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Abstract

Why a particle has the specific rest mass it does is an open ques-
tion. To address this problem an alternative theory of mass is put
forward. Mass is the intersection of a Hopf bundle and 3-space. The
masses of six lighter hyperons and electron are derived as functions
of the proton and neutron masses. Nine free parameters are thereby
reduced to two. The most significant outcome is the derivation of the
electron mass.
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In the standard model the Higgs field imparts mass to a small number
of fundamental particles. In the crowd analogy the field acts like a mob
impeding the progress of a celebrity across a room.[1] If we dig a little bit
deeper, particles that exhibit Lie group symmetry at higher energy gain
mass when spontaneous symmetry breaking couples with the Higgs field.
However, the Higgs field only applies to simpler particles, which includes
quarks, leptons and some bosons. The bulk of Hadron mass is due to quark
confinement. Whether a particle is a conglomeration or not, theory and math
eventually give out. Unable to say why a particle has the precise mass that
it does our best theories rely on observation. It is for this reason particle
rest mass is an open question. To address this problem an alternative theory
of mass is put forward that rethinks why a particle notices a force. In this
theory a particle resists an external force in order to preserve symmetry. If an
analogy helps, a massive particle is socially awkward and struggles to make
their way through a party crowd because they are reluctant to say hello and
shake hands.
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The topological theory brings together a Hopf bundle and a three dimen-
sional field (3-space). The geometry of a Hopf Bundle is well established in
the literature.[2, 3, 4] A Hopf bundle maps a 3-sphere to a 2-sphere. The
3-sphere is the set of four dimensional points S3. The 2-sphere is a two di-
mensional surface described by the set of three dimensional points S2. A
Hopf fibration continuously maps S3 to S2. This is done with Hopf maps.
A Hopf map, h : S3 → S2, is a surjective function that maps a subset of
S3 points to a single S2 point. An individual Hopf map describes a circle
(Hopf circle). As the mapping is continuous there is an infinite number of
maps for each point in S3. This entails an infinite bundle of circles connect
an S2 point to every point in S3. The total space is transitive. Added to the
conventional description of a Hopf bundle is the physical interpretation that
says Hopf bundle topology is partly responsible for particle mass.

A ‘Hopf-particle’, as we shall call it, interacts with ambient 3-space. The
3-space is a field with a ground state like the Higgs field. In 3-space a force is a
vector. A force vector is one dimensional at point of contact P with the Hopf-
particle. P is also a point on a bundle of Hopf circles. This raises the question
of the differing topologies of a circle and point. Continuous retraction of the
circle is impossible. Only by cutting the circle may the circle retract to a
point. The discontinuity prevents smooth transmission of an external force
at P. If a circle does not break, the force must jump topologies. To turn
this observation into a theory of mass the topological hitch is interpreted as
physical resistance to the external force. On this view, if P had some other
topology that deform retracts to a point then the particle would be massless.
The actual topology however, such that the bundle of Hopf circles at P is
related to every point in S3, means the size of the 3-sphere is the measure of
the particle’s resistance to an external force. These thoughts motivate our
first five equations. The first tells us mass is determined by the size of the
3-sphere.

M = 2π2r3. (1)

Eq. (1) determines radius r. For example, if the mass of the proton is
938.272 MeV/c2 then r ≈ 3.622 MeV.

The volume of a 2-sphere is the space the Hopf-particle occupies in the
ambient 3-space. This is the volume of an ordinary ball. If every point in
the ball is the set B3, there is a function that maps every point in S3 to
B3. As the total space is transitive the mass associated with the ball is the
resistance to a force registered by S3. However, in 3-space the Hopf-particle
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still has an ordinary ball volume.

V =
2M

3π
=

4π

3
r3. (2)

At Eq. (2), radius r is derived from Eq. (1). In the case of the proton
V ≈ 199.108 MeV. The ball described at Eq. (2) is the ball volume formed
in the intersection of a Hopf-particle with 3-space. The 3-sphere’s extra
fourth dimension does not contribute to the 3-space ball volume; it is a dark
dimension in the sense it is not a direction the 3-space version of the ball is
able to move in, for the same reason it is only an ordinary ball that appears
in ambient 3-space.

