Quantum Physics

1702 Submissions

[39] viXra:1702.0336 [pdf] submitted on 2017-02-28 11:08:28

Light-by-Light Scattering

Authors: George Rajna
Comments: 28 Pages.

Scientists from the ATLAS collaboration at the LHC have found evidence for light-by-light scattering, in which two photons interact and change their trajectory. [17] Members of the Faculty of Physics at the Lomonosov Moscow State University have elaborated a new technique for creating entangled photon states. [16] Quantum mechanics, with its counter-intuitive rules for describing the behavior of tiny particles like photons and atoms, holds great promise for profound advances in the security and speed of how we communicate and compute. [15] University of Oregon physicists have combined light and sound to control electron states in an atom-like system, providing a new tool in efforts to move toward quantum-computing systems. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information, photons are limited primarily to communications, transmitting data over optical fiber. However, using the spin of light waves could make possible devices that integrate electrons and photons to perform logic and memory operations. [11] Researchers at the University of Ottawa observed that twisted light in a vacuum travels slower than the universal physical constant established as the speed of light by Einstein's theory of relativity.
Category: Quantum Physics

[38] viXra:1702.0333 [pdf] replaced on 2017-03-18 18:56:11

Quantum-Mechanical Aspects of the L. Pauling's Resonance Theory.

Authors: Bezverkhniy Volodymyr Dmytrovych, Bezverkhniy Vitaliy Volodymyrovich.
Comments: 4 Pages.

The L. Pauling's resonance theory analyzed using principle of quantum superposition, that is the principle of superposition "wave function", which is the main positive principle of quantum mechanics. The principle of quantum superposition is essentially a basic property of the wave function. By example of benzene molecule is shown that the principle of quantum superposition, and hence the quantum mechanics in general is in insurmountable conflict with the resonance theory.
Category: Quantum Physics

[37] viXra:1702.0328 [pdf] replaced on 2019-10-25 15:42:21

Использование силы Казимира для управляемого движения макротел (Ru)

Authors: A.V. Antipin
Comments: 13 Pages.

Рассмотрен эффект Казимира для конструкции «уголок». Теоретически обнаружена некомпенсируемая сила в направлении от вершины уголка к его раствору. Проведены оценки величины этой силы. ||| Considered the Casimir effect for construction «angle bar». Theoretically discovered uncompensated force in the direction from the top of the angle bar to its opening angle. Assessment of the magnitude of this force. (see the English version: http://vixra.org/abs/1404.0097)
Category: Quantum Physics

[36] viXra:1702.0303 [pdf] submitted on 2017-02-24 07:25:20

Ultrashort Laser Pulses in Optical Fiber

Authors: George Rajna
Comments: 15 Pages.

University of Warsaw have generated ultrashort laser pulses in an optical fiber with a method previously considered to be physically impossible. [7] Researchers at the Max Planck Institute for the Science of Light in Erlangen have discovered a new mechanism for guiding light in photonic crystal fiber (PCF). [6] Scientists behind a theory that the speed of light is variable-and not constant as Einstein suggested-have made a prediction that could be tested. [5] Physicists' greatest hope for 2015, then, is that one of these experiments will show where Einstein got off track, so someone else can jump in and get closer to his long-sought " theory of everything. " This article is part of our annual "Year In Ideas" package, which looks forward to the most important science stories we can expect in the coming year. It was originally published in the January 2015 issue of Popular Science. [4] The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity. The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories.
Category: Quantum Physics

[35] viXra:1702.0278 [pdf] submitted on 2017-02-22 06:43:41

Grondbeginselen Van de Werkelijkheid

Authors: J.A.J. van Leunen
Comments: 9 Pages.

Een onderzoek naar de grondbeginselen van de fysieke realiteit is alleen mogelijk met hulp van een wiskundig model
Category: Quantum Physics

[34] viXra:1702.0277 [pdf] submitted on 2017-02-22 07:13:53

Entropy of a Single Molecule

Authors: George Rajna
Comments: 40 Pages.

