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ABSTRACT 

 

This article is the fifth part of a scientific project under the general title "Geometrized vacuum physics based on the Algebra 

of Signatures". In this article, Einstein's vacuum equations are used as conservation laws, and their solutions as metric-dy-

namic models of stable vacuum formations. Sets of metrics-solutions of vacuum equations are considered, and methods of 

extracting information from these metrics based on Algebra of Signature are proposed. For convenience of perception of intra-

vacuum processes, a change in the interpretation of the zero components of the metric tensor was used. Instead of curved 

space-time continua, “colored” elastoplastic continuous pseudo-mediums are introduced into consideration. In this case, the 

zero components of the metric tensor determine not the change in the rate of flow of local time, but the speed of flow of intra-

vacuum current in the local region of the elastoplastic pseudo-medium. At the end of the article, an extended (third) Einstein 

vacuum equation is proposed, which allows us to consider metric-dynamic models of a variety of stable corpuscular vacuum 

formations. Alsigna's infinitely deepening intertwined fabric of space-time continuum, taking into account all 16 signatures 

(i.e. 16 types of topologies), is in many ways similar to the spin network of loop quantum gravity and to 6-dimensional Calabi-

Yau manifolds. In this sense, the Algebra of Signatures can serve as a link that unites different directions in the development 

of quantum gravity. 

 

RESUMEN 

 

Este artículo es la quinta parte de un proyecto científico bajo el título general "Física del vacío geometrizada basada en el 

Álgebra de Signatures". En este artículo, las ecuaciones de vacío de Einstein se utilizan como leyes de conservación y sus 

soluciones como modelos métrico-dinámicos de formaciones de vacío estables. Se consideran conjuntos de soluciones métri-

cas de ecuaciones de vacío y se proponen métodos para extraer información de estas métricas basados en el álgebra de firma. 

Para facilitar la percepción de los procesos intra-vacío, se utilizó un cambio en la interpretación de los componentes cero del 

tensor métrico. En lugar de continuos espacio-temporales curvos, se introducen en consideración pseudomedios continuos 

elastoplásticos "coloreados". En este caso, los componentes cero del tensor métrico determinan no el cambio en la velocidad 

del flujo del tiempo local, sino la velocidad del flujo de la corriente intra-vacío en la región local del pseudomedio elasto-

plástico. Al final del artículo, se propone una (tercera) ecuación de vacío de Einstein ampliada, que nos permite considerar 

modelos métrico-dinámicos de una variedad de formaciones de vacío corpusculares estables. El tejido entrelazado infini-

tamente cada vez más profundo de Alsigna del continuo espacio-tiempo, teniendo en cuenta las 16 firmas (es decir, 16 tipos 

de topologías), es en muchos aspectos similar a la red de espín de la gravedad cuántica de bucles y a las variedades de Calabi-

Yau de 6 dimensiones. En este sentido, el Álgebra de Signatures puede servir como vínculo que une diferentes direcciones en 

el desarrollo de la gravedad cuántica. 
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BACKGROUND AND INTRODUCTION 
 

"The best things in the world are not things" 

Paraphrasing Art Buchwald 

 

This work is the fifth in a series of articles under the general title “Geometrized vacuum physics based on the Algebra of 

Signatures.” The purpose of this project is to study the properties of emptiness (i.e. “vacuum”). In this regard, in the previous 

four articles of this series [1, 2, 3, 4], a method was proposed for deep probing of the “vacuum” by illuminating it with 

mutually perpendicular monochromatic rays of light with wavelengths m,n from all wave subranges Δ =10m – 10n  cm, where 

n = m + 1 (see §§ 1 – 2 in [1]). 

 

As a result, the deep probing method made it possible to represent emptiness (i.e., “vacuum”) as an infinite sequence of                     

m,n-vacuum nested within each other (i.e., light 3Dm,n-landscapes, see Figures 2 and 4 in [1]). Based on this method, a math-

ematical apparatus was developed under the general name “Algebra of Signatur” (abbreviated “Alsigna”), suitable for de-

scribing the properties not only of “vacuum”, but of any other continuous medium, if these media are probed not with light 

rays, but, for example, rays of sound waves. 

 

In particular, in [1, 2, 3, 4] the following were stated: 

- basics of the Algebra of Stignatures (for a set of 4-dimensional affine, i.e. vector, spaces); 

- basics of the Algebra of Signatures (for a set of 4-dimensional metric spaces); 

- basics of spectral-signature analysis; 

- some aspects of kinematics and dynamics of m,n-vacuum layers. 

 

Each of these areas of research requires further development, but this article takes the next step in the direction of developing 

Alsigna’s mathematical apparatus, in particular, the possibility of a geometrized description of stable vacuum formations is 

considered. These are, such curved areas of “vacuum” that do not change over time. 

 

In this article we will use the simplest version of differential geometry, with simplifications corresponding to Riemannian 

geometry (see Figure 1a or Figure 4 in [4]). We will call this type of simplification the Riemannian approximation. 

 

               
                                                               a)                                                                                        b)                                                                                   

 

Fig. 1: (repetition of Fig. 4 in [4])  a) In Riemannian geometry, the transferring of the vector ds(a) from point p1 of a curved space to the 

nearby point p2 of the same space is carried out along a tangent to the geodesic line connecting these points. In this case, only the direction 

of this vector changes, and its magnitude remains unchanged. In this case, when transferring the vector ds(a), the magnitude of the basis 

vectors em
(а) and the angles between them do not change. The curvature of such a space is determined by the change in the direction of the 

vector ds(a) during its parallel translation along an infinitesimal contour; b) In the most complexly distorted space, when transferring the 

vector ds(a) tangent to the geodesic line from point p1 to p2, its direction, magnitude, displacement may change and it may be rotated along 

with twisting geodetic line. In this case, all four parameters of the 4-basis αij
(a), βpm(a), em

(a), dxj(a) can change (see § 1 in [4]). When trans-

ferring the vector ds(a) in such a complexly distorted space, the magnitude of the basis vectors em
(а)  and the angles between them can change, 

and the 4-basis itself as a whole can rotate and shift 



Let us recall that within the framework of Riemannian geometry, when transferring the vector ds(a)  in a curved space along a 

tangent to a geodesic line, only its direction changes (Figure 1a). In this case, the magnitude of the vector ds(a) remains 

unchanged and there is no twisting or rotation. 

 

Despite the fact that simplified differential geometry is called “Bernhard Riemann geometry,” it should be noted that David 

Hilbert made a major contribution to its development and final formulation. In 1895, at the invitation of Felix Klein, 33-year-

old D. Hilbert moved to the University of Göttingen and took the chair that was once occupied by Gauss and Riemann. He 

remained in this position for 35 years, virtually until the end of his life. 

 

The most complex version of differential geometry corresponds to a distorted space, in which the geodesic line between two 

nearby points p1 and p2 of this space is not only curved, but also twisted, deformed (stretched or compressed) and displaced. 

In this case, when transferring the vector ds(a) tangentially to such a geodesic line, it can change: direction, length, 

displacement, it can rotate along with the twisting of the geodesic line (see Figure 1b). We will call this most complex differ-

ential geometry “spacemetry of meta-absolute parallelism” (abbreviated as MAP-spacemetry). 

 

MAP-spacemetry has yet to be developed despite the fact that much has already been done in this direction. For example, the 

following have been developed: Riemann-Cartan-Schouten geometry with torsion, Einstein-Weyl geometry, Weizenbeck-

Vitali-Shipov geometry of absolute parallelism, Newman-Penrose isotropic tetrad method, Rosen bimetric geometry, complex 

Riemannian geometry, Finsler geometry, teleparallel Hornsdesky gravity models, Randall-Sundrum gravity models, loop 

quantum gravity model, Brans-Dicke gravity model, Gauss-Bonet gravity model, conformal gravity, etc.  

 

As will be shown below, the Riemannian approximation (i.e., geometry with simplifications shown in Figure 1a) allows us to 

obtain metric-dynamic models of stable vacuum formations of the corpuscular type. But to describe stable nodal vacuum 

structures Riemannian geometry and Algebra ща Signature are not enough. 

 

Let’s note once again that the purpose of this article is to construct metric-dynamic models of stable vacuum formations, 

based on simplified Riemannian geometry and the Algebra of Signatures (Alsigna), presented in the first articles of the pro-

posed project [1, 2, 3, 4]. 

 

To build models of stable vacuum formations, it is necessary to first formulate conservation laws. To do this, we will use the 

general theory of relativity of A. Einstein, which is based on Riemannian geometry. However, general relativity (GR) is not 

entirely suitable for achieving this goal for a number of reasons listed below. 

 

1] Analysis of contradictions in general relativity 

 

The analysis below of the origin of the basic equation of the general theory of relativity does not pretend to be rigorous and 

is not the result of a scrupulous study of the numerous literatures devoted to this great “monument” of human thought. This 

is only an attempt to reconstruct the sequence of events in order to identify the root of the contradictions in this theory. 

 

Initially, A. Einstein, over the course of 10 – 12 years (from 1906 to 1917), built the general theory of relativity in such a way 

that for a non-relativistic approximation (i.e. for a weak gravitational field and low velocities) it was reduced to Newton's 

theory of gravitation. 

 

In Newtonian mechanics, the potential of the gravitational field φ created by a material body with mass density ρ is described 

by the Poisson equation 

 

Δ𝜙 = 4𝜋𝐺𝜌,                                                                                                                                                                        (1) 

 

where G = 6.674·10– 11 N·m2/kg3 – gravitational constant.       

 

Outside a massive body, Poisson's equation (1) turns into Laplace's equation Δ𝜙 = 0, the solution of which for a spherical 

body with constant mass M has the form         

  



 𝜙 = −𝐺
М

𝑟
,                                                                                                                                                                          (2) 

 

where 𝑟 = √𝑥1
2 + 𝑥2

2 + 𝑥3
2 is the distance from the center of the body to the observation point. 

 

The criterion for the truth of new ideas about the nature of gravity for A. Einstein was the possibility of returning to the 

Poisson equation (1) while simplifying the initial conditions. 

 

In addition to the condition of continuity of theories, A. Einstein was also guided by: the principle of coordinate invariance 

(i.e., the independence of the laws of physics from the choice of coordinate system), the principle of general covariance (i.e., 

the statement that equations describing physical phenomena in different coordinate systems and systems reference systems 

must have the same form. In particular, the equations must be invariant with respect to Lorentz transformations). A. Einstein 

also relied on the heuristic principle of “equivalence of the forces of gravity and inertia” (i.e. the force of gravitational inter-

action was identified with the force of inertia arising in the accelerated frame of reference). In other words, Einstein compared 

the effects of gravity with the curvature of 4-dimensional space-time. Another important Einsteinian principle is the “inde-

pendence of the speed of light from the reference frame,” which ultimately connected space and time into a single Minkowski 

space-time continuum with the metric ds2 = – с2dt2+dx2+dy2+dz2. At the beginning of his creative career, A. Einstein was 

inspired by the ideas of E. Mach that the characteristics of space and time (in particular, the properties of inertial reference 

systems) are predetermined by the distribution of massive bodies. Einstein also agreed with Mach's criticism of Newtonian 

physics regarding absolute space, absolute motion and absolute mass, from which it followed that all equations of physics 

should include only relative quantities, for example, relative distances, relative velocities and relative inertia. But subse-

quently, the long-range action of Newton’s gravity (which E. Mach adhered to) came into conflict with the limit of the speed 

of light, and the conditions for the formation of inertial forces with the principle of equivalence. Therefore, within the frame-

work of Einstein's special and general theories of relativity, Mach's ideas changed beyond recognition. 

 

In the period 1913 – 1915 Albert Einstein, with the assistance of Marcel Grossmann, took advantage of the achievements of 

Riemannian geometry, generalized to the case of curved 4-dimensional space-time based on the work of Hendrik Lorentz, 

Henri Poincaré and Hermann Minkowski. Einstein, together with Adrian Fokker, was also influenced by Gunnar Nordström's 

nonlinear theory of gravity. 

 

As a result, in the middle of 1915, Einstein wrote down the generally covariant equation [5] 

 

√−𝑔𝑅𝑖𝑘 = − 𝜘 (𝑇𝑖𝑘 −
1

2
𝑔𝑖𝑘Т),                                                                                                                                           (3) 

 

where 𝑔ik are the components of the metric tensor of a curved 4-dimensional space with the metric ds2 = 𝑔ik dxidxk; 

𝑔 = |𝑔𝑖𝑘|  | is the determinant of the matrix 𝑔ik.                                                                                                                  (4) 

ϰ – proportionality coefficient; 

𝑅𝑖𝑘 =
𝜕Г𝑖𝑘

𝑙

𝜕𝑥𝑙
−

𝜕Г𝑖𝑙
𝑙

𝜕𝑥𝑘
+ Г𝑖𝑘

𝑙 Г𝑙𝑚
𝑚 − Г𝑖𝑙

𝑚Г𝑚𝑘
𝑙  is Ricci tensor;                                                                                                          (5) 

Г𝑖𝑘
𝜆 =

1

2
𝑔𝜆𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘
−

𝜕𝑔𝑖𝑘

𝜕𝑥𝜇
) are Christoffel symbols;                                                                                                 (6) 

𝑇𝑖𝑘  is energy-momentum density tensor of a material object; 

T  is trace of the energy-momentum density tensor, 𝑇 = 𝑔𝑖𝑘𝑇𝑖𝑘 .     

 

It is very difficult to understand the incredibly intense thought process of A. Einstein, but, apparently, he equated the fully 

geometrized Ricci tensor 𝑅𝑖𝑘 with the material tensor 𝑇𝑖𝑘 −
1

2
𝑔𝑖𝑘Т  because in curved space the covariant derivatives of all 

these tensors are equal to zero  

∇𝑗𝑅𝑖𝑘 = 0,     ∇𝑗(𝑇𝑖𝑘 −
1

2
𝑇𝑔𝑖𝑘) = 0,    ∇𝑗𝑇𝑖𝑘 = 0,     ∇𝑗𝑔𝑖𝑘 = 0,                                                                                       (7) 

                                                            

David Hilbert showed the mathematical incorrectness of Eq. (3).   

 



D. Hilbert in 1915 was in close correspondence with A. Einstein and he, apparently, saw Eq. (3) with a trace term on the right 

side [6]. The presence of the trace term 
1

2
𝑇𝑔𝑖𝑘 in Eq. (3) could serve as a guide for Hilbert in his search for the correct solution. 

 

In the 1915 paper [7], D. Hilbert calculated the variation of the integral   

 

𝛿 ∫𝑅√−𝑔 𝑑Ω = 𝛿 ∫𝑔𝑖𝑘𝑅𝑖𝑘√−𝑔𝑑Ω,                                                                                                                                (8) 

 

where 𝑅 = 𝑔𝑖𝑘𝑅𝑖𝑘 is scalar curvature;                                                                                                                                (9) 

𝑑Ω = 𝑑𝑡𝑑𝑥𝑑𝑦𝑑𝑧  is element of 4-dimensional volume. 

 

As a result, Hilbert obtained a tensor with a trace term  𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘, the covariant derivative of which is equal to zero [7] 

 

∇𝑗(𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘) = 0.                                                                                                                                                        (10) 

 

Later it turned out that within the framework of Riemannian geometry the second Bianchi identity is proved 

 

∇𝑖𝑅𝑟𝑗𝑘
𝑠 + ∇𝑗𝑅𝑟𝑘𝑖

𝑠 + ∇𝑘𝑅𝑟𝑖𝑗
𝑠 = 0.                                                                                                                                          (11) 

 

With simple transformations and multiplication by the contravariant tensor 𝑔𝑖𝑘 , the Bianchi identity (11) is reduced to                          

Eq. (10). This method of obtaining the Einstein tensor 𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 is called “royal” because of its prostate. However, ac-

cording to many researchers, neither Einstein nor Hilbert knew the Bianchi identities at the time of the creation of the basic 

equation of general relativity. Both geniuses used the calculus of variations. 

 

Some researchers believe that A. Einstein learned about the tensor with a trace term 𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 from the work of D. Hilbert 

[7]. Therefore, he multiplied both sides of Eq. (3) by 𝑔𝑖𝑘  

 

𝑔𝑖𝑘𝑅𝑖𝑘 = − 𝜘𝑔
𝑖𝑘 (𝑇𝑖𝑘 −

1

2
𝑔𝑖𝑘Т),                                                                                                                                        

 

as a result, he got 𝑇 = 𝑅/𝜘, from which the equation easily follows 

 

𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 = 𝜘𝑇𝑖𝑘 .                                                                                                                                                          (12) 

 

From the special theory of relativity A. Einstein knew that the energy-momentum density tensor (or stress–energy tensor) 
can have the form [8] 

 

𝑇𝑖𝑘 = (𝑝 + 𝜌𝑐
2)𝑢𝑖𝑢𝑘 − 𝑝𝑔𝑖𝑘 +

1

4𝜋
(−𝐹𝑖𝑙𝐹𝑘

𝑙 +
1

4
𝑔𝑖𝑘𝐹𝑙𝑚𝐹

𝑙𝑚),                                                                                           (13)    

 

where ρ is the density of matter; с = √ 𝑢0𝑢0 – speed of light; ui – 4-speed of matter movement; р – pressure, Fil – electric 

field.        

 

For dusty stationary and uncharged matter (i.e., at р = 0,  ux = uy = uz = 0  and  Fil = 0), only one component of the energy-

momentum tensor (13) is not equal to zero T00 = ρc2 [8].                                                    

 

Therefore, at low speeds compared to the speed of light and in the approximation of a weak gravitational field, i.e.                          

𝑔00 ≈ 1 + 2𝜙/𝑐
2, Eq. (12) reduces to Poisson’s equation (1) if the proportionality coefficient is 

 

𝜘 = 8πG/c4 ≈ 2,07665‧10–43 N–1 

 



In fact, a methodological substitution occurred in this task. It is clear that Einstein was solving a colossally complex problem, 

and it was important for him that in the non-relativistic (Newtonian) limit, Eq. (12) was reduced to the Poisson equation (1). 

But this happened due to intricate manipulation of relativistic mass. As a result, a fitting parameter arose, the famous               E 

= mc2, which was substituted into the classical non-relativistic Lagrangian 

 

𝐿 = −𝑚𝑐2 +
𝑚𝑣2

2
−𝑚𝜑.  

 

The constant value mc2 in the Lagrangian does not affect the equation of motion of a material object, but if this enormous energy of a body 

at rest (included in the consideration beyond any common sense) is removed from this Lagrangian, then the Poisson equation (1) from the 

Einstein-Hilbert equations (12) at low speeds and a weak field it will not work. That is, without a purely relativistic correction mc2, no non-

relativistic classical limit can be obtained from the general relativity equations – this is a paradox in itself. 

 

As a result, this adjustment led to an incorrect result. If the solution (2) 𝜙 = −𝐺𝑀/𝑟) to substitute into the metric with a zero 

component 𝑔00 ≈ 1 + 2𝜙/𝑐
2 

 

𝑑𝑠2 ≈  (1 +
2𝜙

с2
 ) с2𝑑𝑡2 − 𝑑𝑟2 ≈  (1 −

2𝐺М

с2
 
1

𝑟
) с2𝑑𝑡2 − 𝑑𝑟2                                                                                                                                         

 

then this metric will not be a solution to Eq. (12) with T00 = ρc2 and  𝑀 = ∫𝜌𝑑𝑉 

 
  𝑅00 −

1

2
𝑅𝑔00 =

8𝜋𝐺

𝑐4
𝜌с2.                                                                                                                                                  

 

In the best case, this metric is the Schwarzschild solution of the vacuum equation 𝑅𝑖𝑘 = 0. 

 

”Nobody understands quantum mechanics,” – said Richard Feynman, and no one understands the theory of relativity. His-

torians of science say that after the lecture, enthusiastic students said to Arthur Eddington: “You are the second person in 

the world who understands the general relativity!” Eddington responded by asking: –“Who’s first?” 

        

Can this be considered Einstein's mistake? Of course not. Firstly, Einstein was sincere in his calculations, because the result 

obtained convincingly followed from the special theory of relativity. Secondly, he completely repeated the logic of post-New-

tonian physics, because potential (2) was a solution to the equation Δϕ=0. Third, this misconception was historically inevi-

table. At that time, the authority of classical physics was so indisputable that if Newton’s theory of gravity had not followed 

from GTR in the non-relativistic limit, the new theory would not have been accepted. 

 

In this article, “4-dimensional pseudo-metrics” will be called “metrics” for simplicity. 

 

Thus, the coefficient 8πG/c4 on the right side of Eq. (12) was introduced by A. Einstein in order to harmonize the dimensions 

of the two sides of this equation, and so that, under the condition of a weak gravitational field, the Poisson equation (1) would 

follow from Eq. (12). 

 

As a result, by the end of 1915, A. Einstein and D. Hilbert almost simultaneously obtained a general covariant equation 

connecting the metric characteristics of a local region of curved 4-dimensional space with the components of the stress–energy 

tensor of matter 

 

𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 =

8𝜋𝐺

𝑐4
𝑇𝑖𝑘.                                                                                                                                                      (14) 

 

It is forced, by connecting the right side of Eq. (14) with the phenomenological properties of unknown matter (terra incognita), 

A. Einstein introduced several problems into general relativity. 

 

The first problem of general relativity is due to the presence on the right side of Eq. (14) of the substance mass density ρ with 

a voluntaristic dimension kg/m3 and with a dimensional constant G (N·m2/kg3), which in principle cannot be introduced into 

a fully geometrized theory. 

 



Let us recall that kilogram (kg) is a subjective, phenomenological concept. Until May 20, 2019, one kilogram in the SI system 

was understood as the “mass” of a platinum-iridium cylinder with a diameter and height of 39.17 mm (i.e., the international 

prototype of the kilogram), the weight of which corresponds to the weight of a cubic decimeter (liter) of distilled water at a 

temperature of 4 °C and an atmospheric pressure of 101.325 kPa at the latitude of Paris. It is obvious that the kilogram 

dimension is a purely voluntaristic concept and is in no way related to geometry. 

 

The gravitational constant is an extremely small value G = 6.67430(15)⋅10−11 m3·s−2 kg−1, which is determined from the 

average mass density of the Earth. with a large relative error of ~10−4, which has not been reduced for many decades. At the 

same time, the very density of the mass of our planet is determined by indirect (far from obvious) methods. There is also no 

certainty that the gravitational constant G is the same throughout the Universe, and that it does not change over time. 

