
 

 

1 

Epigenetic Modeling as a Remedy for the Missing Heritability Problem 
 
 
 
Stephen P. Smith 
January 2024 
 
Abstract: This paper argues that confounding between epigenetic and additive genetic 
effects explains the missing heritability problem, and offers two new epigenetic models 
describing transgenerational inheritance that may supplement the traditional mixed 
linear models used to make predictions of the additive genetic merit of animals. The 
new models utilize pedigree information and show the property of additivity, like the 
additive genetic models do. The combined predictions of both epigenetic and genetic 
effects may provide useful indexes that help farmers select replacement animals or 
breeding stock. The utility of these methods depends on data where both confounding 
and the parsimony of parameters come to bear on practical limits. The proposed 
epigenetic models are just a first step, and they may not win long-term favor when 
compared to future models that are still to be formulated. 
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1. Introduction 
 

The study of epigenetics has unfolded in a chronological sequence of discoveries, 
illuminating the intricate regulation of gene expression beyond the DNA sequence (cf., 
Peixoto, et al., 2020). Conrad Waddington coined the word epigenetics in the 1940s, 
highlighting the interaction between environment and genes. DNA methylation, the 
addition to DNA of methyl groups, was the first epigenetic modification identified in the 
1970s, providing a significant insight into gene expression during embryonic 
development. Subsequent decades brought the discovery of histone modifications 
(acetalyzation), revealing the dynamic role of proteins associated with DNA in gene 
regulation. The advent of technologies like bisulfite sequencing and chromatin 
immunoprecipitation enhanced our ability to map epigenetic marks across the genome 
(cf., Hurbert and Demars 2022). More recently, the exploration of non-coding RNAs and 
three-dimensional chromatin architecture has expanded the epigenetic landscape. This 
chronological progression underscores the complexity of epigenetics, shaping our 
understanding of how environmental factors leave lasting impacts on the genome. 
 
In recent years, groundbreaking research has unveiled the phenomenon of 
transgenerational inheritance through epigenetics; taking the subject beyond 
developmental biology. Initially, studies focusing on specific environmental exposures 
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demonstrated that epigenetic modifications could be passed from one generation to the 
next. The seminal work on agouti mice revealed that maternal diet could influence the 
coat color and health of subsequent generations (Waterland and Jirtle 2003). Further 
investigations across various species, including humans, illuminated the potential 
transmission of epigenetic marks through multiple generations. These findings redefine 
our understanding of heredity, indicating that acquired traits and environmental impacts 
can extend beyond a single individual, providing compelling evidence for the profound 
and lasting influence of epigenetic mechanisms on the inheritance of traits and 
diseases. 
 
The deeper implication of transgenerational epigenetic inheritance goes to the 
foundation of biology, and leads to unsettling ramifications about evolution and the 
structure of life. For example, Shapiro (2011), offers an overpowering critique of the 
Modern Synthesis, the prevailing framework in evolutionary biology based on Neo-
Darwinism. He refutes the conventional theory that evolution mainly occurs through 
gradual accumulation of genetic mutations, emphasizing the significance of 
non-random, adaptive processes that represent yet another layer of epigenetic 
regulation. Shapiro argues that the gene-centric view fails to capture the complexity of 
evolutionary mechanisms, particularly the role of natural genetic engineering. He 
asserts that organisms possess active mechanisms for restructuring their genomes, 
challenging the passive role ascribed to natural selection. In fact, this concept (that life 
is endowed by its own agency) is taken serious by well-respected scientists that made 
contributions to the scholarly book published in 2023, Evolution "On Purpose" - 
Teleonomy in Living Systems, and this concept now recast epigenetics in this broader 
context of a biology that actively regulates itself, of being its own agent. Shapiro and 
others urge a paradigm shift towards a new evolutionary framework, acknowledging the 
dynamic nature of genetic change and the active participation of organisms in their own 
evolution. By advocating a more inclusive perspective, Shapiro and others call for a 
reevaluation of established evolutionary principles to better incorporate the complexity 
inherent in the molecular processes shaping the course of evolution. 
 