New research shows that a scanning-tunneling microscope (STM), used to study changes in the shape of a single molecule at the atomic scale, impacts the ability of that molecule to make these changes. [26] Physicists are getting a little bit closer to answering one of the oldest and most basic questions of quantum theory: does the quantum state represent reality or just our knowledge of reality? [25] A team of researchers led by LMU physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. [24] A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation, corresponding to different frequencies. Calculating these frequencies is part of the tools of the trade in theoretical physics. Recently, however, a special class of systems has caught the attention of the scientific community, forcing physicists to abandon well-established rules. [20] Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first-ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics. [19] A combined team of researchers from Columbia University in the U.S. and the University of Warsaw in Poland has found that there appear to be flaws in traditional theory that describe how photodissociation works. [18] Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17]
Category: Quantum Physics

[33] viXra:1702.0276 [pdf] submitted on 2017-02-22 08:50:18

Quantum Critical Behavior

Authors: George Rajna
Comments: 42 Pages.

A research group from Bar-Ilan University, in collaboration with French colleagues at CNRS Grenoble, has developed a unique experiment to detect quantum events in ultra-thin films. [27] New research shows that a scanning-tunneling microscope (STM), used to study changes in the shape of a single molecule at the atomic scale, impacts the ability of that molecule to make these changes. [26] Physicists are getting a little bit closer to answering one of the oldest and most basic questions of quantum theory: does the quantum state represent reality or just our knowledge of reality? [25] A team of researchers led by LMU physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. [24] A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation, corresponding to different frequencies. Calculating these frequencies is part of the tools of the trade in theoretical physics. Recently, however, a special class of systems has caught the attention of the scientific community, forcing physicists to abandon well-established rules. [20] Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first-ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics. [19]
Category: Quantum Physics

[32] viXra:1702.0274 [pdf] submitted on 2017-02-21 13:48:19

Quantum State is Real

Authors: George Rajna
Comments: 38 Pages.

Physicists are getting a little bit closer to answering one of the oldest and most basic questions of quantum theory: does the quantum state represent reality or just our knowledge of reality? [25] A team of researchers led by LMU physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. [24] A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation, corresponding to different frequencies. Calculating these frequencies is part of the tools of the trade in theoretical physics. Recently, however, a special class of systems has caught the attention of the scientific community, forcing physicists to abandon well-established rules. [20] Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first-ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics. [19] A combined team of researchers from Columbia University in the U.S. and the University of Warsaw in Poland has found that there appear to be flaws in traditional theory that describe how photodissociation works. [18] Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16]
Category: Quantum Physics

[31] viXra:1702.0258 [pdf] submitted on 2017-02-20 11:05:29

Vacuum Friction

Authors: George Rajna
Comments: 17 Pages.

When three physicists first discovered through their calculations that a decaying atom moving through the vacuum experiences a friction-like force, they were highly suspicious. [10] A small team of researchers with affiliations to institutions in Italy, Japan and the U.S. has created a simulation that suggests that it should be possible for a single photon to simultaneously excite two atoms. [9] Molecules vibrate in many different ways—like tiny musical instruments. [8] For centuries, scientists believed that light, like all waves, couldn't be focused down smaller than its wavelength, just under a millionth of a metre. Now, researchers led by the University of Cambridge have created the world's smallest magnifying glass, which focuses light a billion times more tightly, down to the scale of single atoms. [7] A Purdue University physicist has observed a butterfly Rydberg molecule, a weak pairing of two highly excitable atoms that he predicted would exist more than a decade ago. [6] In a scientific first, a team of researchers from Macquarie University and the University of Vienna have developed a new technique to measure molecular properties – forming the basis for improvements in scientific instruments like telescopes, and with the potential to speed up the development of pharmaceuticals. [5] In the quantum world, physicists study the tiny particles that make up our classical world-neutrons, electrons, photons-either one at a time or in small numbers because the behaviour of the particles is completely different on such a small scale. If you add to the number of particles that are being studied, eventually there will be enough particles that they no longer act quantum mechanically and must be identified as classical, just like our everyday world. But where is the line between the quantum world and the classical world? A group of scientists from Okinawa Institute of Science and Technology Graduate University (OIST) explored this question by showing what was thought to be a quantum phenomenon can be explained classically. [4] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
Category: Quantum Physics

[30] viXra:1702.0250 [pdf] submitted on 2017-02-19 12:55:29

Neglected Properties of Light

Authors: George Rajna
Comments: 29 Pages.

