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Abstracts 

We are working on applications of the Schwarzschild metric to the cosmos. Here we have 

calculated the curvature of space-time in an isotropic and homogeneous universe with a 

constant energy density, relating this universe to the Schwarzschild metric using the 

Birkhoff-Jebsen theorem. Already in this metric it is possible to calculate gaussian 

curvatures and thus we have found a solution to this problem. The result 0,1.10-52 m-2, is 

very close to zero and this agrees with the opinion of many scientists. To reach this result, 

we have found an equation that relates the Gaussian curvature of the space-time of the 

Schwarzschild model with several cosmic parameters and through it and the Birkhoff-

Jebsen theorem we have established a relationship between the Schwarzschild metric and 

the universe of the standard cosmological model. This has allowed us to calculate the 

proportionality factor between curvature and mass density. With this, calculating the 

curvature of space-time is immediate.  

Keywords: Curvature of space-time, General Relativity. 

 

1.-Search for an equation that relates the gauss curvature of space-time to 

cosmological parameters into  Schwarzschild metric. 

First, in the Schwarzschild metric we are going to obtain an equation that relates the 

Gaussian curvature of space-time k,  with some cosmic parameters, such as the gravitational 

mass that is causing the curvature M, the universal gravitation constant G, and the speed of 

light “c”. 

Schwarzschild  solves the equations of the general theory of relativity [1] for a model of a 

point gravitational mass and a surrounding empty space, establishing a metric and an 

equation for space-time that turns out to be stationary in time and with spherical symmetry, 

resulting in a 2D surface, (the Flamm paraboloid), which is represented in Fig. 1. 

 

Fig. 1 Space-time in the Schwarzschild metric. Flamm paraboloid 
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Flamm's paraboloid, mathematical solution to the Schwarzschild metric, is a 2D surface 

inserted in a space R3. Its geometry allows us to parameterize the paraboloid as a function 

of the observer's distance from the point mass “r” and the azimuth angle “φ”. The problem 

admits a mathematical treatment of differential geometry of surfaces [2], and with it we are 

going to calculate the Gaussian Curvature. (Rs = Schwarzschild radius) 

Surface parameters (r, φ) 

0 ≤ r < ∞,   0 ≤  # < 2π   

which has this parametric equation: 

x = r cosφ 

y = r senφ 

z = 2(Rs(r- Rs))1/2 

Vector Equation of the Surface 

f (x,y,z) = (r cosφ,  r senφ,  2(Rs(r- Rs))1/2) 

 

Determination of velocity, acceleration, and normal vectors to the surface 

ðf/ðφ = (-r senφ, rcosφ, 0 )  

ðf/ðr= (cosφ, senφ, (r/Rs  -1)-1/2) 

ð2f/ðφ2 = (-r cosφ,   -r senφ,    0) 

ð2f/ðr2 = (0,   0,  (-1/(2Rs)). (r/Rs -1)-3/2)    

ðf/ðφðr = (-senφ,  cosφ,  0) 

n=  
(ð$/ð% & ð$/ð')  
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ð,
]  

 

(ðf/ðφ x ðf/ðr)  = (rcosφ/(r/Rs  -1)1/2,   rsenφ/(r/Rs  -1)1/2,   -r) 

[
ð$

ð%
x

ð$

ð'
] = r ((1/(r/Rs  -1)) +1)1/2  

 

Curvature and curvature parameters  

Gauss curvature      k = LN-M2/EG-F2 

 L = ð2f/ðφ2. n = -r(r/Rs)-1/2 

 N = ð2f/ðr2. n = (1/2Rs) (r/Rs)-1/2 (r/Rs  - 1 )-1      

 M =(ðf/ðφðr). n = 0 

E = ðf/ðφ.  ðf/ðφ = r2 

G = ðf/ðr. ðf/ðr = 1 + (1/ (r/Rs – 1)) 

F = ðf/ðφ. ðf/ðφ = 0 

k = -Rs/2r3 =- GM/c2r3    (1) 

  

for Schwarzschild radius, Rs = 2GM/c2 
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2- Calculating the curvature of space-time in a homogeneous and isotropic universe 

We are going to calculate the Gaussian curvature for a homogeneous isotropic universe with 

a constant energy density, and we will do it at a generic inner point. Let's calculate the 

Gaussian curvature for a time "t"  

To do this, we will use the results obtained in this work with respect to our curvature 

equation (1), and the Birkhoff-Jebsen theorem. 

   

2.1- Birkhoff–Jebsen theorem  

We make a brief comment on this theorem of mathematics applied to the theory of 

generalized relativity. First, we summarize Professor Fulvio Melia in reference [3] to explain 

it.  

“If we have a spherical universe of mass-energy density ρ and radius r and within it a 

concentric sphere of radius rs smaller than r, it is true that the acceleration due to gravity at 

any point on the surface of the sphere of relative radius rs to an observer at its origin, 

depends solely on the mass-energy relation contained within this sphere”. 

Thus, according to this, to calculate the curvature of the gravitational field of a point located 

at a distance "rs" from the geometric center that we are considering in our continuous 

universe, it is only necessary to consider its interaction with the points that are at a radius 

smaller than "rs", therefore, the mass "m" to be considered will only be that contained in the 

sphere of radius "rs". 