The Modern Synthesis is not alone in its demise. The Central Dogma of Biology and 
Weismann=s barrier have been assumed premises of theoretical biology, which depicts 
information flow out of DNA as a one-way affair. It is not supposed to be possible for 
information to flow from the soma to the germline, but in a review article Phillips and 
Nobel (2023) describe such a serious likelihood: they discuss evidence that such 
communication is mediated by somatic RNAs that travel inside extracellular vesicles 
(exosomes) to the gametes where they reprogram the offspring epigenome and 
phenotype. As an example of what might be transferred inside of exosomes, Rechavi, et 
al., (2011) show that the viral silencing agents, viRNAs, are transgenerationally 
transmitted and work to silence viral genomes present in C. elegans (nematodes). In a 
review article, Houri-Zeevi and Rechavi (2017) find that small RNAs are increasingly 
emerging as transgenerational carriers of epigenetic information, which can affect gene 
expression over several generations. In particular, Posner, et al., (2019) have 
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discovered that neuronal small RNAs can control behavior transgenerationally in C. 
elegans, contradicting the Central Dogma.  
 
Bioelectricity is another layer of regulation (of agency directing its own morphogenesis 
and maintaining its homeostasis) that rest on top of the epigenetic regulation that 
controls the expression of genes, and Michael Levin describes these fascinating 
processes in Chapter 10 of the book, Evolution "On Purpose" - Teleonomy in Living 
Systems. On page 188, Levin writes: Abioelectric states are a medium that binds 
individual cells toward large-scale goals; it underlies scale-up and emergence of higher-
level teleonomic individuals, much as it does to create brains with emergent unified 
mental content out of a collection of individual neuronal cells.” Individual cells show 
intelligence, organs show goal-seeking intelligence and organisms represent a collective 
intelligence (Levin 2023). Bioelectricity represents the membrane potential that is 
supported by gap junctions, ion channels and pumps, and is the substrate that unifies a 
communicating cognition in all cells, organs and the brain. Agency of this sort implies a 
memory that is well beyond the genome. It is now necessary to reissue the definition of 
epigenetics, to now represent all such layers of regulation that imply some level of 
agency and may also impact the germline, and represents a possible transgenerational 
communication. These layers may operate on different time scales, and they may be 
hard to distinguish individually by statistical means, but they are unlike the more static 
information encoded in the genome. 
 
With the gene-centric view of biology brought into question, it is not surprising to find 
entrenched theories of genetics and evolution in crisis, and the missing heritability 
problem (see Manolio, et al., 2009) hints of such a crisis within genetic research where 
identified genetic variants cannot fully explain the heritability of complex traits or 
diseases. Despite the advancements in genome-wide association studies (GWAS), a 
significant portion of the heritability remains elusive. Nevertheless, genomic selection 
may offer an improved utilization of available information coming from GWAS (Goddard, 
et al., 2010). While genomic selection as a theory and practice has now integrated itself 
well into traditional breeding principles (Meuwissen, et al., 2016), this approach is, 
however, a reassertion of the old gene-centric view of biology. Because genetic studies 
may overlook many small genetic effects, rare variants, structural variations, and 
gene-gene interactions that collectively contribute to the missing heritability (see 
Manolio, et al., 2009), a defense of the Modern Synthesis can still be made. However, an 
alternative view is that non-genetic factors such as epigenetic modifications and 
environmental influences may explain the missing heritability (Banta and Richards 2018, 
Slatkin 2009), and that the Modern Synthesis is outdated as Shapiro warns. 
 