University of Toronto (U of T) researchers have demonstrated a way to increase the resolution of microscopes and telescopes beyond long-accepted limitations by tapping into previously neglected properties of light. [18] Research led by ANU on the use of magnets to steer light has opened the door to new communications systems which could be smaller, cheaper and more agile than fibre optics. [17] Members of the Faculty of Physics at the Lomonosov Moscow State University have elaborated a new technique for creating entangled photon states. [16] Quantum mechanics, with its counter-intuitive rules for describing the behavior of tiny particles like photons and atoms, holds great promise for profound advances in the security and speed of how we communicate and compute. [15] University of Oregon physicists have combined light and sound to control electron states in an atom-like system, providing a new tool in efforts to move toward quantum-computing systems. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information, photons are limited primarily to communications, transmitting data over optical fiber. However, using the spin of light waves could make possible devices that integrate electrons and photons to perform logic and memory operations. [11]
Category: Quantum Physics

[29] viXra:1702.0216 [pdf] submitted on 2017-02-17 04:53:24

Relativistic Velocity Stabilization of Particle Sets in Gravity Fields

Authors: Thierry De Mees
Comments: 3 Pages.

The analogy of electromagnetism for gravity was proposed by O. Heaviside in 1893 and applied by O. Jefimenko at the end of last millennium. In one intriguing example of two falling masses in a gravity field, he found that the two masses are mutually over-accelerating, more than the gravity acceleration field. I find here the result of his example in the form of a relativistic equation of velocity stabilization in that gravity field, related to the distance of the two masses. When I look for the conditions for the upper limit velocity, the speed of light, I deduce that the distance between the two masses at that relativistic speed equals the Planck length. Hence, this gives the first physical meaning of Planck length in a practical application, i.e. that very small particles such as gravitons and neutrinos with a rest mass can propagate in a gravity field at the speed of light without being just a wave that is propagated by the specific natural constants of a medium.
Category: Quantum Physics

[28] viXra:1702.0196 [pdf] submitted on 2017-02-17 04:13:22

A Stroll Around E=mc² and Planck’s Constant

Authors: Thierry De Mees
Comments: 3 Pages.

Since generations it has been taught that the relationship between energy and mass for E-M waves is E = m c². However, in this paper we will discover that this equation unveils the intrinsic potential energy of the carrier of waves, formerly called ‘aether’. We will find the mass of an electron and Planck’s constant in terms of the aether’s density.
Category: Quantum Physics

[27] viXra:1702.0188 [pdf] submitted on 2017-02-16 02:13:22

Quantum Relativity as the Way Towards Reality

Authors: Peter Leifer
Comments: 10 Pages. FQXi_contest_2016

Wandering in quantum researches should lead to the rational goal - understanding. All history of the science shows how meaningful mathematical laws in physics, engineering, chemistry, etc., arose on the ground of rational human practice. I would like show that in the contradictory development of quantum physics, the theory ultimately follows the same line. ``Elementary" particles do exist. This fact does not depend on the procedure of a measurement. The existence, however, requires some description that mostly based on relations between measurable values. Our goal is to bridge this objective reality and its mental reflection. It is assumed that existence should be based on the invariant relations between measurable values. What kind of the invariance should be used?
Category: Quantum Physics

[26] viXra:1702.0185 [pdf] replaced on 2018-02-11 12:59:52

G-Factor and the Helical Solenoid Electron Model

Authors: Oliver Consa
Comments: 10 Pages. latex version

A new model of the electron with Helical Solenoid geometry is presented. This new model is an extension of the Parson’s Ring Electron Model and the Hestenes’ Zitter Electron Model. In this new electron model, the g-factor appears as a simple consequence of the geometry of the electron. The calculation of the g-factor is performed in a simple manner and we obtain the value of 1.0011607. This value of the g-factor is more accurate that the value provided by the Schwinger’s factor.
Category: Quantum Physics

[25] viXra:1702.0178 [pdf] submitted on 2017-02-15 06:15:13

Creation of Entangled Photon States

Authors: George Rajna
Comments: 27 Pages.

