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Abstract: The Pilot Wave Mechanics (PWM) presents an intriguing alternative to mainstream 

quantum mechanics, offering fresh perspective on the behavior of quantum particles. This 

paper provides a comprehensive overview of PWM, elucidating its fundamental concepts, 

theoretical framework, and implications for our understanding of quantum phenomena. By 

introducing the concept of a guiding wave that determines the motion of particles, PWM seeks 

to reconcile the probabilistic nature of standard quantum mechanics with deterministic 

dynamics. I examine the historical development of PWM, discussing its key proponents and 

significant milestones. Furthermore, I delve into the mathematical formulation and equations 

that underpin the theory, emphasizing its compatibility with quantum experiments and observed 

phenomena. Additionally, I explore the unique predictions and potential experimental tests of 

PWM, highlighting its ability to offer new insights into the double-slit experiment, 

entanglement, and the measurement problem. Finally, I discuss the broader implications of 

PWM for the foundations of quantum mechanics and its potential to bridge the gap between 

classical and quantum realms. Through a thorough investigation of PWM, this paper aims to 

contribute to the ongoing discourse surrounding the nature of quantum mechanics, offering 

researchers and theorists a valuable resource for further exploration and analysis. 
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INTRODUCTION 

The field of quantum mechanics has 

revolutionized our understanding of the 

microscopic world, providing a mathematical 

framework to explain the behavior of particles at 

the atomic and sub-atomic levels. However, the 

standard interpretation of quantum mechanics, 

known as the Copenhagen interpretation, is still 

marked by the unresolved conceptual and 

philosophical questions. In recent years, 

alternative theories have emerged, offering fresh 

perspectives and interpretations of quantum 

phenomena. One such alternative is the Pilot 

Wave Mechanics (PWM), which presents a 

novel approach to quantum mechanics. 

PWM challenges the probabilistic nature of 

quantum mechanics by introducing the notion of 

a “pilot wave”. In contrast to Copenhagen 

interpretation’s reliance on wave—particle 

duality and indeterminacy, PWM posits that 

particles are guided by an underlying wave that 

determines their trajectory and behavior. This 

deterministic aspect of the theory seeks to restore 

a sense of causality and determinism to quantum 

phenomena, while still incorporating the wave-

particle duality displayed in experiments. 

Historically, the roots of PWM can be traced back 

to the work of Louis de Borglie, David Bohm and 

others in the early 20th Century. These pioneering 

researchers proposed that quantum particles, such 

as electrons, are not mere statistical entities but 

possess definite positions and velocities defined 

by an associated wave. While the interpretation 

struggled to gain widespread acceptance due to 

the dominance of the Copenhagen interpretation, 

the ideas of PWM have sparked renewed interest 

and investigation in recent decades. [1] 



PWM introduces a new and different 

mathematical formulation which is based on the 

observable, along with their operators. Together, 

these equations offer a unified description of 

particles and waves, allowing for the calculation 

of dynamic behavior in a manner consistent with 

experimental observations. This unique 

framework enables PWM to make predictions that 

parallel those of traditional quantum mechanics, 

while providing a different conceptual framework 

for understanding and interpreting the underlying 

physics. Furthermore, PWM offers intriguing 

potential applications and implications. By 

extending the reaching of classical mechanics and 

quantum realm. PWM has been able to offer new 

heights into the double slit experiment, 

elucidating the behavior and interactions of 

quantum particles in a deterministic manner. It 

also presents alternative explanations for the 

phenomenon of entanglement and the 

measurement problem, shedding light on the 

underlying mechanics that govern these intriguing 

mechanics that govern these intriguing quantum 

behaviors. 

In conclusion, the Pilot Wave Mechanics 

challenges the prevailing interpretation of 

quantum mechanics, offering a compelling 

alternative that seeks to reconcile the probabilistic 

nature of quantum phenomena with deterministic 

dynamics. The historical development, 

mathematical framework and broader 

implications of PWM provide researchers and 

theorists with new lens through which to explore 

the foundations of quantum mechanics. By 

studying PWM, I aim to broaden our 

understanding of the quantum world and its 

intricate workings, ultimately deepening our 

appreciation for the underlying principles that 

shape our universe. 

THEORETICAL FRAMEWORK 

I. WAVE—PARTICLE DUALITY: 

Wave—particle duality is the physical concept 

which posits that matter has both particle and 

wave natures. According to PWM, particles are 

guided by a pilot wave, which determines their 

behavior. The pilot wave is a wave function that 

evolves deterministically. This wave function 

guides the particles and is responsible for the 

wave-like behavior. In PWM, particles still have 

definite positions and velocities, unlike 

Copenhagen interpretation of quantum 

mechanics. The pilot wave guides the particles 

along well-defined trajectories, causing them to 

exhibit particle—like behavior. However, the 

pilot wave itself exhibits wave—like properties, 

allowing for wave interference phenomena. [2] 

II. QUANTUM DETERMINISM 

PWM is a deterministic microphysical which 

proposes that there exists a pilot wave that 

determines the motion of particles. These particles 

are described by their positions and velocities, 

which are influenced by the pilot wave. The 

concept of quantum determinism in Pilot Wave 

Mechanics suggests that there is a deterministic 

evolution of the system in accordance with the 

wave equation and particles’ positions. Pilot 

Wave Mechanics posits that the outcome of a 

measurement can be determined precisely if all 

relevant information about the system is known. 

This notion challenges the conventional 

understanding of quantum mechanics, which 

often portrays the inherent uncertainty associated 

with measurement outcomes. Pilot Wave 

Mechanics provides an alternative framework that 

allows for a deterministic understanding of 

quantum phenomena. [3] 

III. QUANTUM SPACE 

In PWM, space is not considered as a fixed 

background or passive container, but rather as an 

active dynamic entity. The pilot wave associated 

with particles not only guides their motion, but 

also influences the structure of space itself. The 

presence of particles creates a “quantum 

potential” that affects the curvature and properties 

of space. 



In PWM, particles are not confined to point-like 

entities but are accompanied by a spreading wave 

that extends through space. This implies that the 

behavior of particles is intrinsically connected to 

the spatial environment they inhabit. The 

interaction between particles and pilot wave 

modifies the distribution of matter, shaping the 

spatial landscape. As a result, the concept of 

quantum space in Pilot Wave Mechanics goes 

beyond the traditional notion of a static stage for 

quantum phenomena. It acknowledges the 

dynamic interplay between particles, waves and 

the underlying spatial structure. This perspective 

helps to explain various quantum phenomena and 

offers potential insight into the nature of quantum 

entanglement, nonlocality, and the wave—

particle duality. [4] 

IV. QUANTUM TIME 

In PWM, the evolution of quantum systems is 

described by the pilot wave function and position 

of particles which depend explicitly on time. The 

equation of motion incorporates the influence of 

the pilot wave and position of particles. The pilot 

wave serves as a guiding field that determines the 

motion of particles. It propagates through space 

and time, influencing the behavior of particles in 

a deterministic manner. The position of the 

particles are then determined by the interaction 

between the pilot wave and the particles 

themselves, evolving as time progresses.             

 

MATHEMATICAL FRAMEWORK 

Relation to Gravity: 

𝐺𝑢𝑣 = 2(
𝐴𝑠𝑝ℎ(ℏ𝜅)

𝑐4𝑚2𝑡
)𝑇𝑢𝑣 

Proof: 

V= u+gt 

For uniformly accelerated motion from rest, 

u=0; 

V=gt------(1) 

Also, 𝑔 =
𝐺𝑚

𝑅2
--------(2) 

Substituting equation (2) into (1) gives; 

𝑣 =
𝐺𝑚𝑡

𝑅2
--------(3) 

From General Relativity, 

𝐺𝑢𝑣 =
8𝜋𝐺

𝑐4
𝑇𝑢𝑣 

Make ‘G’ the subject; 

𝐺 =
𝑐4

8𝜋
𝐺𝑢𝑣𝑇𝑢𝑣

−1----------(4) 

Substituting equation (4) into (3) gives; 

𝑣 =
𝑚𝑡

𝑅2
˟ 

𝑐4

8𝜋
𝐺𝑢𝑣𝑇𝑢𝑣

−1 

𝑣 =
𝑐4𝑚𝑡

8𝜋𝑅2
𝐺𝑢𝑣𝑇𝑢𝑣

−1----------(5) 

From de Broglie equation; 

𝑣 =
ℎ

𝑚𝜆
----------(6) 

Substituting equation (6) into (5); 

ℎ

𝑚𝜆
=

𝑐4𝑚𝑡

8𝜋𝑅2
𝐺𝑢𝑣𝑇𝑢𝑣

−1 

Making Guv the subject gives; 

 

𝐺𝑢𝑣 =
8𝜋𝑅2ℎ

𝑐4𝑚2𝜆𝑡
𝑇𝑢𝑣 

But 4𝜋𝑅2=Area of a sphere (𝐴𝑠𝑝ℎ) 

       𝜆−1 =
𝜅

2𝜋
 

Finally, 

𝐺𝑢𝑣 = 2(
𝐴𝑠𝑝ℎ(ℏ𝜅)

𝑐4𝑚2𝑡
)𝑇𝑢𝑣 

 

 

𝐺𝑢𝑣 =
𝐴𝑠𝑝ℎ(ℏ𝜅)2

𝑐4𝑚3𝑥
𝑇𝑢𝑣 

𝑃𝑟𝑜𝑜𝑓: 
𝑣2 = 𝑢2 + 2𝑔𝑥 

For uniformly accelerated motion from rest, 

u=0; 

𝑣2 = 2𝑔𝑥---------(1) 

  Also, 𝑔 =
𝐺𝑚

𝑅2
--------(2) 

Substituting equation (2) into (1) gives; 

𝑣2 =
2𝐺𝑚𝑥

𝑅2
-----------(3) 

From General Relativity, 

𝐺𝑢𝑣 =
8𝜋𝐺

𝑐4
𝑇𝑢𝑣 

Make ‘G’ the subject; 

𝐺 =
𝑐4

8𝜋
𝐺𝑢𝑣𝑇𝑢𝑣

−1----------(4) 