Plant and animal breeding advanced substantially under the theoretical framework 
provided by the Modern Synthesis. However, what can be made of these advances if it is 
now discovered that the framework is invalid? In particular, what to make of the selection 
principles that have reached a high point with best linear unbiased prediction and the 
application of the mixed model equations (prior to GWAS and genomic selection)? These 
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practical tools of statistics (e.g., Henderson 1984) seemed to work just the same, with 
genetic advances described in dairy populations (Everett and Keown 1984; Van Vleck, et 
al., 1986), and in many other examples where artificial selection was found to make 
progress. However, if the Modern Synthesis is invalid because of an epigenetic 
inheritance that was not fully recognized, the linear prediction of breeding values 
probably found utility partly because of statistical confounding between genetic and 
epigenetic effects. Indeed, Banta and Richards (2018) argue that epigenetic effects can 
change how phenotypic variance is partitioned, making a serious issue. As a practical 
matter, the improvement of domestic animals can be accomplished even if the heritability 
is mischaracterized, because of this apparent confounding. Henderson’s practical tools 
have already been adapted and changed dramatically with the introduction of genomic 
selection and this revolution in theory and practice is unlikely to be shifted because of the 
new revelations about the inheritance of acquired characteristics, unjustified or not. 
However, if the old tools worked anyway to help improve animal populations because of 
confounding, it is possible that adjusting the statistical models to include epigenetic 
effects may offer farmers valuable new information to select replacement animals. The 
purpose of this paper is to offer statistical models that are enlarged to include a possible 
epigenetic inheritance. These models may not be the perfected models that are 
universally adopted in the future once the Modern Synthesis finally expires, but they 
provide a start to that eventuality. 

 
Section 2 reviews the additive genetic model, additive genetic inheritance, and the 
connection of this model to mixed model methodology. The additive genetic model is 
used as a framework to develop two new epigenetic models of inheritance, and these 
are presented in Section 3. Section 4 presents a discussion of the utility of these new 
models to aid in culling and selection. 
 

 

2. Additive genetic effects 
 

Additive genetic effects are those genetic effects that can be selected and result in a 
stable change in a population, and even in subsequent generations. The additive effects 
can accumulate with the addition of new additive genetic effects that may also be 
selected. In the statistical model, the additive effects are assumed to sum over loci, 
where each allele at a particular locus carries a small effect that contributes to the total 
variance. The model of inheritance is given by the mid-parent equation (1). 
 
(1)   Ao = 2Ap + 2Am + So , 
 
where: Ao is the total additive genetic effect in the offspring, o, that resulted from mating 
parents p and m; Ap and Am are the total additive genetic effects from the paternal and 
maternal parents, respectively; and So is the random effect resulting from segregation, or 
the genetic recombination during meiosis when parental gametes were made. The mean 
of So is taken as zero, and variance of So is given by the following equation. 
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(2)   Var{So} = 2 (1+Fo) σ2

A , 
 
where Fo is the inbreeding coefficient of offspring o, and σ2

A is the additive genetic 
variance which is treated as a population parameter. 
 
Equations (1) and (2) can be put in matrix notation to specify the additive genetic model 
completely for N animals. Let there be M<N animals without known genetic relationships 
represented by (1). These M animals are part of the base population. Indexing all N 
animals makes o, p and m indexes and functions of an index kN, given by k=o[k], p[k] 

and m[k]. Without loss of generality, use an index ordering for all animals that is 
consistent with the partial ordering where k > p[k] and k > m[k] for all k=o[k] where (1) 
applies, and where the first M indexes represent the base population. Signify the column 
vector aN1 that contains the additive genetic effects Ak, in the k-th location and for the k-

th animal, kN. Likewise, define the vector rN1 where the k-th position equals Ak if kM, 

otherwise it equals Sk. With these specifications, the variance of r is a diagonal matrix D 
of order N, with k-th diagonal elements equaling σ2

A if kM, or otherwise it is specified by 

(2) as 2 (1+Fk) σ2
A; in shorthand, var{r}=D. Lastly, define the lower triangular matrix P 

that contains mostly zeros except that the k-th row contains 2 at column positions p[k] 
and m[k], for all k>M.  
 
Equation (1) becomes the succinct matrix equation (3). 
 