Members of the Faculty of Physics at the Lomonosov Moscow State University have elaborated a new technique for creating entangled photon states. [16] Quantum mechanics, with its counter-intuitive rules for describing the behavior of tiny particles like photons and atoms, holds great promise for profound advances in the security and speed of how we communicate and compute. [15] University of Oregon physicists have combined light and sound to control electron states in an atom-like system, providing a new tool in efforts to move toward quantum-computing systems. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information, photons are limited primarily to communications, transmitting data over optical fiber. However, using the spin of light waves could make possible devices that integrate electrons and photons to perform logic and memory operations. [11] Researchers at the University of Ottawa observed that twisted light in a vacuum travels slower than the universal physical constant established as the speed of light by Einstein's theory of relativity. Twisted light, which turns around its axis of travel much like a corkscrew, holds great potential for storing information for quantum computing and communications applications. [10]
Category: Quantum Physics

[24] viXra:1702.0168 [pdf] submitted on 2017-02-14 12:15:30

Frequency Combs

Authors: George Rajna
Comments: 28 Pages.

EPFL scientists have found a way to miniaturize frequency combs, realizing a new step toward miniaturization of such tools. Their device can measure light oscillations with a precision of 12 digits. [20] Technion researchers have demonstrated, for the first time, that laser emissions can be created through the interaction of light and water waves. This "water-wave laser" could someday be used in tiny sensors that combine light waves, sound and water waves, or as a feature on microfluidic "lab-on-a-chip" devices used to study cell biology and to test new drug therapies. [18] Researchers led by EPFL have built ultra-high quality optical cavities for the elusive mid-infrared spectral region, paving the way for new chemical and biological sensors, as well as promising technologies. [17] The research team led by Professor Hele Savin has developed a new light detector that can capture more than 96 percent of the photons covering visible, ultraviolet and infrared wavelengths. [16] A promising route to smaller, powerful cameras built into smartphones and other devices is to design optical elements that manipulate light by diffraction-the bending of light around obstacles or through small gaps-instead of refraction. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena.
Category: Quantum Physics

[23] viXra:1702.0161 [pdf] submitted on 2017-02-13 15:50:27

Radius of Single Fluxon Electron Model Identical with Classical Electron Radius

Authors: U. Kayser-Herold
Comments: 6 Pages.

Analytical determination of the magnetic flux included in the electron's dipole field - with consideration of magnetic flux quantization - reveals that it precisely comprises one magnetic flux quantum $\Phi_{0}$. The analysis further delivers a redefinition of classical electron radius $r_{e}$ by a factorized relation among electron radius $r_{e}$, vacuum permeability $\mu_{0}$, magneton $\mu_{B}$ and fluxon $\Phi_{0}$, exclusively determined by the electron's quantized magnetic dipole field: \begin{center} $r_{e} =\mu_{0}\hspace{1} \mu_{B}\hspace{1}(\Phi_{0})^{-1}= e^{2}/ 4 \pi \epsilon_{0} m_{e} c^{2}$ \end{center} The single fluxon electron model further enables analytical determination of its vector potential at $r_{e}$: $\vec{A}_{re} = \vec{\Phi}_{0}/2\pi r_{e}}$ and canonical angular momentum: $ e \vec{A}_{re}\hspace{2} 2 \hspace{2}\pi r_{e} %= e \hspace{2}\vec{\Phi_{0}} 2 \hspace{2}\pi = \hbar/2$.\\ Consideration of flux-quantization supports a toroidal electron model.
Category: Quantum Physics

[22] viXra:1702.0138 [pdf] replaced on 2017-02-12 10:20:00

Resolving the Mystery of the Fine Structure Constant

Authors: Brent Jarvis
Comments: 3 Pages.