ρ =
M

V
=

3π

2
. (3)

Eq. (3) means the ball is hyper-dense. We call the excess mass ‘hy-
permass’. The extra dark dimension is not completely dark in the sense
it contributes to Hopf-particle mass. Hyper-mass is the evidence of an ex-
tra dimension. Hypermass (H) has the following Hopf/Hypermass signature
(H-signature).

H = M − V. (4)

Hopf-particle mass also has the H-signature:

M = (H)(
ρ

ρ− 1
). (5)

Mass splitting formula which contain either V , H, or ρ are H-signatures.
A H-signature indicates a massive particle is a Hopf-particle. H-signatures
found in the rest mass data suggests lighter hyperons are hyper-massive Hopf-
particles.

For what follows the 2018 CODATA recommended values are used for
the proton and neutron masses (ignoring the standard deviation).[5]

Mp = 938.272 088 16 ± 0.000 000 29 MeV/c2.

Mn = 939.565 420 52 ± 0.000 000 54 MeV/c2.
(6)

All other masses derived in this paper are a function of Mp and Mn. For
instance, the light Σ (Sigma) masses are revealed in the following functions.

3



MΣ+ = (2Mp −Mn)(
ρ

ρ− 1
) ≈ 1189.3712. (7)

MΣ0 = (Mn)(
ρ

ρ− 1
) ≈ 1192.6546. (8)

MΣ− = (4Mn − 3Mp)(
ρ

ρ− 1
) ≈ 1197.5797. (9)

Eq. (8) allows us to say that in an energetic event a Σ0 hyperon is created
when there is sufficient energy to form a hypermass equivalent to the mass
of the neutron. The asymmetry of Eqs. (7, 9) reveal the charged Σ+ and
Σ− have complex hypermasses; the cause of the asymmetry is not presently
understood.

Eqs. (7, 8) are within one standard deviation of the Particle Data Group
(PDG) recommended rest energies. [6] Eq. (8) is particularly close to Wang
1192.65 ±0.020.[7] However, Eq. (9) is over four standard deviations shy
of the PDG value. The present PDG fit for MΣ− draws on three results.
Schmidt (1197.43) [8], and Gurev (1197.417) [9] are too low to be the value de-
rived here, though Eq. (9) is within one standard deviation of Gall (1197.532
±0.057).[10] The H-signatures for the Ξ (Xi) pair introduce a useful compli-
cation that decides whether Eqs. (7, 8, 9) are correct.

MΞ0 = (MΣ0)(
ρ

ρ− 1
)− Vp ≈ 1314.8104. (10)

(MΣ−)(
ρ

ρ− 1
)− Vp ≈ 1321.0622. (11)

Eq. (10) is within one standard deviation of the PDG fit and looks to
be a direct hit for Fanti (1314.82 ±0.06)[11], but a problem looms. When
the basic pattern of Eq. (10) is repeated at Eq. (11) the result (1321.0622)
is over nine standard deviations adrift of the PDG fit for Ξ−. The present
PDG recommended value (1321.71 Mev) is a fit for a 2006 study of a large
1992-1995 data sample.[12] Realistically, the 2006 result makes a future nine
standard deviation downward adjustment unlikely. Accepting Eq. (11) will
not do, we are about to see why [12] is accurate.

If MΣ− is close to 1321.71 a fudge ≈ 0.51 is needed to adjust the Ξ− value
upward. The electron mass ≈ 0.511 MeV is an obvious candidate. For the
moment we call the additional weighting value ‘W’. I.E.
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MΞ− = (MΣ− +W )(
ρ

ρ− 1
)− Vp. (12)

At face value W appears ad hoc, but there is a firm reason for thinking
otherwise. There are a few more equations to walk through before we can
see why. First, we give the formula for the Ω− (Omega) mass.

