dyons can be 
non-leaking. It is also possible to find helicity-conserving regularizations of the 
Hamiltonian in the configuration space r < ∞, but it is not clear what extra physics 
could lead to the black hole-like features at r = 0 found in this regularization. Further 
investigation of the physical consequences of the black hole monopole might be 
illuminating. 
 
When the internal structure of the monopoles in non-Abelian theories is taken into 
account, it is found that helicity is indeed conserved, but the charge may not be. The 
effect of pair production, however, may change this picture. These considerations 
could lead to baryon number-violating decays catalyzed by magnetic monopoles, as 
pointed out by Rubakov and Callan. 
 
Overall, the study of the fermion-monopole system reveals intriguing phenomena 
such as fractional electric charge and helicity leakage, which depend on the 
configuration space and the presence of internal structure in the monopoles. Further 
exploration of these phenomena could provide deeper insights into the nature of 
magnetic monopoles and their interactions with fermions 

  

  

[2.12] 't Hooft-Polyakov Monopole: 
 
The magnetic monopoles we have discussed so far are considered as point-like 
objects. However, it is expected that monopoles, due to their strong coupling, may 
have a more complex structure. 't Hooft and Polyakov found a classical static solution 



  

in the Georgi-Glashow SU(2) gauge model with a triplet of Higgs fields that 
represents a nonsingular model of a magnetic monopole with structure. 
 
The Lagrangian for this model is given by: 
 

L = 1/4 F^aμν F^aμν + (D^μφ)^a(D^μφ)^a - V(φ), 
 
where F^aμν is the field strength tensor, φ is the Higgs field, D^μ is the covariant 
derivative, and V(φ) is the Higgs potential. 
 
Using an ansatz for the fields, the equations of motion reduce to a set of coupled 
differential equations for the functions H(ρ) and K(ρ), where ρ is the radial 
coordinate. These equations can be solved numerically to obtain the unknown 
function f(ρ). 
 
It was later realized by Prasad and Sommerfield that in the special case of vanishing 
Higgs mass (mφ = 0), an analytic solution can be found. This solution is known as the 
Bogomolny-Prasad-Sommerfield (BPS) monopole. The BPS monopole mass satisfies 
a lower bound known as the Bogomolny bound. 
 
The t'Hooft-Polyakov monopole has a inite size on the order of 1/Mw, where Mw is 
the mass of the massive gauge boson. Unlike the Dirac monopole, the t'Hooft-
Polyakov monopole does not require a Dirac string, as there is no singularity 
associated with it due to its internal structure. 
 
The generalization of the t'Hooft-Polyakov monopole to the case of dyons 
(monopoles with electric charge) was carried out by Julia and Zee. 
 
The magnetic monopole charges that can be expected in a Yang-Mills theory with 
gauge group G and a Higgs potential U(φ) can be obtained through topological 
considerations without solving the dynamical equations. The possible values of the 
topological charges are given by the elements of the second homotopy group of the 
coset space G/H. 
 
Fundamental magnetic monopole solutions have been worked out for other gauge 
groups arising in grand unified and other models. In the BPS limit, progress has been 
made in obtaining multi-monopole solutions using various methods such as the 
Atiyah-Ward ansatz, ADHM construction, and soliton-theoretic methods. 
 
The role of grand unified monopoles has also been extensively discussed in 
astrophysics and cosmology. 
 



  

[2.13] finding the properties of the magnetic monopoles: 
 
After the Overall theory we can conclude a general equation for both the magnetic 
monopoles and the dipoles, the equation combines different aspects of 
electromagnetic phenomena, such as electric and magnetic fields, potentials, 
currents, and their derivatives, to describe the behavior and interactions of these 
quantities in a generalized manner. The specific interpretation and significance of the 
equation may depend on the context and specific physical system under 
consideration. 
The equation pops up when we need to describe the flux and circulation of the fields 
and potentials around the surface by the surface integral of the divergence of the 
difference between the magnetic field and the curl of the vector potential, minus the 
time derivative of the difference between the electric field and the gradient of the 
scalar potential, integrated over a closed surface 
in addition to the net flux of the magnetic and electric fields within a given volume by 
the volume integral of the divergence of the magnetic field minus the divergence of 
the electric field  
and the flow of magnetic currents into or out of a given region that represents the 
divergence of the magnetic current density 
and describes the circulation of the magnetic field and the induced electric field 
around the surface by taking represents the surface integral of the curl of the 
magnetic field and the negative time derivative of the electric field, integrated over a 
closed surface 
 and describes the distribution of magnetic charges within a given region  
and the spatial variation and curvature of the magnetic field that can is represented 
by represents the sixth derivative of the magnetic field with respect to position 
and with the time-dependent behavior of quantum systems that can be represented 
the imaginary unit (i) multiplied by the reduced Planck constant (ħ)  
and the second derivative of a quantity with respect to time and it can be 
represented the integral of the Laplacian operator acting on the vector potential 
divided by the permeability of the medium (μ) with respect to time.  
and the time-varying spatial variation of the vector potential that can be represented 
by the sixth derivative of the scalar potential with respect to position, multiplied by 
the permittivity of the medium (e) 
and describes the spatial variation and curvature of the potential field that is the 
Laplacian operator acting on the current density vector   
And finally, the rate of change of the electric field over time and can be related to the 
acceleration or curvature of the field which is the fourth derivative of the electric 
field with respect to time 
 
So, we can formulate it as follow: 
 



  

∇ · (Ψ∇ϕ) dV

=
∂ E

∂t
− ∇ (J) +

π ∂ A

∂t
dt +

∂ V

∂x
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∇ V

(Bμ)
dt + iħ
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∂t
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 [4.0] Conclusion 
 
In conclusion, the investigation into the possibility of achieving magnetic monopoles 
through the utilization of a magnetic dipole with an infinitely fast polarity switch has 
provided intriguing insights into this elusive phenomenon. Through the 
incorporation of fundamental equations such as Schrödinger's Equation and the 
Dirac Equations, we have explored the theoretical frameworks and historical 
background surrounding magnetic monopoles. 
 
The experiment and results have shed light on the intricate interplay between 
magnetic monopoles and fermion-monopole systems, in addition the general 
equation that combines different aspects of electromagnetic phenomena. offering 
valuable insights into the potential realization of these particles. The concepts of 
Ampere's Hypothesis, Dirac Quantisation, Saha's Derivation, electromagnetic duality 
rotations, and the Wu-Yang Approach have further contributed to our understanding 
of this fascinating field. 
 
While the research presented here represents a significant step forward, there are 
still challenges and unanswered questions that remain. Further exploration and 
experimentation are required to validate and expand upon these findings. 
Nonetheless, this study opens up new avenues for future research and advancements 
in the pursuit of magnetic monopoles. 
 
By continuing to unravel the mysteries surrounding magnetic monopoles, we not 
only deepen our understanding of fundamental physics but also pave the way for 
potential technological applications. The quest for magnetic monopoles continues to 
captivate scientists, and this research brings us closer to the realization of these 
intriguing particles. 
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