 

An attempt to substantiate the value of the gravitational constant G was made in the Jordan-Brans-Dicke theory of gravitation 

by introducing a scalar potential φ interacting with the space-time metric. However, within the framework of this theory, G 

is not necessarily constant, but depends on the scalar field 1/G˜φ, which can vary in space and time. Despite the fact that this 

theory of gravity reduces to general relativity in the limiting case, a number of its predictions have not been confirmed in 

practice. In addition, this theory has an additional adjustable coupling parameter ω, which entails replacing one empirical 

constant with another. 

 

The second problem of GR is related to the possibility of violation of the nonlocal laws of conservation. The point is that 

conservation laws must have the form [8] 

 
𝜕𝑇𝑖𝑘

𝜕𝑥𝑗
= 0,                                                                                                                                                                           (15) 

 

whereas in a curved space the covariant derivative is equal to zero 

 

𝛻𝑗𝑇𝑖𝑘 =
𝜕𝑇𝑖𝑘

𝜕𝑥𝑗
− Г𝑖𝑗

𝑙 𝑇𝑙𝑘 − Г𝑘𝑗
𝑙 𝑇𝑖𝑙 = 0,                                                                                                                                  (16) 

 

which differs from the conservation law (15) by the amount −(Г
𝑖𝑗
𝑙 𝑇𝑙𝑘 + Г𝑘𝑗

𝑙 𝑇𝑖𝑙).  

 

Indeed, the integral over a 4-dimensional volume ∫𝑇𝑖𝑘√−𝑔𝑑Ω  is preserved only if the satisfied condition [9]  

 
𝜕√−𝑔𝑇𝑖𝑘

𝜕𝑥𝑗
= 0.                                                                                                                                                                     (17)                                                                            

 

Only for a locally inertial reference frame in which all Christoffel symbols are equal to zero (Г𝑘𝑗
𝑙 = 0), a full-fledged conser-

vation law is obtained ∇𝑗𝑇𝑖𝑘 = 𝜕𝑇𝑖𝑘/𝜕𝑥
𝑗 = 0. 

 

GR apologists associated the violation of nonlocal conservation laws with the fact that the Einstein-Hilbert equation (14) is 

not complete, because it does not include the energy-momentum of the gravitational field tik itself, defined by such a pseudo-

tensor that: 

 
𝜕

𝜕𝑥𝑗
(−𝑔)(𝑇𝑖𝑘 + 𝑡𝑖𝑘) = 0.                                                                                                                                                  (18)      

 

One of the explicit types of pseudo-tensor tik is written in [8]: 

                                                                                                                                                                                          (19) 

𝑡𝑖𝑘 =
𝑐4

16𝜋𝐺
{(2Г𝑙𝑚

𝑛 Г𝑛𝑝
𝑝 − Г𝑙𝑝

𝑛 Г𝑚𝑛
𝑝 − Г𝑙𝑛

𝑛 Г𝑚𝑝
𝑝 )(𝑔𝑖𝑙𝑔𝑘𝑚 − 𝑔𝑖𝑘𝑔𝑙𝑚) + 𝑔𝑖𝑙𝑔𝑚𝑛(Г𝑙𝑝

𝑘 Г𝑚𝑛
𝑝 − Г𝑚𝑛

𝑘 Г𝑙𝑝
𝑝
− Г𝑛𝑝

𝑘 Г𝑙𝑚
𝑝
− Г𝑙𝑚

𝑘 Г𝑛𝑝
𝑝 ) + 

                         +𝑔𝑘𝑙𝑔𝑚𝑛(Г𝑙𝑝
𝑖 Г𝑚𝑛

𝑝 − Г𝑚𝑛
𝑖 Г𝑙𝑝

𝑝
− Г𝑛𝑝

𝑖 Г𝑙𝑚
𝑝
− Г𝑙𝑚

𝑖 Г𝑛𝑝
𝑝 ) + 𝑔𝑙𝑚𝑔𝑛𝑝(Г𝑙𝑛

𝑖 Г𝑚𝑝
𝑘 − Г𝑙𝑚

𝑖 Г𝑛𝑝
𝑘 )}.  

 

However, if the pseudo-tensor tik were included in the right side of Eq. (14), then, according to the logic of general relativity, 

this would mean that the curvature of space would be the source of its own curvature with infinitely complex consequences. 



In addition, it turned out that all types of pseudo-tensors tik are associated with problems such as the “Bauer paradox” [9], 

because all known pseudo-tensors tik turn out to be non-zero even for a flat pseudo-Euclidean space, the metric of which is 

given in curvilinear coordinates. 

 

The problem of violation of the law of conservation of energy in general relativity is also present in another capacity. When 

a body falls into a black hole, its energy tends to infinity even when approaching the gravitational radius. 

 

A. Einstein realized that the right side of Eq. (14) is phenomenological in nature. There is an opinion in scientific circles that 

Einstein called the left side of this equation a “Magnificent Palace” and the right side a “ramshackle hut.” Einstein himself  

and many of his followers repeatedly tried to geometrize the right-hand side of Eq. (14) by complicating the properties of 

space-time, considering, for example, space-time with torsion, or space with five (the theories of Kaluza and Klein) or more 

dimensions. 

 

All these works are associated with the program of “complete geometrization of physics” by William Clifford [10]. A review 

of various attempts to geometrize the right-hand side of the Einstein-Hilbert equation (14) can be found, for example, in [11]. 

 

However, many varieties of geometric-physics face other kinds of difficulties. For example, in non-Riemannian geometries, 

torsion and nonholonomic objects cannot be the reason for the long-term existence of stable vacuum formations, because 

torsion and local spin-torsion manifestations can only describe rotating (vortex-like) regions of vacuum that are soliton in 

nature, i.e. existing only as long as they move at a speed consistent with the “elastic-plastic” properties of vacuum. 

 

The third problem of GR is the following. As noted by V.V. Karbanovsky, due to the symmetry of the tensors 𝑅𝑖𝑘 = 𝑅𝑘𝑖,  
𝑔𝑖𝑘 = 𝑔𝑘𝑖,  𝑇𝑖𝑘 = 𝑇𝑘𝑖  the Einstein-Hilbert differential equations (14) are reduced to a system of ten equations, but variable 

parameters (i.e. unknown quantities) in there are twenty of these equations 

 

(

𝑔00 𝑔10
𝑔01 𝑔11

𝑔20 𝑔30
𝑔21 𝑔31

𝑔02 𝑔12
𝑔03 𝑔13

𝑔22 𝑔32
𝑔23 𝑔33

)   и   (

𝑇00 𝑇10
𝑇01 𝑇11

𝑇20 𝑇30
𝑇21 𝑇31

𝑇02 𝑇12
𝑔03 𝑇13

𝑇22 𝑇32
𝑇23 𝑇33

).                                                                                                  (20) 

 

Therefore, it is almost impossible to solve these equations without additional conditions and irremovable uncertainties. 

 

For example, let us consider the Friedmann-Lemaitre-Robertson-Walker metric (FLRW-metric), which is largely fundamental 

in modern astrophysics. 

 

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑎(𝑡)2 (
𝑑𝑟2

1−𝑘𝑟2
+ 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2),                                                                                               (21) 

 

where 𝑘 = 0, 1, −1; 

a(t) – “scale factor”, intended for transition to the accompanying reference frame, depends on time t, which flows equally at 

all points of a homogeneous and isotropic universe, which has the properties of an “ideal fluid” with the same average mass 

density ρ and pressure p everywhere. 

 

The stress-energy tensor at each point of such an “ideal fluid”: 

 

𝑇𝑖
𝑘 = (

𝜌𝑐2 0 0 0
0 −𝑝 0 0
0 0 −𝑝 0
0 0 0 −𝑝

).                                                                                                                                         (22)  

 

The FLRW-metric (21) is not a solution to the Einstein-Hilbert equation (14) in the classical sense of the word “solution”. In 

fact, this metric is first constructed from the assumption that each local region of 4-dimensional space is a 3-pseudosphere 

with a radius a(t) depending on time. The equation of such a local 3-pseudosphere has the form 

 



−𝑑𝑥2
2 + 𝑑𝑥1

2 + 𝑑𝑥2
2 + 𝑑𝑥3

2 = 𝑘𝑎(𝑡)2,                                                                                                                              (23)                            

where  𝑘 = 0, 1, −1.      
 

Mathematical transformations of the 3-pseudosphere equation (23) lead to metric (21). 

  

Next, in order to find out how the volume of each 3-pseudosphere with radius a(t) can change within the framework of general 

relativity, the components of the metric (21) are substituted into the Christoffel symbols Г𝑖𝑘
𝜆  (6). In turn, the values of the 

calculated symbols Г𝑖𝑘
𝜆  are substituted into the Ricci tensor (5), and the resulting components of the Ritchie tensor are substi-

tuted into the Einstein-Hilbert equation (14). The result is a system of Friedmann equations 

 

{
 
 

 
 (

�̇�

𝑎
)
2
+
𝑘𝑐2

𝑎2
=

8𝜋𝐺

3
𝜌,             

2
�̈�

𝑎
+ (

�̇�

𝑎
)
2
+
𝑘𝑐2

𝑎2
= −

8𝜋𝐺

𝑐2
𝑝,

𝜌 = 𝑓(𝑝),                                

                                                                                                                          (24)         

 

where �̇�, �̈� – are the first and second derivatives of the scale factor a(t); 

 

Eq. (14), and the Friedman equations (24) following from it, did not allow the possibility of describing a stationary Universe. 

Therefore, A. Einstein in 1917 took advantage of the property of covariant derivatives (7), in particular ∇𝑗𝑔𝑖𝑘 = 0, and in 

article [12] he wrote down an expression with the lambda term Λ, which transforms into the formula 

                                         

𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 − 𝛬𝑔𝑖𝑘 =

8𝜋𝐺

𝑐2
𝑇𝑖𝑘 ,                                                                                                                                         (25)      

 

where Λ is a constant called the “cosmological constant”. 

 

When substituting the components of the metric tensor from the FLRW-metric (21) into Eq. (25), we obtain a system of 

Friedman equations with a lambda term 

 

{
 
 

 
 (

�̇�
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8𝜋𝐺
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𝑎
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�̇�

𝑎
)
2
+
𝑘𝑐2

𝑎2
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8𝜋𝐺

𝑐2
𝑝,

𝜌 = 𝑓(𝑝).                                             

                                                                                                               (26)    

 

Since systems (24) or (26) have two equations, and in the first case there are three unknowns: 𝑎(𝑡), 𝜌 and  𝑝 in the second 

case there are four unknowns (𝑡), 𝜌, 𝑝 and Λ . Therefore, it is necessary to add additional equations, such as 𝜌 = 𝑓(𝑝) or                  

𝑝 = 𝑓(𝜌,Λ), which are called “state equations”. There can be an infinite number of such equations of state, entered “by hand”. 

It should also be taken into account that k can take any of three values 0,1, −1. In addition, when solving differential Eqs.(24), 

integration constants arise, which are also eliminated voluntarily, because the boundary conditions in these problems are often 

undefined. 

 

The main problem, however, is that solutions to the Friedmann equations (26) in the presence of an additional equation of 

state 𝜌 = 𝑓(𝑝)  will not be solutions to the Einstein equation (25). This “hand-introduced” voluntaristic function changes the 

results of solving differential equations. The Friedmann system of equations (26) and the Einstein equation (25) completely 

coincide only in one case, if  𝜌 = 0 and  𝑝 = 0,  i.e. if Т𝑖𝑘 = 0. 

 

The fourth problem of GR is that the equality sign between the space curvature tensor 𝐺𝑖𝑘 = 𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘  and the stress-

energy tensor of matter Т𝑖𝑘 suggests the possibility of formulating as a direct problem (i.e. determining the curved state of the 

space-time continuum with a known distribution and movement of matter), and the inverse problem (i.e., determining the 

distribution and movement of matter with a known curvature of the space-time continuum). Such a closed interdependence in 



the case of strong curvature of 4-space and high energy density of matter leads to insoluble uncertainties and contradictions. 

In other words, Eq. (14) and Eq. (25) are partly suitable only for the case of weak gravity and low energy density of matter. 

The 1983 Nobel Prize winner Subrahmanyan Chandrasekhar in [35] writes not about trust, but about faith in GR: “For the 

last twenty years, great efforts have been aimed at testing the lower orders of approximation of general relativity and Newto-

nian theory. These efforts were crowned with success, and the predictions of general relativity related to the change in the 

flow of time at points with different gravity, to the deflection of light rays expected when crossing the gravitational field and 

to the precession of Keplerian orbits and, finally, to the slowing down of the orbital period of binary stars in eccentric orbits, 

due to gravitational radiation, everything was confirmed within the limits of observation and measurement errors. But all 

these differences of GR in relation to the consequences of Newtonian physics amounted to several parts in a million. However, 

within the limits of a strong gravitational field, general relativity has not yet received unambiguous confirmation... Why then 

do we believe this theory? … our trust follows from the beauty of the mathematical description of nature that GR provides.” 

Classical mechanics earned the trust of scientists and engineers after the work of Newton, Euler, and Laplace, showing its 

effectiveness in a variety of applications. In relation to GR, Chandrasekhar speaks only about faith [25]. L. Brillouin in [36] 

also expressed solidarity with this opinion: “The general theory of relativity is an example of a magnificent mathematical 

theory built on sand.” 

 

The fifth problem of GR is the amazing uselessness of the Einstein-Hilbert equation (14) with the right-hand side not equal 

to zero (Т𝑖𝑘 ≠ 0) and with the dimensional proportionality coefficient ϰ. This greatest crown of human thought turned out to 

be practically useless. 

 

Firstly, the possibility of applying Eq. (14) is strongly limited by the extremely small value of the Einstein constant                                        

𝜘 = 8πG/c4 ≈ 2,07665‧10–43 s2/(kg‧m) = N–1, since in this case the curvature of space begins barely manifest in the presence of 

enormous energy densities. 

 

Secondly, only the vacuum equations 𝑅𝑖𝑘 = 0  and  𝑅𝑖𝑘 + Λ𝑔𝑖𝑘 = 0  for  Т𝑖𝑘 = 0 can be strictly solved. The presence of 

matter parameters in solutions of vacuum equations is always ephemeral, i.e. they are introduced by "hands" in the form of 

fitting parameters or material equations of a phenomenological nature. This is the case when determining the additional peri-

helion shift of Mercury's orbit, and when estimating the deflection of a ray of light in the gravitational field of the Sun and 

when solving Friedman's equations. In the first two cases, the Schwarzschild metric is used (i.e. solution of the vacuum 

equation), describing the curvature of an empty space-time continuum, and the mass of the Sun is inserted into this metric 

"manually" as a correction factor. 

 

On the contrary, Einstein's vacuum equations do not have dimensional constants on the right side, so they find many applica-

tions in various branches of knowledge. For example, A. Einstein himself and his student Nathan Rosen in 1935 proposed to 

consider an electron as a merger of two pico-scopic “black holes”, which are described by stitching together two Schwarz-

schild metrics. This idea turned out to be untenable, but the Einstein-Rosen “bridges” (i.e., “wormholes”) still remain the 

focus of attention of scientists, because they open up the possibility of interstellar and intergalactic travel, as well as time 

travel, as suggested by the groups of Kip Thorne and Igor Novikov [25]. 

 

In addition, “strong gravity” was developed in the works of several theorists, including Abdus Salam and Erasmo Recami 

[13,14,15,16,17,18,19,20]. This line of research emerged in the 1960s as an alternative to quantum chromodynamics (QCD). 

The hypothesis of the existence of “strong gravity” led to an attempt to explain the problem of quark confinement using the 

“hadron bag” model (i.e., the de Sitter microverse). In this case, the hadron radius was determined by the micro-cosmological 

constant. 

 

Also, under the assumption of the presence of strong gravitational interaction, analogies between hadrons and black holes of 

the Kerr-Newman type are described. This approach also did not lead to positive results, but in string theory there is a close 

connection between gauge forces and the geometry of spacetime. In some cases, string theorists recognize important analogies 

between theories based on Einstein's general theory of relativity and Yang-Mills gauge theory (in particular, quantum chro-

modynamics (QCD) and the theory of electroweak interactions by S. Glashow, S. Weinber and A. Salam) [11]. 

 

There are studies that show that with simplifications corresponding to Riemann geometry, the nonlinear equations of the 

Yang-Mills theory are reduced to the form of Einstein’s vacuum equations [21]. 



 

Other applications of Einstein's vacuum equations are the description of gravitational lenses and gravitational waves, for 

which the LIGO and VIRGO collaborations were awarded the Nobel Prize in Physics in 2017. 

 

The sixth problem of GTR is the presence of singularities (i.e., tendencies to infinity) in solutions to the Einstein-Hilbert 

equation (14) (more precisely, in solutions to Friedmann equations (24) and (26)). The same problem remains in solutions of 

Einstein's vacuum equations. When the Schwarzschild metric was published, the scientific community (starting, apparently, 

with a discussion in the “Collège de France”, which took place in 1922 with Einstein, Hadamard, Painlevé, Becquerel, Bril-

louin, Cartan, Langevin and others scientists) were very worried about the presence of a singularity in it. Many attempts have 

been made to get rid of this problem by moving to other reference systems, but without success. Gradually they got used to 

singularities, or rather, some of them were hidden in the distant past, some in the distant future, and the rest were drowned in 

the bottomless depths of black holes, hiding behind the “principle of cosmic censorship” of Roger Penrose [22]. Nevertheless, 

the problem remained along with the understanding that the presence of singularities in any theory is a clear indicator of its 

incompleteness. 

 

The seventh problem is related to time loops. Einstein's collaborator at the Institute for Advanced Study, Kurt Gödel in [23] 

obtained an exact solution to Eq. (25), allowing the existence of closed time-like lines. This solution is generated by the stress-

energy tensor Т𝑖𝑘, which is the matter density of uniformly distributed rotating dust particles. Gödel's solution is expressed as 

a metric tensor in the local coordinate system 

 

𝑑𝑠2 = 
1

2𝜔2
(−(𝑐𝑑𝑡 + 𝑒𝑥𝑑𝑧)2 + 𝑑𝑥2 + 𝑑𝑦2 +

1

2
𝑒2𝑥𝑑𝑧2),          

 

where −∞ < 𝑡, 𝑥, 𝑦, 𝑧 < ∞;          

ω is a non-zero real constant representing the angular velocity. 

 

In this case, the principle of causality is violated. If a closed time-like line returns to the same point from which the movement 

was started, then it describes an arrival at the same “time” that has already “been.” Moreover, for the researcher who observed 

this line, time is not zero. Thus, we get a closed chain of causes and effects along this line. 

 

Einstein was alarmed by the presence of this Gödel solution, he noted [24]: – “It would be interesting to find out whether such 

decisions should perhaps be excluded from consideration on the basis of physical considerations.” However, this solution of 

Eq. (25) in itself with a non-zero the stress-energy tensor (Т𝑖𝑘 ≠ 0), leading to a cosmological model of a rotating Universe, 

does not cause rejection. The problem is the many paradoxes associated with the possibility of time travel. We now know 

about Edward Lorenz's “butterfly effect” and understand that the slightest change in the past can completely change the future. 

Hence the hypothesis about the security of chronology, proposed by Stephen Hawking. Let’s note, however, that mental (i.e., 

disembodied, purely observational) presences in the past and future are not prohibited. Paradoxes are associated with the 

transfer into the past of a material body that can change the course of history by a small impact. In other words, if traveling 

to the future or the past is still possible, then most likely without the transfer of matter there, i.e. at Т𝑖𝑘  = 0. 

 

The eighth problem of GR is related to the illusory nature of matter. V. Karbanovsky, referring to Taimuraz Kairov, noted 

that within the framework of Riemannian geometry, by choosing the gauge function ℎ𝑚𝑘𝑙  one can always reset to zero the 

curvature tensor in a local region of curved space [39] 

 

𝑅𝑚𝑘𝑙
𝑖 ℎ𝑚𝑘𝑙  = 0. 

 

That is, in any local region of curved space it is always possible to switch to a tangent coordinate system and ensure that the 

Riemann-Christoffel curvature tensor 𝑅𝑚𝑘𝑙
𝑖 , and therefore the Ritchie tensor 𝑅𝑖𝑘, are equal to zero in this small region. 

 

Let’s recall that the main theorem of Riemannian geometry says: “By definition, every Riemannian space in the infinitesimal 

coincides with Euclidean space up to small 1st order (with respect to differentials) coordinates.” It turned out that between 

the Riemannian space R and the Euclidean space tangent to it in the neighborhood UA of some point A it is possible to establish 

such a correspondence in which both spaces will coincide up to small ones above the 2nd order. To do this, in Riemannian 

space, geodesics are drawn from point A in all directions and each of them in the tangent space EA is compared with a ray of 



the corresponding direction, and then a correspondence between these geodesics and rays is established such that the lengths 

of the arcs of the geodesics and the corresponding rays are equal. In a sufficiently small area of point A, such a correspondence 

will be one-to-one, and this is what we are looking for. Namely: if we introduce Cartesian coordinates x1,..., xn in the tangent 

space and assign their values to the corresponding points of the neighborhood UA, then the following connection will take 

place between the linear elements ds of the Riemannian and ds0 of the Euclidean spaces: 

𝑑𝑠2 − 𝑑𝑠0
2 = 𝑑𝑠0

2 −
1

3
∑ 𝑅𝑚𝑙𝑘𝑖𝑚𝑙𝑘𝑖 (𝑥𝑚 − 𝑥𝐴

𝑚)(𝑥𝑘 − 𝑥𝐴
𝑘)𝑑𝑥𝑙𝑑𝑥𝑖 + ∑ 휀𝑚𝑙𝑘𝑖𝑚𝑙𝑘𝑖 (𝑥𝑚 − 𝑥𝐴

𝑚)(𝑥𝑘 − 𝑥𝐴
𝑘)𝑑𝑥𝑙𝑑𝑥𝑖,                                                                

where mlki → 0  for  хi → хi
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 , i = 1,2,3…n ; 
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is the Riemann-Christoffel tensor, which characterizes the difference between Riemannian space and Euclidean space.  