Substituting equation (4) into (3) gives; 



𝑣2 =
2𝑚𝑥

𝑅2
(
𝑐4

8𝜋
𝐺𝑢𝑣𝑇𝑢𝑣

−1-) 

𝑣2 =
𝑐4𝑚𝑥

4𝜋𝑅2
𝐺𝑢𝑣𝑇𝑢𝑣

−1----------(5) 

From de Broglie’s equation; 

𝑣 =
ℎ

𝑚𝜆
 

 Squaring both sides; 

𝑣2 =
ℎ2

𝑚2𝜆2
-----------(6) 

Substituting equation (6) into (5); 

ℎ2

𝑚2𝜆2
=

𝑐4𝑚𝑥

4𝜋𝑅2
𝐺𝑢𝑣𝑇𝑢𝑣

−1 

 

 

 

Making 𝐺𝑢𝑣the subject gives; 

 

𝐺𝑢𝑣 =
4𝜋𝑅2ℎ2

𝑐4𝑚3𝜆2𝑥
𝑇𝑢𝑣 

But 4𝜋𝑅2=Area of a sphere (𝐴𝑠𝑝ℎ) 

       𝜆−2 =
𝜅2

4𝜋2
 

Finally, 

𝐺𝑢𝑣 =
𝐴𝑠𝑝ℎ(ℏ𝜅)2

𝑐4𝑚3𝑥
𝑇𝑢𝑣 

 

 

𝑅𝑢𝑣 − 1
2⁄ 𝑅𝑠𝑔𝑢𝑣 + 𝛬𝑔𝑢𝑣

= 2 (
𝐴𝑠𝑝ℎ(ℏ𝜅)

𝑐4𝑚2𝑡
)𝑇𝑢𝑣 

𝑃𝑟𝑜𝑜𝑓: 
𝑓𝑟𝑜𝑚 𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 𝐹𝑖𝑒𝑙𝑑 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛; 

 

𝑅𝑢𝑣 − 1
2⁄ 𝑅𝑠𝑔𝑢𝑣 + 𝛬𝑔𝑢𝑣 = 𝐺𝑢𝑣----(1) 

 

𝑏𝑢𝑡 𝐺𝑢𝑣 = 2 (
𝐴𝑠𝑝ℎ(ℏ𝜅)

𝑐4𝑚2𝑡
) 𝑇𝑢𝑣----------(2) 

 

𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2)𝑖𝑛𝑡𝑜 (1)𝑔𝑖𝑣𝑒𝑠

;𝑅𝑢𝑣 − 1
2⁄ 𝑅𝑠𝑔𝑢𝑣 + 𝛬𝑔𝑢𝑣 = 2(

𝐴𝑠𝑝ℎ(ℏ𝜅)

𝑐4𝑚2𝑡
)𝑇𝑢𝑣 

 

 

𝑅𝑢𝑣 − 1
2⁄ 𝑅𝑠𝑔𝑢𝑣 + 𝛬𝑔𝑢𝑣

=
𝐴𝑠𝑝ℎ(ℏ𝜅)2

𝑐4𝑚3𝑥
𝑇𝑢𝑣 

𝑃𝑟𝑜𝑜𝑓: 
𝑓𝑟𝑜𝑚 𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 𝐹𝑖𝑒𝑙𝑑 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛; 

 

𝑅𝑢𝑣 − 1
2⁄ 𝑅𝑠𝑔𝑢𝑣 + 𝛬𝑔𝑢𝑣 = 𝐺𝑢𝑣------

(1) 

 

𝑏𝑢𝑡 𝐺𝑢𝑣 =
𝐴𝑠𝑝ℎ(ℏ𝜅)2

𝑐4𝑚3𝑥
𝑇𝑢𝑣----------(2) 

 

𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2)𝑖𝑛𝑡𝑜 (1)𝑔𝑖𝑣𝑒𝑠

;𝑅𝑢𝑣 − 1
2⁄ 𝑅𝑠𝑔𝑢𝑣 + 𝛬𝑔𝑢𝑣 =

𝐴𝑠𝑝ℎ(ℏ𝜅)2

𝑐4𝑚3𝑥
𝑇𝑢𝑣 

 

 
Definition of Mathematical Terms: 

ℏ= Reduced Planck’s constant 

𝐴𝑠𝑝ℎ= Area of quantum system 

m= mass of quantum system 

n= principal quantum number 

t= time of measurement 

x= position of quantum system 

𝐺𝑢𝑣= Einstein Tensor 

t=time of measurement (quantum system) 

x=position of quantum system 

k=wave vector of quantum system 

𝑅𝑢𝑣 =Ricci Tensor 

𝑅𝑠 =Ricci Scalar 

𝛬 =Cosmological Constant 

𝑔𝑢𝑣 =metric Tensor 

  𝑇𝑢𝑣 =Stress-energy Tensor 

 

Deterministic Relations: 

E =
ℏκx

t
 

Proof: 

𝑣2 = 𝑢2 + 2𝑔𝑥 

For uniformly accelerated motion from 

rest, u=0; 

𝑣2 = 2𝑔𝑥---------(1) 

  Also, 𝑔 =
𝐺𝑚

𝑅2 --------(2) 



Substituting equation (2) into (1) gives; 

𝑣2 =
2𝐺𝑚𝑥

𝑅2 -----------(3) 

 

From General Relativity, 

𝐺𝑢𝑣 =
8𝜋𝐺

𝑐4
𝑇𝑢𝑣 

Make ‘G’ the subject; 

𝐺 =
𝑐4

8𝜋
𝐺𝑢𝑣𝑇𝑢𝑣

−1----------(4) 

 

 But 𝐺𝑢𝑣 =
8𝜋𝑅2ℎ

𝑐4𝑚2𝜆𝑡
𝑇𝑢𝑣------(5) 

Substituting equation (5) into (4) gives; 

𝐺 =
𝑐4

8𝜋
(
8𝜋𝑅2ℎ

𝑐4𝑚2𝜆𝑡
𝑇𝑢𝑣)𝑇𝑢𝑣

−1 

𝐺 =
𝑅2ℎ

𝑚2𝜆𝑡
---------(6) 

Substituting equation (6) into (3) gives; 

𝑣2 =
2𝑚𝑥

𝑅2
× (

𝑅2ℎ

𝑚2𝜆𝑡
) 

 

𝑣2 =
2ℎ𝑥

𝑚𝜆𝑡
---------(7) 

Multiply equation (7) by 
1

2
𝑚; 

1

2
𝑚𝑣2 =

2ℎ𝑥

𝑚𝜆𝑡
˟
1

2
𝑚 

 Therefore; 
1

2
𝑚𝑣2 =

ℎ𝑥

𝜆𝑡
---------(8) 

 But E=
1

2
𝑚𝑣2------(9) 

Substitute equation (9) into (8); 

 

E =
hx

λt
 

But 𝜆−1 =
𝜅

2𝜋
 

Finally,  

 

E =
ℏκx

t
 

 

 

𝑃 =
ℏ𝜔𝑡

𝑥
 

𝑃𝑟𝑜𝑜𝑓: 

𝐸 = ℏ𝜔------(1) 

𝐸 =
ℏ𝑘𝑥

𝑡
------(2) 

Comparing eqns 1 and 2; 

ℏ𝑘𝑥

𝑡
= ℏ𝜔 

𝑘𝑥

𝑡
= 𝜔 

Make k the subject; 

𝑘 =
𝜔𝑡

𝑥
-------(3) 

But, 

𝑃 = ℏ𝑘------(4) 

Substituting eqn 3 into 4; 

𝑃 = ℏ(
𝜔𝑡

𝑥
) 

Finally, 

𝑃 =
ℏ𝜔𝑡

𝑥
 

 

𝐿 =
ℏ𝜔𝑡

𝜃
 

𝑃𝑟𝑜𝑜𝑓: 

𝐿 = 𝑝 × 𝑟-------(1) 

𝑃 =
ℏ𝜔𝑡

𝑥
---------(2) 

Substituting eqn. 2 into 1; 

𝐿 = (
ℏ𝜔𝑡

𝑥
) × 𝑟 

𝐿 =
ℏ𝜔𝑡𝑟

𝑥
     but, 

𝑟

𝑥
=

1

𝜃
 

𝐿 =
ℏ𝜔𝑡

𝜃
 



𝑃 =
(ℏκ)2𝑡

2𝑚𝑥
 

Proof: 

V= u+gt 

For uniformly accelerated motion from 

rest, u=0; 

V=gt------(1) 

Also, 𝑔 =
𝐺𝑚

𝑅2 --------(2) 

Substituting equation (2) into (1) gives; 

𝑣 =
𝐺𝑚𝑡

𝑅2 --------(3) 

From General Relativity, 

𝐺𝑢𝑣 =
8𝜋𝐺

𝑐4
𝑇𝑢𝑣 

Make ‘G’ the subject; 

𝐺 =
𝑐4

8𝜋
𝐺𝑢𝑣𝑇𝑢𝑣

−1----------(4) 

But,    

𝐺𝑢𝑣 =
4𝜋𝑅2ℎ2

𝑐4𝑚3𝜆2𝑥
𝑇𝑢𝑣------(5) 

Substituting equation (5) into equation 

(4); 

𝐺 =
𝑐4

8𝜋
(

4𝜋𝑅2ℎ2

𝑐4𝑚3𝜆2𝑥
𝑇𝑢𝑣)𝑇𝑢𝑣

−1 

 

𝐺 =
𝑅2ℎ2

2𝑚3𝜆2𝑥
------(6) 

Substituting equation (6) into (3) gives; 

𝑣 = (
𝑅2ℎ2

2𝑚3𝜆2𝑥
)˟ (

𝑚𝑡

𝑅2
) 

𝑣 =
ℎ2𝑡

2𝑚2𝜆2𝑥
-----------------(7) 

Multiply equation (7) by  m; 

𝑚𝑣 =
ℎ2𝑡

2𝑚2𝜆2𝑥
˟𝑚 

Therefore, 

𝑚𝑣 =
ℎ2𝑡

2𝑚𝜆2𝑥
----------(8) 

But Momentum(P)= mass(m) ˟ 

velocity(v); 

