## Special Relativity and Length Contraction

1 2 3

#### Jan Slowak

- 4 Independent researcher
- 5 jan.slowak@gmail.com
- 6 2024-02-15 (2024-02-09 ResearchGate)

7

#### 8 Abstract

- 9 The special theory of relativity, SR, is based on two so-called postulates/axioms:
- 10 1) The constancy of the speed of light
- 11 The special theory of relativity postulates that the speed of light in a vacuum is
- 12 constant equal to c for all observers in uniform relative motion.
- 13 2) Principle of relativity
- 14 All systems, where observers move at constant speed, inertial systems, are equivalent
- and therefore the laws of physics must give the same result for all of them.
- 16 As a consequence of SR comes two concepts/physical phenomena:
  - time dilation
  - length contraction.

18 19 20

17

In this article we take a look at length contraction.

2122

### Keywords

23 Special Relativity, Reference System, Lorentz Transformations, Length Contraction

24

#### 25 **Analysis**

- 26 Quote from the book [B1]: (Principle of relativity)
- 27 Q1: "The laws of physics are identical in all inertial frames, or, equivalently, the
- 28 outcome of any physical experiment is the same when performed with identical initial
- 29 conditions relative to any inertial frame." (page 28)

30

- 31 Q2: "An ideal infinitesimal rigid body is one whose dimensions are unaffected by
- 32 acceleration as such and whose length accordingly depends only on its instantaneous
- 33 speed of light in accordance with (9.1)." (page 24)

34 35

- Here it says that if a body of length  $\Delta x$  in S' is in motion relative to S with speed v, it acquires the length  $\Delta x'$  according to the formula
- 38  $\Delta x' = \Delta x / \gamma$ ,  $\gamma = 1/(1 v^2/c^2)^{1/2}$ ,  $\gamma$  is called Lotentz Factor.

39

- 40 Thought experiment:
- 41 We have two inertial reference systems S and S'. A body of length  $\Delta x' = \Delta x$  located in
- 42 S' starts from a point in S where it has velocity v = 0 relative to S. Fig. 1.

43

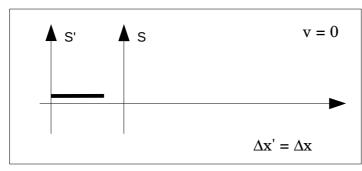



Fig. 1

S' **accelerates** and when S' passes S, it has acquired a constant velocity v > 0. From this moment applies to SR. Before this moment, see Q2, the length of the body is  $\Delta x' = \Delta x$ . Fig. 2.

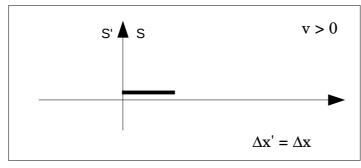



Fig. 2

**Suddenly** length of body becomes  $\Delta x' = \Delta x/\gamma$ . Fig. 3.

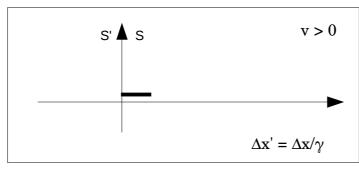



Fig. 3

The body in S' moves with constant speed v > 0 a distance d. During this time SR applies and the length of the body is  $\Delta x' = \Delta x/\gamma$ . Fig. 4.

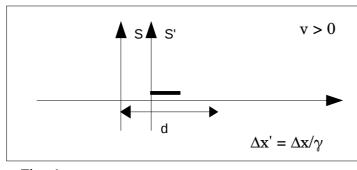



Fig. 4

After the body in S' has passed the distance d, it begins to brake (negative acceleration) and return to speed v = 0 relative to S. Then it again has length  $\Delta x' = \Delta x$ . Fig. 5.

**A** s'

v > 0

92 93

89

90 91

99 100

101 102

103

104

105 106

107

108 109

110 111

112 113

114

115 116

# 117

# 118

120

122

124

125 126

127

128

Light; Jan Slowak; 2020

d  $\Delta x' = \Delta x$ Fig. 5 There are two considerations here:

**▲** s

1) How does SR explain that the body in S' with length  $\Delta x' = \Delta x$  suddenly gains length  $\Delta x' = \Delta x/\gamma$  (at the instant when S' reaches S and acquires

constant velocity v)?

I want to see an explanation from those who claim that SR is right!

2) It is said that through SR, **space and time** have been linked to the new term **spacetime**. But look at the formula for length contraction  $\Delta x' = \Delta x/\gamma$ ! It does not depend on either *t* or *t'*! Isn't this strange?

I want to see an explanation from those who claim that SR is right!

This is as absurd as it gets! Therefore SR is nonsense.

- References [B1] Introduction to Special Relativity; Second edition; Wolfgang Rindler; 1991
- 119 [B2] Special Relativity is Nonsense; Third edition; Jan Slowak; 2020
- [B3] Light the absolute reference in the universe; Third edition; Jan Slowak; 2021
- 121 [B4] That is why theory of special relativity is nonsense; Second edition; Jan Slowak;
- 2023 123 [A1] Physics Essays: Mathematics shows that the Lorentz transformations are not self-
- consistent; Jan Slowak; 2020
- [A2] SCIREA Journal of Physics: Lorentz Transformations And Time Dilation Do Not
- Verify Reality; Jan Slowak; 2020
- [A3] SCIREA Journal of Physics: Lorentz Transformations The Sound versus The