 

Local zeroing of the Riemann-Christoffel curvature tensor according to the logic of general relativity means that there is no 

matter in this region, and cannot be, because the equations are tensor. Thus, by choosing the gauge function hmkl (or selecting 

a local coordinate system), it is possible to achieve that in the neighborhood of a small region, Eq. (14) is reduced to an 

equation of the form 

 

0 =
8𝜋𝐺

𝑐2
𝑇𝑖𝑘  или  Т𝑖𝑘 = 0. 

 

Thus, the logic of general relativity allows for local zeroing of the energy density (or matter density). At the same time, the 

tensor nature of Eq. (14) suggests that if matter is illusory in one local reference system, then it must be illusory in all other 

reference systems associated with a given local region. 

 

In a dynamic system on extremals, the increment of action is determined by the expression dS = Hdt, however, if the action 

does not change with time variation, the Hamiltonian H must be equal to zero [25]. The equality to zero of the Hamiltonian 

manifests itself in any system that is invariant under a change of time variable. In particular, in the general theory of relativity, 

the principle of general covariance allows any transformation of variables, including time, therefore the energy of any system 

in general relativity is exactly zero [25]. Not only energy as a whole, integrally, but also energy density at any point and at 

any moment in time. This phenomenon is described in detail in the monograph by Misner, Thorne & Wheeler [26]:                          

H(𝑔𝑖𝑘) = 0, i.e. E = 0. 

 

Since in classical physics time is completely defined, energy in the general case is not equal to zero, then general relativity 

with a non-zero material right-hand side cannot, in any limit, pass into classical physics. In classical physics, the development 

of the World takes place in global time and any generalization of classical mechanics must contain this time [25]. 

 

In geometrodynamics, the expanding cosmological model is associated with the density of matter only as a parameter, and in 

general there are solutions without matter (i.e. Т𝑖𝑘 = 0). The rigid link between the density of matter and the rate of expansion, 

described by the Hubble parameter, is the result of the requirement that the total energy of matter and the energy of dynamic 

space be equal to zero. This condition, as is known, is not satisfied 5–25 times. It was to eliminate this enormous contradiction 

between observations and predictions of general relativity that “dark energy” was introduced into consideration [25]. 

 

The ninth problem of “global time” is closely related to the above. The violation of general covariance with the introduction  

of global time associated with any matter (for example, with the ether) is due to the selection of a global reference system. 

The solution to this problem faced the need to select the mechanical properties of the ether so that the laws of interaction of 

bodies and the electromagnetic field with the ether do not depend on the speed of their movement. It turned out that the state 

of rest of the ether cannot be observed [25]. Within the framework of general relativity, at each point of the curved space-time 

continuum, local (proper, or true) time flows in its own way depending on the zero components of the metric tensor                 

𝑑𝜏 = 𝑐−1√𝑔00 𝑑𝑡. Related to this are problems of synchronizing processes in various regions of curved space, as well as 

problems with defining the concept of energy in general relativity, since energy, from the point of view of mathematical 

physics, is a quantity that is conserved due to the homogeneity of time. 



 

At the same time, it is obvious that the consistency of many natural phenomena is subject to the flow of a single global time, 

as is the case in classical post-Newtonian physics and in the ΛCDM standard cosmological model, in which the same global 

time flows throughout the Universe. However, there is no generally accepted answer to the question: “How does local time 

in the gravitational field of stars and planets agree with the universal time of the ΛCDM model?” Cosmologists say that 

galaxies, along with stars, are frozen into space that expands over time. But there is no answer to the question: “How are the 

gravitational fields of planets, stars and galaxies with their local times linked with the expanding interstellar space with global 

time? This is a problem, since metrics can only be correctly stitched together with synchronous time at the point of their 

contact. Despite the fact that many attempts have been made to construct a theory of gravity with violation of general covar-

iance through the introduction of global time, this problem has not been solved to date. 

 

The geometrodynamics of Wheeler, Arnovitt, Deser and Misner [26, 27], without additional conditions for time and without 

the condition that the Hamiltonian is equal to zero, encountered difficulties in that the fundamental static solutions of general 

relativity: the Schwarzschild metric, the Reissner-Nordström metric, the Kerr metric turned out to be not representable in 

dynamic form relative to global space-time [25]. 

 

The tenth problem of GR is related to the quantization of the gravitational field. Due to general covariance, the Hamiltonian 

in general relativity is equal to zero, so quantization turned out to be impossible [25]. An attempt to construct a quantum 

theory of gravity with a zero Hamiltonian led to the development of the theory of loop quantum gravity (LQG theory). This 

theory postulates that the structure of space-time consists of finite loops woven into an extremely thin fabric held together by 

various node connections, which is called a spin network. It is assumed that the cell size of the spin network is of the order of 

the Planck length 

 

𝑙𝑝 = √
ℏ𝐺

𝑐3
≈ 1,6162 × 10−33𝑐𝑚. 

 

One of the key parameters of loop quantum gravity is the quantized area operator A of a two-dimensional surface Σ, which 

has a discrete spectrum. Every spin network is an eigenstate of each such operator, and the area eigenvalue equals  

 

𝐴Σ = 8𝜋 𝑙𝑝
2𝛾∑√𝑗𝑖(𝑗𝑖 + 1)

𝑖

,   

where all intersections i of the surface Σ with the spin network are summed up. In this formula 

γ – Immirzi parameter; 

ji = 0, 1/2, 1, 3/2, ... is the spin associated with the link i of the spin network. The two-dimensional area is therefore "concen-

trated" in the intersections with the spin network. 

 

According to this formula, the smallest possible non-zero eigenvalue of the area operator corresponds to the link that carries 

the representation with spin 1/2. Assuming an Immirzi parameter of order 1, this gives the smallest measurable area of                   

~10–66 cm2. 

 

The main role in quantum gravity is played by the uncertainty principle ∆𝑟𝑔∆𝑟 ≥ 𝑙𝑝
2 (where 𝑟𝑔 is the gravitational radius, r is 

the radial coordinate). From this principle it follows 𝑟𝑔 ≈ 𝑙𝑝
2 𝑟⁄ .  Let’s substitute 𝑟𝑔 into the Schwarzschild metric (i.e. into the 

solution of Einstein’s vacuum equation 𝑅𝑖𝑘 = 0), as a result we obtain 

 

𝑑𝑠2 = (1–
𝑙𝑝
2

𝑟2
 ) с2𝑑𝑡2 −

1

(1 – 
𝑙𝑝
2

𝑟2
)

 𝑑𝑟2 − 𝑟2(𝑑 2 + 𝑠𝑖𝑛2 𝑑 2).                                                                                  

 

This shows that on the scale 𝑟 ≈ 𝑙𝑝 ≈ 10
−33𝑐𝑚 black holes should appear, i.e. spacetime must generate quantum foam from 

real and virtual black holes. 

 



Of course, we are trying here to explain the essence of loop quantum gravity at a primitive level. In reality, theorists are 

attempting to peer into the deep structure of the void by representing the null Hamiltonian of the vacuum (H = 0) through the 

introduction of Asteker variables and combinations of Lagrangian factors (i.e., conserved displaced connections) with the 

SU(2) gauge symmetry group, together with its closed an algebra that transforms into an algebra of Poisson brackets, from 

which follows a closed algebra of quantum operators. The result is a quantum model of empty space with deeply hidden 

divergences. All this complex mathematics complements the standard cosmological model, based on the Friedmann equations, 

only on the scale of Planck lengths (~10−33 cm2) and times (~10−44s), which are characteristic of the beginning of the Big 

Bang, or in the black hole singularity zone. 

 

However, modern technologies make it possible to experimentally test the dimensions of space at least 10−16 − 10−18 cm. 

Therefore, today it is not possible to verify the theoretical predictions of loop quantum gravity. Despite the fact that a large 

number of research groups around the world are developing this theory, they have not yet been able to come close to practically 

significant results. 

 

Even the attempt to quantize Newton's classical theory of gravity encounters numerous difficulties. Quantum gravity turns 

out to be a non-renormalizable theory due to the fact that the gravitational constant is a dimensional quantity. In the system 

of units ℏ = c =1, the gravitational constant G has the dimension of the inverse square of the mass. The situation is aggravated 

by the fact that direct experiments in the field of quantum gravity, due to the weakness of the gravitational interactions them-

selves, are not available to modern technologies.    

 

We note that the Algebra of Signatures described in [1,2,3,4] largely coincides with the mathematical basis of the theory of 

loop quantum gravity and the theory of superstrings, but without restrictions on the size of a section of space and the scale of 

the objects under study.    

 

The eleventh problem is that the GR claims that in the Newtonian limit it goes into classical physics, that is, the principles of 

general relativity should also operate in post-Newtonian mechanics, but the relativity of time is not observed in the non-

relativistic world. 

 

The twelfth, and perhaps the most basic, problem of general relativity is related to the fact that A. Einstein did not explain: 

“How does the mass of a body, its energy of motion and the pressure inside it bend the space-time continuum?” To the 

question: “How does the force of gravity arise around a massive body?” Newton replied: “I do not feign hypotheses.” Einstein 

replaced the effect of gravity with free movement by inertia in a curved space-time continuum, but the question of the mech-

anism for generating this curvature by massive bodies also remained unanswered. 

 

2] Conclusion of the analysis of general relativity problems 

 

The difficulties that researchers encounter when solving Einstein’s equations for Т𝑖𝑘 ≠ 0 are much greater, but the above 

analysis is enough to draw a general conclusion. Almost all problems of general relativity are related to the phenomenological 

right-hand side of Eqs. (14) and (25). 

 

In this regard, in this work we will use only the Einstein vacuum equation 

 

𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 − 𝛬𝑔𝑖𝑘 = 0,                                                                                                                                                  (27) 

 

where Λ can take the values +Λ, –Λ and Λ = 0.                                                                                                               (28) 

 

3] Massless geometrophysics 

 

It is necessary not to lose sight of the situation when Т𝑖𝑘 = 0  (i.e. there is no matter), but the Einstein tensor with the lambda 

term is not equal to zero 

 

𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘±𝛬𝑔𝑖𝑘 = 𝐺𝑖𝑘 ≠ 0.                                                                                                                                         (29) 

 



For this matter-free case, we introduce conventional massless notation: 

 

𝐺𝑖𝑘 = (

𝐺00 𝐺10
𝐺01 𝐺11

𝐺20 𝐺30
𝐺21 𝐺31

𝐺02 𝐺12
𝐺03 𝐺13

𝐺22 𝐺32
𝐺23 𝐺33

) =

(

 
 

𝑊𝑡𝑡 с𝑆𝑥𝑡
1

с⁄ 𝑆𝑡𝑥 𝜎𝑥𝑥

с𝑆𝑦𝑡 с𝑆𝑧𝑡
𝜎𝑦𝑥 𝜎𝑧𝑥

1
с⁄ 𝑆𝑡𝑦 𝜎𝑥𝑦

1
с⁄ 𝑆𝑡𝑧 𝜎𝑥𝑧

𝜎𝑦𝑦 𝜎𝑧𝑦
𝜎𝑦𝑧 𝜎𝑧𝑧

)

 
 
,                                                                                (30) 

where 

𝐺00 = 𝑊𝑡𝑡                                                             is temporary tension; 

𝐺10 = с𝑆10,  𝐺20 = с𝑆20, 𝐺30 = с𝑆30                   is components of the velocity tension density vector; 

 

𝐺01 =
1

с⁄ 𝑆01,   𝐺02 =
1

с⁄ 𝑆02, 𝐺03 =
1

с⁄ 𝑆03     is components of the flux tension density vector; 

 

𝐺𝛼𝛽 = (

𝐺11 𝐺21 𝐺31
𝐺12 𝐺22 𝐺32
𝐺13 𝐺23 𝐺33

) = (

𝜎11 𝜎21 𝜎31
𝜎12 𝜎22 𝜎32
𝜎13 𝜎23 𝜎33

)  is components 3-dimensional spatial tension tensor.  

 

In this case, the massless tensor 𝐺𝑖𝑘 ≠ 0 will be called the 4-tension tensor. 

 

Note that the rotational degrees of freedom, in particular the components of the torque density vector, are not taken into 

account in tensor (30). This is the result of simplifications related to the Riemannian approximation. 

 

Eq. (29) cannot describe stable vacuum formations, since it is impossible to integrate the non-zero tensor field (30) in a curved 

Riemannian space to ultimately obtain tensor results, because in the general case, similar to Eq. (16) 

 

∇𝑗𝐺𝑖𝑘 =
𝜕𝐺𝑖𝑘

𝜕𝑥𝑗
− Г𝑖𝑗

𝑙 𝐺𝑙𝑘 − Г𝑘𝑗
𝑙 𝐺𝑖𝑙 ≠

𝜕𝐺𝑖𝑘

𝜕𝑥𝑗
.                                                                                                                             (31) 

 

Therefore, conservation laws do not work. This means that just by changing the reference system, you can change the energy 

of the metric-dynamic system and regulate the algorithm for the flow of intra-vacuum processes. For classical physics this 

sounds categorically unacceptable, but for psychophysics it is a typical phenomenon. For example, if in your mind you men-

tally form an image of delicious food, then this may be accompanied by real salivation, and a pleasant memory can increase 

or decrease blood pressure, etc. 

 

Mentally command your hand to rise, and it will rise. Thought is not material, but it forces matter to do work, i.e. brings 

energy into a material system. The opposite effects are also possible, for example, close your eyes and make 10 revolutions 

around your axis in a safe place, open your eyes, and you will see that the reference system associated with your consciousness 

is rotating. These are obvious facts. It is clear that the nervous system transmits a command to contract or relax muscles. But 

it remains a mystery how the nervous system itself receives a command from thought, which can only form illusory images, 

i.e. distort local coordinate systems “frozen” into our consciousness? 

 

Equation (29) may be needed when considering how to introduce additional energy into the system by mentally changing the 

coordinate system and/or reference frame. It is possible that to solve psychomotor problems, Riemannian geometry will not 

be enough, and it will be necessary to obtain MAP-spacemetry equations (Figures 1b and 2b). However, when simplified, 

these equations must still be reduced to the equations of Riemannian geometry. 

 

We demonstrate this using the example of Riemann-Cartan geometry with absolute parallelism. The Riemann-Christoffel 

curvature tensor in this geometry is identically equal to zero [28] 

𝑅𝛽𝜇𝜈
𝛽 (𝑄) = 𝑅𝛽𝜇𝜈

𝛽
+ 𝐾𝛽𝜈;𝜇

𝛼 − 𝐾𝛽𝜇;𝜈
𝛼 + 𝐾𝜇𝜎

𝛼 𝐾𝛽𝜈
𝜎 − 𝐾𝜈𝜎

𝛼 𝐾𝛽𝜇
𝜎 ≡ 0,                                                                                         (32)      

where 

𝑅𝛽𝜇𝜈
𝛽

  is Riemann curvature tensor;  

𝐾𝜇𝜈𝜆 = 𝑄𝜇𝜈𝜆 − 𝑄𝜈𝜆𝜇 + 𝑄𝜆𝜇𝜈  is contortion tensor;                                                                                                           (33)      



𝐾𝜇𝜈
а = 𝑔𝜆а𝐾𝜇𝜈𝜆;                                                                                                                                                                                     

𝑄𝜇𝜈
𝜆 =

1

2
(Г𝜇𝜈

𝜆 − Г𝜈𝜇
𝜆 )  is torsion.                                                                                                                                       (34)      

Identity (32) means that in a geometry with absolute parallelism, the components of the Riemannian curvature tensor 𝑅𝛽𝜇𝜈
𝛽

 

turn out to be completely compensated by torsion. Moreover, in this geometry, based on the variational principle, the Einstein-

Cartan equation is obtained [28] 

 

𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 ± Λ𝑔𝜇𝜈 = 𝑌𝜇𝜈 ,                                                                                                                                           (35)      

      

where 

𝑌𝜇𝜈 = 𝐾𝜇𝐾𝜈 + 𝐾𝜇𝛼𝛽𝐾𝜈
𝛼𝛽
+ 𝐾𝛼𝜇𝛽𝐾𝜈

𝛽𝛼
+ 𝐾𝛼𝛽𝜇𝐾𝜈

𝛼𝛽
−

1

2
𝑔𝜇𝜈(𝐾𝜆𝐾

𝜆 + 𝐾𝜆𝜇𝜈𝐾
𝜆𝜇𝜈)  is Cartan-Schouten tensor;               (36)      

 

𝐾𝜈 = 2𝑄𝜈 = 𝑄𝜈𝜆
𝜆

  
 is the trace of the contortion tensor.                                                                                                  (37)      

                                                                                                               

Eq. (35) looks as if the torsion of space, or rather rotational inertia, is the source of its curvature, or, conversely, the curvature 

of space leads to its torsion. 

 

However, Eq. (31) imposes a restriction on all extensions of Riemannian geometry, including Riemann-Cartan geometry.          

If  𝑌𝜇𝜈 = 𝐺𝜇𝜈 ≠ 0, then according to (31) this formally means that Eq. (35) cannot serve as conservation laws and cannot 

describe a stable vacuum formation. 

 

Therefore, to describe stable vacuum formations, the Einstein-Cartan equation (35) must break down into a system of two 

equations 

 

{
 𝑅𝜇𝜈 −

1

2
𝑅𝑔𝜇𝜈 ± 𝛬𝑔𝜇𝜈 = 0,

 𝑌𝜇𝜈 = 𝐾𝜇𝐾𝜈 + 𝐾𝜇𝛼𝛽𝐾𝜈
𝛼𝛽
+ 𝐾𝛼𝜇𝛽𝐾𝜈

𝛽𝛼
+ 𝐾𝛼𝛽𝜇𝐾𝜈

𝛼𝛽
−

1

2
𝑔𝜇𝜈(𝐾𝜆𝐾

𝜆 + 𝐾𝜆𝜇𝜈𝐾
𝜆𝜇𝜈) = 0.

    

                                             (38)      

 

This does not contradict Eq. (35), since 𝐺𝜇𝜈 = 0 and 𝑌𝜇𝜈 = 0, therefore 𝐺𝜇𝜈 ≡ 𝑌𝜇𝜈 = 0. 

 

It is important to note that in the Riemann-Cartan space, due to the asymmetry of the Christoffel symbols Г𝑖𝑘
𝑚 ≠ Г𝑘𝑖

𝑚 , the                

Ricci tensor also turns out to be asymmetric Rμν ≠ Rνμ. But in the case with Λ = 0 and Yμν = 0, it follows from Eq. (27) that           

Rμν = 0 and Rνμ = 0, so they turn out to be identically equal to 𝑅𝜇𝜈 ≡ 𝑅𝜈𝜇. This corresponds to such types of rotations and 

torsions of the vacuum that do not affect the Ricci tensor Rμν, but they can affect the components of the curvature tensor 𝑅𝛽𝜇𝜈
𝛽

. 

It is similar to the fact that a certain volume of space rotates in relation to an external observer, but those who are inside this 

volume practically do not feel such rotation. For example, being on the surface of the Earth, it is very difficult to f                                                        

eel that it is rotating. However, there are effects that indicate the presence of inertial forces caused by the rotational motion of 

the planet, for example, deviations of the Foucault pendulum, different steepness of the left and right banks of rivers, etc. 

 

At this stage of the study, we are interested in stable vacuum formations, which are a simplified framework (foundation) for 

more subtle metric-dynamic effects, therefore it is important to formulate conservation laws within the framework of Rie-

mannian geometry. Einstein's vacuum equation (27) is suitable for this. 

 

Note that in Einstein’s vacuum equation (27) there are no problems: neither with mass quantities with the heuristic dimension 

of kilogram, nor with the dimensional constant G, nor with conservation laws, since substituting 𝐺𝑖𝑘 = 0  into the left side of 

Eq. (31), we have the coincidence of the covariant and ordinary derivatives 

 

∇𝑗0 =
𝜕0

𝜕𝑥𝑗
− Г𝑖𝑗

𝑙 0 − Г𝑘𝑗
𝑙 0 =

𝜕0

𝜕𝑥𝑗
= 0.                                                                                                                               (39)        

 

Einstein wrote [24]: “The gravitational equation for empty space is the only rationally justified case of field theory that can 

claim rigor.” 



 

MATERIALS AND METHOD 

 

1 Vacuum equations and basic ontological principles 

 

1.1 Equation for constructing a metric-dynamic model of a stable vacuum formation 

 

The goal of “Geometrized Vacuum Physics Based on the Algebra of Signature” is the development of one of the main concepts 

of modern science associated with William Clifford’s “Program for the Complete Geometrization of Physics.” 

 

Another basis of the Algebra of Signature is the assertion that information is a fundamental concept in physics. According to 

John Archibald Wheeler's “It from bit” doctrine, all physical entities have an information basis (see [1], in particular §5). 

 

This article is the beginning of an attempt to create a fully geometrized cosmological model without involving the heuristic 

concept of matter, which has a voluntaristic dimension of the kilogram. 

 

To do this, we first build metric-dynamic models of single stable vacuum formations. 

 

Based on the analysis carried out in the introduction, we use the Einstein vacuum equation (27) for this task, 

 

𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 ± 𝛬𝑔𝑖𝑘 = 0,                                                                                                                                                 (27′) 

 

where  

𝑅𝑖𝑘 =
𝜕Г𝑖𝑘

𝑙

𝜕𝑥𝑙
−

𝜕Г𝑖𝑙
𝑙

𝜕𝑥𝑘
+ Г𝑖𝑘

𝑙 Г𝑙𝑚
𝑚 − Г𝑖𝑙

𝑚Г𝑚𝑘
𝑙   is Ricci tensor;                                                                                                     (5′) 

 

Г𝑖𝑘
𝜆 =

1

2
𝑔𝜆𝜇 (

𝜕𝑔𝜇𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝜇

𝜕𝑥𝑘
−

𝜕𝑔𝑖𝑘

𝜕𝑥𝜇
)   is Christoffel symbols.                                                                                               (6′)          

 

This equation acts as ten conservation laws. 

 

1.2 Einstein's first vacuum equation 

 

Let's consider Eq. (27) for Λ= 0. 