Finally, 

𝑃 =
ℎ2𝑡

2𝑚𝜆2𝑥
 

But 𝜆−2 =
𝜅2

4𝜋2
 

Finally, 

𝑃 =
(ℏκ)2𝑡

2𝑚𝑥
 

 

 

𝐿 =
(ℏκ)2𝑡

2𝑚𝜃
 

Proof: 

𝑃 =
(ℏκ)2𝑡

2𝑚𝑥
--------(1) 

But for objects performing rotational 

motion, 

𝑃 =
𝐿

𝑟
---------(2) 

And also,  

x=r 𝜃--------(3) 

substituting equations (2) and (3) into (1) 

gives; 

 
𝐿

𝑟
=

(ℏκ)2𝑡

2𝑚r 𝜃
 

Multiply both sides by r; 

𝑟 ×
𝐿

𝑟
=

(ℏκ)2𝑡

2𝑚r 𝜃
× 𝑟 

Finally,  

𝐿 =
(ℏκ)2𝑡

2𝑚𝜃
 

𝜔 =
ℏκ2

2𝑚
 

𝑃𝑟𝑜𝑜𝑓: 



𝑃 =
ℏ𝜔𝑡

𝑥
-------(1) 

𝑃 =
(ℏκ)2𝑡

2𝑚𝑥
-----(2) 

Comparing eqn 1 and 2, 

ℏ𝜔𝑡

𝑥
=

(ℏκ)2𝑡

2𝑚𝑥
 

Finally,  

𝜔 =
ℏκ2

2𝑚
 

 

 

𝐹 =
ℏ𝜔

𝑥
 

𝑃𝑟𝑜𝑜𝑓: 

𝐹 =
𝑃

𝑡
------(1) 

𝑃 =
ℏ𝜔𝑡

𝑥
------(2) 

Substituting eqn 2 into 1; 

𝐹 = (
ℏ𝜔𝑡

𝑥
) ×

1

𝑡
 

Finally, 

𝐹 =
ℏ𝜔

𝑥
 

 

 

𝑉 =
ℏ𝜔

𝜃
 

𝑃𝑟𝑜𝑜𝑓: 

𝐹 =
𝑃

𝑡
-------(1) 

𝑃 =
ℏ𝜔𝑡

𝑥
-----(2) 

𝐹 =
ℏ𝜔

𝑥
------(3) 

𝐹 =
𝑉

𝑟
 

𝑉

𝑟
=

ℏ𝜔

𝑥
 

𝑉 =
ℏ𝜔𝑟

𝑥
 

But, 

𝑟

𝑥
=

1

𝜃
 

Finally, 

𝑉 =
ℏ𝜔

𝜃
 

 

QUANTIZED TIME 

𝑡𝑛 = 𝑛(
𝜃

𝜔
) 

 

Proof: 

𝑚𝑣𝑟 = 𝑛ℏ 

But 𝑚𝑣 = 𝑝 =
(ℏκ)2𝑡

2𝑚𝑥
 

 

Therefore, 

 
(ℏκ)2𝑡

2𝑚𝑥
× 𝑟 = 𝑛ℏ 

 
ℏ𝑘2𝑡𝑟

2𝑚𝑥
= 𝑛 

 

Make ‘t’ the subject; 

 

𝑡𝑛 = 𝑛 (
2𝑚

ℏ𝑘2
×

𝑥

𝑟
) = 𝑛 (

2𝑚𝜃

ℏ𝑘2
) 

 

But, 

2𝑚

ℏ𝑘2
=

1

𝜔
 



Finally, 

𝑡𝑛 = 𝑛(
𝜃

𝜔
) 

 

QUANTIZED SPACE (POSITION) 

𝑥𝑛 =
1

𝑛
(𝜔𝑡𝑟) 

 

Proof: 

𝑚𝑣𝑟 = 𝑛ℏ 

But 𝑚𝑣 = 𝑝 =
(ℏκ)2𝑡

2𝑚𝑥
 

 

Therefore, 

(
(ℏκ)2𝑡

2𝑚𝑥
) × 𝑟 = 𝑛ℏ 

 
ℏ𝑘2𝑡𝑟

2𝑚𝑥
= 𝑛 

Make ‘x’ the subject; 

 

𝑥𝑛 =
1

𝑛
(
ℏ𝑘2𝑡𝑟

2𝑚
) 

But,  

𝜔 =
ℏ𝑘2

2𝑚
 

Finally, 

𝑥𝑛 =
1

𝑛
(𝜔𝑡𝑟) 

 

 

 

 

 

DOUBLE SLIT FORMULAE 

𝑑 sin 𝜃 =
𝑛𝜋𝑥

𝜔𝑡
 

𝑃𝑟𝑜𝑜𝑓: 

2𝑑 sin 𝜃 = 𝑛𝜆 

𝑏𝑢𝑡 𝜆 =
2𝜋

𝑘
 

2𝑑 sin 𝜃 =
2𝑛𝜋

𝑘
 

𝑑 sin 𝜃 =
𝑛𝜋

𝑘
 

𝑘 =
𝜔𝑡

𝑥
 

Therefore,  

1

𝑘
=

𝑥

𝜔𝑡
 

𝑑 sin 𝜃 = 𝑛𝜋 (
𝑥

𝜔𝑡
) 

Finally, 

𝑑 sin 𝜃 =
𝑛𝜋𝑥

𝜔𝑡
 

 

𝑌𝑛 =
2𝐿

𝑑
(
𝑛𝜋𝑥

𝜔𝑡
) 

𝑌𝑛𝑑 = 𝑛𝐿𝜆 

𝑏𝑢𝑡 𝜆 =
2𝜋

𝑘
 

𝑌𝑛𝑑 = 𝑛𝐿 (
2𝜋

𝑘
) 

𝑌𝑛𝑑 =
2𝐿𝑛𝜋

𝑘
 

But, 

1

𝑘
=

𝑥

𝜔𝑡
 

𝑌𝑛𝑑 = 2𝐿𝑛𝜋 (
𝑥

𝜔𝑡
) 



Rearranging, 

𝑌𝑛𝑑 = 2𝐿 (
𝑛𝜋𝑥

𝜔𝑡
) 

Make 𝑌𝑛 the subject; 

 

𝑌𝑛 =
2𝐿

𝑑
(
𝑛𝜋𝑥

𝜔𝑡
) 

 

PILOT WAVE FIELD METRIC 

𝒅𝒔𝟐 = −(1 −
1

𝑛𝑐2
(
𝑟ℏ2𝑘3

𝑚2𝜃
))𝒄𝟐𝒅𝒕𝟐

+
𝟏

(𝟏 −
𝟏

𝒏𝒄𝟐 (
𝒓ℏ𝟐𝒌𝟑

𝒎𝟐𝜽
))

𝒅𝒓𝟐 + 𝒓𝟐(𝒅𝜽𝟐

+ 𝐬𝐢𝐧𝟐 𝜽𝒅𝝓𝟐) 

𝑃𝑟𝑜𝑜𝑓: 

From the Schwarzschild metric; 

𝑑𝑠2 = −(1 −
2𝐺𝑀

𝑐2𝑟
) 𝑐2𝑑𝑡2 +

1

(1 −
2𝐺𝑀
𝑐2𝑟

)
𝑑𝑟2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) 

From Pilot Wave Field Theory; 

 𝑮 =
𝒓𝟐ℏ𝒌

𝒎𝟐𝒕
-------(1) 

𝑮 =
(𝒓ℏ𝒌)𝟐

𝟐𝒎𝟑𝒙
-------(2) 

Substitute eqn.1 into the 

Schwarzschild metric: 

𝑑𝑠2 = −(1 −
2𝑀

𝑐2𝑟
(
𝑟2ℏ𝑘

𝑚2𝑡
)) 𝑐2𝑑𝑡2

+
1

(1 −
2𝑀
𝑐2𝑟

(
𝑟2ℏ𝑘
𝑚2𝑡

))

𝑑𝑟2 + 𝑟2(𝑑𝜃2

+ sin2 𝜃 𝑑𝜙2) 

Let M=m; 

𝑑𝑠2 = −(1 −
2

𝑐2
(
𝑟ℏ𝑘

𝑚𝑡
)) 𝑐2𝑑𝑡2 +

1

(1 −
2
𝑐2 (

𝑟ℏ𝑘
𝑚𝑡 ))

𝑑𝑟2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) 

For quantization;  

𝑡 = 2𝑛 (
𝑚𝜃

ℏ𝑘2
) 

 

 

Therefore; 

𝑑𝑠2 = −(1 −
1

𝑛𝑐2
(
𝑟ℏ2𝑘3

𝑚2𝜃
)) 𝑐2𝑑𝑡2

+
1

(1 −
1

𝑛𝑐2 (
𝑟ℏ2𝑘3

𝑚2𝜃
))

𝑑𝑟2 + 𝑟2(𝑑𝜃2

+ sin2 𝜃 𝑑𝜙2) 

 

 

𝑑𝑠2 = −(1 −
2𝑛

𝑐2
(

ℏ

𝑚𝑡
)) 𝑐2𝑑𝑡2

+
1

(1 −
2𝑛
𝑐2 (

ℏ
𝑚𝑡))

𝑑𝑟2 + 𝑟2(𝑑𝜃2

+ sin2 𝜃 𝑑𝜙2) 

 

𝑃𝑟𝑜𝑜𝑓: 

From the Schwarzschild metric; 

𝑑𝑠2 = −(1 −
2𝐺𝑀

𝑐2𝑟
) 𝑐2𝑑𝑡2 +

1

(1 −
2𝐺𝑀
𝑐2𝑟

)
𝑑𝑟2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) 

From Pilot Wave Field Theory; 

𝐺 =
(𝑟ℏ𝑘)2

2𝑚3𝑥
-------(1) 

Substitute eqn.1 into the 

Schwarzschild metric: 

𝑑𝑠2 = −(1 −
2𝑀

𝑐2𝑟
(
(𝑟ℏ𝑘)2

2𝑚3𝑥
)) 𝑐2𝑑𝑡2

+
1

(1 −
2𝑀
𝑐2𝑟

(
(𝑟ℏ𝑘)2

2𝑚3𝑥
))

𝑑𝑟2 + 𝑟2(𝑑𝜃2

+ sin2 𝜃 𝑑𝜙2) 

Let M=m; 

𝑑𝑠2 = −(1 −
1

𝑐2
(
𝑟(ℏ𝑘)2

𝑚2𝑥
)) 𝑐2𝑑𝑡2

+
1

(1 −
1
𝑐2 (

𝑟(ℏ𝑘)2

𝑚2𝑥
))

𝑑𝑟2 + 𝑟2(𝑑𝜃2

+ sin2 𝜃 𝑑𝜙2) 

For quantization;  

𝑥 =
1

2𝑛
(
ℏ𝑘2𝑡𝑟

𝑚
) 



 

Therefore; 

𝑑𝑠2 = −(1 −
2𝑛

𝑐2
(

ℏ

𝑚𝑡
)) 𝑐2𝑑𝑡2

+
1

(1 −
2𝑛
𝑐2 (

ℏ
𝑚𝑡))

𝑑𝑟2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) 

 

 

PILOT WAVE FIELD METRIC 

FOR A GROUND STATE 

HYDROGEN ATOM. 