MΩ− =


3MΞ0 + 2MΞ−

5


ρ

ρ− 1


. (13)

Given Eqs. (8, 9, 10, 12, 13), and using Eq. 2 and Eq. 13 to also find
VΩ− , we derive the following equivalences.


(MΣ0)(MΞ−)− (MΣ0)(MΞ0)

MΣ− −MΣ0

−MΞ0 − VΩ−


ρ− 1

ρ


= 1. (14)


(MΣ−)(MΞ−)− (MΣ−)(MΞ0)

MΣ− −MΣ0

−MΞ− − VΩ−


ρ− 1

ρ


= 1. (15)

When Eqs. (14, 15) = 1 then W ≈ 0.510 998 961 080. This compares
to 2018 CODATA value 0.510 998 9500 ±0.000 000 0015.[5] An adjustment
within one standard deviation to Mp and Mn at Eq. (6) allows the numerical
value for W to come within one standard deviation of the CODATA value.
[5] From this we conclude W = Me MeV. If so, then the mass value for Σ− at
Eq. (9) is correct and the values for Ξ− and Ω− are also within one standard
deviation of the PDG recommendation. I.E.

MΞ− = (MΣ− +Me)(
ρ

ρ− 1
) ≈ 1321.7109. (16)

MΩ− ≈ 1672.4824 (Eq. 13). (17)

Before we are able to conclude, there is a problem that needs to be re-
solved. Eqs. (14, 15) are only equivalent to 1 when masses are given in MeV.
In eV, Eqs. (14, 15) = 1,000,000; or in Kg they equal Me Kg · MeV−1. It
seems the formulae only work when denominated in the arbitrary unit MeV.
By itself this makes no sense and we are forced to search for an alternative
system of units. We find the answer lies in an obsolete cgs unit of magneto-
motive force, the Gilbert (Gb).[13] As the unit of current in an electric circuit
is the Volt, the Gilbert is a unit of magnetic flux in a magnetic circuit. The
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SI units for magnetomotive force are Ampere (A) and turn (tr). Turns are
the winding number of an electromagnetic coil. The winding number is the
number of times the coil wraps around a point. In SI units a Gilbert is equal
to:

1 Gb =
10

4π
A · tr. (18)

The magnetic permeability µ0 (mu zero) is proportional to the energy
stored in a magnetic field.

µ0 ≈ (4π)(10−7) N · A−2. (19)

The revaluation of SI units in 2019 means µ is no longer an exact value.
However, it is sufficiently close to the number 4π × 10−7 for the difference
to be of no importance here. Magnetic permeability is related to electric
permittivity ε0 (epsilon nought) by the following equivalence.

ε0 =
1

µ0c2
. (20)

ε0 is proportional to the energy stored in an electric field. We divide a
Gilbert by ε0 and use Eq. 16 to simplify and parse dimensions.

1 Gb

ε0
≈ (10−6)(c2) N · A−1 · tr. (21)

The arrangement of units of Eq. 17 converts mass denominated in eV /
c2 into an equivalent rest energy described in Newton-Volt-turns. I.E.


1 eV

c2


1 Gb

ε0


≈ 10−6 N · V · tr. (22)

By combining the mass energy of an electric field in electron volts and
the mass energy of a magnetic field in Gilberts we find the total mass energy
of a particle. If we assume Gb = 1 and measure mass in electron volts then
Eq. (22) gives a mass value numerically indistinguishable from MeV.

The discrepant topologies of point and circle offer an economical theory of
mass, but not one that plays well with the standard model. The smattering
of results presented here are a long way from a thorough-going theory, while
the many questions left open make it easy to discount a challenge to the
standard model. Nonetheless, the Σ, Ξ, Ω and electron masses are derived as
functions of the proton and neutron. It is the first time this has been done.

6



References

[1] David Miller. Politics, solid state and the Higgs. Physics World, 6(9):27,
1993.
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