 

𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 = 0.                                                                                                                                                              (40) 

 

Multiplying both sides of this equation by 𝑔𝑖𝑘, we obtain [8] 

 

𝑔𝑖𝑘 (𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘) = 𝑅 −

𝑛

2
𝑅 = 0,                                                                                                                                  (41) 

 

since 𝑔𝑖𝑘𝑔𝑖𝑘 = 𝑛 is the number of dimensions of space. 

 

For any n-dimensional space (except n = 2), Eq. (41) can only be satisfied for zero scalar curvature (R = 0). Therefore, for a 

4-dimensional space (i.e. for n = 4), Eq. (40) takes a simplified form [8] 
 

𝑅𝑖𝑘 = 0.                                                                                                                                                                             (42)           

 

The Ricci tensor (42), which is equal to zero, will be called Einstein’s first vacuum equation. 

 

 

 

 



1.3 Einstein's second vacuum equation 

  

If Λ is not zero, then we multiply Eq. (27) by 𝑔𝑖𝑘, as a result we obtain 

 

𝑔𝑖𝑘 (𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 +Λ𝑔𝑖𝑘) = 𝑅 −

𝑛

2
𝑅 ± 𝑛Λ = 0,                                                                                                            (43) 

 

whence follows 

 

𝑅 = ±
2𝑛

𝑛−2
Λ,                                                                                                                                                                      (44)     

 

in this case, Eq. (27) takes the form 

 

𝑅𝑖𝑘 ±
2

𝑛−2
Λ𝑔𝑖𝑘 = 0.                                                                                                                                                           (45) 

 

In the case of a 4-dimensional space: n = 4, R = 4Λ, and Eq. (45) takes on the simplest (i.e. most optimal) form 

 

𝑅𝑖𝑘 ± Λ𝑔𝑖𝑘 = 0.                                                                                                                                                                 (46) 

 

Eq. (46) will be called Einstein's second vacuum equation. 

 

1.4 Geometric meaning of the constant Λ 

 

Willem de Sitter showed in [24] that a 4-dimensional space can be defined as a conic section of a 5-dimensional single-strip 

hyperboloid, defined in a 5-dimensional space by the equation 

 

х0
2 – х1

2 – х2
2 – х3

2 – х4
2 = ± rk

2.                                                                                                                                       (47)  

     

The curvature tensor of such a 4-dimensional space has the form [29, 30] 

 

𝑅𝑚𝑎𝑏
𝑖 = ±

1

𝑟𝑘
2 (𝛿𝑎

𝑖𝑔𝑚𝑏 − 𝛿𝑏
𝑖𝑔𝑚𝑎).                                                                                                                                     (48)           

 

The Ricci tensor in this case is equal to [29] 
 

𝑅𝑖𝑚 = 𝑅𝑖𝑎𝑚
𝑎 = ±

3

𝑟𝑘
2 𝑔𝑖𝑚   or   𝑅𝑖𝑚 ∓

3

𝑟𝑘
2 𝑔𝑖𝑚 = 0.                                                                                                             (49)                 

 

If you enter the designation 

 

Λ𝑘 = ±
3

𝑟𝑘
2 ,                                                                                                                                                                       (50)                    

 

then we get a system of equations 

 

{ 
𝑅𝑖𝑚 + Λ𝑘𝑔𝑖𝑚 = 0,               

𝑅𝑖𝑚 − Λ𝑘𝑔𝑖𝑚 = 0.                                                                                                                                             (51)             

 

which corresponds to Einstein's second vacuum equation (46). But in this case, the geometric meaning of the constant                      

 = ±3/rk
2 = const became clear, where rk is the radius of the 4-dimensional sphere. 

 

Such a 4-sphere has radii along three spatial axes XYZ equal to xk = yk = zk = rk, and along the fourth time axis the radius is 

equal to ctk = rk. 

        



That is, a given radius is associated with a period of time 

 

tk = rk /c.                                                                                                                                                                           (52) 

 

The scalar curvature in this case, according to Eq. (44), has the form                                                                                                                                                                                             

                                                                                                                                                                                               

𝑅 = 𝑔𝑖𝑚𝑅𝑖𝑚 = 4Λ𝑘 = ±
12

𝑟𝑘
2 .                                                                                                                                           (53) 

 

The scalar curvature turned out to be proportional to the 12 signs of the Zodiac (i.e., the 12 sectors of the zodiac belt). Zodiac 

(from the Greek ζῷον – “living being”). 

 

1.5 Epistemological and ontological principles 

 

Einstein included several important ideas in Eq. (27) in the form of fundamental epistemological principles: 

1) The principle of general covariance (i.e., the independence of the form of the equation and invariants from the choice of 

coordinate system or reference system; in essence, the tensor nature of the equations); 

2) The principle of coordinate invariance (i.e., the independence of the laws of physics from the choice of coordinate system); 

3) The principle of equivalence (i.e. local curvatures, movements and accelerations are put in correspondence with local 

reference systems). The concept of “influence of force” has been replaced by inertial movement in curved space-time; 

4) The principle of independence of the speed of light from the reference system (i.e., the unification of space and time into a 

single space-time continuum with a metric of the form ds2 = – с2dt2 + dx2 +dy2+ dz2 = 0); 

5) The principle of causality (i.e. any event can have a causal impact only on those events that occur later than it, i.e. inside a 

circle with a radius of no more than l = сdt, where dt is the time interval between events); 

6) The principle of extremum of action (i.e. the geodesic lines of a curved 4-dimensional space are extremal). 

7) The principle of symmetry (i.e., the conditions of non-variability, from which conservation laws follow). 

8) The principle of relativity (i.e., the equations include only relative quantities, including time). 

 

Thus, Einstein’s vacuum equation (27) turned out to be the quintessence of the entire empirical-epistemological heritage 

acquired by science by the beginning of the 20th century, i.e. by the time of the creation of GR. 

 

However, these epistemological principles are not enough to use vacuum equations (27), (42) and (46) to construct metric-

dynamic models of stable vacuum formations. Therefore, we will formulate three more fundamental ontological principles of 

the Algebra of Signatures, which are taken from empirically verified philosophical and religious sources. 

 

1] Principle of “Absolute Absence”: – “Everything that can appear from emptiness appears in mutually opposite form, so that 

on average the emptiness remains empty.” From the principle of “Absolute absence” follows the condition of “vacuum bal-

ance”, which was used in all previous articles of the proposed project [1,2,3,4]. 

 

2] The principle of “Fair distribution”: – “If something can be realized with a certain probability, then it is necessarily realized 

in a proportion tending to this probability.” From the principle of “Fair distribution”, in particular, it follows that all possible 

solutions to the vacuum equation must be taken into account with the appropriate probability. 

 

3] The principle of “Absence of the finite”: – “Continuum INFINITY cannot generate the finite, but from the Continuum it is 

permissible to generate a discrete closed Infinity.” From this principle it follows that all metric-dynamic models of stable 

vacuum formations must be discrete-infinite. 

 

The following question remains open: – “If 𝑇𝑖𝑘 = 0  (i.e. if on the right side of the Einstein-Hilbert equations (14) there are 

no: density of matter, its motion, pressure and electromagnetic field), then what fills the Universe, and what is source of 

curvature of the space-time continuum? The answer to this question will be gradually formed below, but now we can answer: 

“According to the Algebra of Signatures, this world consists of many stable corpuscular vacuum formations of various scales.” 

At the end of this article, Einstein's third vacuum equation is proposed, with the help of which in subsequent articles the 

corpuscular cosmological model will be presented and answers to many other questions of modern physics will be given. 

1.6 Effect of the principles of “Absolute absence” and “Fair distribution” 



 

Let us demonstrate the effect of the principles of “Absolute Absence” and “Fair Distribution” using the example of the Fried-

mann-Lemaître-Robertson-Walker metric (FLRW-metric) (21). There are four main (non-trivial and non-exotic) cases possi-

ble at 𝑘 = 1 and  𝑘 = −1 with signatures (+ − − −)  and (− + + +)   
 

𝑑𝑠𝐹𝐿𝑅𝑊1
(+)2

= 𝑐2𝑑𝑡2 − 𝑒− 
2𝑐𝑡 

 𝑟 (
𝑑𝑟2

1−𝑟2
+ 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2),                                                                                        (54)                                                      

𝑑𝑠𝐹𝐿𝑅𝑊2
(+)2

= 𝑐2𝑑𝑡2 − 𝑒  
2𝑐𝑡 

 𝑟 (
𝑑𝑟2

1+𝑟2
+ 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2),                                                                                           (55) 

𝑑𝑠𝐹𝐿𝑅𝑊1
(−)2

= −𝑐2𝑑𝑡2 + 𝑒− 
2𝑐𝑡 

 𝑟 (
𝑑𝑟2

1−𝑟2
+ 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2),                                                                                      (56)       

𝑑𝑠𝐹𝐿𝑅𝑊2
(−)2

= −𝑐2𝑑𝑡2 + 𝑒  
2𝑐𝑡 

 𝑟 (
𝑑𝑟2

1+𝑟2
+ 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2),                                                                                        (57)   

 

where  𝑎(𝑡) = 𝑒± 
𝑐𝑡 

𝑟  .  
 

Averaging all these metrics leads to a zero (trivial) metric 

  

𝑑𝑠12
(±)2 =

1

4
(𝑑𝑠𝐹𝐿𝑅𝑊1

(+)2
+ 𝑑𝑠𝐹𝐿𝑅𝑊2

(+)2
+ 𝑑𝑠𝐹𝐿𝑅𝑊1

(−)2
+ 𝑑𝑠𝐹𝐿𝑅𝑊2

(−)2
) = 0∙с2dt2 + 0∙dr2 + 0∙d 2 + 0∙sin2d2 = 0.                            (58)            

 

This corresponds to the principle of “Absolute absence”, from which the condition of vacuum balance follows. 

 

Averaging metrics (54) and (55) over pairs, as well as metrics (56) and (57), we obtain 

                                                                                                                                                                                          (59)            

𝑑𝑠12
(+)2 =

1

2
(𝑑𝑠𝐹𝐿𝑅𝑊1

(+)2
+  𝑑𝑠𝐹𝐿𝑅𝑊2

(+)2
) = 𝑐2𝑑𝑡2 −

𝑒 
2𝑐𝑡 

 𝑟 + 𝑒− 
2𝑐𝑡 

 𝑟

2
 (

𝑑𝑟2

1−𝑟4
+ 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2) with signature (+ − − −)   

 

𝑑𝑠12
(−)2 =

1

2
(𝑑𝑠𝐹𝐿𝑅𝑊1

(−)2
+ 𝑑𝑠𝐹𝐿𝑅𝑊2

(−)2
) = −𝑐2𝑑𝑡2 +

𝑒
 
2𝑐𝑡 

 𝑟 + 𝑒
− 
2𝑐𝑡 

 𝑟

2
(
𝑑𝑟2

1−𝑟4
+ 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2)with signature (− + + +)  

 

where    
𝑒
 
2𝑐𝑡 

 𝑟 + 𝑒
− 
2𝑐𝑡 

 𝑟

2
= ch(

2𝑐𝑡  

 𝑟
).                                                                                                                                     (60)            

 

 

In this case, averaging metrics (54) and (57) over pairs, as well as metrics (55) and (56), we obtain 

 

𝑑𝑠12
(±)2 =

1

2
(𝑑𝑠𝐹𝐿𝑅𝑊1

(+)2
+  𝑑𝑠𝐹𝐿𝑅𝑊2

(−)2
) =

𝑒 
2𝑐𝑡 

 𝑟 − 𝑒− 
2𝑐𝑡 

 𝑟

2
 (

𝑑𝑟2

1−𝑟4
+ 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2) with signature (0 + + +)              (61)            

 

𝑑𝑠21
(±)2 =

1

2
(𝑑𝑠𝐹𝐿𝑅𝑊2

(+)2
+  𝑑𝑠𝐹𝐿𝑅𝑊1

(−)2
) =

𝑒 
2𝑐𝑡 

 𝑟 − 𝑒− 
2𝑐𝑡 

 𝑟

2
(
𝑑𝑟2

1−𝑟4
+ 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜑2) with signature  (0 + + +)  

 

where   
𝑒
 
2𝑐𝑡 

 𝑟 − 𝑒
− 
2𝑐𝑡 

 𝑟

2
= 𝑠h (

2𝑐𝑡  

 𝑟
).                                                                                                                     (62) 

 

Within the Algebra of Signatures, the averaged metrics (59) – (62) (describing the metric-dynamic state of the “external” and 

“internal” sides of the vacuum, respectively) define a cosmological model, which will be consistently presented in subsequent 

articles of this project. 

 

 

 



2 Solutions of Einstein's first vacuum equation 

 

2.1 Set of metrics-solution of the first vacuum equation 

 

Let's find exact solutions to Einstein's first vacuum equation (42) 

 

𝑅𝑖𝑘 = 0.                                                                                                                                                                            (42′) 

                                                                                                                                                                       

This equation is considered in many scientific publications on modern differential geometry and general relativity, for exam-

ple, in [8, 19, 31, 37]. However, none of the books and articles known to the author shows the complete set of solutions to 

this equation, or discusses the relationship between these solutions. Therefore, we repeat the solutions to Eq. (42) in sufficient 

detail. 

 

At the same time, this chapter will demonstrate the general methodology of multilayer geometrized vacuum physics based on 

the Algebra of Signature. 

 

At this stage of the study, we are interested in stable curvatures and stable vacuum formations, so we will look for stationary 

(i.e., time-independent) solutions. 

 

Solutions to Eq. (42) for the stationary case are sought in the spherical coordinate system (х0, х1, х2, х3) = (ct, r,, )  in the 

form of metrics: 

 

ds(–)2 = ес2dt2 – еdr2 – r2(d 2 + sin2 d2)  with signature (+ – – –),                                                                             (63) 

     

or 

 

ds(+)2 = – ес2dt2+ еdr2+ r2(d 2 + sin2 d2) with signature (– + + +),                                                                          (64)    

 

where   and    are the desired functions t and r. 

 

In metric (63), the nonzero components of the metric tensor are equal to 

 

𝑔00 = е,      𝑔11 = – е ,       𝑔22 = – r2,       𝑔33 = – r2 sin2,                                                                                              (65) 

 

and their contravariant components are equal     

 

𝑔00 = е – ,    𝑔11 = – е – ,    𝑔22 = – r – 2,    𝑔33 = – r – 2sin– 2.                                                                                         (66)       

  

Substituting time-independent components (65) and (66) into Christoffel symbols (6). Next, substituting the obtained Г𝑖𝑘
𝜆  into 

the Ricci tensor (5), as a result, for the stationary case, three equations are obtained [8]: 

 

R00 = R11=  + 2 + 2/r = 0,                                                                                                                                         (67)    

                    

R22 = е – (/r – 1/r2) + 1/r2 = 0,                                                                                                                                       (68)        

 

R33 = е – ( /r + 1/r2) – 1/r2 = 0,                                                                                                                                      (69)                                                          

 

  = – .                                                                                                                                                                              

 

Differential equation (67) has three solutions: 

 

1 = ln(h1+ h2/r),   2 = ln(h1 – h2 /r),     3 = h3,                                                                                                                (70)                                               

 



where h1, h2, h3 are integration constants. This can be verified by directly substituting each of these solutions into Eq. (67). 

 

Eqs. (68) and (69) also has three solutions: 

 

е –  = е = (1+ r0/r),      е –  = е = (1 – r0/r),       е –  = е = 1,                                                                                       (71)                  

     

where r0 is the integration constant. 

 

For h1 = 1,  h2 = r0  and  h3 = 0, solutions (70) and (71) turn out to be the same for both differential equations (68) and (69). 

 

Substituting three possible solutions (71) into metric (63), we obtain three metrics with the same signature (+ – – –): 

 

𝑠1
(+)2 = (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                  (72)       

𝑑𝑠2
(+)2 = (1 +

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1+ 
𝑟𝑜
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                (73)     

𝑑𝑠3
(+)2 = 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                                         (74) 

                                                                                             

where r0 is the radius of the sphere, the meaning of which will be clarified below. 

 

Performing similar operations with the components of the metric tensor from metric (64), 

 

𝑔00 = – е,       𝑔11 = е ,        𝑔22 = r2,        𝑔33 =  r2 sin2,        

                                                                                          

and their contravariant components 

  

𝑔00 = – е,       𝑔11 = е ,        𝑔22 = r2,        𝑔33 =  r2 sin2,                                                                                                 

 

we obtain three more metrics that satisfy the first vacuum equation (42), but with the opposite signature (– + + +): 

 

𝑑𝑠1
(−)2 = −(1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                              (75)    

    

𝑑𝑠2
(−)2 = −(1 +

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1+ 
𝑟𝑜
𝑟
)
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                              (76)  

    

𝑑𝑠3
(−)2 = −𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                                                        (77)                   

 

Note that at r0 = 0, metrics (72) and (73) become metric (74), and metrics (75) and (76) become metric (77). 

 

All metrics (72) – (77) satisfy the first vacuum equation (42), but only the quadratic form (72) is called the Schwarzschild 

metric, provided r0 = rg = 2GМ /c4 (where M is the mass of the star or planet). 

 

2.2. Attempts to find other solutions to the first vacuum equation 

 

In article [38], an attempt was made to find other solutions to Einstein’s first vacuum equation (42) in the case of “inverted” 

components of the metric tensor of the original metrics 

 

ds*
(+)2 =   е –с2dt2 – е – dr2 – r2(d 2 + sin2 d2)  с сигнатурой (+ – – –),                                                                     (78)     

  

and 

 

ds*
(–)2 = – е –с2dt2+ е – dr2+ r2(d 2 + sin2 d2)  с сигнатурой (– + + +),                                                                    (79)          



 

and also, in the case of complex components of the metric tensor of the original metrics 

 

ds**
 (+)2 =   е ±iс2dt2 – е ±idr2 – r2(d 2 + sin2 d2)  с сигнатурой (+ – – –),                                                                  (80)   

                                        

and 

 

ds**
 (–)2 = – е ±iс2dt2+ е ±idr2+ r2(d 2 + sin2 d2) с сигнатурой (– + + +).                                                                  (81)                                                     

 

In article [38] it was shown that in the case of the original metrics (78) – (79), as well as (80) – (81), the solutions to Einstein’s 

first vacuum equation (42) remain the same (72) – (77). That is, no other solutions to the first vacuum equation (42) could be 

found. 

 

 

2.3 Seventh solution of Einstein's first vacuum equation 

 

In §1, the fundamental principles of the Algebra of Signature were formulated: “Absolute Absence” and “Fair Distribution”. 

We use these principles in relation to 12 solutions (72) – (77) of Eq. (42).  

 

Since there are no initial preferences, each of these metric decisions can be implemented with equal probability P = 1/6. 

According to the principle of “Fair distribution”, it is necessary to assume that all solutions (72) – (77) can be realized simul-

taneously with the appropriate probability. Therefore, we perform the averaging of these metrics, provided that their centers 

are combined at r = 0. As a result, we obtain a zero (trivial) metric 

 
1

6
 (ds1

(+)2+ds2
(+)2+ds3

(+)2+ds1
(–)2+ds2

(–)2+ds3
(–)2) = 0∙с2dt2 + 0∙dr2 + 0∙d 2 + 0∙sin2d2 = 0,                                               (82)         

 

with metric tensor components 𝑔𝑖𝑘 = 0. 

 

Metric (82) is the seventh (trivial) solution of the first vacuum equation 

(42), which can be easily verified by substituting 𝑔𝑖𝑘 = 0 into this equa-

tion, resulting in the identity 0 = 0. 

 

From Eq. (82) we can conclude that if metrics (72) – (74) with signature 

(+ – – –) describe the conditionally “convex” state of vacuum (see Figure 

2), and metrics (75) – (77) with signature (– + + +) describe its condition-

ally “concave” state. Such stable vacuum formations can only appear if 

their centers are separated in space (Figure 2). Otherwise, they completely 

compensate for each other's manifestations. 

 

At the same time, even if the centers of the “convex” and “concave” vacuum formations are in different places, they are 

completely canceled if averaged over the entire space. This advises the principle of “Absolute absence.” 

 

2.4 Coordinate transformation 

 

According to Birkhoff’s direct theorem and Israel’s inverse theorem, there are no other exact spherically symmetric solutions 

to the first vacuum equation (42), except for metrics (72) – (78), which at infinity tend to the Minkowski metric (i.e., to the 

metric of a flat pseudo-Euclidean space). 

 

However, in general relativity, due to the fact that Eq. (42) is generally covariant, there remain many possibilities for choosing 

other coordinate systems. Of particular interest are coordinate transformations that make it possible to exclude or shift the 

spatial singularity at  𝑟0 = 𝑟 in metrics (72) – (73) and (75) – (76). 

 

 

 
 

Fig. 2: Two-dimensional illustration of “convex-

ity” and “concavity” separated in space 
     

 



For example, metric (75)  

 

𝑠1
(–)2

= – (1–
𝑟0

𝑟
 )с2𝑑𝑡2 +

1

(1–𝑟0/𝑟)
 𝑑𝑟2 + 𝑟2(𝑑 2 + 𝑠𝑖𝑛2 𝑑 2),                                                                                   (75′)                                                     

 

can be represented in Kruskal-Szekeres coordinates 

 

𝑑𝑠1
(–)2 = – 

4𝑟0
3

𝑟(𝑢,𝑣)
𝑒–𝑟(𝑢,𝑣)/𝑟0  с2𝑑𝑢𝑑𝑣 + 𝑟2(𝑢, 𝑣)(𝑑 2 + 𝑠𝑖𝑛2 𝑑 2),                                                                               (83) 

 

where 𝑟(𝑢, 𝑣) is a function that is implicitly defined by the equation 

 

 (1–
𝑟(𝑢,𝑣)

𝑟0
) 𝑒

–
𝑟(𝑢,𝑣)

𝑟0 = 𝑢𝑣.                                                                                                                                                   (84)       

 

Also, there is no spatial singularity when using Eddington-Finkelstein coordinates. In this case, the Schwarzschild metric (75) 

takes the form 

 

𝑑𝑠1
(–)2

 = – (1–
𝑟0

𝑟
 ) с2𝑑𝑣2 ± 2𝑑𝑣𝑑𝑟 + 𝑟2(𝑑 2 + 𝑠𝑖𝑛2 𝑑2),                                                                                        (85)       

 

where 𝑣 = 𝑡 ± 𝑟∗, here (−𝑟∗) for a collapsing spherical object (in particular a star); (+𝑟∗) for an expanding (exploding) 

spherical object; 

 

𝑟∗ = 𝑟 + 𝑟0𝑙𝑛 |
𝑟

𝑟0
− 1|.                                                                                                                                                       (86) 

 

In this case, the time-like singularity has shifted to the center (𝑟 = 0) of the object under study. 