𝑑𝑠2 = −(1 −
1

𝑛𝑐2
(
𝑟ℏ2𝑘3

𝑚2𝜃
)) 𝑐2𝑑𝑡2

+
1

(1 −
1

𝑛𝑐2 (
𝑟ℏ2𝑘3

𝑚2𝜃
))

𝑑𝑟
2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) 

But; 
ℎ𝑘 = 𝑝 = 𝑚𝑣 

𝑑𝑠2 = −(1 −
1

𝑛𝑐2
(
𝑟𝑚2𝑣2𝑘

𝑚2𝜃
)) 𝑐2𝑑𝑡2

+
1

(1 −
1

𝑛𝑐2 (
𝑟𝑚2𝑣2𝑘

𝑚2𝜃
))

𝑑𝑟2

+ 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜙2
) 

Therefore; 

𝑑𝑠2 = −(1 −
𝑣2

𝑛𝑐2
(
𝑟𝑘

𝜃
)) 𝑐2𝑑𝑡2

+
1

(1 −
𝑣2

𝑛𝑐2 (
𝑟𝑘
𝜃

))

𝑑𝑟
2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) 

For a hydrogen atom in the 

ground state (n=1); 

𝑣 = 2.19 × 106𝑚𝑠−1 

  

𝑴𝒅𝒔𝟐

= −(𝟏 − (
𝟐. 𝟏𝟗 × 𝟏𝟎𝟔𝒎𝒔−𝟏

𝒄
)

𝟐

((
𝒓𝟏𝒌𝟏

𝜽𝟏
)))𝒄𝟐𝒅𝒕𝟐

+
𝟏

(𝟏 − (
𝟐. 𝟏𝟗 × 𝟏𝟎𝟔𝒎𝒔−𝟏

𝒄
)
𝟐

((
𝒓𝟏𝒌𝟏
𝜽𝟏

)))

𝒅𝒓𝟐

+ 𝒓𝟏
𝟐(𝒅𝜽𝟐 + 𝐬𝐢𝐧𝟐 𝜽𝟏 𝒅𝝓𝟐) 

 

 

 

 

 

 

 

But; (
𝟐.𝟏𝟗×𝟏𝟎𝟔𝒎𝒔−𝟏

𝒄
) = 𝜶(fine 

structure constant)  

 

 

Therefore; 

𝒅𝒔𝟐 = −(𝟏 − 𝜶𝟐 (
𝒓𝟏𝒌𝟏

𝜽𝟏

)) 𝒄𝟐𝒅𝒕𝟐

+
𝟏

(𝟏 − 𝜶𝟐 (
𝒓𝟏𝒌𝟏

𝜽𝟏
))

𝒅𝒓𝟐

+ 𝒓𝟏
𝟐(𝒅𝜽𝟐 + 𝐬𝐢𝐧𝟐 𝜽𝟏 𝒅𝝓𝟐) 

 

 

 

Meaning/Definition of the Fine 

Structure Constant.  

Fine structure constant can then be 

defined as the fundamental constant 

that determines the formation of stable 

Hydrogen atoms via space-time interval 

fields. 

 

PILOT WAVE MECHANICS & 

THE DIMENSIONALITY OF 

REALITY. 

According to Pilot Wave Mechanics, the 

dimensionality of reality extends from four 

to nine, to encompass everything in reality. 

Aside the usual four (3+1) dimensions of 

space and time, the other four extra 

dimensions are as follows: 

Frequency dimension (5th dimension), 

Mass dimension (6th dimension), Force 

dimension (7th dimension), Energy 



dimension (8th dimension) and Power 

dimension (9th dimension). 

The metric that describes the 9-

Dimensional Reality is given by; 

For flat surfaces: 

𝑑𝑠2 = [(
(𝑟ℏ)2𝑘3

𝐸𝐹𝑚𝑐
)𝑑𝑃2 + (

(𝑟ℏ)2𝑘5

𝐹𝑚2𝑐𝑓
)

2

𝑑𝐸2

+ (
𝑘3𝑟2ℏ

(𝑓𝑚)2𝑐
)

2

𝑑𝐹2 + (
𝑟2𝑐𝑓

𝐸
)

2

𝑑𝑚2

+ (
𝑟2

𝑐
)

2

𝑑𝑓2 + 𝑐2𝑑𝑡2] − 𝑑𝑟2 

For curved surfaces: 

𝑑𝑠2 = −(1 −
1

𝑐2
(
𝑟(ℏ𝑘)2

2𝑚2𝑥
)) [(

(𝑟ℏ)2𝑘5

𝐹𝑚2𝑐𝑓
)

2

𝑑𝐸2

+ (
𝑘3𝑟2ℏ

(𝑓𝑚)2𝑐
)

2

𝑑𝐹2 + (
𝑟2𝑐𝑓

𝐸
)

2

𝑑𝑚2

+ (
𝑟2

𝑐
)

2

𝑑𝑓2 + 𝑐2𝑑𝑡2]

+
1

(1 −
1
𝑐2 (

𝑟(ℏ𝑘)2

2𝑚2𝑥
))

𝑑𝑟2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) 

 

OPERATOR RELATIONS 

 

MOMENTUM OPERATOR 

Ψ = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

From, 

E =
ℏkx

t
 

kx =
𝐸𝑡

ℏ
---------(1) 

Also, 

𝑃 =
ℏ𝜔𝑡

𝑥
 

𝜔𝑡 =
𝑝𝑥

ℏ
-------(2) 

Substitute eqn 1 and 2 into the wave equation; 

Ψ = 𝐴𝑒
𝑖(

𝐸𝑡
ℏ

−
𝑝𝑥
ℏ

)
 

𝜕Ψ

𝜕𝑡
=

𝑖𝐸

ℏ
Ψ 

E =
ℏkx

t
 

𝜕Ψ

𝜕𝑡
=

𝑖

ℏ
(
ℏkx

t
)Ψ 

𝜕Ψ

𝜕𝑡
=

𝑖kx

t
Ψ 

k =
𝑝

ℏ
 

𝜕Ψ

𝜕𝑡
=

𝑖x

t
(
𝑝

ℏ
)Ψ 

 

𝑙𝑒𝑡 𝑡 = 𝑡𝑜 

𝜕Ψ

𝜕𝑡
=

𝑖𝑝x

ℏ𝑡𝑜
Ψ 

 

𝑚𝑎𝑘𝑒 pΨ the subject; 

pΨ= − i
ℏ𝑡𝑜
𝑥

𝜕Ψ

𝜕𝑡
=

𝐸𝑡𝑜
𝑥

Ψ 

 

Finally, 

�̂�= − i
ℏ𝑡𝑜
𝑥

𝜕

𝜕𝑡
 

 

ENERGY OPERATOR 

Ψ = 𝐴𝑒
𝑖(

𝐸𝑡
ℏ

−
𝑝𝑥
ℏ

)
 

𝜕Ψ

𝜕𝑥
= −

𝑖𝑝

ℏ
Ψ 

But, 

𝑃 =
ℏ𝜔𝑡

𝑥
 

𝜕Ψ

𝜕𝑥
= −

𝑖

ℏ
(
ℏ𝜔𝑡

𝑥
)Ψ 

𝜕Ψ

𝜕𝑥
= −

𝑖𝜔𝑡

𝑥
Ψ 

But, 

𝜔 =
𝐸

ℏ
 

𝜕Ψ

𝜕𝑥
= −

𝑖𝐸𝑡

ℏ𝑥
Ψ 

𝑙𝑒𝑡 𝑥 = 𝑥𝑜 

𝑚𝑎𝑘𝑒 EΨ the subject; 

EΨ =
𝑖ℏ𝑥𝑜

𝑡

𝜕Ψ

𝜕𝑥
=

𝑝𝑥

𝑡
Ψ 

�̂� =
𝑖ℏ𝑥𝑜

𝑡

𝜕

𝜕𝑥
 



In three dimensions, 

�̂� =
𝑖ℏ𝑥𝑜

𝑡
∇ 

 

ANGULAR MOMENTUM OPERATOR 

Ψ = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

From, 

E =
ℏkx

t
 

kx =
𝐸𝑡

ℏ
---------(1) 

Also, 

𝑃 =
ℏ𝜔𝑡

𝑥
 

𝜔𝑡 =
𝑝𝑥

ℏ
-------(2) 

Substitute eqn 1 and 2 into the wave equation; 

Ψ = 𝐴𝑒
𝑖(

𝐸𝑡
ℏ

−
𝑝𝑥
ℏ

)
 