(3) a = Pa+r  or  (I-P)a = r 
 
This completes the specification of the additive genetic model in animal breeding. 
Equation (3) was first formulated by Quaas (1988) and it leads directly to the rules 
presented by Henderson (1976) for inverting the relationship matrix. It’s this inverse 
matrix that is plug directly into Henderson=s mixed model equations. The mixed linear 
model is also needed to relate the additive genetic effects to phenotypes, and it comes 
as an extra model specification as given below. 
 
(4)  y=Xb + Za +e, 
 
where y is a vector of observations (or phenotypes), b is a vector of fixed effects, a a 

vector of random additive genetic effects already described (including var[a] and its 
inverse) and e is a vector of random residuals. The matrices X and Z are incidence 
matrices that assign the various effects to observations and var[e]=R. Further details are 
beyond the scope of this paper. 
 
This model, given by (3) and (4), can be generalized to accommodate diverse 
modifications. For example, it can be extended to multivariate traits, modified to include 
other random effects like common environmental influences and the additive genetic 
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effects representing the maternal environment. It can be reduced to represent a simple 
sire model. Attempts might also be made to represent some non-additive genetic effects 
like dominance and epistasis. Including non-additive genetic effects is based on the 
partitioning of total genetic variance following the work of Cockerham (1954), and others. 
However, there is a limit to the amount of non-additive genetic variance that can be 
realistically accommodated because of complexity, confounding and because not all 
parameters can be estimated well from data. Inbreeding makes the genetic partitioning 
even more complicated while inflating the number of genetic parameters that are 
needed. Much of the time these complexities are just ignored while preference is given to 
a simple additive genetic model. As already noted, the additive models are preferred 
because additive genetic effects are thought stable across generations and do not 
dissipate, and hence, these effects lend themselves to selection.  
 
The additive genetic model has not been without critics, and at best this model should 
only be viewed as a useful approximation. With the model assumed true the heritability 
and other parameters must still be estimated, and parameters are sensitive to the choice 
of model. Sheridan (1987) offers criticism of model assumptions that typifies parameter 
estimation, and recommends estimating heritability from selection experiments and not 
from likelihood-based methods that use field records. Heritability and the additive genetic 
variance depend on gene frequencies and can change with selection. The maintenance 
of additive genetic variance in populations undergoing selection has been a subject of 
investigations (see Turelli 1988). 
 

 
3. Possible Epigenetic Models 
 
3.1 First epigenetic model 
 
 
The additive model described in Section 2 is characterized by representing evolution on 
the slowest time scale, where the available genes were honed and fashioned by 
evolution. By analogy only, consider a simple linear regression on time: 
Observation=Intercept + Slope×Time. The first term (Observation) relates to the 
phenotype, and the constant term (Intercept) relates to the additive genetic model where 
additive effects are assumed to accumulate and lead to a stable selection. In this 
analogy, the variable term (Slope×Time) represents epigenetic inheritance that could 
come in the form of multiple levels that effect the phenotype and where each level may 
represent its own time scale. The appropriate way to model time sensitive effects is by 
(1) time series analysis, which is what will be done here. 
 
The other requirement is that these epigenetic effects should also be (2) additive, so as 
to complement the additive genetic model and that may also partly confound with the 
additive model; hence, the plus sign in linear regression (Intercept + Slope×Time). 
Fortunately, the confounding will not be 100%, otherwise the situation would be 
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hopeless. Possible epigenetic models will be formulated to meet these two requirements. 
 
The requirement of additivity eliminates stationary time series because these series 
return to their central mean value. What is needed is a non-stationary time series, and 
the simplest version is a first-order non-stationary time series, the random walk. Ten 
random walks that start from a common location are presented in Figure 1. 
 

 
 
The variance diverges across the different walks, but the variation is centered around the 
common starting point. Hence, while the walk position at the start can expire with time 
passage, the central mean value remains despite the increase in variance. That is, 
additivity remains. 
 