A quantized magnetic flux version of Planck's reduced constant is deduced from first principles. The magnetic flux quantum can explain the fine structure constant and the “anomalous” magnetic moment of an electron.
Category: Quantum Physics

[21] viXra:1702.0127 [pdf] submitted on 2017-02-09 14:05:45

Atoms Sorting Machine

Authors: George Rajna
Comments: 28 Pages.

Physicists at the University of Bonn have cleared a further hurdle on the path to creating quantum computers: in a recent study, they present a method with which they can very quickly and precisely sort large numbers of atoms. [17] Physicists from the Faculty of Physics at the University of Warsaw have developed a holographic atomic memory device capable of generating single photons on demand in groups of several dozen or more. The device, successfully demonstrated in practice, overcomes one of the fundamental obstacles towards the construction of a quantum computer. [16] Random number generators are crucial to the encryption that protects our privacy and security when engaging in digital transactions such as buying products online or withdrawing cash from an ATM. For the first time, engineers have developed a fast random number generator based on a quantum mechanical process that could deliver the world's most secure encryption keys in a package tiny enough to use in a mobile device. [15] Researchers at the University of Rochester have moved beyond the theoretical in demonstrating that an unbreakable encrypted message can be sent with a key that's far shorter than the message—the first time that has ever been done. [14] Quantum physicists have long thought it possible to send a perfectly secure message using a key that is shorter than the message itself. Now they've done it. [13] What once took months by some of the world's leading scientists can now be done in seconds by undergraduate students thanks to software developed at the University of Waterloo's Institute for Quantum Computing, paving the way for fast, secure quantum communication. [12] The artificial intelligence system's ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA. [11] Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. [10]
Category: Quantum Physics

[20] viXra:1702.0121 [pdf] submitted on 2017-02-09 11:28:03

Large Groups of Photons on Demand

Authors: George Rajna
Comments: 26 Pages.

Physicists from the Faculty of Physics at the University of Warsaw have developed a holographic atomic memory device capable of generating single photons on demand in groups of several dozen or more. The device, successfully demonstrated in practice, overcomes one of the fundamental obstacles towards the construction of a quantum computer. [16] Random number generators are crucial to the encryption that protects our privacy and security when engaging in digital transactions such as buying products online or withdrawing cash from an ATM. For the first time, engineers have developed a fast random number generator based on a quantum mechanical process that could deliver the world's most secure encryption keys in a package tiny enough to use in a mobile device. [15] Researchers at the University of Rochester have moved beyond the theoretical in demonstrating that an unbreakable encrypted message can be sent with a key that's far shorter than the message—the first time that has ever been done. [14] Quantum physicists have long thought it possible to send a perfectly secure message using a key that is shorter than the message itself. Now they've done it. [13] What once took months by some of the world's leading scientists can now be done in seconds by undergraduate students thanks to software developed at the University of Waterloo's Institute for Quantum Computing, paving the way for fast, secure quantum communication. [12] The artificial intelligence system's ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA. [11] Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. [10] Researchers at the University of Chicago's Institute for Molecular Engineering and the University of Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that-surprisingly—is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept.
Category: Quantum Physics

[19] viXra:1702.0113 [pdf] submitted on 2017-02-09 02:40:39

Ultrasmall Atom Motions Recorded

Authors: George Rajna
Comments: 17 Pages.