𝜕Ψ

𝜕𝑡
=

𝑖𝐸

ℏ
Ψ 

E =
ℏkx

t
 

𝜕Ψ

𝜕𝑡
=

𝑖

ℏ
(
ℏkx

t
)Ψ 

𝜕Ψ

𝜕𝑡
=

𝑖kx

t
Ψ 

k =
𝑝

ℏ
 

𝜕Ψ

𝜕𝑡
=

𝑖x

t
(
𝑝

ℏ
)Ψ 

 
𝜕Ψ

𝜕𝑡
=

𝑖𝑝x

ℏt
Ψ 

 𝑏𝑢𝑡 𝑝 =
𝐿

𝑟
 

𝜕Ψ

𝜕𝑡
=

𝑖x

ℏt
(
𝐿

𝑟
)Ψ 

𝜃 =
𝑥

𝑟
 

𝜕Ψ

𝜕𝑡
=

𝑖𝐿𝜃

ℏt
Ψ 

𝑚𝑎𝑘𝑒 LΨ the subject; 

LΨ= − i
ℏ𝑡𝑜
𝜃

𝜕Ψ

𝜕𝑡
=

𝐸𝑡

𝜃
Ψ 

 

Finally, 

�̂�= − i
ℏ𝑡𝑜
𝜃

𝜕

𝜕𝑡
 

 

 

 

TIME OPERATOR 

Ψ = 𝐴𝑒
𝑖(

𝐸𝑡
ℏ

−
𝑝𝑥
ℏ

)
 

𝜕Ψ

𝜕𝑥
= −

𝑖𝑝

ℏ
Ψ 

But, 

𝑃 =
ℏ𝜔𝑡

𝑥
 

𝜕Ψ

𝜕𝑥
= −

𝑖

ℏ
(
ℏ𝜔𝑡

𝑥
)Ψ 

𝜕Ψ

𝜕𝑥
= −

𝑖𝜔𝑡

𝑥
Ψ 

𝑚𝑎𝑘𝑒 tΨ the subject; 

tΨ=
𝑖𝑥

𝜔

𝜕Ψ

𝜕𝑥
=

𝑝𝑥

𝐸
Ψ 

𝑙𝑒𝑡 𝑥 = 𝑥𝑜 

Finally, 

�̂� =
𝑖𝑥𝑜

𝜔

𝜕

𝜕𝑥
 

In three dimensions, 

�̂� =
𝑖𝑥𝑜

𝜔
∇ 

 

 

LINEAR POSITION OPERATOR 

Ψ = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

From, 

E =
ℏkx

t
 

kx =
𝐸𝑡

ℏ
---------(1) 

Also, 

𝑃 =
ℏ𝜔𝑡

𝑥
 

𝜔𝑡 =
𝑝𝑥

ℏ
-------(2) 

Substitute eqn 1 and 2 into the wave equation; 

Ψ = 𝐴𝑒
𝑖(

𝐸𝑡
ℏ

−
𝑝𝑥
ℏ

)
 

𝜕Ψ

𝜕𝑡
=

𝑖𝐸

ℏ
Ψ 

E =
ℏkx

t
 



𝜕Ψ

𝜕𝑡
=

𝑖

ℏ
(
ℏkx

t
)Ψ 

𝜕Ψ

𝜕𝑡
=

𝑖kx

t
Ψ 

 

𝑚𝑎𝑘𝑒 𝑥Ψ the subject; 

𝑙𝑒𝑡 𝑡 = 𝑡𝑜 

𝑥Ψ= −
𝑖𝑡𝑜
𝑘

𝜕Ψ

𝜕𝑡
 

Finally, 

�̂� = −
𝑖𝑡𝑜
𝑘

𝜕

𝜕𝑡
 

 

ANGULAR POSITION OPERATOR 

Ψ = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

From, 

E =
ℏkx

t
 

kx =
𝐸𝑡

ℏ
---------(1) 

Also, 

𝑃 =
ℏ𝜔𝑡

𝑥
 

𝜔𝑡 =
𝑝𝑥

ℏ
-------(2) 

Substitute eqn 1 and 2 into the wave equation; 

Ψ = 𝐴𝑒
𝑖(

𝐸𝑡
ℏ

−
𝑝𝑥
ℏ

)
 

𝜕Ψ

𝜕𝑡
=

𝑖𝐸

ℏ
Ψ 

E =
ℏkx

t
 

𝜕Ψ

𝜕𝑡
=

𝑖

ℏ
(
ℏkx

t
)Ψ 

𝜕Ψ

𝜕𝑡
=

𝑖kx

t
Ψ 

But 𝑥 = 𝑟𝜃 

𝜕Ψ

𝜕𝑡
=

𝑖kr𝜃

t
Ψ 

 

𝑚𝑎𝑘𝑒 𝜃Ψ the subject; 

𝑙𝑒𝑡 𝑡 = 𝑡𝑜 

𝜃Ψ= −
𝑖𝑡𝑜
𝑘𝑟

𝜕Ψ

𝜕𝑡
 

Finally, 

�̂� = −
𝑖𝑡𝑜
𝑘𝑟

𝜕

𝜕𝑡
 

 

 

 

 

 

 

 

FORCE OPERATOR 

Ψ = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 
𝜕Ψ

𝜕𝑡
= −𝑖𝜔Ψ------(1) 

From, 

𝑃 =
ℏ𝜔𝑡

𝑥
-----(2) 

𝐹 =
𝑃

𝑡
------(3) 

𝐹 =
ℏ𝜔

𝑥
-----(4) 

𝜔 =
𝐹𝑥

ℏ
----(5) 

Substitute eqn 5 into 1; 
𝜕Ψ

𝜕𝑡
= −𝑖 (

𝐹𝑥

ℏ
)Ψ 

Rearranging; 

𝐹Ψ =
𝑖ℏ

𝑥

𝜕Ψ

𝜕𝑡
 

Finally, 

�̂� =
𝑖ℏ

𝑥

𝜕

𝜕𝑡
 

 

 

POTENTIAL ENERGY OPERATOR 

Ψ = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 
𝜕Ψ

𝜕𝑡
= −𝑖𝜔Ψ------(1) 

From, 

𝑃 =
ℏ𝜔𝑡

𝑥
-----(2) 

𝐹 =
𝑃

𝑡
------(3) 

𝐹 =
ℏ𝜔

𝑥
-----(4) 

𝜔 =
𝐹𝑥

ℏ
----(5) 

But, 

𝐹 =
𝑉

𝑟
----(6) 

𝜔 = (
𝑉

𝑟
)
𝑥

ℏ
 

𝜃 =
𝑥

𝑟
----(7) 

𝜔 =
𝑉𝜃

ℏ
-----(8) 



Substitute eqn 5 into 1; 
𝜕Ψ

𝜕𝑡
= −𝑖 (

𝑉𝜃

ℏ
)Ψ 

Rearranging; 

𝑉Ψ =
𝑖ℏ

𝜃

𝜕Ψ

𝜕𝑡
=

𝐸

𝜃
Ψ 

Finally, 

�̂� =
𝑖ℏ

𝜃

𝜕

𝜕𝑡
 

PILOT WAVE HAMILTONIAN 

𝐸 =
𝑝2

2𝑚
+ 𝑉 

But, 

�̂�= − i
ℏ𝑡𝑜
𝑥

𝜕

𝜕𝑡
 

Therefore, 

�̂�2= − (
ℏ𝑡𝑜
𝑥

)
2

𝜕2

𝜕𝑡2
 

Therefore, 

𝐸 = −
1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2

𝜕2

𝜕𝑡2
+ 𝑉 

Multiply through by 𝛹; 

𝐸𝛹 = −
1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2
𝜕2𝛹

𝜕𝑡2
+ 𝑉𝛹 

But, 

�̂� = −
1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2 𝜕2

𝜕𝑡2
+ 𝑉 

Therefore, 

𝐸𝛹 = �̂�𝛹 

𝐸𝛹 = −
1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2
𝜕2𝛹

𝜕𝑡2
+ 𝑉𝛹 

This is the Coordinate-independent Pilot Wave 

Equation (CIPWE). 

But; 

EΨ =
𝑖ℏ𝑥𝑜

𝑡

𝜕Ψ

𝜕𝑥
 

Therefore, 

𝑖ℏ𝑥𝑜

𝑡

𝜕Ψ

𝜕𝑥
= −

1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2
𝜕2𝛹

𝜕𝑡2
+ 𝑉𝛹 

This is the Coordinate -dependent Pilot Wave 

Equation (CDPWE). 

 

 

PILOT WAVE TRANSPORT EQUATION 

Ψ = 𝐴𝑒
𝑖(

𝐸𝑡
ℏ

−
𝑝𝑥
ℏ

)
 

𝜕Ψ

𝜕𝑡
=

𝑖𝐸

ℏ
Ψ 

E =
ℏkx

t
 

𝜕Ψ

𝜕𝑡
=

𝑖

ℏ
(
ℏkx

t
)Ψ 

𝜕Ψ

𝜕𝑡
=

𝑖kx

t
Ψ 

But, 

𝜔 =
𝑘𝑥

𝑡
 

Therefore, 

𝜕Ψ

𝜕𝑡
= 𝑖𝜔Ψ—(1) 

𝜕Ψ

𝜕𝑥
= −

𝑖𝑝

ℏ
Ψ 

But, 

𝑃 =
ℏ𝜔𝑡

𝑥
 

𝜕Ψ

𝜕𝑥
= −

𝑖

ℏ
(
ℏ𝜔𝑡

𝑥
)Ψ 

𝜕Ψ

𝜕𝑥
= −

𝑖𝜔𝑡

𝑥
Ψ 

Make “𝑖𝜔Ψ” the subject; 

𝑖𝜔Ψ = −
𝑥

𝑡

𝜕Ψ

𝜕𝑥
—(2) 

Comparing eqns 1 and 2; 

𝜕Ψ

𝜕𝑡
= −

𝑥

𝑡

𝜕Ψ

𝜕𝑥
 



But, 
𝑥

𝑡
=

𝜔

𝑘
= (

𝐸

ℏ
×

ℏ

𝑝
) =

𝐸

𝑝
 

𝜕Ψ

𝜕𝑡
= −

𝐸

𝑝

𝜕Ψ

𝜕𝑥
 

Rearranging finally gives; 

𝜕Ψ

𝜕𝑡
+

𝐸

𝑝

𝜕Ψ

𝜕𝑥
= 0 

MISCELLANEOUS 

𝐸Ψ(𝑡, 𝑥) = −
1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2
𝜕2Ψ(𝑡, 𝑥)

𝜕𝑡2
+ 𝑉Ψ(𝑡, 𝑥) 

 

Ψ(𝑡, 𝑥) = 𝐴𝑒
𝑖(

𝐸𝑡
ℏ

−
𝑝𝑥
ℏ

)
 

Since Potential energy (V) has been shown to be 

a function of time, we can readily separate 

variables in Ψ(𝑡, 𝑥); 

𝐸𝜓(𝑡)𝑒−𝑖(
𝑝𝑥
ℏ

)
= [−

1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2

𝜕2

𝜕𝑡2
+ 𝑉(𝑡)]𝜓(𝑡)𝑒−𝑖(

𝑝𝑥
ℏ

)
 

𝐸𝜓(𝑡) = [−
1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2

𝜕2

𝜕𝑡2
+ 𝑉(𝑡)]𝜓(𝑡) 

 

𝐸𝜓(𝑡) = �̂�𝜓(𝑡) 

In general, there will be many solutions of the 

PIPWE, each corresponding to a different value 

of 𝜓(𝑡) and its corresponding eigenvalue, E. We 

therefore attach subscripts to distinguish the 

different 𝜓𝑛(𝑡) and to correlate them with their 

corresponding eigenvalues, En.  