 

Georges Lemaitre proposed the following transformation of Schwarzschild coordinates {t, r} into coordinates {τ, ρ} 

 

{
 

 

 

𝑑𝜏 = 𝑑𝑡 +√
𝑟0

𝑟

1

1 − 
𝑟0
𝑟

𝑑𝑟,               

𝑑𝜌 = 𝑑𝑡 + √
𝑟

𝑟0

1

1 − 
𝑟0
𝑟

𝑑𝜏.               
                                                                                                                     (87)     

 

In these coordinates, for example, metric (72)  

 

𝑑𝑠1
(+)2

 =  (1–
𝑟0

𝑟
 ) с2𝑑𝑡2 −

1

(1 – 
𝑟0
𝑟
)
 𝑑𝑟2 − 𝑟2(𝑑 2 − 𝑠𝑖𝑛2 𝑑2),                                                                                 (88) 

 

takes the form 

 

𝑑𝑠1
(+)2

 =  с2𝑑𝜏2 −
𝑟0

𝑟
 𝑑𝜌2 − [

3

2
(𝜌 − 𝑐𝜏)]

4
3⁄

𝑟0
2
3⁄ (𝑑 2 − 𝑠𝑖𝑛2 𝑑2).                                                                          (89)      

 

In Lemaître coordinates, the singularity also shifted to the middle of the spherically symmetrical object, i.e. to the point                     

r = 0. The Lemaître metric (89) is synchronous, i.e. bodies stationary in Lemaître coordinates are in a state of free fall to the 

central point. Vertically falling bodies reach the gravitational radius 
3

2
(𝜌 − 𝑐𝜏) = 𝑟0 and the center in a finite proper time. 

 

 

 

Allvar Gullstrand in [32] and Paul Painlevé in [33] showed that, for example, the metric (72) can be substituted not in a 

stationary form, but in a static form with a cross term 



 

𝑑𝑠1
(+)2 = (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 − 2√

𝑟𝑜

𝑟
𝑑𝑡𝑑𝑟 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                                   (90) 

 

All solution metrics (72) – (73) and (75) – (76) of the first vacuum equation (42) can be represented in coordinates: Kruskal-

Szekeres coordinate; Eddington-Finkelstein coordinates; Lemaître coordinates; Gullstrand-Painlevé coordinates; Isotropic co-

ordinates; Harmonic coordinates. 

 

Behind each of these coordinate systems lies a corresponding process that is subject to separate study, taking into account the 

methods of the Algebra of Signature, which will be partially outlined in the following paragraphs. 

 

Solutions of the first vacuum equation (42) are sorted into groups that are irreducible to each other. Metrics (72) – (77) belong 

to different groups, and cannot be converted into each other by any change in the coordinate system. 

 

 

2.5 Subcont and antisubcont 

 

The main features of two-sided consideration of a 23-m,n-vacuum are described in articles [1,2,3,4], 

 

In §7 of article [2] and in §4 and §5 of article [3], the conventional concepts subcont (short for “substantial continuum”) were 

introduced to denote the outer 4-dimensional side of the 23-m,n-vacuum, and antisubcont (short for from "anti-substantial 

continuum") to refer to the inner 4-dimensional side of the 23-m,n-vacuum. These concepts are intended to create the illusion 

of two continuous environments, subcont and antisubcont (for example, “white” and “black” colors) for the purpose of con-

venience of perception of complexly intertwined intra-vacuum processes. 

 

We note once again that the concepts of subcont and antisubcont are mental (fictional) constructions of two continuous media, 

which are two 4-dimensional sides of the same extent of 23-m,n-vacuum [1,2,3,4]. They look like two mutually opposite          

4-dimensional ethers (i.e., two elastoplastic media), respectively “white” and “black” in color. However, they should not be 

perceived as alternatives to two space-time continuums with opposite signatures (+ – – –) and (– + + +). It’s just that in terms 

of intertwined continuous elastoplastic media it is much easier to explain the essence of intra-vacuum processes, which will 

be discussed below. 

 

In accordance with expression (70) in [3], metrics (72) – (74) of the form 𝑑𝑠(+−−−)2 = 𝑔𝑖𝑗
(+)𝑑𝑥𝑖𝑑𝑥𝑗with signature (+ – – –) 

determine the metric-dynamic state of the outer side of the 23-m,n-vacuum (i.e. subcont is a continuous medium of conven-

tionally “white” color); in this case, metrics (75) – (77)  of the form 𝑑𝑠(−+++)2 = 𝑔𝑖𝑗
(−)𝑑𝑥𝑖𝑑𝑥𝑗with signature (– + + +) deter-

mine the metric-dynamic state of the internal sides of the 23-m,n-vacuum (i.e. antisubcont is a continuous medium of conven-

tionally “black” color) (see §4 and §5 in [3]). 

 

 

2.6 Application of the “Absence of the finite” principle 

 

In §9 of article [2] it was shown that any pair of metric 4-spaces with mutually opposite signatures can be represented as a 

sum (or averaging) of 7 + 7 = 14 metric spaces with other signatures. 

 

For example, a conjugate (i.e., mutually opposite) pair of metrics ds(– + + –)2 and  ds(+ – – +)2  with opposite signatures (– + + –) 

and (+ – – +) can be expressed by summing (or averaging) 7 + 7 = 14 metric 4-spaces with signatures given in the ranking 

expression (54) in [2]: 

                                            

 

 

 

 



                                                                                                                                                                                          (91)                               

                                                                                                                                                                                                                                                                           

 

 

 

 

 

 

 

 

Let’s recall that this ranking expression is a consequence of the vacuum balance condition (38) in [2]. 

 

Similarly, each mutually opposite pair of metrics with signatures (– + + +) and (+ – – –) from six solutions (72) – (77) can be 

represented as a summation (or arithmetic averaging) 7 + 7 = 14 metrics with signatures: 

Recall that ranking expressions like (99) are a consequence of the vacuum balance condition (38) in [2]. 

 

Similarly, each mutually opposite pair of metrics with signatures (– + + +) and (+ – – –) from six solutions (72) – (77) can be 

represented as a summation (or arithmetic averaging) 7 + 7 = 14 metrics with signatures: 

                                                                                                                                                                                           (92)       

 

 

 

 

 

 

 

 

 

 

For example, a mutually opposite pair of metrics (72) and (75) 

 

𝑑𝑠1
(+ −−−)2 = (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2  with signature (+ – – –),                               (93)          

                                                            

𝑑𝑠1
(−+++)2 = −(1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2  with signature (– + + +)                             (94)          

  

can be represented as a sum (or averaging) of 7 + 7 = 14 of the same metrics with components  

 

𝑔00 = (1– r0/r),      𝑔11 = (1– r0/r)–1,       𝑔22 =  r2,       𝑔33 =  r2sin2,                                                                            (95)          

                                      

and signatures from rankings (92) 

                                                                                                                                                                                        (96)          

 

ds(+ + + +)2 =      𝑔00dx0
2 + 𝑔11dx1

2 + 𝑔22dx2
2 + 𝑔33dx3

2       + 

ds(– – – +)2 = – 𝑔00 dx0
2 – 𝑔11dx1

2 – 𝑔22dx2
2 + 𝑔33 dx3

2      + 

ds(+ –  – +)2 =    𝑔00dx0
2 – 𝑔11dx1

2 – 𝑔22dx2
2 + 𝑔33 dx3

2          + 

ds(– – + –)2 =  – 𝑔00dx0
2 – 𝑔11dx1

2 + 𝑔22dx2
2 – 𝑔33dx3

2       + 

ds(– + – –)2  = – 𝑔00 dx0
2 + 𝑔11dx1

2 – 𝑔22dx2
2 – 𝑔33dx3

2       + 

ds(+ –  + –)2 =    𝑔00dx0
2 – 𝑔11dx1

2 + 𝑔22dx2
2 – 𝑔33dx3

2        + 

ds(+ + – –)2  =     𝑔00dx0
2 + 𝑔11dx1

2 – 𝑔22dx2
2 – 𝑔33 dx3

2          + 

_____________________________________________________________________ 

ds(+ – – –)2 =     𝑔00dx0
2 – 𝑔11dx1

2 – 𝑔00dx2
2 – 𝑔00dx3

2           + 

ds(– – – – )2  = – 𝑔00dx0
2 – 𝑔11dx1

2 – 𝑔22dx2
2 – 𝑔33dx3

2         = 0 

ds(+ + +  –)2  =      𝑔00dx0
2 + 𝑔11dx1

2 + 𝑔22dx2
2 – 𝑔33dx3

2        = 0 

ds (– + + –)2 = – 𝑔00dx0
2 + 𝑔11dx1

2 + 𝑔22dx2
2 – 𝑔33dx3

2             = 0 

ds(+ + – +)2   =     𝑔00dx0
2 + 𝑔11dx1

2 – 𝑔22dx2
2 + 𝑔33dx3

2         = 0 

ds(+ – + +)2  = – 𝑔00 dx1
2+ 𝑔11dx2

2 + 𝑔22dx2
2 + 𝑔33dx3

2            = 0 

ds(– +  – +)2 = – 𝑔00dx0
2 + 𝑔00dx1

2 –  𝑔22dx2
2 + 𝑔33dx3

2            = 0 

ds(– – + +)2  =  – 𝑔00dx0
2 – 𝑔11dx1

2 + 𝑔22dx2
2 + 𝑔33dx3

2             = 0 

______________________________________________________________________ 

ds(– + + +)2  =  –𝑔00 dx0
2 + 𝑔11 dx1

2 + 𝑔22dx2
2 + 𝑔33dx3

2       = 0 

 

 (+  +  +  +) 

 (–   –  –  +) 

 (–   –  +  –) 

 (+  +  –   –) 

 (–  +  –   –) 

 (+  –  +   –) 

 (–  +  +   +) 

 (–  +  +   –)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(–  –   –  –) 

(+  +  +  –) 

(+  +  –  +) 

(–  –  +  +) 

(+  –  +  +) 

(–  +  –  +) 

(+  –  –  –) 

(+  –  –  +)+ 

= 0 

= 0              

= 0                                                              

= 0 

= 0 

= 0 

= 0 

= 0.               

 (+  +  +  +) 

 (–  –  –  +) 

 (+  –  –  +) 

 (–  –  +  –) 

 (+  +  –  –) 

 (–  +  –  –) 

 (+  –  +  –) 

 (+ –  –  –)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(–  –   –  –) 

(+  +  +  –) 

(–  +  +  –) 

(+  +  –  +) 

(–  –  +  +) 

(+  –  +  +) 

(–  +  –  +) 

(–  +  +  +)+ 

=0 

=0 

=0                                                  

=0  

=0 

=0 

=0 

=0 . 



Summation (or averaging) in rankings (92) and (96) is performed by columns (see §9 in [2]) 

           

We explain with an example why in the case under consideration addition is equivalent to averaging. Let the denominators of 

rankings (96) indicate the average of the metrics in the numerator. In this case, the sum of the denominators themselves, 

according to the vacuum balance condition, is equal to zero 

 
1

7
 (𝑔00 dx0

2 – 𝑔11 dx1
2 – 𝑔00 dx2

2 – 𝑔00 dx3
2) + 

1

7
 (– 𝑔00 dx0

2 + 𝑔11 dx1
2 + 𝑔00 dx2

2 + 𝑔00 dx3
2) = 0.                                (97)    

     

Let's multiply both sides of this expression by 7. The result is the denominators in the rankings (96) 

  

(𝑔00 dx0
2 – 𝑔11 dx1

2 – 𝑔00 dx2
2 – 𝑔00 dx3

2) + (– 𝑔00 dx0
2 + 𝑔11 dx1

2 + 𝑔00 dx2
2 + 𝑔00 dx3

2) = 0.                                     (98)                  

 

In turn, conjugate (i.e., mutually opposite) pairs of 4-subspaces from rankings (96) can be decomposed in the same way into 

sums of 7 + 7 = 14 sub-subspaces, and this can continue indefinitely, if a complete "vacuum balance" is observed (i.e. if the 

sum of the entire infinite set of mutually exclusive metrics with different signatures is equal to zero). 

 

Thus, when solving the first vacuum equation (42), all three fundamental ontological principles of “Absolute absence”, “Fair 

distribution” and “Absence of the finite” are observed at once. 

 

2.7 Triads of metrics with different signatures 

 

Within the Algebra of Signatures there are additional opportunities to obtain stable vacuum formations. 

 

Let's show this using the example of metric (72) 

 

𝑑𝑠1
(+ −−−)2 = (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 with signature (+ – – –).                                   (99) 

 

This metric can be represented as a sum of three metrics with signatures presented in rankings (see §8 in [2]): 

                                                   

                                                                                             (100)           
 

 

 

 

For example, the first of three rankings (100) is revealed as follows 

 

𝑑𝑠1
(+)2 = −(1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2    with signature (– – – +)                                   (101)            

𝑑𝑠1
(+)2 =    (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 + 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2    with signature (+ – + –)                                   (102)                                                                          

𝑑𝑠1
(+)2 =    (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2    with signature (+ + – –)                                   (103)            

_________________________________________________________________________________________ 

𝑑𝑠1
(+)2 =    (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2    with signature (+ – – –)                                    (104)                                                                                         

 

Similarly, metric (75) 

 

𝑑𝑠1
(−+++)2 = −(1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 with signature (– + + +):                               (105)            

 

can be presented as a sum of three metrics with signatures presented in rankings:                                                                                                                                                                     

(–  –  –  +) 

(+  –  +  –) 

(+  +  –  –) 

  (+  –  –  –) + 

( –  –  +  –) 

( +  +  –  –) 

( +  –  –  +) 

  ( +  –  –  –) + 

( –  +  –  –) 

( +  –  –  +) 

( +  –  +  –) 

  ( +  –  –  –) + 



                                                                                                                                                                                        (106) 

   (+  +  +  –) 

   (–  +  –  +) 

   (–  –  +  +)       

   (–  +  +  +) + 

( +  +  –  +) 

( –  –  +  +) 

( –  +  +  –) 

   ( –  +  +  +) + 

( +  –  +  +) 

( –  +  +  –) 

( –  +  –  +) 

  ( –  +  +  +) + 

                                                                                      

For example, the first of three rankings (106) is revealed as follows 

 

𝑑𝑠1
(−)2 =    (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 + 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2    with signature (+ + + –)                                  (107)           

𝑑𝑠1
(−)2 = − (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2   with signature (– + – +)                                                                            

𝑑𝑠1
(−)2 = − (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2   with signature (– – + +)  

______________________________________________________                            _______ 

𝑑𝑠2
(−)2 = − (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2   with signature (– + + +) 

 

Any of the metrics with signatures (– – – +), (+ – + –), (+ + – –) and (+ + + –), (– + – +), (– – + +), which are in numerators 

of rankings (105) and (107) is not a solution to the first vacuum equation (42). This can be verified by substituting the com-

ponents of the metric tensor from these metrics into this equation. However, the sum of triplets of metrics (105) and (107) is 

equal to either metric (72) with signature (+ – – –), or metric (75) with signature (– + + +), which describe, respectively, more 

complex stable ones: convexity of subcont and the concavity of the antisubcont. 

 

There are many combinations of 4-metrics with different signatures from the signature matrix (32) in [2] 

 

𝑠𝑖𝑔𝑛(𝑑𝑠(а,𝑏)2 ) = (

(+ + + +) (+ + +−) (− + +−) (+ + −+)

(− − − +) (− + ++) (− − ++) (− + −+)

(+ − − +) (+ + −−) (+ − −−) (+ − ++)

(− − + −) (+ − +−) (− + −−) (− − −−)

) ,                                                                  (108) 

 

which in sum (or on average) lead to the signature of the Minkowski space (i.e. subcont) (+ – – –) and the signature of the 

anti-Minkowski space (i.e. antisubcont) (– + + +). The possibility of application and meaning of these combinations will be 

revealed in subsequent articles of the proposed project. 

 

2.8 Averaged metric-dynamic state of subcont 

 

2.8.1 Averaging subcont metrics 

 

Let’s separately consider three metrics (72) – (74): 

                                                              

𝑑𝑠1
(+)2 = (1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                (72′)       

𝑑𝑠2
(+)2 = (1 +

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 −

1

(1+ 
𝑟𝑜
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                (73′)     

𝑑𝑠2
(+)2 = 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                                         (74′)                 

           

which describe the metric-dynamic state of the outer side of the 23-m,n-vacuum (i.e. subcont). 

 

The third metric (74) is a special case of the first two metrics (72) and (73) for r0 = 0, and describes the state of the original 

(i.e., uncurved) local section of the subcont. 



 

Both metrics (72) and (73) are solutions to the same vacuum equation (42) under the same conditions. There is no reason to 

prefer either of them, i.e. each of these metrics can be realized with probability ½. Therefore, following the principle of “Fair 

distribution”, we will consider the result of their averaging 

 

𝑑𝑠12
(+)2 =

1

2
(𝑑𝑠1

(+)2 +  𝑑𝑠2
(+)2) = 𝑐2𝑑𝑡2 −

𝑟2

𝑟2−𝑟0
2 𝑑𝑟

2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2                                                            (109)           

 

with averaged components of the metric tensor 

 

𝑔(12)𝑖𝑘
(+)

=

(

 
 

1 0

0 −
𝑟2

𝑟2−𝑟0
2 

0 0
0 0

0 0
0 0

−1 0
0 −1)

 
 
.                                                                                                                               

 

The zero component of the metric tensor in the averaged metric (109) is equal to one (𝑔00
(+) = 1), which means that time t is 

global. 

 

In a curved 4-dimensional space with a signature (+ – – –), the distance between two events with different r, but with the same 

other coordinates, is determined by the integral [8] 

𝜉 = ∫ √−𝑔11
(+)𝑟2

𝑟1
𝑑𝑟.                                                                                                                                                         (110)     

If  𝑔11
(+)

= – (1– r0/r)–1  from metric (72) or  𝑔11
(+)

= – (1+ r0/r)–1 from metric (73) is substituted into integral (110), then such an 

integral cannot be taken in elementary functions. 

 

By substituting 𝑔(12)11
(+)

=
𝑟2

𝑟2−𝑟0
2 into the integral (110) from the averaged metric (109), it is possible to find an analytical 

solution 

 

𝜉 = ∫
𝑟𝑑𝑟

√𝑟2−𝑟0
2

𝑟2
𝑟1

= √𝑟2 − 𝑟0
2 |
𝑟2
𝑟1

 .                                                                                                                                     (111)            

 

Averaging two solutions of the vacuum equation (42) with the same signature (+ – – –) led to a meaningful result. 

 

Let's first find the size of the segment between the points r1 = 0  and  r2 = r0 : 

 

√𝑟2 − 𝑟0
2 |
𝑟0
0
= −√−𝑟0

2 = −√−1𝑟0 = −𝑖𝑟0.                                                                                                                 (112)                                                                                  

 

The length of this segment is equal to the radius of the cavity r0, and the imaginary nature of this result suggests that the 

averaged metric (109) does not describe the properties of the subcont inside a spherical cavity with radius r0. In other words, 

the domain of applicability of metric (109) starts from r0 and extends to r2 = . In this case we have 

 

√𝑟2 − 𝑟0
2 |

∞

𝑟0
= √∞2 − 𝑟0

2 .                                                                                                                                            (113)      

 

If the studied subcont area were not deformed, then the distance between the points r2 =  and r1 = r0 would be equal to  r2 – 

r1 =  – r0, and in our case it is equal to value (113), subtracting one from the other, we find 



                                                                 

√∞2 − 𝑟0
2 − (∞ − 𝑟0) = 𝑟0 .                                                      (114)      

 

since the limit calculation leads to this result 

 

lim
𝑥→∞

√𝑥2 − 𝑟0
2 − (𝑥 − 𝑟0) = 𝑟0.                                                                                                                                            

 

The result obtained shows that the subcont is compressed by an 

amount  r0 in all radial directions, and the reason for such compres-

sion is due to the fact that it is “displaced” from the cavity with radius 

r0. This looks like an air bubble in the liquid (see Figure 3). 

                                                                 

2.8.2 Relative elongation of subcont 

 

We will judge the distortions of the subcont region under study by its 

relative elongation (see expression (41) in [3]) 

 

𝑙(+) =
𝑑𝑠(+)−𝑑𝑠0

(+)

𝑑𝑠0
(+) =

𝑑𝑠(+)

𝑑𝑠0
(+) − 1.                                                  (115)         

 

In this case, the relative elongation for each coordinate is determined 

by expressions (47) in [3] 

 

𝑙𝑖
(+)

= √1 +
𝑔
𝑖𝑖
(+)

−𝑔𝑖𝑖0
(+)

𝑔
𝑖𝑖0
(+) − 1,                                                                                                                                             (116)  

      

where 

𝑔𝑖𝑖
(+)

 are the components of the metric tensor of the curved section of the subcont. 

𝑔𝑖𝑖0
(+)

 are components of the metric tensor of the same section of the subcont before curvature.  

 

Let’s substitute into Eq. (116) the components 𝑔𝑖𝑖
(+)

 from the averaged metric (109), and the components 𝑔𝑖𝑖0
(+) from the origi-

nal metric (74), as a result we obtain 

   

𝑙𝑟
(+)

=
Δ𝑟

𝑟
= √

𝑟2

𝑟2−𝑟0
2 − 1,       𝑙𝜃

(+)
= 0,      𝑙𝜙

(+)
= 0.                                                                                                      (117)     

 

The graph of the function 𝑙𝑟
(+)

= Δr/r, with r0 = 1, is shown in Figure 4. At r = r0, this function tends to infinity Δr/r = , and 

at r < r0 it becomes imaginary, which once again confirms the model of an “empty bubble (i.e., a spherical cavity) in a liquid.” 

 

Thus, averaging metrics (72) and (73) leads to a metric-dynamic model of a stable (conditionally convex) vacuum formation 

of the “spherical cavity in a liquid” type, whereas individually these metrics do not lead to such results. This once again 

confirms that averaging metrics (72) – (73) or (75) – (76)) is not meaningless. 