The variance becomes arbitrarily large as time increases. This condition is not artificial 
despite the associated limiting variance that approaches the unattainable infinity. Non-
stationary time series may serve in non-parametric regression precisely because they 
are very malleable to data (e.g., Smith 2018). The differences between time steps 
necessarily show finite variance, and initial conditions may be taken as fixed effects. It is 
only the few fixed effects that can be treated with the Bayesian interpretation that lets 
very few variances drift to infinity without causing any challenges while introducing the 
non-informative prior. Moreover, biology has navigated the evolutionary landscape while 
happening on many diverse expressions of life, and a statistical model should be able to 
reflect the same malleability.  
 
Define Vk(t) as the additive epigenetic effect on the k-th individual at time t. For a non-
stationary and first order time series, the following statistical model applies. 
 
(5)  Vk(t+d) = Vk(t) + √d × σ × εk ,  
 
where d is the change in time, σ is a dispersion parameter and εk a is a random deviate 
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with mean zero and variance 1. For discussion, the random deviate may be taken as 
normally distributed, as is typical of mixed linear models. The variance of the residual in 
(5) is d×σ2. 
 
An individual will have various realized epigenetic effects in the course of a lifetime (a 
whole time series, in fact), but only an ordered short-list of these is required for modeling. 
As an example, let t1 be the time the k-th individual was born, t2 the time its phenotype 
was recorded, and t3 the time this individual becomes a parent. In males, t3 is the time 
sperm was produced to form a new zygote (not including the duration semen may have 
been frozen). In females, this is the time at birthing. While female mammals have all their 
egg cells formed during their embryonic development, epigenetic effects can still be 
passed across the placenta and so the gestation time is part of t3. The case of embryo 
transfer is not considered in this paper. The short-list can have more than three time 
periods identified if the k-th animal has additional offspring, or more phenotypes 
recorded. 
 
A model is also required to describe the blending of epigenetic effects from parents to 
offspring, and there are several alternatives available of which one is presented below. 
 
(6)  Vo(k)(t) =ρ×Vp(k)(t) + (1-ρ)×Vm(k)(t) , 
 
 
where 0≤ρ≤1, and the time parameter is used transgenerationally in this instance and is 
only meant to depict the simultaneous joining of parents (p and m) to produce an 
offspring (o). Equation (6) differs from (1) in that ρ may not be 2, and there is no error 
term (corresponding to So) that represents recombination. Ideally, it is preferable to have 
known biology inform on the structure of (6), e.g., as much as meiosis informs on (1), but 
this specificity is lacking in the present treatment. Slatkin (2009) uses a population 
genetics framework to develop a transgenerational epigenetic model, but it is a different 
model. This leaves the simplified model (6) as one alternative. However, the parameter ρ 
is still required to be estimated from actual data. Model (6) permits an uneven distribution 
of epigenetic effects coming from paternal and maternal sources. This model confounds 
more with the additive genetic model when ρ =2. 
 
Combining models (5) and (6) leaves everything specified but the epigenetic effects, 
Vk(t) where k≤M, corresponding to the base population. The mean of these effects can 
be taken as null, as well as the covariances among these effects in the base population. 
However, the variance still needs to be specified. It is remarkable that these variances 
do not diverge to infinity, as typifies the random walk. This is because the blending of 
epigenetic effects by (6) acts to renormalize the variance. To show this in a hypothetical 
sense, consider a large population that mates randomly, with a fixed generation interval 
T, and without overlapping generations. Let σ2

Vj be the epigenetic variance 
corresponding to the j-th generation, j =0, 2, 3, etc., and assume that paternal and 
maternal sources have the same variance within generations. By the time of mating, then 
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(5) implies that σ2
Vj grows by T × σ2, and (6) shows how this change impacts the 

variances of generation j+1 compared to generation j: 
 
(7)   σ2

Vj+1 = [ρ2 + (1-ρ)2] [σ2
Vj + T × σ2] 

 
Starting with j=0, this recursion can be iterated indefinitely. The term representing σ2

V0 
vanishes, and the iteration converges to a geometric series: 
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Therefore, with T estimated crudely as the average generation interval, (8) provides a 
way to approximate the epigenetic variance in the base population for all animals at birth, 
and this approximation is found as a function of two unknown parameters of the model, ρ 
and σ2. These unknown parameters can be estimated by a likelihood-based method. 
 