The different values of En are the eigenvalues 

and the corresponding values of 𝜓𝑛(𝑡) are called 

eigenfunctions. It is also possible that some 

eigenfunctions can share the same eigenvalue, in 

which case the eigenfunction is said to be 

degenerate. 

 

 

 

 

SUPERPOSITION THEOREM 

Thus, a general solution to the PIPWE, call it 

𝜓(𝑡), the absence of a subscript signifying that it 

is not an eigenfunction, may be written  

𝜓(𝑡) = ∑ 𝑎𝑛𝜓𝑛(𝑡)

∞

𝑛=1

                                   (1) 

Where, because 𝜓(𝑡) may be complex, as may 

be the expansion coefficients, the 𝑎𝑛.  

Suppose that 𝜓(𝑡), as given by the above 

equation, represent the total wave function at 

𝑥 = 0, that is, 

Ψ(𝑡, 𝑥) = 𝜓(𝑡) = ∑ 𝑎𝑛𝜓𝑛(𝑡)

∞

𝑛=1

              (2)   

Then, using the universal space dependence, it is 

a simple matter to write the wave function for all 

space. We have, 

Ψ(𝑡, 𝑥) = ∑ 𝑎𝑛𝜓𝑛(𝑡)

∞

𝑛=1

𝑒
−𝑖(

𝑝
ℏ
)𝑥

            (3) 

This is a special kind of superposition called 

Temporal Superposition. 

Equations (1) and (3) represent one of the most 

important theorems in Pilot Wave Mechanics, 

the Superposition Theorem. 

BecauseΨ(𝑡, 𝑥), as given in equation (3), is a 

solution of the PDPWE, it is said that the system 

is in a superposition of states. Moreover, the 

expansion represented by equation (3) is a 

coherent superposition of states in sense that, the 

“components” of the expansion have definite 

phase with respect to each other as contained in 

the expansion coefficients and the spatial 

dependence. 

 

 

 

 



DYNAMIC STATES 

It refers to any state Ψ(𝑡, 𝑥) for which the 

expansion, Equation 3, consists of a single term. 

Thus, the intensity of the pilot wave |𝛹(𝑡, 𝑥)|2 

reduces to 

|𝛹(𝑡, 𝑥)|2 = (𝜓𝑛(𝑡)𝑒
−𝑖(

𝑝
ℏ
)𝑥

)
∗

𝜓𝑛(𝑡)𝑒
−𝑖(

𝑝
ℏ
)𝑥

 

|𝛹(𝑡, 𝑥)|2 = 𝜓𝑛
∗(𝑡)𝑒

𝑖(
𝑝
ℏ
)𝑥

𝜓𝑛(𝑡)𝑒
−𝑖(

𝑝
ℏ
)𝑥

 

|𝛹(𝑡, 𝑥)|2 = 𝜓𝑛
∗(𝑡)𝜓𝑛(𝑡) (Functions of t only) 

Solutions that can be written as;  

Ψ(𝑡, 𝑥) = 𝜓𝑛(𝑡)𝑒
−𝑖(

𝑝
ℏ
)𝑥

 

are called Dynamic.  

Because the intensity of the pilot wave is 

dependent on time, it is defined as a “dynamic 

state”. 

 

STATIONARY STATES 

It refers to any state Ψ(𝑡, 𝑥) for which the 

expansion, consists of a single term. Thus, the 

intensity of the pilot wave |𝛹(𝑡, 𝑥)|2 reduces to 

|𝛹(𝑡, 𝑥)|2 = (𝜓𝑛(𝑥)𝑒
𝑖(

𝐸
ℏ
)𝑡

)
∗

𝜓𝑛(𝑥)𝑒
𝑖(

𝐸
ℏ
)𝑡

 

|𝛹(𝑡, 𝑥)|2 = 𝜓𝑛
∗(𝑥)𝑒

−𝑖(
𝐸
ℏ
)𝑡

𝜓𝑛(𝑥)𝑒
𝑖(

𝐸
ℏ
)𝑡

 

|𝛹(𝑡, 𝑥)|2 = 𝜓𝑛
∗(𝑥)𝜓𝑛(𝑥) (Functions of x only) 

Solutions that can be written as;  

Ψ(𝑡, 𝑥) = 𝜓𝑛(𝑥)𝑒
𝑖(

𝐸
ℏ
)𝑡

 

are called Stationary.  

Because the intensity of the pilot wave is 

dependent on position, it is defined as a 

“stationary state”. 

 

 

 

INTERPRETATION OF THE WAVE 

FUNCTION 

If the intensity of radiation at any point is 

proportional to the square of the amplitude of an 

electromagnetic wave at that point, then the 

intensity of a pilot wave at a given point is 

proportional to the squared modulus of the wave 

function. 

NORMALIZATION 

The intensity of a pilot wave (Φ), described by 

𝜓𝑛(𝑥), in a given interval of space, say x=a and 

x=d, is the sum of the intensities Φ𝑑𝑥  over all 

parts of that region. The sum is equivalent to the 

integral; 

Φ(a < x < d) = ∫ 𝛷(𝑥)𝑑𝑥
𝑑

𝑎

= ∫ 𝜓2(𝑥)𝑑𝑥
𝑑

𝑎

 

If the limits are extended to ±∞, the integral 

must be equal to unity. 

∫ 𝜓2(𝑥)𝑑𝑥
∞

−∞

= ∫ 𝜓𝑛
∗(𝑥)𝜓𝑛(𝑥) 𝑑𝑥

∞

−∞

= 1 

Wave functions meeting this requirement are 

said to be normalized.  

 

POSTULATES OF PILOT WAVE 

MECHANICS 

 

Postulate I: “All information that can be 

obtained about the state of a system is contained 

in the Pilot wave function Ψ𝑝. 

 

Postulate II: “The Pilot wave function Ψ𝑝 obeys 

the position-dependent (or coordinate-

dependent) Pilot Wave Equation; 

 

�̂�Ψ =
𝑖ℏ𝑥𝑜

𝑡

𝜕Ψ

𝜕𝑥
  𝑜𝑟  

𝑖ℏ𝑥𝑜

𝑡
∇Ψ 

 

 

Postulate III: “To every dynamical variable, 

there is a mathematical operator” 

 

 



Postulate IV: “If a mechanical variable A is 

measured without experimental error, the only 

possible measured values of the variable A are 

the eigenvalues of the operator �̂� that 

corresponds to A. 

 

Postulate V: “The state of a system always 

corresponds to the Pilot wave function that is the 

eigenfunction of �̂�. 

APPLICATIONS 

FREE PARTICLE: 

�̂� = −
1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2 𝜕2

𝜕𝑡2
                            (1) 

The Pilot Wave Equation 𝐸𝛹 = �̂�𝛹 thus takes 

the form; 

𝐸𝛹 = −
1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2 𝜕2𝛹

𝜕𝑡2
                         (2) 

Or where ℏ =
ℎ

2𝜋
; 

𝜕2Ψ

𝜕𝑡2
+

8𝜋𝑚𝑥2

ℎ2𝑡𝑜
2 𝐸Ψ = 0                           (3) 

 

Equation (3) is a linear differential equation with 

constant coefficients, which is a type of equation 

having two solutions namely; 

Ψ1 = 𝐴𝑒
𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

            and  

Ψ2 = 𝐵𝑒
−𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

 

With 𝜔 =
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ𝑡𝑜
 

POTENTIAL BARRIER: 

�̂� = −
1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2 𝜕2

𝜕𝑡2
+ 𝑉                     (1) 

The Pilot Wave Equation 𝐸𝛹 = �̂�𝛹 thus takes 

the form; 

𝐸𝛹 = −
1

2𝑚
(
ℏ𝑡𝑜
𝑥

)
2 𝜕2𝛹

𝜕𝑡2
+ 𝑉𝛹             (2) 

Or where ℏ =
ℎ

2𝜋
; 

𝜕2Ψ

𝜕𝑡2
+

8𝜋𝑚𝑥2

ℎ2𝑡𝑜
2 (𝐸 − 𝑉)Ψ = 0              (3) 

Equation (3) is a linear differential equation with 

constant coefficients, which is a type of equation 

having two solutions namely; 

Ψ1 = 𝐴𝑒
𝑖(

2𝜋𝑥(2𝑚(𝐸−𝑉))
1

2⁄

ℎ𝑡𝑜
)𝑡

            and  

Ψ2 = 𝐵𝑒
−𝑖(

2𝜋𝑥(2𝑚(𝐸−𝑉))
1

2⁄

ℎ𝑡𝑜
)𝑡

 

With 𝜔 =
2𝜋𝑥(2𝑚(𝐸−𝑉))

1
2⁄

ℎ𝑡𝑜
 

Pilot Wave Intensity along the x-axis 

The pilot wave intensity is |𝜓|2 = 𝜓∗𝜓 and the 

function 

|𝜓|2 = 𝜓∗𝜓

= 𝐴∗𝑒
−𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

𝐴𝑒
𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

= 𝐴∗𝐴

= |𝐴|2 

Similarly, for the functionΨ2, the pilot wave 

intensity is |𝐵|2. Both of these quantities are 

independent of   both x and t, so that there is equal 

pilot wave intensity at any distance along the x-

axis, at any given moment in time.  The pilot wave 

intensity is therefore said to be spatio-temporally 

nonlocalized.  