Periodic motions of atoms over a length of a billionth of a millionth of a meter (10-15 m) are mapped by ultrashort x-ray pulses. [11] High-energy electrons synced to ultrafast laser pulse to probe how vibrational states of atoms change in time. [10] A small team of researchers with affiliations to institutions in Italy, Japan and the U.S. has created a simulation that suggests that it should be possible for a single photon to simultaneously excite two atoms. [9] Molecules vibrate in many different ways—like tiny musical instruments. [8] For centuries, scientists believed that light, like all waves, couldn't be focused down smaller than its wavelength, just under a millionth of a meter. Now, researchers led by the University of Cambridge have created the world's smallest magnifying glass, which focuses light a billion times more tightly, down to the scale of single atoms. [7] A Purdue University physicist has observed a butterfly Rydberg molecule, a weak pairing of two highly excitable atoms that he predicted would exist more than a decade ago. [6] In a scientific first, a team of researchers from Macquarie University and the University of Vienna have developed a new technique to measure molecular properties – forming the basis for improvements in scientific instruments like telescopes, and with the potential to speed up the development of pharmaceuticals. [5] In the quantum world, physicists study the tiny particles that make up our classical world-neutrons, electrons, photons-either one at a time or in small numbers because the behaviour of the particles is completely different on such a small scale. If you add to the number of particles that are being studied, eventually there will be enough particles that they no longer act quantum mechanically and must be identified as classical, just like our everyday world. But where is the line between the quantum world and the classical world? A group of scientists from Okinawa Institute of Science and Technology Graduate University (OIST) explored this question by showing what was thought to be a quantum phenomenon can be explained classically. [4] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
Category: Quantum Physics

[18] viXra:1702.0112 [pdf] submitted on 2017-02-09 03:01:39

Surprising Spin Behavior

Authors: George Rajna
Comments: 18 Pages.

The field of spintronics focuses on spin transport behavior in magnetic metals, and the major findings in this area have important implications for the field of electronics. [12] Periodic motions of atoms over a length of a billionth of a millionth of a meter (10-15 m) are mapped by ultrashort x-ray pulses. [11] High-energy electrons synced to ultrafast laser pulse to probe how vibrational states of atoms change in time. [10] A small team of researchers with affiliations to institutions in Italy, Japan and the U.S. has created a simulation that suggests that it should be possible for a single photon to simultaneously excite two atoms. [9] Molecules vibrate in many different ways—like tiny musical instruments. [8] For centuries, scientists believed that light, like all waves, couldn't be focused down smaller than its wavelength, just under a millionth of a meter. Now, researchers led by the University of Cambridge have created the world's smallest magnifying glass, which focuses light a billion times more tightly, down to the scale of single atoms. [7] A Purdue University physicist has observed a butterfly Rydberg molecule, a weak pairing of two highly excitable atoms that he predicted would exist more than a decade ago. [6] In a scientific first, a team of researchers from Macquarie University and the University of Vienna have developed a new technique to measure molecular properties – forming the basis for improvements in scientific instruments like telescopes, and with the potential to speed up the development of pharmaceuticals. [5] In the quantum world, physicists study the tiny particles that make up our classical world-neutrons, electrons, photons-either one at a time or in small numbers because the behaviour of the particles is completely different on such a small scale. If you add to the number of particles that are being studied, eventually there will be enough particles that they no longer act quantum mechanically and must be identified as classical, just like our everyday world. But where is the line between the quantum world and the classical world? A group of scientists from Okinawa Institute of Science and Technology Graduate University (OIST) explored this question by showing what was thought to be a quantum phenomenon can be explained classically. [4] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
Category: Quantum Physics

[17] viXra:1702.0111 [pdf] submitted on 2017-02-09 03:46:16

Bohr's Quantum Theory

Authors: George Rajna
Comments: 20 Pages.