The variance calculation given by (8) diverges to infinity when ρ equals 0 or 1, and in this 
case, there is no blending of parental epigenomes. While it is possible to treat this 
variance as infinite with the Bayesian interpretation, thereby treating the epigenetic 
effects in the base population as fixed effects, this might create an unacceptable loss of 
information. It may be preferable to estimate or nominate a separate variance to 
represent the base population, or otherwise use a ridge regression approach. It may also 
be preferable to use a grouping strategy in the base population where mean effects can 
be included in the model. 
 
The epigenetic model is now completely specified by (5), (6) and (8) and this model can 
now be formulated in matrix notation. A representation similar to (3) is sought, and is 
presented by equation (9) 
 

(9) q = Qq+w  or  (I-Q)q = w , 
 
where the ordered short-lists of all epigenetic effects are contained in q (which is much 
longer than N), and w is a vector of residuals. The matrix Q is mostly populated with 
zeros, except for the number 1 coming from the equations given by (5), and except for ρ 
and 1- ρ that are implied by the equations given by (6). The variances of residuals (w), 
are provided by (5) and (8). Define these variances collectively as the diagonal matrix, 
var[w]=H. 
 
Because q is ordered to maintain the partial ordering of all the short-lists, and where 
parents are listed before offspring, the matrix Q is lower triangular as was the matrix P. 
The matrix H is also singular because the blending equation (6) does not come with a 
residual. 
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This completes the model specifications for the first epigenetic model, and the mixed 
model can be employed with a linear model similar to (4). If the mixed model equations 
are to be used, however, additional modifications are required because H is singular. It is 
possible to use the matrix H directly as part of a symmetric and indefinite matrix called 
the K-matrix. Numerical methods have been developed for treating such systems (Smith 
2001 a & b, 2017), and examples of using the K-matrix are available (Smith, Lopez and 
Lam 2017, Smith 2018, Smith and Mäki-Tanila 2018). 
 
According to this model, if a parent has a measure V of epigenetic merit, then its 
offspring will initially show ρV or (1-ρ)V, depending on the gender of the parent. 
Moreover, this gain (as an expectation conditional on V) will fall by a factor 2 for each 
new generation because an equal number of male and female descendants are 
expected. This additive model mimics the behavior of (1), despite the fact that it comes 
with an increase in variance during the life span of descendants and this also diminishes 
the impact of V with time passage. 
 
 
3.2 Second epigenetic model 
 
  
In the second model, epigenetic effects are to be tracked with two paths corresponding 
to males and females. Let the two paths be signified by XY for males, and XX for 
females, respectively and where these symbols are to be used as subscripts. Therefore, 
equation (5) reformulates into two equations depending on the gender of the k-th 
individual: 
 
  VXY.k(t+d) = VXY.k(t) + √d × σXY × εk ,  
(10)    or 
  VXX.k(t+d) = VXX.k(t) + √d × σXX × εk ,  
 
 
The only difference in the specifications given by (10) compared to (5), is the introduction 
of two new parameters (σXY and σXX) that replaces the one (σ). 
 
The blending equation (6) also splits into two equations given by (11), with the 
introduction of two new parameters, 0≤ρXY≤1 and 0≤ρXX ≤1: 
 
  VXY.o(k)(t) =ρXY × VXY.p(k)(t) + (1-ρXY) × VXX.m(k)(t)  
(11)    or 
  VXX.o(k)(t) =ρXX × VXX.m(k)(t) + (1-ρXX) × VXY.p(k)(t)  
 
 
It remains necessary to find approximate variances for epigenetic effects in the base 
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population. The recursion (7) based on non-overlapping generations and a large 
population generalizes to the new case, where T is again the generation interval: 
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This shows the generalized recursions in matrix form, where the subscript (j or j+1) 

indicates the generation number, and γXY
2 and γXX

2 are the epigenetic variances for 

males and females in a particular generation indicated by the subscript. This set of 
recursions again leads to a convergent series when it is iterated, the matrix form of the 
geometric series in fact, see: 
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With T estimated, equation (12) provides approximate epigenetic variances for males 
and females in the base population, and these depend on four parameters of the model. 
As with the previous model in Section 3.1, the specification given by (10), (11) and (12) 
can be represented in matrix form similar to (9), and statistical analysis may proceed. 
 