In general relativity, Birkhoff's theorem states that any spherically symmetric solution of 

the vacuum field equations must be statically and asymptotically flat. This means that the 

outer solution (that is, the spacetime outside a gravitational, non-rotating, spherical body) 

must be given by the Schwarzschild metric. 

 

2.2- Calculating the curvature 

Let us consider applying our equation (1) to our universe, for this we consider a sphere of 

radius r inside, the Birkhoff-Jebsen theorem assures us that if we want to calculate the 

space-time curvature on the surface of the sphere, we could consider only the interaction 

with the gravitational mass found inside. Furthermore, as the Birkhoff-Jebsen theorem 

assures us that the solution is given by the Schwarzschild metric. The curvature equation 

(1) that we have obtained can be applicable in this case, taking into account that the 

interaction with the interior points of the sphere is, that is, the gravitational field on the 

surface of the sphere is reduced to an interaction with a point mass of equal magnitude in 

the center of the sphere and in this case the equation to calculate curvatures of the 

Schwarzschild model is applicable. that we have found. 

Since the mass density “ρm” in this universe is constant, it will be constant in every sphere 

that we are considering and thus we can write: 

M = ρm(4πr3/3)     

According to equation (1), we have: 

k = -GM/c2r3        
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substituting result: 

k = -4πG ρm/3c2  

 

Equation found, which relates the curvature of space-time to mass density, valid at any 

inner point in our model of the universe. 

  

k/ρm = -4πG/3c2 = -0,3104.10-26   m/Kg 

 

k is the Gaussian curvature (m-2) and ρm is the mass density (Kg/m-3) 

 

 

This equation is independent of the radius of the sphere that we are considering for the 

calculation of the curvature and assigns the same value of curvature at each point of the 

universe, which is characterized by a constant energy density and presents the properties 

of isotropy and uniformity. That value of curvature, which depends only on the energy 

density and is the same at all points in our model of our universe, we will call "curvature of 

space-time" and now we will calculate it: 

As mass density I take the density of matter [4], (baryonic and cool dark matter) 

ρm = 0,28.10-26 Kg/m3  

k = -4πGρm/3c2 = (-0,3104.10-26).ρm 

the curvature of space-time result:  

 

Result of the calculation of the curvature of space-time 

k = 0,1.10-52 m-2 

 

It should be noted that our result does not resolve the sign of the curvature, it only gives an 

absolute value for it. 

 

 

3.- Calculation of curvature in the FLRW metric 

Although the gaussian curvature of space-time has never been measured, there are recent 

experimental data for the measurement of a curvature parameter Ωk [5]. Starting from 

Friedmann's equation [6] and our equation that relates curvature and mass density, we can 

establish a relationship between the two magnitudes.  

Let's make this development. 

Friedmann´s equation: 

H2 = (a´/a)2 = 8πGρ/3 – kc2/a2 

being H the Hubble constant, “a” the scale factor and “ρ”  the energy density.  

In a universe dominated by matter, such as ours  now, energy density can be described as: 

ρ = ρm+ ρΛ 
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ρm  is the mass energy density, 

ρΛ is the vacuum energy density. 

Friedmann's equation can be written like this: 

1 = Ωm + Ω∆ + Ωk   (2) 

Ωk is the measured curvature parameter 

Ωm = 8πGρm/3H2  

Ω∆ = 8πGρΛ/3H2 

In addition, according to the reference [5]: 

Ωk = 0,001± 0,002 

In addition, according to the reference [7]   

ρΛ = (0.603 ± 0.013) × 10-26 kg/m3 

In addition, according to our equation that relates mass density to curvature of space-time, 

Ωm = 8πGρm/3H2 

k/ρ = -4πG/3c2 

Ωm =- 2Kc2/H2 

In addition, according to the reference [5] 

H = 67,37 ± 0,64 km/s per Megaparsec = 2,3.10-18 m/s per meter 

Substituting into equation (2), result: 

1 = Ωm + Ω∆ + Ωk 
 

Ωm = 1-0,001- 0,608 = 0,391 

 

Curvature of space-time according to the FLRW metric 

k = 0,1.10-52 m-2 

 

 

 

4.- Conclusions 

We have calculated the curvature of space-time according to a model of an isotropic, 

homogeneous universe with constant energy density at all its points. We have obtained that 

the curvature only depends on the value of the mass density and a constant that in turn is a 

function of the speed of light and the universal gravitation constant. This leads us to the 

same curvature value, 0,1.10-52 m-2, at each of its points if these are inner points in the 

topological concept. To obtain this result we have used the Schwarzschild metric, applied in 

a very special way to our model of the universe, through the Birkhoff-Jebsen theorem. 

Finally, we have performed a curvature calculation using the FLRW metric and the equation, 

found by us, that relates mass density to curvature. The result for the curvature is the same. 
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From all this we deduce that the curvature of space-time can be calculated from Einstein's 

equations through appropriate models and that our result, using the Schwarzschild metric 

and the Universe Model ∆CDM, it is approaching a flat universe now. 
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