 

2.8.3 Twisting into subcont k-braids 

 

In §5.2 in [3] it was shown that if two metrics (i.e. quadratic forms) are added (or averaged), in particular 

𝑑𝑠12
(+)2 =

1

2
(𝑑𝑠1

(+)2 +  𝑑𝑠2
(+)2),                                                                                                                                       (118)             

 

 
 

Fig. 3: Air bubble in liquid 
    

 
Fig. 4: Graph of a function (117) 𝑙𝑟

(+)
=

Δ𝑟

𝑟
  



then this corresponds to a segment of a double helix, consisting of two flight lines (“strands”) 𝑠1
(+)

 and   𝑠2
(+)

. The segments 

of these spirals are always mutually perpendicular to each other 𝑑𝑠1
(+)
⊥ 𝑑𝑠2

(+)
 (see Figure 10 in [3]) and can be described by 

a complex number 

 

𝑑𝑠12
(+) =

1

√2
(𝑑𝑠1

(+) + 𝑖𝑑𝑠2
(+))                                                                                                                                            (119)             

                                                                                                                                                                                                                                                                                                                                           

the squared modulus of which is equal to the averaged metric (118). 

 

Each of these “threads” can consist of two sub-threads 𝑑𝑠1
(+)’and  𝑑𝑠1

(+)“
, as well as 𝑠2

(+)’
and  𝑑𝑠2

(+)“
 (see Figure 10 in [3]). 

Then the spiral is described by a system of two conjugate complex numbers 

 

𝑑𝑠12
(+)’ =

1

√2
(𝑑𝑠1

(+)’ + 𝑖𝑑𝑠2
(+)’),                                                                                                                                         (120)       

  

𝑑𝑠12
(+)’’ =

1

√2
(𝑑𝑠1

(+)’’ − 𝑖𝑑𝑠2
(+)’’),        

the product of which is also equal to the averaged metric (118).       

In accordance with expressions (55) – (59) in [2], the linear elements 𝑑𝑠1
(+)

 и  𝑑𝑠2
(+)

 in metrics (72) and (73) can be repre-

sented in the form of spintensors or in the form affine aggregates (i.e. affinors, essentially spirals) 

 

 

𝑑𝑠1
(+) =

|

|
√(1 −

𝑟𝑜

𝑟
) 𝑐𝑑𝑡 + 𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜙

1

√(1−
𝑟𝑜

𝑟
)
𝑑𝑟 + 𝑖𝑟𝑑𝜃

1

√(1−
𝑟𝑜

𝑟
)
𝑑𝑟 − 𝑖𝑟𝑑𝜃 √(1 −

𝑟𝑜

𝑟
) 𝑐𝑑𝑡 − 𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜙

|

|
=                                               

 

   = √(1 −
𝑟𝑜

𝑟
) 𝑐𝑑𝑡 (

1 0
0 1

) −
1

√(1−
𝑟𝑜
𝑟
)

𝑑𝑟 (
0 −1
−1 0

) − 𝑖𝑟𝑑𝜃 (
0 −𝑖
𝑖 0

) − 𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜙 (
−1 0
0 1

) ;                                                       (121)   

                                              
 

𝑑𝑠2
(+) =

|

|
√(1 +

𝑟𝑜

𝑟
) 𝑐𝑑𝑡 + 𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜙

1

√(1 +
𝑟𝑜
𝑟
)

𝑑𝑟 + 𝑖𝑟𝑑𝜃

1

√(1 +
𝑟𝑜
𝑟
)

𝑑𝑟 − 𝑖𝑟𝑑𝜃 √(1 +
𝑟𝑜

𝑟
) 𝑐𝑑𝑡 − 𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜙|

|

=  

 

 = √(1 +
𝑟𝑜

𝑟
) 𝑐𝑑𝑡 (

1 0
0 1

) −
1

√(1+ 
𝑟𝑜
𝑟
)

𝑑𝑟 (
0 −1
−1 0

) − 𝑖𝑟𝑑𝜃 (
0 −𝑖
𝑖 0

) − 𝑟 𝑠𝑖𝑛 𝜃 𝑑𝜙 (
−1 0
0 1

).                                                         (122) 

 

 

In §5.2 in [3], it was proposed to call the averaged metric of the form (118) a 2-braid. 

 

Thus, according to the classification of the Algebra of Signature, the averaged metric (109) is a 2-braid. in which two lines 

(“threads”)  𝑠1
(+) and  𝑑𝑠2

(+) are intertwined, defined by affinors  (121)  and  (122), or four twisted sub-lines 𝑑𝑠1
(+)’
, 𝑑𝑠2

(+)’
,  

𝑑𝑠1
(+)’’

, 𝑑𝑠2
(+)’’

 (120). 

 

According to §2.6 of this article, each of the metrics (72) and (73) can be represented as a sum of seven sub-metrics with the 

signatures of the left ranker from the ranking expression (96) with probability 1/7, which, in turn, can be are presented as a 



sum of sub-sub-metrics with a corresponding probability of 1/49, and such a “deepening” with decreasing probability can 

continue indefinitely. 

 

Assuming that each sub-metric and sub-sub-metric, etc. defines spiral lines, with a "color" corresponding to their signature 

(see ranking expression (70) in [3]) 

                                                                                                                                                                                          (123)       

 

 

 

 

 

 

 

 

 

 

 

then the results obtained in this paragraph can be illustrated by a two-dimensional “slice” of a 3-dimensional stable vacuum 

formation of the “spherical cavity in a liquid” type, shown in Figures 4 and 5. 

 

The intertwined fabric of the space-time continuum of the Algebra of Signature is in many ways similar to the spin network 

of loop quantum gravity. 

 

 
 

Fig. 5: Fractal illustration of a 2-dimensional slice of a 3-dimensional stable vacuum formation of 

the "spherical cavity in a liquid" type, consisting of an interweaving of many lines ("threads") of different "colors", 

which are more and more elongated as they approach a sphere with a radius r0 
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2.8.4 Movement of subcont layers (i.e. “white” elastoplastic pseudo-medium) 

 

From the previous paragraph it follows that two metrics (72) and (73) with signature (+ – – –) determine the metric-dynamic 

state of two 4-dimensional spaces, which are intertwined throughout into a single “fabric” of subcontact. 

 

According to the formal classification of “colors” of the Algebra of Signature (123) (or (70) in [3]), both of these 4-spaces 

have a white “color”, because have a signature (+ – – –). Therefore, for clarity, let us assume that metric (72) describes an 

elastoplastic pseudo-medium of “a-white” color (or a-subcont), and metric (73) describes a pseudo-medium of “b-white” 

color (or b-subcont). 

 

Now let's look at how these elastoplastic “pseudo-mediums” move. 

 

In §6.2 in [3], several kinematic cases of motion of layers of double-sided 23-m,n-vacuum were considered. 

 

For metrics (72) and (73), the first case is suitable, i.e. metric (91) in [3] with signature (+ – – –) 

 

𝑑𝑠(+)2 = (1 +
𝑣𝑟
2

𝑐2
) 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                                           (124)                                 

 

since in this metric, as well as in metrics (72) and (73), the components of the metric tensor 𝑔𝑖0
(+)

 = 𝑔𝑖0
(+)

 = 0. 

 

In turn, metrics (75) and (76) with signature (– + + +) (according to classification (123): elastoplastic pseudo-media of                  

“a-black” and “b-black” color, i.e. a-antisubcont and b-antisubcont), corresponds to metric (91) in [3] with a similar signature 

(– + + +) 

 

𝑑𝑠(−)2 = – (1 +
𝑣𝑟
2

𝑐2
) 𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                                       (125)       

 

Let's compare 𝑔00
(+)

  in metrics (72) and (124), as a result we get 

 

1 −
𝑟0

𝑟
= 1 +

𝑣𝑟1
2

𝑐2
   

 

from where we determine the components of the velocity vector of the “a-white” pseudo-medium (i.e. a-subcont) 

 

− 𝑣𝑟1
2 = 

𝑐2𝑟0

𝑟
   or   𝑣𝑟1 = √−

𝑐2𝑟0

𝑟
= 𝑖√

𝑐2𝑟0

𝑟
   or  −𝑖𝑣𝑟1 = √

𝑐2𝑟0

𝑟
 ,    𝑣𝜃1 = 0 ,    𝑣𝜙1 = 0.                                            (126) 

 

Let's compare 𝑔00
(+)

 in metrics (73) and (124), as a result we get 

 

1 +
𝑟0

𝑟
= 1 +

𝑣𝑟2
2

𝑐2
 ,  

 

from where we determine the components of the velocity vector of the “b-white” pseudo-medium (i.e. b-subcont) 

 

𝑣𝑟2
2 = 

𝑐2𝑟0

𝑟
   or   𝑣𝑟2 = √

𝑐2𝑟0

𝑟
 ,    𝑣𝜃2 = 0 ,    𝑣𝜙2 = 0.                                                                                           (127) 

 

We also compare 𝑔00
(+)

 in the averaged metric (109) and in the metric (124), as a result we obtain for the subcont speed on 

average 

 

1 = 1 +
𝑣𝑟
(+)2

𝑐2
   or   𝑣𝑟

(+)2 = 0,  𝑣𝜃
(+) = 0,    𝑣𝜙

(+) = 0.                                                                                                      (128)      

 



 

According to Exs. (126), (127) and (128), in all radial directions the average speed of the ab-subcont (i.e., the “white” 

pseudo-medium) is zero 

 

𝑣𝑟
(+)2 =

1

2
(𝑣𝑟2

2 − 𝑣𝑟1
2 ) = 0   or  |𝑣𝑟

(+)| =
1

2
|√
𝑐2𝑟0
𝑟
− 𝑖√

𝑐2𝑟0
𝑟
| = 0.                                                                               (129)  

 

From Exs. (126), (127) and (129) it is clear that the “a-white” pseudo-medium (a-subcont) flows in the form of thin streams 

(currents) from all sides to the edge of the spherical cavity along many spirals, i.e. wrapping around all radial directions (see 

Figure 6a), and at r0 = r, reaches the speed of light c. In this case, the “b-white” pseudo-medium (b-subcont) flows out in the 

form of thin streams (currents) from the edge of the spherical cavity in all directions along many spirals (winding around 

radial directions), starting from the speed of light at r0 = r, and decreasing on the periphery to zero. Taken together, the             

“a-white” and “b-white” currents are twisted into opposing double helices (Figure 6a), which, on average, in each local region 

completely compensate for each other’s manifestations. That is, in each local region (outside a spherical cavity with radius r0) 

a balance is maintained between inflowing and outflowing currents and countercurrents along “white threads” twisted into 

double spirals, the relative elongation of which was discussed in §2.8.3. 

 

When extracting information from a set of metrics (72) and (73), we see that the greater the local stretching of the white 

“threads” of the subcont, as we approach the spherical cavity (see Eq. (117) and Figure 4), the greater the speed of the currents 

flowing along these “threads” (see Exs. (126) and (127) and Figure 6a)). 

 

                                   
                                                            а)                                                                          б) 

 

Fig. 6: a) a-white pseudo-medium (a-subcont) flows in the form of thin streams (currents) in spirals to the edge of a spherical cavity with 

radius r0, gradually increasing the speed from zero to the speed of light c, while b-white pseudo-medium (b-subcont) flows out in the form 

of thin streams (currents) in counter-spirals around all radial directions from the edge of a spherical cavity with radius r0, starting from the 

speed of light;  b) “White” and “black” pseudo-medium flow out and flow in spirals around all radial directions to the edge of a spherical 

cavity with radius r0 

 

The speed and acceleration of the a-subcont and b-subcont can be studied not on the basis of the simplified kinematic model 

(91) in [3], but on a more sophisticated dynamic model presented in §4 in [4]. However, it is necessary to devote a separate 

extensive study to this. Therefore, we will limit ourselves here to only a kinematic consideration. 

 

As was shown in §2.6, each current flowing along the “a-white” thread and along the “b-white” thread is an interweaving 

(bundle) of seven sub-currents flowing along sub-threads with “colors” (i.e. with signatures) from the left ranking of expres-

sion (123) (or (70) in [3]). In turn, each sub-current is a bundle of 7 sub-sub-currents, and this continues ad infinitum (see 

§2.6). 

 

The flows of many intertwined “colored” sub-currents along stretched and twisted “threads” are illustrated in Figure 6. 



 

As already noted, “colored” pseudo-environments and “colored” thread-like currents are mental constructions (i.e., a fig-

ment of the imagination). Here we have used these concepts only to help thinking understand the essence of mathematical 

models in terms close to our sensory experience. This is a clear difference in the interpretation of the Algebra of Signatures 

of zero components of the metric tensor compared to the general relativity of A. Einstein. The zero components of the metric 

tensor 𝑔00
(+)

 and  𝑔0𝑖
(+)

= 𝑔𝑖0
(+)

 are here associated not with the change in the flow of time, as in general relativity, but with the 

movement of pseudo-mediums (see §6 at [3]). The illusion of a moving-deformed continuous medium is more acceptable to 

our perception than the illusion of a change in the flow of time. The fact is that time is a very complex and multi-valued 

philosophical category, and we do not know how to measure it. Humanity generally does not have a single instrument capable 

of measuring time, which is given to us as a sense of duration. Only celestial bodies (planets and stars) allow us to navigate 

in real time. However, mechanical or electronic watches do not measure time! A watch is a complex technical device that 

ensures fairly stable rotation of the hands. They allow us to synchronize various processes, but the clocks do not measure 

practically any time (i.e., the duration we perceive). All such devices are stable synchronizers (i.e., a frequency generator, or 

a frequency standards) with a certain error. Likewise, we do not measure the real extent of Being with rulers, but only the 

distance between objects or the sizes of the objects themselves. Ernst Mach loudly declared this in “Mechanics. A historical 

and critical essay on its development” in 1883, but not many heard him. Technical synchronizers (which we call clocks or 

stable frequency standards) can indeed produce clock frequencies differently, depending on whether they are moving relative 

to the physical vacuum at high speed or not, because these are different versions of their existence, and this may be consistent 

with the conclusions of relativistic mechanics. However, we note once again that these clocks have practically nothing to do 

with the complex and unevenly flowing real time (i.e., the duration of Existence). Therefore, it is difficult to perceive the 

distortion of technical time and the curvature of technical space in the foundations of the fundamental theory. In other words, 

Minkowski's space-time continuum is a real illusion constructed by the public consciousness. Whereas intuition treats the 

extension of real Being, as a continuous medium capable of deformation and at the same time moving at an accelerated rate, 

with great confidence. At the same time, the mathematical model under consideration shows that local deformation of the 

pseudo-medium is inevitably accompanied by the emergence of a local flow, and vice versa, flows of the pseudo-medium 

cause its deformations. On the other hand, the interpretation of the results obtained as a 4-curvature of the space-time con-

tinuum, or as a 4-distortion of an elastoplastic pseudo-medium, is equivalent in terms of the degree of our confidence in the 

perception of the surrounding reality. Therefore, the elastoplastic or spatiotemporal interpretation of the calculation results 

are equivalent, and depend on the convenience of their use in solving a particular problem. 

 

At the same time, the elastoplastic interpretation has one undeniable advantage, since in this case, within all areas of metric-

dynamic models of vacuum formations and for all vacuum formations included in the general consideration, one global time 

can be introduced. At the same time, against the background of the global space-time continuum, the parameters of the                        

4-strain of a continuous elastoplastic pseudo-medium are set everywhere.  
 

2.8.5 Averaged metric-dynamic state of anti-subcount 

 

If with metrics (75) – (77) with signature (– + + +): 

 

𝑑𝑠1
(−)2 = −(1 −

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1− 
𝑟𝑜
𝑟
)
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                            (75′)       

𝑑𝑠2
(−)2 = −(1 +

𝑟𝑜

𝑟
) 𝑐2𝑑𝑡2 +

1

(1+ 
𝑟𝑜
𝑟
)
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                            (76′)     

𝑑𝑠3
(−)2 = −𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2                                                                                                       (77′)                 

          

perform similar actions (109) – (129), then we obtain a metric-dynamic model of exactly the same, but opposite, stable, 

conditionally “concave” vacuum formation of the “spherical anti-cavity in a liquid” type, with an averaged metric 

 

𝑑𝑠12
(−)2

=
1

2
(𝑑𝑠1

(−)2
+  𝑑𝑠2

(−)2) = −𝑐2𝑑𝑡2 +
𝑟2

𝑟2−𝑟0
2 𝑑𝑟

2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2                                                                  (130) 

 

and “black” a-antisubcont and b-antisubcont currents intertwined into bundles. 

 



Above, all known solutions of the Einstein vacuum equation (42) were used and this led to averaged metric-dynamic models 

of a mutually opposite pair of vacuum formations “spherical cavity” – “spherical anti-cavity”. However, the averaged metrics 

(109) and (130) turned out to be not the Schwarzschild metric, which, according to the entire scientific community, has been 

reliably tested and experimentally confirmed in the lower orders of approximation of general relativity to Newtonian theory 

(i.e. for the case of weak gravitational fields). We will show that this problem can be eliminated. 

 

2.8.6 Averaged Schwarzschild metric 

 

Let’s return to the consideration of metrics (72) and (73) and assume that in these metrics r0 differ slightly from each other 

 

 r01 ≈ r02 ≈ r0   и   r01 ≥ r02.                                                                                                                                              (131) 

 

In this case, metrics (72) and (73) take the form 

 

𝑑𝑠1
(+)2 = (1 −

𝑟𝑜1

𝑟
) 𝑐2𝑑𝑡2 −

1

(1− 
𝑟𝑜1
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2,                                                                            

𝑑𝑠2
(+)2 = (1 +

𝑟𝑜2

𝑟
) 𝑐2𝑑𝑡2 −

1

(1+ 
𝑟𝑜2
𝑟
)
𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                          

We average these metrics taking into account conditions (131) (i.e., the small difference between r01  and  r02)  
 

𝑑𝑠12
(+)2 =

1

2
(𝑑𝑠1

(+)2 +  𝑑𝑠2
(+)2) ≈ (1 +

𝑟𝑜2−𝑟𝑜1

2𝑟
) 𝑐2𝑑𝑡2 −

𝑟2

𝑟2−𝑟0
2 𝑑𝑟

2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                  (132)    

The zero component of the metric tensor in this averaged metric is equal to 

 

𝑔00 = (1 +
𝑟𝑜2−𝑟𝑜1

2𝑟
) = (1 −

𝑟𝑔

𝑟
),                                                                                                                                    (133) 

 

where  𝑟𝑔 =
𝑟𝑜1−𝑟𝑜2

2
                                                                                           

is a value that can be interpreted as the Schwarzschild radius (or gravitational radius) of a stable corpuscular vacuum formation. 

 

Taking into account expression (133), the averaged metric (132) can be represented in a Schwarzschild-like form 

  

𝑑𝑠(12)
(+)2 ≈ (1 −

𝑟𝑔

𝑟
) 𝑐2𝑑𝑡2 −

1

1− 
𝑟0
2

𝑟2

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2                                                                                  (134)                

 

For example, it is known that the planet Earth’s gravitational radius is approximately equal to 𝑟𝑔𝐸 ≈  0.9 𝑐𝑚. Then, according 

to expression (133), if our assumptions are correct, then inside our planet there are two boundary spheres with a difference in 

radii 𝑟𝑜1𝐸 − 𝑟𝑜2𝐸 ≈ 2𝑟𝑔𝐸 ≈ 1.8 cm. At the same time, all experimentally confirmed gravitational effects remain in force. It 

can also be assumed that the average radius of the Earth’s solid inner core r0E ≈ 1220 km. 

 

Thus, within the framework of the considered averaged models of stable vacuum formations, the problem of the Schwarz-

schild-like gravitational potential is easily solved. 

 

 

2.8.7 Three possible scenarios for the coexistence of a “spherical cavity” and a “spherical anti-cavity” 

 

The condition for maintaining “vacuum balance” (i.e. the principle of Absolute absence) dictates three main possible scenarios 

for the coexistence of a “spherical cavity” and a “spherical anti-cavity”: 

 

1]. If the cavity (72) – (74) and the anti-cavity (75) – (77) occupy practically the same volume of 23-m,n-vacuum (i.e., they 

are practically combined in coordinates and time) then they completely compensate for each other's manifestations. The most 



likely scenario for their coexistence is a “dance of death” (see Figures 7 and 8), as 

a result of which they lose energy in the form of wave disturbances and disappear 

(annihilate). 

 

2]. If the “cavity” (72) – (74) and the “anti-cavity” (75) – (77) exist simultane-

ously, but are separated in 3-dimensional space, then, when averaged over the en-

tire space, they also completely compensate for each other’s manifestations. Such 

“convexity” and “concavity” must strive towards each other in order to merge 

again in the “dance of death”. 

    

3]. “Cavity” (72) – (74) and “anti-cavity” (75) – (77) can be spaced in time, main-

taining a “vacuum balance”. In this case, they should flow into each other with 

some periodicity, for example, using the “mechanisms” of explosion and Edding-

ton-Finkelstein collapse (84). 

 

Note that if we strictly adhere to the principle of “Fair distribution”, then all three 

of the above scenarios should be realized with a probability of 1/3. 

 

At this stage of the study, it is not clear what is inside a spherical “cavity” with 

radius r0 and in a similar spherical “anti-cavity”? Another problem is this: it turns 

out that in the world described by Einstein’s first vacuum equation (42) there are 

only two mutually opposite cavities. There is nothing else, but where is the huge 

variety of entities inhabiting the real world? In addition, the presence of a singu-

larity of the type 𝑙𝑟
(+)

= Δr/r →   raises doubts.  

 

Next, an attempt will be made to answer these questions.  
 

 

3 Einstein’s second vacuum equation 

 

3.1 Averaged second vacuum equation 

 

In [38], an attempt was made to find additional solutions to Einstein's first vacuum equation (42) in order to solve the problem 

of filling spherical cavities. However, these studies only strengthened the confidence that such solutions are not contained in 

Eq. (42). Therefore, we consider solutions to the Einstein vacuum equation with the Λ-term. 