According to this model, a male parent with epigenetic merit V will pass on to offspring 
either a merit of ρXYV if the offspring is male, or (1-ρXX)V if the offspring is female. 
Therefore, the average merit (conditional on V) in the offspring is 2(1+ρXY-ρXX)V. In the 
next generation the conditional mean of the descendants is 3(1+ρXY

2-ρXX
2)V, and it falls 

almost exponentially in every subsequent generation. Of course, these effects that are 
proportional to the historic measure V are diminished in the realized epigenetic values in 
descendants because of the accompanying increase in variance with time passage. A 
similar comparison holds for descendants of a female parent. 
 
 
4. Discussion 
 
Biological evolution could not have been a slow and haphazard process driven only by 
random mutations and an indifferent natural selection. It is far too proficient. Levin (2023) 
describes bioelectric networks and writes, “evolution exploits the generic computational 
properties of such networks (learning, generalization, counterfactual memories, 
representation, distributed control, etc.) at many scales, building flexible problem-solving 
engines instead of fixed solutions to specific environments.” Life is able to pull itself up 
from its bootstraps, to use a colloquialism, and it does this on all scales. This implies that 
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a type of greedy algorithm is enough to permit evolutionary and developmental progress 
where incremental gains are achieved even as the problem space changes in real time. 
This is the hallmark of an additivity that is realized on all scales. As an example, Hill, 
Goddard and Visscher (2008) describe how most genetic variance is additive genetic 
variance. It may be that additivity is a necessary condition for evolution, and this 
condition is satisfied when general problem-solving is possible. It’s also the case that 
non-additive variation can turn into additive variation as situations change (e.g., Hill 
2017), providing for the maintenance of heritable information on all scales. 
 
The epigenetic models in Section 3 were specifically designed to show additivity, the 
type of variability that can support a proficient evolution and general problem-solving. 
However, the additive genetic effects in Section 2 should also be fitted in a common 
statistical model with the epigenetic effects, to make a better accounting of the 
confounding between the two. The two sources are confounded, but not necessarily in a 
fatal way that prevents their use together in a model. The possible limitation from 
confounding depends on data and is related to whether the unknown parameters show 
enough parsimony to be estimated. Nevertheless, a better statistical model may lead to 
improved indexes that can aid farmers with their selection and culling decisions, where 
both genetic and epigenetic gains are possible.  
 
The models in Section 3 are not the only models that are possible, and other choices can 
be considered or recommended. This includes giving consideration to models that may 
be non-additive. One alternative is to put a residual in (6), and/or to replace coefficients 
(ρ, 1- ρ) with positive parameters that may add to a number less than 1. Another 
alternative is to treat the parameter ρ in Section 3.1 as random, where each blending of 
parental epigenomes realizes a new ρ to make the offspring, such that the selection of ρ 
is unique. This modification likely leads to a tractable analysis by way of Bayesian 
simulation, though it is probably computationally expensive. A third possibility is to put 
together two (or more) epigenetic models to make one phenotypic model, following 
Section 3.1 but representing fixed and different selections of ρ, such as ρ =1 and 0. This 
will make the confounding more of an issue, but limitations from confounding are data 
dependent.  
 
New models based on quantum information theory, or something congruent with 
materials presented by Fields, et al., (2023), might can be developed. Another possibility 
is that a neural net can be developed that leaves the additive genetic and epigenetic 
effects confounded as part of a black box. Merit indexes that confound the two sources 
of information are likely to find utility with farmers anyway. 
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