Allowed values of 𝒑𝒕 

−i
ℏ𝑡𝑜
𝑥

𝜕

𝜕𝑡
𝜓 = 𝑝𝑡𝜓 

If 𝜓 = 𝜓1; 

−i
ℏ𝑡𝑜
𝑥

𝜕

𝜕𝑡
(𝐴𝑒

𝑖(
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ𝑡𝑜
)𝑡

) = 𝑝𝑡 (𝐴𝑒
𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

) 



𝑖 (
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ𝑡𝑜
)(−i

ℎ𝑡𝑜
2𝜋𝑥

)(𝐴𝑒
𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

)

= 𝑝𝑡 (𝐴𝑒
𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

) 

(2𝑚𝐸)
1

2⁄ (𝐴𝑒
𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

) = 𝑝𝑡 (𝐴𝑒
𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

) 

𝑝𝑡 = √2𝑚𝐸 

 

For Pilot Wave systems, 

E =
ℏkx

t
 

𝑝𝑡 = √2𝑚(
ℏkx
t

) 

𝑝𝑡 = √
2ℏkmx

t
 

𝑝𝑤𝑎𝑣𝑒 = ℏk,  𝑝𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =
m𝑥

𝑡
 

𝑝𝑡 = √2𝑝𝑤𝑎𝑣𝑒 × 𝑝𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 

Similarly with 𝜓2, it is found that  

𝑝𝑡 = −√2𝑝𝑤𝑎𝑣𝑒 × 𝑝𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 

So that the two possible solutions are; 

𝑝𝑡 = ±√2𝑝𝑤𝑎𝑣𝑒 × 𝑝𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 

 

THE PARTICLE IN A BOX: 

Quantization does however, appear if the particle 

is not permitted to travel an infinite distance but 

is confined to certain region of space at a specific 

time period. In three dimensions, this problem is 

referred to as the particle in a box. 

Consideration of One Dimensional Problem: 

The particle moves along the x axis over a 

distance from 0 to a. 

The potential energy V is taken to be zero within 

the box 0 < 𝑥 < 𝑎 , and infinity for 𝑥 < 0 and 

𝑥 > 𝑎.  

Within the box, the wave equation is equation (3) 

as for the free particle. However, acceptable wave 

function must satisfy certain boundary conditions, 

which in this case are that 𝜓 = 0 at the walls.  

Neither 𝜓1 nor 𝜓2 as given by these equations can 

individually satisfy these boundary conditions, 

because the condition that 𝜓 must be zero at x=a, 

requires both A and B to be zero. 

However, this dilemma is avoided by taking a 

linear combination of  𝜓1 and 𝜓2, which is also a 

solution of the wave equation. 

It is perfectly general to take 𝜓1 + 𝜓2 as the linear 

combination, since A and B are in any case 

adjustable.  

𝜓 = 𝐴𝑒
+𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

+ 𝐵𝑒
−𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

 

[Since the particle can be reflected at the walls, 

the most general wave solution representing it 

must contain waves going in both directions, as 

seen in the equation above.] 

The boundary condition that 𝜓 = 0 when 𝑥 = 0 

requires that 𝐴 + 𝐵 = 0, so that 𝐵 = −𝐴.  

The equation could be rewritten as; 

𝜓 = 𝐴 [𝑒
𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

− 𝑒
−𝑖(

2𝜋𝑥(2𝑚𝐸)
1

2⁄

ℎ𝑡𝑜
)𝑡

] 

Applying Euler’s theorem, 

(𝑒𝑖𝑦 = cos 𝑦 + 𝑖𝑠𝑖𝑛 𝑦; 𝑒𝑖𝑦−𝑖𝑦 = 2𝑖𝑠𝑖𝑛 𝑦  ) 

𝜓 = 2𝑖𝐴 sin [(
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ𝑡𝑜
) 𝑡] 

𝜓 = 2𝑖𝐴 sin [(
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ
)(

𝑡

𝑡𝑜
)] 

But, 
𝑡

𝑡𝑜
=

1

√1−
𝑣2

𝑐2

 



Therefore 

𝜓 = 2𝑖𝐴 sin

[
 
 
 

(
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ
)

(

 
1

√1 −
𝑣2

𝑐2)

 

]
 
 
 

 

With respect to gravity, 

𝜓 = 2𝑖𝐴 sin [(
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ
)(

𝑡

𝑡𝑜
)] 

But, 
𝑡

𝑡𝑜
=

1

√1−
2𝑔𝑅

𝑐2

  

Therefore, 

𝜓 = 2𝑖𝐴 sin

[
 
 
 

(
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ
)

(

 
1

√1 −
2𝑔𝑅
𝑐2 )

 

]
 
 
 

 

The second boundary condition that 𝜓 = 0 when 

𝑥 = 𝑎 gives; 

  

0 = 2𝑖𝐴 sin [(
2𝜋𝑎(2𝑚𝐸)

1
2⁄

ℎ𝑡𝑜
) 𝑡] 

The factor 2𝑖𝐴 cannot be zero, but the sine of an 

angle is zero when the angle is an integral 

multiple of π. Thus, 

(
2𝜋𝑎(2𝑚𝐸)

1
2⁄

ℎ𝑡𝑜
) 𝑡 = ±𝑛𝜋 

Where n=1,2,3……𝑛 > 0. 

For 𝑛 = 0, we have 𝜓 = 0 which would mean 

the particle flux is zero. 

Making substitution;  

𝜓𝑛 = ±2𝑖𝐴 sin (
𝑛𝜋𝑥

𝑎
)  

To determine the value of 2iA, we use the 

normalization condition; 

∫ 𝜓𝑛
∗𝜓𝑛 𝑑𝑥

𝑎

0

= ±4𝐴2 ∫ sin2 (
𝑛𝜋𝑥

𝑎
)  𝑑𝑥

𝑎

0

= 1 

The value of the integral is 𝑎 2⁄  for integer 

values of n; 

±4𝐴2
𝑎

2
= 1 

𝐴 = ±√
±1

2𝑎
 

To make the wave function real, we select the 

negative sign within the square root; 

𝐴 = ±𝑖√+
1

2𝑎
 

𝜓𝑛 = ±2𝑖𝐴 sin (
𝑛𝜋𝑥

𝑎
) 

𝜓𝑛 = ±2𝑖 × 𝑖√+
1

2𝑎
sin (

𝑛𝜋𝑥

𝑎
) 

𝜓𝑛 = √
2

𝑎
sin (

𝑛𝜋𝑥

𝑎
) 

For relativistic particle in a box; 

𝜓 = √
2

𝑎
sin

[
 
 
 

(
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ
)

(

 
1

√1 −
𝑣2

𝑐2)

 

]
 
 
 

 

For a particle in a gravitational potential well; 

𝜓 = √
2

𝑎
sin

[
 
 
 

(
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ
)

(

 
1

√1 −
2𝑔𝑅
𝑐2 )

 

]
 
 
 

 

 

From (
2𝜋𝑎(2𝑚𝐸)

1
2⁄

ℎ𝑡𝑜

) 𝑡 = ±𝑛𝜋 , 

𝐸𝑛 = ±
𝑛2ℎ2𝑡𝑜

2

8𝑚𝑎2𝑡2
 

𝐸𝑛 = ±
𝑛2ℎ2

8𝑚𝑎2
(
𝑡𝑜
𝑡
)
2

 



For a relativistic particle in a box; 

𝑡𝑜
𝑡

= √1 −
𝑣2

𝑐2
 

𝐸𝑛 = ±
𝑛2ℎ2

8𝑚𝑎2
(√1 −

𝑣2

𝑐2
)

2

 

𝐸𝑛 = ±(1 −
𝑣2

𝑐2
)

𝑛2ℎ2

8𝑚𝑎2
 

𝐸𝑛 = ±(1 −
𝑣2

𝑐2
)

𝑛2ℎ2

8𝑚𝑎2
     𝑛 = 1,2,3… .. 

 𝑛 ≠ 0  

For a particle in a gravitational potential well; 

𝐸𝑛 = ±
𝑛2ℎ2𝑡𝑜

2

8𝑚𝑎2𝑡2
 

𝐸𝑛 = ±
𝑛2ℎ2

8𝑚𝑎2
(
𝑡𝑜
𝑡
)
2

 

But, 

𝑡𝑜
𝑡

= √1 −
2𝑔𝑅

𝑐2
 

𝐸𝑛 = ±
𝑛2ℎ2

8𝑚𝑎2
(√1 −

2𝑔𝑅

𝑐2
)

2

 

𝐸𝑛 = ±(1 −
2𝑔𝑅

𝑐2
)

𝑛2ℎ2

8𝑚𝑎2
 

𝐸𝑛 = ±(1 −
2𝑔𝑅

𝑐2
)

𝑛2ℎ2

8𝑚𝑎2
     𝑛 = 1,2,3… .. 