 

Let’s consider the system of Einstein vacuum equations (51) 

 

{ 
𝑅𝑖𝑘 + Λ1𝑔𝑖𝑘 = 0,               

𝑅𝑖𝑘 − Λ2𝑔𝑖𝑘 = 0.                                                                                                                                              (51′)   

 

Each of the equations of this system has the right to be applied with a probability of ½; therefore, according to the principle 

of “Fair distribution”, we will look for a solution to the averaged equation 

 

𝑅𝑖𝑘 +½ (Λ1𝑔𝑖𝑘 − Λ2𝑔𝑖𝑘) = 0,                                                                                                                                       
 

or 

 

𝑅𝑖𝑘 +½ 𝑔𝑖𝑘(Λ1 − Λ2) = 0,                                                                                                                                            (135)                                                                                             

 

where according to Eq. (50) 

Λ1 =
3

𝑟1
2,    Λ2 =

3

𝑟2
2 ,    r1 – radius of the first sphere;   r2 – radius of the second sphere.                                                (136) 

 
 

Fig. 7: Illustration of the "cavity" and 

"anti-cavity" dance of death 

 

 

 
 

Fig. 8: “Cavity” and “anti-cavity”                  

spaced apart 

     



From the point of view of conservation laws, the averaged vacuum equation (135) has the same properties as any of the 

equations (51′), because the covariant and ordinary derivatives of the tensor on the left side of this equation are equal to zero. 

 

∇𝑗(𝑅𝑖𝑘 +½ Λ1𝑔𝑖𝑘 −½Λ2𝑔𝑖𝑘) =
𝜕(𝑅𝑖𝑘+½ Λ1𝑔𝑖𝑘−½Λ2𝑔𝑖𝑘)

𝜕𝑥𝑗
= 0.                                                                                          (137) 

 

When considering the vacuum equation (135), three possible cases are identified: 

 

1). If Λ1 = Λ2, then Eq. (135) takes the form of the first vacuum equation (42) 𝑅𝑖𝑘= 0. 

 

2). If Λ1 −Λ2 = ±ΛΣ, then Eq. (135) takes the form of the second vacuum equation 

 

𝑅𝑖𝑘 ±½ ΛΣ 𝑔𝑖𝑘 = 0.                                                                                                                                                        (138)                                                                                                                                                                                                            

 

3). If Λ1 −Λ2 = ±𝑅, then Eq. (135) takes the form of the Einstein tensor equal to zero 

 

𝑅𝑖𝑘 ±½ 𝑅𝑔𝑖𝑘 = 0.                                                                                                                                                            (139)          

 

This equation, according to expressions (40) – (42) for 4-dimensional space (n = 4), in any case (+) or (–) again takes the form 

of the first vacuum equation (42). 

 

3.2 Solution of Einstein's second vacuum equation 

 

3.2.1 Metrics-solutions of Kottler - de Sitter - Schwarzschild  

 

The most interesting seems to be the third, self-consistent case, when Λ1 − Λ2 = ±𝑅, but at this stage of the study we only 

know that Eq. (139) reduces to Einstein’s first vacuum equation (42), and its solution have already been discussed in §2 of 

this article. 

 

Therefore, let us consider solutions to the second vacuum equation (138) 

 

𝑅𝑖𝑘 ± Λ𝑎  𝑔𝑖𝑘 = 0,                                                                                                                                                           (140) 

 

where Λ𝑎 = ½ ΛΣ,  here Λ𝑎 = 3 𝑟𝑎
2⁄ . 

 

For the stationary, spherically symmetric case, the solutions to Eq. (140) are five metrics with signature (+ – – –) 

 

𝑑𝑠1
(+)2

= (1 −
𝑟𝑏1

𝑟
+

𝑟2

𝑟𝑎1
2 ) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1 − 
𝑟𝑏1
𝑟
 + 

𝑟2

𝑟𝑎1
2 )

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                  (141)        

𝑑𝑠2
(+)2

= (1 +
𝑟𝑏2

𝑟
−

𝑟2

𝑟𝑎2
2 ) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1 + 
𝑟𝑏2 
𝑟
 − 

𝑟2

𝑟𝑎2
2 )

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                 (142)        

𝑑𝑠3
(+)2

= (1 −
𝑟𝑏3

𝑟
−

𝑟2

𝑟𝑎3
2 ) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1 − 
𝑟𝑏3
𝑟
 − 

𝑟2

𝑟𝑎3
2 )

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                  (143)        

𝑑𝑠4
(+)2

= (1 +
𝑟𝑏4

𝑟
+

𝑟2

𝑟𝑎4
2 ) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1 + 
𝑟𝑏4
𝑟
 + 

𝑟2

𝑟𝑎4
2 )

− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                  (144)   

 

𝑑𝑠5
(+)2

= 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                                                         (145)     
 

where 𝑟𝑎1 , 𝑟𝑎2, 𝑟𝑎3, 𝑟𝑎4  and  𝑟𝑏1, 𝑟𝑏2, 𝑟𝑏3, 𝑟𝑏4 are integration constants (i.e. constant metric parameters) with the dimension of 

distance. 

 



A system of these metrics determines the stable metric-dynamic state of the subcont (i.e., the outer side of the 23-m,n-vacuum, 

see §4 and Figure 7 in [3]). 

 

Also, solutions to Eq. (140) are five metrics with signature (– + + +) 

 

𝑑𝑠1
(−)2

= −(1 −
𝑟𝑏1

𝑟
+

𝑟2

𝑟𝑎1
2 ) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1 − 
𝑟𝑏1
𝑟
 + 

𝑟2

𝑟𝑎1
2 )

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                               (146)        

𝑑𝑠2
(−)2

= −(1 +
𝑟𝑏2

𝑟
−

𝑟2

𝑟𝑎2
2 ) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1 + 
𝑟𝑏2
𝑟
 − 

𝑟2

𝑟𝑎2
2 )

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                               (147)       

𝑑𝑠3
(−)2

= −(1 −
𝑟𝑏3

𝑟
−

𝑟2

𝑟𝑎3
2 ) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1 − 
𝑟𝑏3
𝑟
 − 

𝑟2

𝑟𝑎3
2 )

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                               (148)       

𝑑𝑠4
(−)2

= −(1 +
𝑟𝑏4

𝑟
+

𝑟2

𝑟𝑎4
2 ) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1 + 
𝑟𝑏4
𝑟
 + 

𝑟2

𝑟𝑎4
2 )

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                               (149)  

 

𝑑𝑠5
(−)2

= − 𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                                                                                      (150)  

 
A system of these metrics determines the stable metric-dynamic state of the antisubcont (i.e., the inner side of the 23-m,n-

vacuum). 

 

Friedrich Kottler first wrote down the Kottler metric of the form (143) 

 

𝑑𝑠𝐾𝑜𝑡𝑡𝑙𝑒𝑟
2 = (1 −

𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1− 
𝑟𝑏 
𝑟
 − 

𝑟2

𝑟𝑎
2)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                    (143′)      

in article [34], which was published in March 1918, almost immediately after the publication of Einstein’s general relativ-

ity. In the case: ra =   and  rb ≠ 0, the Kottler metric (143) becomes the Schwarzschild metric 

𝑑𝑠Schwarzschild
2 = (1 −

𝑟𝑏

𝑟
) 𝑐2𝑑𝑡2 −

𝑑𝑟2

(1−
𝑟𝑏
𝑟
)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                                                            

In another limiting case: ra ≠  and rb = 0, the Kottler metric (143) becomes the de Sitter metric 

 

 𝑑𝑠de Sitter
2 = (1 −

𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1−
𝑟2

𝑟𝑎
2)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                                                                  

 

In the third case: ra =   and  rb = 0, the Kottler metric (143) takes the form of the Minkowski metric  

 

𝑑𝑠Minkowski
2 = 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                                                                                  

 

Therefore, the metrics-solution (141) – (144) and (146) – (149) of the second Einstein vacuum equation (140) will be called 

the Kottler - de Sitter- Schwarzschild metrics or, in short, KdSSh-metrics. 

 

 

3.2.2 The eleventh metric is the solution to the second vacuum equation 

 

Averaging all 10 metrics (141) – (150) with 𝑟𝑎 =  𝑟𝑎1 = 𝑟𝑎2 =  𝑟𝑎3 = 𝑟𝑎4  and  𝑟𝑏 = 𝑟𝑏1 =  𝑟𝑏2 = 𝑟𝑏3 = 𝑟𝑏4 

leads to the eleventh zero metric 

 
1

10
∑ 𝑠𝑖

210
𝑖=1 =  0 ∙ 𝑐2𝑑𝑡2  +  0 ∙ 𝑑𝑟2  +  0 ∙ 𝑑𝜃2  + 0 ∙ 𝑠𝑖𝑛2 𝜃 𝑑𝜙2 = 0,                                                                          (151) 

                                 

which is also a trivial (zero) solution to the second vacuum equation (140). 

 

 



3.2.3 Metric-dynamic models of de Sitter space 

 

Let's consider a simplified case when 

 

 𝑟𝑎1 = 𝑟𝑎2 = 𝑟𝑎3 = 𝑟𝑎4 = 𝑟𝑎   and    𝑟𝑏 = 𝑟𝑏1 = 𝑟𝑏2 = 𝑟𝑏3 = 𝑟𝑏4 = 0.                                                                         (152)     

 

Then, when averaging metrics (141) and (144), as well as metrics (142) and (143), only three de Sitter metrics with signature 

(+ – – –) remain: 

 

𝑑𝑠𝑎
(+)2

= (1 +
𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1 + 
𝑟2

𝑟𝑎
2)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                                     (153)     

 

𝑑𝑠𝑏
(+)2

= (1 −
𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1 − 
𝑟2

𝑟𝑎
2)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                                     (154)       

 

𝑑𝑠𝑐
(+)2

= 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                                                        (155)   

 

 

which describe the subcont spherical de Sitter space. 

 

Similarly, when averaging metrics (146) and (149), as well as metrics (147) and (148), only three de Sitter metrics remain 

with signature (+ – – –) 

 

𝑑𝑠𝑎
(−)2

= −(1 +
𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1 + 
𝑟2

𝑟𝑎
2)
+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                                 (156)     

    

𝑑𝑠𝑏
(−)2

= −(1 −
𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1  − 
𝑟2

𝑟𝑎
2)
+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                                 (157)  

      

𝑑𝑠𝑐
(−)2

= −𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                                                     (158)  

 

which describe the antisubkont spherical de Sitter anti-space. 

 

The main capabilities of the Algebra of Signatures (Alsigna) were presented in §2 when constructing a metric-dynamic 

model of “spherical cavity - anticavity in a liquid” based on a set of metrics (72) – (77). 

 

All these methods are also applicable to the set of metrics (141) – (150). However, we will not repeat here a complete 

analysis of these metrics, since this can be easily done by analogy with §2, and on the basis of other possibilities of presented 

in the Algebra of Signatures [1,2,3,4]. Let us note only the main features of the solutions to the second vacuum equation. 

 

 

3.2.4 Spherical de Sitter space 

 

Averaging metrics (153) and (154) leads to the metric (in terms of Alsigna to the subcontact 2-braid) 

 

𝑑𝑠𝑎𝑏
(+)2

= 𝑐2𝑑𝑡2 −
𝑑𝑟2

(1− 
𝑟4

𝑟𝑎
4)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                                                                                      (159)     

 

The zero component of the metric tensor in the averaged metric (159) is equal to one (𝑔00
(+) = 1), which means that time t is 

global.  

 



Let‘s substitute the component 𝑔11
(+)

  from the metric (159) into the integral (110)  

 

𝜉 = ∫ √−𝑔11
(+)𝑟2

𝑟1
𝑑𝑟.                                                                                       (160) 

 

As a result, we get 

 

𝜉 = ∫
𝑟𝑎
2

√𝑟𝑎
4−𝑟4

𝑟2
𝑟1

𝑑𝑟.                                                                                         (161) 

 

This integral is not taken in elementary functions, but numerical integration at                

rа = 2 allows us to obtain the distance function ξ shown in Figure 9. 

 

We substitute the components 𝑔𝑖𝑖
(+)

 from the averaged metric (159) and the com-

ponents 𝑔𝑖𝑖0
(+)  from the metric (155) into the expressions for the relative elonga-

tion (116) 

 

𝑙𝑖
(+)

= √1 +
𝑔
𝑖𝑖
(+)

−𝑔𝑖𝑖0
(+)

𝑔𝑖𝑖0
(+) − 1.                                                                              

(116′)       

 

As a result, we get 

                                                   

𝑙𝑡
(+)

= 0,
     
𝑙𝑟
(+)

=
Δ𝑟

𝑟
= √

𝑟𝑎
4

𝑟𝑎
4−𝑟4

− 1,      𝑙𝜃
(+)

= 0,     𝑙𝜙
(+)

= 0.                       

(162)    

    

The graph of the function 𝑙𝑟
(+)

, which determines the relative elongation of the 

subcont in the radial direction at rа = 2, is shown in Figure 10. From this graph it 

is clear that the relative elongation of the subcont in the center of such a stable 

formation is close to (– 1) (i.e., the subcont is compressed almost to zero). 

 

Starting from 𝑟 = 𝑟𝑎 √2
4
⁄ , as it approaches the periphery of the kernel with radius 

rа , the subcont is greatly stretched, and at r = rа its stretch tends to infinity. 

 

Let’s compare the zero components 𝑔00
(+)

 in metrics (153) and (154) with the zero 

component in metric (124), as a result we obtain: 

 

- for metric (153) 

 

1 + r2/r0
2 = 1+ vra

(+)2/c2 →  vra
(+)2 =  c2r2/r0

2   → vra
(–) =   cr/r0;               (163)  

                                                

- for metric (154) 

                                

1 – r2/r0
2 = 1+ vrb

(+)2/c2 →  vrb
(+)2 = –c2r2/r0

2 → vrb
(–) = – cr/r0.               (164)                                       

                                                   

From Eqs. (163) – (164) it is clear that (by analogy with Exs. (126) – (129) inside the “subcont kernel” the a-subcont and         

b-subcont currents move towards each other in all radial directions along two threads of the double helices (see Figure 13). 

Equal in magnitude, but opposite in direction, the radial velocities of the a-subcont and b-subcont currents vra
(+) = – vrb

(+) in 

 
 

Fig. 10: Graph of the function 𝑙𝑟
(+)

  

(120), i.e. relative elongation of the 

subcont in the radial direction. 

 

 
 

Fig. 11: Radial counter currents of           

a-subkont and b-subkont, twisted into 

double helices 

 
Fig. 9: Graph of the function 



the center of the “subcont kernel” (i.e. at r = 0, see Figure 13) are equal to zero, and at the periphery of this “kernel” with 

radius r0 they move at the speed of light. 

 

Just as it was shown in §2.8.3 a-subcont and b-subcont currents consist of sub-currents rolled into bundles, which in turn 

consist of sub-sub-currents coiled into bundles, and so on until infinity. 

 

The situation seems more physical when, for an external observer, the “subcont ker-

nel” rotates. In this case, the a-subkont rotates at the periphery of the kernel at the 

speed of light vra
(+)(r0) = с (Figure 12). Then it flows along large spirals with deceler-

ation to the center of the kernel, where vra
(+) (0) = 0 practically stops and turns into a 

b-subcount. In turn, the b-subcont flows along large spirals from the center of the nu-

cleus with acceleration, starting from the speed vrb
(–)(0) = 0 and ending with rotation 

at the periphery of the nucleus at the speed of light vrb
(–)(r0) = с (Figures 11 and 12), 

where it turns into a-subcont. Thus, intrakernel ab-subcont “processes” become looped 

and maintain the highly deformed periphery of the de Sitter’s kernel in a stationary 

state. In this case, the reason for the strong deformation of the subcont at the periphery 

of the core turns out to be associated with centrifugal inertia. 

 

It's like Kurt Gödel's spinning universe, in which centrifugal force balances gravity. 

Only in the case under consideration, the centrifugal inertia associated with the rotation 

of the subcontent de Sitter kernel opposes the elasticity associated with its defor-

mation. In addition, inside the de Sitter’s kernel there is not one general ab-subcont 

rotation around one axis, but simultaneously infinitely many rotations of ab-subcont 

subcurrents (folded into bundles) around many differently directed axes. Therefore, 

for an external observer, such simultaneous infinite-axial rotation is practically absent. 

 

Thus, the ab-subcont currents tied into radial bundles and folded into large spiral arms 

(see Figure 12) maintain the vacuum balance and stability of the highly deformed inte-

rior of de Sitter’s kernel. 

 

The subcont de Sitter’s kernel, with colossal compression and expansion, turned out to 

be an extremely difficult place to live. Only in the area of a sphere with radius                         

𝑟 = 𝑟𝑎 √2
4
⁄  are conditions close to normal and it is possible to survive. Therefore, this 

kernel is not called the “world”. 

 

 

3.2.5 Antisubkont spherical de Sitter space 

 

Averaging metrics (156) and (157) leads to the metric (in terms of Alsigna to the antisubcont 2-braid)  

 

𝑑𝑠𝑎𝑏
(−)2

= −𝑐2𝑑𝑡2 +
𝑑𝑟2

(1− 
𝑟4

𝑟𝑎
4)
+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                                                                                   (165)    

 

Performing actions similar to (159) – (164) with the components of the antisubkont 2-braid (165), we obtain a negative (i.e. 

completely opposite) stable antisubkont centrally symmetric formation, which we will call the “antisubkont spherical de 

Sister space”. 

 

3.2.6 Annihilation of subcont and antisubcont spherical de Sitter’s spaces 

 

Subcont and antisubcont spherical de Sitter spaces completely compensate for each other's manifestations. This is immediately 

visible, because averaging six metrics (153) – (158) leads to a zero metric of the form (151). 

 

 
а) 

 

 
б) 

Fig. 12: a) Model of a rotating 

“subkont (or anti-subkont) spherical 

space”; b) Fractal illustration of a ro-

tating “spherical space” 

 



At the same time, the annihilation of subkont and antisubkont spherical de Sitter spaces can be accompanied by periodic 

processes. 

 

The coordinate transformation proposed by Lemaitre and Robertson [9], 

 

𝑟′ =
𝑟

√1+ 
𝑟2

𝑟𝑎
2

𝑟𝑎𝑒
− 
𝑐𝑡

𝑟𝑎 ,       𝑐𝑡 ′ = 𝑐𝑡 + 𝑟𝑎 𝑙𝑛 √1 +
𝑟2

𝑟𝑎
2                                                                                                             (166) 

 

leads, for example, a pair of mutually opposite metrics (153) and (156) to the form 

 

dsa
(–)2 = с2dt 2 – 𝑒

− 
2𝑐𝑡 

 𝑟𝑎 [dr 2 + r 2(d 2 + sin2 d 2)],                                                                                                    (167) 

 

dsa
 (+)2 = – с2dt 2 + 𝑒

 
2𝑐𝑡 

 𝑟𝑎 [dr 2 + r 2(d 2 + sin2 d 2)].                                                                                                  (168) 

 

When averaging these metrics, we obtain a 2-braid 

 

dsaa
(±)2 = 0 + 

𝑒
 
2𝑐𝑡 

 𝑟𝑎 − 𝑒
− 
2𝑐𝑡 

 𝑟𝑎

2
 [dr 2 + r 2(d 2 + sin2 d 2)]  with signature (0 + + +).                                                      (169) 

 

This type of averaged metric is associated with the periodic nature of intra-vacuum processes, since the hyperbolic sine 

 

𝑒
 
2𝑐𝑡 

 𝑟0 − 𝑒
− 
2𝑐𝑡 

 𝑟0

2
= 𝑠ℎ (

2𝑐𝑡

𝑟0
) = −𝑖 𝑠𝑖𝑛 (𝑖

2𝑐𝑡

𝑟0
)                                                                                                                         (170) 

 

is a periodic function. 

 

The second pair of mutually opposite metrics (154) and (157), as a result of coordinate transformations 

 

𝑟′ =
𝑟

√1− 
𝑟2

𝑟𝑎
2

𝑟𝑎𝑒
− 
𝑐𝑡

𝑟𝑎 ,       𝑐𝑡 ′ = 𝑐𝑡 + 𝑟𝑎 𝑙𝑛 √1 −
𝑟2

𝑟𝑎
2 ,                                                                                                          (171)     

 

also on average they form a 2-braid 

 

dsbb
(±)2 = 0 – 

𝑒
 
2𝑐𝑡 

 𝑟𝑎 − 𝑒
− 
2𝑐𝑡 

 𝑟𝑎

2
 [dr 2 + r 2(d 2 + sin2 d 2)]  with signature (0 – – –),                                                       (172) 

 

of a periodic nature. 

 

In this case, we got two exotic metrics (169) and (172), which do not have a time coordinate. This result requires additional 

understanding. 

 

3.2.7 Compliance with ontological principles 

 

Similar to how it was shown in §2.5, each mutually opposite pair of metrics (153) – (158) can be represented as a sum of              

7 + 7 = 14 sub-metrics with the corresponding signatures (as, for example, in rankings (92) или (96). Mutually opposite pairs 

of sub-metrics, in turn, can be represented as a sum of 7 + 7 = 14 sub-sub-metrics, and so on ad infinitum. 

 



Thus, a set of generalized de Sitter metrics (153) – (158) describe the metric-dynamic state of a stationary spherical space and 

a stationary spherical anti-space, satisfying all three ontological principles: “Absolute absence”, “Fair distribution” and                  

“Absence of finitude." 

 

 

4 Schwarzschild-de Sitter cell and anti-cell 

 

Let us return to the consideration of metrics (141) – (150) under the condition 

 

 𝑟𝑎1 = 𝑟𝑎2 = 𝑟𝑎3 = 𝑟𝑎4 = 𝑟𝑎  и   𝑟𝑏 = 𝑟𝑏1 = 𝑟𝑏2 = 𝑟𝑏3 = 𝑟𝑏4 = 0.                