 𝑛 ≠ 0  

 

 

EXPRESSING THE DOUBLE SLIT 

FORMULA IN TERMS OF THE SOLUTION 

TO THE PILOT WAVE EQUATION 

From the Double Slit formula; 

𝑑 sin 𝜃 =
𝑛𝜋𝑥

𝜔𝑡
 

 

But, from the solution to the Pilot Wave Equation; 

 

𝜔 =
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ𝑡𝑜
 

 

𝑑 sin 𝜃 =
𝑛𝜋𝑥

𝑡
×

ℎ𝑡𝑜

2𝜋𝑥(2𝑚𝐸)
1

2⁄
 

 

2𝑑 sin 𝜃 =
𝑛ℎ𝑡𝑜

𝑡√2𝑚𝐸
 

 

But 𝑝 = √2𝑚𝐸 

 

2𝑑 𝑠𝑖𝑛 𝜃 =
𝑛ℎ

𝑝
(
𝑡𝑜
𝑡
)  

For a relativistic particle, 

 

𝑡𝑜
𝑡

= √1 −
𝑣2

𝑐2
                           

          

    2𝑑 𝑠𝑖𝑛 𝜃 =
𝑛ℎ

𝑝
√1 −

𝑣2

𝑐2
                       (1𝑎) 

For a particle in a gravitational potential well, 

2𝑑 𝑠𝑖𝑛 𝜃 =
𝑛ℎ

𝑝
(
𝑡𝑜
𝑡
)  

But, 

 

𝑡𝑜
𝑡

= √1 −
2𝑔𝑅

𝑐2
                           



          

    2𝑑 𝑠𝑖𝑛 𝜃 =
𝑛ℎ

𝑝
√1 −

2𝑔𝑅

𝑐2
                       (1𝑏) 

 

Also, 

𝑌𝑛 =
2𝐿

𝑑
(
𝑛𝜋𝑥

𝜔𝑡
) 

 

But, from the solution to the Pilot Wave Equation; 

 

𝜔 =
2𝜋𝑥(2𝑚𝐸)

1
2⁄

ℎ𝑡𝑜
 

 

𝑌𝑛 =
2𝐿

𝑑
(
𝑛𝜋𝑥

𝑡
×

ℎ𝑡𝑜

2𝜋𝑥(2𝑚𝐸)
1

2⁄
) 

 

𝑌𝑛 =
2𝐿

𝑑
(
𝑛𝜋𝑥

𝑡
×

ℎ𝑡𝑜

2𝜋𝑥(2𝑚𝐸)
1

2⁄
) 

 

𝑌𝑛 =
𝐿

𝑑
(

𝑛ℎ𝑡𝑜

𝑡√2𝑚𝐸
) 

 

But 𝑝 = √2𝑚𝐸 

 

𝑌𝑛 =
𝐿

𝑑
(
𝑛ℎ

𝑝
) (

𝑡𝑜
𝑡
) 

For a relativistic particle, 

 

𝑡𝑜
𝑡

= √1 −
𝑣2

𝑐2
    

 

           𝑌𝑛 =
𝐿

𝑑
(
𝑛ℎ

𝑝
)√1 −

𝑣2

𝑐2
              (2𝑎) 

 

For a particle in a gravitational potential well, 

𝑌𝑛 =
𝐿

𝑑
(
𝑛ℎ

𝑝
) (

𝑡𝑜
𝑡
) 

But, 

 

𝑡𝑜
𝑡

= √1 −
2𝑔𝑅

𝑐2
    

 

         𝑌𝑛 =
𝐿

𝑑
(
𝑛ℎ

𝑝
)√1 −

2𝑔𝑅

𝑐2
              (2𝑏) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EXPERIMENTAL SUPPORT 

BOUNCING OIL DROPLET EXPERIMENT 

The Yves Couder bouncing droplet experiment 

is a fascinating and thought-provoking 

demonstration that blends elements of fluid 

dynamics and quantum-like behavior on a 

macroscopic scale. It was pioneered by Yves 

Couder and Emmanuel Fort at the University 

of Paris, and it offers a unique way to explore 

the relationship between classical mechanics 

and quantum mechanics. 

 
In the experiment, a small droplet of silicone oil 

is placed on the surface of a vibrating bath of the 

same oil. The bath is vertically vibrated at a 

specific frequency, causing waves to form on the 

surface. What's remarkable is that the droplet is 

able to bounce and travel across the surface of 

the vibrating bath, propelled by the interaction of 

its own waves. 

 

The key insight behind this experiment lies in the 

concept of "pilot waves." As the droplet 

bounces on the surface, it generates ripples or 

waves that extend outward from the droplet. 

These waves have a wavelength that is 

determined by the droplet's velocity and the 

frequency of the bath's vibrations. The 

intriguing part is that the droplet appears to be 

guided by its own wave field. The interaction 

between the droplet and its associated wave 

creates a self-sustaining system where the 

droplet's motion is intricately linked to the 

properties of the waves it generates. 

 

The behavior of the bouncing droplet exhibits 

some similarities to quantum mechanics, 

particularly the concept of wave-particle duality. 

Just as in quantum systems, the droplet seems to 

exhibit both particle-like behavior (localized 

bouncing) and wave-like behavior (extended 

wave field) simultaneously. This is a remarkable 

example of classical objects seeming displaying 

quantum-like features. 

 

Researchers have used the bouncing droplet 

experiment to study a variety of phenomena, 

including single and double-slit interference 

patterns. When a barrier with two slits is 

introduced in the path of the bouncing droplet, it 

produces an interference pattern on the other side 

of the barrier, reminiscent of the interference 

patterns seen in quantum systems. This behavior 

provides an insightful perspective on how 

classical systems can exhibit interference 

phenomena.  

 

The Yves Couder bouncing droplet experiment 

has sparked intense debate and discussion in the 

scientific community. Some view it as a 

promising analog for understanding certain 

quantum behaviors, while others emphasize the 

fundamental differences between macroscopic 

classical systems and microscopic quantum 

systems. [5]  

 

Regardless of the ongoing debates, the 

experiment remains a captivating illustration of 

the interconnectedness between classical and 

quantum mechanics, pushing the boundaries of 

our understanding of the nature of reality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



THOUGHT EXPERIMENT 

1. Experiment Name: Temporal Interference 

Probe (TIP) 

2. Objective: 

To investigate the potential existence of 

temporal superposition within the framework 

of Pilot Wave Mechanics. 

3. Setup: 

a. Particle Source: 

Use a source that emits particles according 

to the principles of Pilot Wave Mechanics. 

The source should allow for the creation of 

particles in specific states at different 

temporal instances. 

b. Spatially Separated Detectors:  

Position detectors at different locations in 

space, each equipped with the ability to 

measure the properties of particles. These 

detectors should be spatially separated to 

observe the evolution of the particle’s 

states at distinct positions. 

c. Temporal Control Mechanism: 

Implement a mechanism that controls the 

temporal evolution of the particles. This 

mechanism should allow for the creation 

of particles in superposition across 

different temporal states. 

d. Interference Screen: 

Place a screen with multiple slits between 

the particle source and its detectors. The 

interference pattern on the screen can 

reveal information about the temporal 

aspects of the particle’s states. 

4. Procedure: 

i. Temporal Superposition 

Initialization: 

Use the temporal control mechanism to 

initialize particles in a superposition of 

different temporal states.  

This involves creating particles with 

specific properties at different moments in 

time. 

ii. Particle Propagation: 

Allow particles to propagate toward the 

interference screen and detectors.  

 

The particles are in superposition across 

various temporal states, and their evolution 

should lead to a distinctive interference 

pattern. 

iii. Interference Pattern Analysis: 

Examine the interference pattern on the 

screen. The pattern’s temporal structure 

should provide insights into how the 

particle evolve over time. Differences in 

the interference pattern compared to 

traditional non-temporal superposition 

experiments could indicate the influence of 

temporal superposition. 

iv. Detector Measurement: 

Simultaneously, detectors at different 

spatial locations measure the properties of 

the particles as they pass through. The 

measurements at each detector should 

reflect the temporal superposition, 

potentially showing variations in the 

observed properties over time.  

5. Expected Outcomes: 

i. Temporal Interference Pattern: 

If temporal superposition exists, the 

interference pattern on the screen should 

exhibit a temporal structure, indicating the 

simultaneous presence of particles in 

different temporal states. 

ii. Spatial-Temporal correlations: 

Measurements at the spatially separated 

detectors should reveal correlations 

between the spatial and temporal aspects 

of the particle’s properties, consistent with 

the predictions of Pilot Wave Mechanics. 

6. Considerations: 

i. Control Experiments: 

Include control experiments where temporal 

superposition is absent to distinguish the 

effects specifically associated with temporal 

aspects. 

ii. Quantum Coherence Verification: 

Develop methods to verify the quantum 

coherence of particles across different 

temporal states during the experiment.   



DEFINITION AND SOLUTION OF THE 

SPACE-TIME SINGULARITY. 

Definition 
The space-time singularity as defined by the 
Schwarzschild metric occurs when the physical 
radius (𝑟) is set to zero. It is mathematically 
illustrated below: 

𝑅𝑠 =
2𝐺𝑀

𝑐2
 

𝑑𝑠2 = −(1 −
𝑅𝑠

𝑟
) 𝑐2𝑑𝑡2 +

1

(1 −
𝑅𝑠

𝑟 )
𝑑𝑟2 + 𝑟2(𝑑𝜃2

+ sin2 𝜃 𝑑𝜙2) 
𝑖𝑓 𝑟 = 0; 

𝑑𝑠2 = −(∞)𝑐2𝑑𝑡2 +
1

(∞)
𝑑𝑟2 

This is what is termed as a space-time 
singularity, a point in space-time in which 
gravitational forces cause matter to have an 
infinite density. 
Solution 
The space-time singularity problem can be 
solved using the Pilot Wave Field Metric. It is 
mathematically illustrated below; 

𝑑𝑠2 = −(1 −
1

𝑛𝑐2
(
𝑟ℏ2𝑘3

𝑚2𝜃
)) 𝑐2𝑑𝑡2

+
1

(1 −
1

𝑛𝑐2 (
𝑟ℏ2𝑘3

𝑚2𝜃
))

𝑑𝑟2 + 𝑟2(𝑑𝜃2

+ sin2 𝜃 𝑑𝜙2) 

𝑖𝑓 𝑟 = 0; 

𝑑𝑠2 = −(1 −
1

𝑛𝑐2
(0)) 𝑐2𝑑𝑡2 +

1

(1 −
1

𝑛𝑐2 (0))

𝑑𝑟2 

 

𝑑𝑠2 = −(1 − (0))𝑐2𝑑𝑡2 +
1

(1 − (0))
𝑑𝑟2 

 

𝑑𝑠2 = −(1)𝑐2𝑑𝑡2 +
1

(1)
𝑑𝑟2 

 

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑑𝑟2 

 
The above calculation informs us that 
information about what goes on inside a black 
hole and what went on at the period of the 
creation of the universe (Big Bang) can be 
perfectly modelled using the Pilot Wave Field 
Metric. 
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