 

In this case, we have five metric solutions to Eq. (140) with signature (+ – – –)                                                               

 

I     𝑑𝑠1
(+)2

= (1 −
𝑟𝑏

𝑟
+

𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1 − 
𝑟𝑏
𝑟
 + 

𝑟2

𝑟𝑎
2)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                 (173) 

 

H    𝑑𝑠2
(+)2

= (1 +
𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1 + 
𝑟𝑏 
𝑟
 − 

𝑟2

𝑟𝑎
2)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                (174)   

 

V    𝑑𝑠3
(+)2

= (1 −
𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1 − 
𝑟𝑏
𝑟
 − 

𝑟2

𝑟𝑎
2)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                 (176)  

 

H′   𝑑𝑠4
(+)2

= (1 +
𝑟𝑏

𝑟
+

𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 −
𝑑𝑟2

(1 + 
𝑟𝑏4
𝑟
 + 

𝑟2

𝑟𝑎
2)
− 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                               (177) 

 

i      𝑑𝑠5
(+)2

= 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2);                                                                                                 (178) 

 

 

and five metric-solutions of the same equation with signature (– + + +) 

 

 

H′     𝑑𝑠1
(−)2

= −(1 −
𝑟𝑏

𝑟
+

𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1 − 
𝑟𝑏
𝑟
 + 

𝑟2

𝑟𝑎
2)
+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                           (179) 

 

V     𝑑𝑠2
(−)2

= −(1 +
𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1 + 
𝑟𝑏
𝑟
 − 

𝑟2

𝑟𝑎
2)
+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                            (180) 

 

H      𝑑𝑠3
(−)2

= −(1 −
𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1 − 
𝑟𝑏
𝑟
 − 

𝑟2

𝑟𝑎
2)
+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                           (181) 

 

 I      𝑑𝑠4
(−)2

= −(1 +
𝑟𝑏

𝑟
+

𝑟2

𝑟𝑎
2) 𝑐

2𝑑𝑡2 +
𝑑𝑟2

(1 + 
𝑟𝑏
𝑟
 + 

𝑟2

𝑟𝑎
2)
+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                           (182) 

 

i        𝑑𝑠5
(−)2

= − 𝑐2𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2).                                                                                           (183) 

 

 

Усредним метрики (173) – (177) с сигнатурой (+ – – –) и метрики (179) – (182) с сигнатурой (– + + +) 

 

 



ds1-4
(+)2 = 1

4
 (ds1

(+)2+ ds2
(+)2 +ds3

(+)2+ ds4
(+)2).                                                                                                             (184)   

 

ds1-4
(–)2 = 1

4
 (ds1

(–)2+ ds2
(–)2 +ds3

(–)2+ ds4
(–)2).                                                                                                              (185)  

 

As a result, we obtain averaged metrics 

   

𝑑𝑠1−4
(+)2

= 𝑐2𝑑𝑡2 − 𝑔11
(+)
(𝑟)𝑑𝑟2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                                             (186) 

 

𝑑𝑠1−4
(−)2

= − 𝑐2𝑑𝑡2 + 𝑔11
(−)(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2 𝜃 𝑑𝜙2),                                                                                         (187) 

 

where                       

 𝑔11
(+)(𝑟) = 𝑔11

(−)(𝑟) =
1

4
[

1

(1− 
𝑟𝑏
𝑟
 + 

𝑟2

𝑟𝑎
2)
+

1

(1+ 
𝑟𝑏 
𝑟
 − 

𝑟2

𝑟𝑎
2)
+

1

(1− 
𝑟𝑏
𝑟
 − 

𝑟2

𝑟𝑎
2)
+

1

(1+ 
𝑟𝑏
𝑟
 + 

𝑟2

 𝑟𝑎
2)
].                                                             (188) 

 

Let us substitute the components 𝑔𝑖𝑖
(+)

 of the averaged metric (186) or the components 𝑔𝑖𝑖
(−)

 of the averaged metric (187) into 

the expressions for the relative elongation (116) 

 

𝑙𝑖
(+)

= √1 +
𝑔
𝑖𝑖
(+)

− 𝑔𝑖𝑖0
(+)

𝑔𝑖𝑖0
(+) − 1,        𝑙𝑖

(−)
= √1 +

𝑔
𝑖𝑖
(−)

− 𝑔𝑖𝑖0
(−)

𝑔𝑖𝑖0
(−) − 1,       

                                             

where the components 𝑔𝑖𝑖0
(+)  are taken from the undistorted metric (178), and 

the components 𝑔𝑖𝑖
(−)

 are taken from the undistorted metric (183). 

 

As a result, we get 

                                                                                                             (189)                                                                         

𝑙𝑟
(±)

=
Δ𝑟

𝑟
= √𝑔11

(±)
(𝑟) − 1 =

 √
1

4
[

1

(1− 
𝑟𝑏
𝑟
 + 

𝑟2

𝑟𝑎
2)
+

1

(1+ 
𝑟𝑏 
𝑟
 − 

𝑟2

𝑟𝑎
2)
+

1

(1− 
𝑟𝑏
𝑟
 − 

𝑟2

𝑟𝑎
2)
+

1

(1+ 
𝑟𝑏
𝑟
 + 

𝑟2

 𝑟𝑎
2)
]  − 1,                                          

 

𝑙𝑡
(±)

= 0,        𝑙𝜃
(±)

= 0,      𝑙𝜙
(±)

= 0.                                                             

           

The graph, for example, of the function 𝑙𝑟
(+)

 (189) with 𝑟𝑎 = 60  and                       

𝑟𝑏 = 1,5, which determines the relative elongation of vacuum in the radial 

direction, is shown in Figure 13. From this graph it is clear that the result is 

an almost hollow ball (i.e., a spherical de Sitter space) with compacted edges, 

inside of which there is a spherical Schwarzschild cavity, which is described 

by metrics (16) – (18), more precisely, by the averaged metric (25). 

 

Indeed, if in metrics (173) – (177) we direct ra to infinity (ra → ), i.e., for 

example, assume that ra is the radius of the Universe, then in the vicinity of 

a small cavity with radius rb,= r0, which is commensurate, for example, with 

the gravitational radius of the “black hole”, the deformed state of the vacuum 

will be described by the averaged metric (25). 

 

Shown in Figure 13, the vacuum formation resembles a biological cell with an outer shell and an internal nucleolus, so we 

will call this formation a Schwarzschild-de Sitter cell. 

 
Fig. 13: Graph of the relative elongation func-

tion 𝑙𝑟
(+)

 (189), which determines the relative 

elongation of vacuum in the radial direction 

 



 

Performing similar operations with decision metrics (179) – (183) with the opposite signature (– + + +), we obtain exactly the 

same, but opposite Schwarzschild - de Sitter anti-cell. 

 

If we conventionally accept that the Schwarzschild-de Sitter cell is a “convexity” of the vacuum, then the Schwarz-

schild-de Sitter anti-cell is its “concavity”. 

 
Averaging all ten metrics-solutions (173) – (183) of the second vacuum equation (140) leads to two trivial (i.e. zero) pseudo-

metric-solutions of this equation 
1

10
(∑ 𝑑𝑠𝑘

(+)2 +5
𝑘=1 ∑ 𝑑𝑠𝑘

(−)25
𝑘=1 ) = ±0 ∙ 𝑐2𝑑𝑡2 ∓ 0 ∙ 𝑑𝑟2 ∓ 0 ∙ 𝑟2𝑑𝜃2 ∓ 0 ∙ 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                         (190) 

It is obvious that Einstein’s vacuum equation with the Λ-term (140) also does not allow us to solve the problem of filling the 

“spherical Schwarzschild cavity” and the “spherical anti-Schwarzschild cavity”, which in this case find themselves inside the 

de Sitter space or the anti-de Sitter space, respectively . 

 

We compare the zero components 𝑔00
(+)

 in metrics (173) – (178) with the zero component in metric (124) 

                                                            

𝑑𝑠(+)2 = (1 +
𝑣𝑟
2

𝑐2
) 𝑐2𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜙2.                                                                                        (124′)                                 

 

As a result, we obtain the velocities of four subcont‘s currents intertwined into bundles   

 

(1 +
𝑣𝑟1
2

с2
) = (1 −

𝑟𝑏

𝑟
+

𝑟2

𝑟𝑎
2)    →    𝑣𝑟1

2 = (
𝑟2

𝑟𝑎
2 −

𝑟𝑏

𝑟
) с2        →    𝑣𝑎1 = √

𝑟2с2

𝑟𝑎
2 −

𝑟𝑏с2

𝑟
= 𝑐√

𝑟2

𝑟𝑎
2 −

𝑟𝑏

𝑟
,                               (191)             

 

(1 +
𝑣𝑟2
2

с2
) = (1 +

𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2)    →    𝑣𝑟2

2 = (−
𝑟2

𝑟𝑎
2 +

𝑟𝑏

𝑟
) с2    →    𝑣𝑟2 = √−

𝑟2с2

𝑟𝑎
2 +

𝑟𝑏с2

𝑟
= 𝑐√

𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2 ,                             

 

(1 +
𝑣𝑟3
2

с2
) = (1 −

𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2)    →    𝑣𝑟3

2 = (−
𝑟2

𝑟𝑎
2 −

𝑟𝑏

𝑟
) с2    →    𝑣𝑟3 = √−

𝑟2с2

𝑟𝑎
2 −

𝑟𝑏с2

𝑟
= 𝑖𝑐√

𝑟2

𝑟𝑎
2 +

𝑟𝑏

𝑟
 ,                            

 

(1 +
𝑣𝑟4
2

с2
) = (1 +

𝑟𝑏

𝑟
+

𝑟2

𝑟𝑎
2)    →    𝑣𝑟4

2 = (
𝑟2

𝑟𝑎
2 +

𝑟𝑏

𝑟
) с2       →    𝑣𝑟4 = √

𝑟2с2

𝑟𝑎
2 +

𝑟𝑏с2

𝑟
= 𝑐√

𝑟2

𝑟𝑎
2 +

𝑟𝑏

𝑟
 .                                  

 

Since 𝑣𝑟𝑖  cannot exceed the speed of light, the conditions must be met 

0 ≤
𝑟2

𝑟𝑎
2 +

𝑟𝑏

𝑟
≤ 1,     0 ≤

𝑟2

𝑟𝑎
2 −

𝑟𝑏

𝑟
≤ 1,    0 ≤

𝑟𝑏

𝑟
−

𝑟2

𝑟𝑎
2 ≤ 1.                                                                                                    

 

From these expressions it is clear that in this case, two subcont’s currents flow out in spirals from the periphery of the world 

at the speed of light, as described in §3.2.4. Then they slow down. However, near the inner nucleolus they again accelerate to 

the speed of light and turn into two opposite subcont’s currents, which, along the same “threads” twisted in a spiral, return to 

the periphery of the Schwarzschild-de Sitter cell, first slowing down and then accelerating to the speed of light. 

 

Average subcont’s speed in each local region of the Schwarzschild-de Sitter cell 

 

𝑣𝑟
(+)2 =

1

4
[(1 −

𝑟𝑏
𝑟
+
𝑟2

𝑟𝑎
2)+ (1 +

𝑟𝑏
𝑟
−
𝑟2

𝑟𝑎
2)  + (1 −

𝑟𝑏
𝑟
−
𝑟2

𝑟𝑎
2)+ (1 +

𝑟𝑏
𝑟
+
𝑟2

𝑟𝑎
2) ] =  0.                                        (192)                

 

This means that the inflowing and outflowing currents, twisted in a 4-helix, completely compensate for each 

other’s manifestations, ensuring subcont’s balance and stability of the subcont’s deformations shown in Figure 13. 

 



5 Deepening model concepts to infinity 

 

5.1 Infinitely intertwined fabric of m,n-vacuum 

 

Everything that was said in §2 and §3 in relation to infinite metric-dynamic 

models of “spherical cavities” also concerns the Schwarzschild-de Sitter 

cell and anti-cell. 

 

In the case under consideration, the two-sided metric space (i.e. 23-m,n-

vacuum) is the result of the superposition of eight metric spaces (173) – 

(177) and (179) – (190) or interweaving of 16 affine extensions, which be-

long to 8 + 8 = 16 linear forms twisted into 16-braid. 
 

In Figure 14 and 15 shows an illustration of the interweaving of several 

affine subspaces forming a two-sided metric space. 

 

The properties of intertwined affine sub-spaces and multilayer metric spaces with signatures (+ – – –) and (– + + +), corre-

sponding to the “vacuum balance” condition (+ – – –) + (– + + +) = 0, are described in detail in the “Algebra of Signatures" 

[1, 2, 3, 4]. 

 

 
 

Fig. 15: Fractal illustration of the intertwined “fabric” of a double-sided 23-m,n-vacuum 

 

Depth-infinite metric-dynamic models of stable m,n-vacuum formations of the type “spherical cavity” (§2.6), de Sitter spher-

ical space and anti-space (§3.2.4), and Schwarzschild - de Sitter cells and anti-cells (§4), separate extensive studies can be 

devoted, taking into account various coordinate transformations, for example (83), (87), (90), etc. But all these models, infinite 

in depth, based on solutions of Einstein’s first and second vacuum equations, describe single stable vacuum objects. 

 

Therefore, the general question remains open: “How to introduce a model idea of the huge variety of spherical formations 

that fill the reality around us? 

 

   

 
 

Fig. 14: Illustration of the interweaving of 

“threads” (i.e. lines) of several affine subspaces 

forming the “fabric” of a two-sided 23-m,n-vac-

uum 

 



5.2 Qualitative discussion of the singularity problem 

 

At r = r0, the relative vacuum elongation functions (117), (162) and (189) tend to infinity 

(Δr/r → , see Figures 4, 10, 13) - this is a clear indicator of the incompleteness of the 

mathematical model under consideration. 

 

It is obvious that within the framework of Riemann differential geometry, the problem of 

the presence of singularities in the metrics-solutions of the vacuum equations (42) and 

(140) is in principle unsolvable. Perhaps this problem will be solved as a result of increas-

ing the capabilities of differential geometry, for example, by taking into account not only 

curvature, but also torsions, displacements and other distortions of space. 

 

In other words, solving the problem of singularities requires a radical increase in the ca-

pabilities of the mathematical apparatus of differential geometry. 

 

In this article we note only one circumstance that can help solve this problem. Let us recall the property of the “Koch curve” 

fractal (Figure 16). 

 

This fractal has two extraordinary properties: 1) any iteration of the Koch curve is an example of a continuous line to which 

it is impossible to draw a tangent at any point (i.e., these lines are not differentiable); 2) if the length of the initial Koch 

segment is 1, then the length of the n-th iteration of this fractal is equal to (4/3)n–1, therefore the length of the Koch curve at            

n =  tends to infinity. 

 

Let‘s return to the problem of singularities in averaged metrics (109), (130), (134), (186) and (187). It should be expected that 

in the region of a sphere with radius r0 (this region is called “raqiya”), an increase in the length of radial segments along the 

length of the vacuum occurs with a decrease in the scale of their kinks (see Figure 17), similar to a decrease in the scale of 

kinks in the “Koch curve” as the number of iterations (see Figure 16). Moreover, as we approach r0, the elongation of such 

broken, or bent, or wound, etc., segments can tend to infinity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 16: The first six iterations             

of the Koch curve fractal 
 

 

     
 

 
 

Fig. 17: Increase in brokenness of lines as they approach the central 

cavity (Prokhorov-Lebedev drawing) 

 

     
 



In Figure 18 shows fractal illustrations of complexly curved “raqiya” (i.e., shell) around the core of the vacuum formation. 

 

 

                 
                                                      a)                                                                                         b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        c)                                                                                          d) 

 

Fig. 18: Fractal illustrations of a complexly curved region of vacuum (i.e., “raqiya”) surrounding 

the core of a corpuscular formation with radius r0. Fractals c and d show two or more ring-shaped boundaries surrounding a spherical 

core. Benoit Mandelbrot in the book “Fractal Geometry of Nature” noted that recursive algorithms of fractal geometry have the                        

phenomenon of visualizing the meaning and properties of natural objects 

 

 

 

6 Einstein's third vacuum equation 

 

As shown above, solutions to the first and second Einstein vacuum equations (42) and (140) make it possible to construct 

metric-dynamic models of a mutually opposite pair of single stable vacuum formations, but do not allow solving the problem 

of filling spherical cavities and anti-cavities inside these formations. In addition, these equations lack the potential to describe 

many stable spherical objects. In this regard, it is proposed to consider the possibility of expanding the vacuum equation (140). 

 

Let’s recall that in order to write down Eq. (25), Einstein used the following property of the metric tensor 

 

Λ∇𝑗𝑔𝑖𝑘 = ∇𝑗Λ𝑔𝑖𝑘 = 0.                                                                                                                                                                                  

 

However, it is obvious that the covariant derivative of the infinite series of  i-terms are also equal to zero 

 

∇𝑗(Λ1 𝑔𝑖𝑘 + Λ2𝑔𝑖𝑘 + Λ3𝑔𝑖𝑘+. . . +Λ∞𝑔𝑖𝑘) = Λ1 ∇𝑗𝑔𝑖𝑘 + Λ2∇𝑗𝑔𝑖𝑘+. . . +Λ∞∇𝑗𝑔𝑖𝑘 = 0,
 
                                               (193)   

                                                                                                                                                                                                                                                                                 



where 1, 2, … , ∞ are constants that can take both positive (i > 0) and negative (j < 0) values. 

 

We use the same method that Einstein used to introduce the -term into Eq. (25), and write the vacuum equation 

 

𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 + Λ1𝑔𝑖𝑘 + Λ2𝑔𝑖𝑘 + Λ3𝑔𝑖𝑘+. . . +Λ∞𝑔𝑖𝑘 = 0,                                                                                             (194)       

 

where according to Eq. (50) k = 3/rаj
2 or  – 3/rаj

2, here raj is the radius of the j-th spherical formation. 

 

The covariant and ordinary partial derivatives of the tensor on the left side of Eq. (194) are equal to zero: 

 

∇𝑗(𝑅𝑖𝑘 −
1

2
𝑅𝑔𝑖𝑘 + 𝑔𝑖𝑘 ∑ Λ𝑘

∞
𝑘=1 ) =

𝜕(𝑅𝑖𝑘−
1

2
𝑅𝑔𝑖𝑘+𝑔𝑖𝑘∑ Λ𝑘

∞
𝑘=1 )

𝜕𝑥𝑗
= 0,                                                                                     (195)      

 

therefore, this equation is an expression of conservation laws, just like the first and second vacuum equations (42) and (140). 

 

Eq. (194) will be called Einstein's third vacuum equation.                       

 

In the following articles of the proposed project “Geometrized vacuum physics based on the Algebra of Signature” it will be 

shown that solutions to Eq. (194) allow the description of a multitude of interacting stable vacuum formations of different 

sizes. This will allow us to develop the vacuum theory of elementary particles and propose a corpuscular cosmological model. 

 

 

CONCLUSION  

 

In this fifth part of the scientific project under the general title “Geometrized physics of vacuum based on the Algebra of 

Signature”, metric-dynamic models of stable m,n-vacuum formations are considered, based on solutions of Einstein’s first 

vacuum equation (42) and the second vacuum equation (140). 

 

As a result, with simplifications related to Riemann geometry, from the solutions of the first and second Einstein vacuum 

equations, it was possible to construct three types of metric-dynamic models of stable m,n-vacuum formations: “spherical 

cavity and anti-cavity” (72) – (77), “de Sitter spherical space and anti-space” (153) – (158) and “Schwarzschild-de Sitter cell 

and anti-cell” (173) – (183). 

 

The construction of these models was carried out on the basis of three newly introduced ontological principles of “Absolute 

Absence”, “Fair Distribution” and “Finite Absence” (see §1.5), as well as using the Signature Algebra developed in the first 

four articles of the proposed project [1,2,3,4]. 

 

As a result, it is shown that averaging a complete or partial set of metrics-solutions to Einstein’s vacuum equations leads to 

other solutions to these equations and/or to reasonable results that are not achievable when considering each metric-solution 

separately. 

 

However, as noted by mathematician David Reid, it is possible that useful information may be contained not only in the 

arithmetic mean of metrics-solutions of vacuum equations, but also in other types of averaging, for example in their: geometric 

mean, or harmonic mean, or square mean, or cubic mean. 

 

The zero component of the metric tensor of all averaged metrics (109), (130), (134) и (189) obtained in this article is equal to 

one (𝑔00
(+) = 1), i.e. time t in these metrics is global. This means that the stable vacuum formations described by these metrics 

can coexist in the same global space with the same time. Global time t in these metrics can be synchronized with the universal 

time of averaged cosmological metrics with zero components 𝑔00
(+) = 1  and  𝑔00

(−) = −1  (59) and (60). Therefore, such stable 

vacuum formations can indeed be synchronized (i.e., “frozen”) into the space of the cosmological model that changes with 

time t. 

 



For convenience of perception of multilayer intra-vacuum processes, this article has changed the interpretation of the compo-

nents of the metric tensor and metrics-solutions of vacuum equations in general. If in the general relativity metrics (i.e. quad-

ratic forms) characterize the curvature of the space-time continuum, and zero components are associated with changes in the 

flow of time, then in the proposed theory the metric characterizes the deformations of a continuous elastic-plastic pseudo-

substantial medium, and the zero components are related to the speed of its movement. 

 

Another serious difference between the theory developed here and general relativity is due to the fact that in Geometrized 

Vacuum Physics at least two sets of metrics with mutually opposite signatures (+ – – –) and (– + + +) are used, and upon a 

more detailed consideration all 16 signatures (108). This makes it possible to constantly maintain a “vacuum balance”, and, 

ultimately, leads to the solution of many problems, including the problem of “baryonic asymmetry of the Universe”.\ 

 

The infinitely deepening intertwined fabric of the space-time continuum of Alsigna taking into account all 16 signatures (108) 

(i.e., 16 types of topologies, see §4 in [2]) is in many ways similar to the spin network of loop quantum gravity and                                    

6 -dimensional Callabi-Yau manifolds (see §9 in [2]). In this sense, the Algebra of Signatures can serve as a link that unites 

different directions of development of quantum gravity. 

 

All metric-dynamic models discussed in this article describe only one pair of mutually opposite stable objects of the corpus-

cular type. That is, it turned out that for stationary cases, the first and second Einstein vacuum equations in their potency 

contain the possibility of describing only one mutually opposite pair, capable of coexisting only in a state of “dance of death”. 

However, within the framework of the proposed theory, the task is to develop a model representation of the surrounding 

reality, filled with an infinite number of corpuscles of various sizes, therefore the extended Einstein’s third vacuum equation 

(194) is proposed. The solutions to this equation and the corpuscular cosmological model based on these solutions will be 

presented in subsequent articles of the proposed project under the general title “Geometrized vacuum physics based on the 

Algebra of Signatures.”  
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