Niels Bohr's atomic model was utterly revolutionary when it was presented in 1913. Although it is still taught in schools, it became obsolete decades ago. However, its creator also developed a much wider-ranging and less known quantum theory, the principles of which changed over time. Researchers at the University of Barcelona have now analysed the development in the Danish physicist's thought – a real example of how scientific theories are shaped. [13] The field of spintronics focuses on spin transport behavior in magnetic metals, and the major findings in this area have important implications for the field of electronics. [12] Periodic motions of atoms over a length of a billionth of a millionth of a meter (10-15 m) are mapped by ultrashort x-ray pulses. [11] High-energy electrons synced to ultrafast laser pulse to probe how vibrational states of atoms change in time. [10] A small team of researchers with affiliations to institutions in Italy, Japan and the U.S. has created a simulation that suggests that it should be possible for a single photon to simultaneously excite two atoms. [9] Molecules vibrate in many different ways—like tiny musical instruments. [8] For centuries, scientists believed that light, like all waves, couldn't be focused down smaller than its wavelength, just under a millionth of a meter. Now, researchers led by the University of Cambridge have created the world's smallest magnifying glass, which focuses light a billion times more tightly, down to the scale of single atoms. [7] A Purdue University physicist has observed a butterfly Rydberg molecule, a weak pairing of two highly excitable atoms that he predicted would exist more than a decade ago. [6] In a scientific first, a team of researchers from Macquarie University and the University of Vienna have developed a new technique to measure molecular properties – forming the basis for improvements in scientific instruments like telescopes, and with the potential to speed up the development of pharmaceuticals. [5] In the quantum world, physicists study the tiny particles that make up our classical world-neutrons, electrons, photons-either one at a time or in small numbers because the behaviour of the particles is completely different on such a small scale. If you add to the number of particles that are being studied, eventually there will be enough particles that they no longer act quantum mechanically and must be identified as classical, just like our everyday world. But where is the line between the quantum world and the classical world? A group of scientists from Okinawa Institute of Science and Technology Graduate University (OIST) explored this question by showing what was thought to be a quantum phenomenon can be explained classically. [4] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
Category: Quantum Physics

[16] viXra:1702.0095 [pdf] submitted on 2017-02-08 03:46:10

Measuring Photoemission Time

Authors: George Rajna
Comments: 18 Pages.

When light shines on certain materials, it causes them to emit electrons. This is called "photoemission" and it was discovered by Albert Einstein in 1905, winning him the Nobel Prize. But only in the last few years, with advancements in laser technology, have scientists been able to approach the incredibly short timescales of photoemission. [11] High-energy electrons synced to ultrafast laser pulse to probe how vibrational states of atoms change in time. [10] A small team of researchers with affiliations to institutions in Italy, Japan and the U.S. has created a simulation that suggests that it should be possible for a single photon to simultaneously excite two atoms. [9] Molecules vibrate in many different ways—like tiny musical instruments. [8] For centuries, scientists believed that light, like all waves, couldn't be focused down smaller than its wavelength, just under a millionth of a metre. Now, researchers led by the University of Cambridge have created the world's smallest magnifying glass, which focuses light a billion times more tightly, down to the scale of single atoms. [7] A Purdue University physicist has observed a butterfly Rydberg molecule, a weak pairing of two highly excitable atoms that he predicted would exist more than a decade ago. [6] In a scientific first, a team of researchers from Macquarie University and the University of Vienna have developed a new technique to measure molecular properties – forming the basis for improvements in scientific instruments like telescopes, and with the potential to speed up the development of pharmaceuticals. [5] In the quantum world, physicists study the tiny particles that make up our classical world-neutrons, electrons, photons-either one at a time or in small numbers because the behaviour of the particles is completely different on such a small scale. If you add to the number of particles that are being studied, eventually there will be enough particles that they no longer act quantum mechanically and must be identified as classical, just like our everyday world. But where is the line between the quantum world and the classical world? A group of scientists from Okinawa Institute of Science and Technology Graduate University (OIST) explored this question by showing what was thought to be a quantum phenomenon can be explained classically. [4] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
Category: Quantum Physics

[15] viXra:1702.0092 [pdf] submitted on 2017-02-07 12:52:08

Tests of Bell's Inequality

Authors: George Rajna
Comments: 23 Pages.

In numerous previous experiments, physicists have observed correlations between particles in excess of the limit set by Bell's inequality, which suggests that they are indeed entangled, just as predicted by quantum theory. But each such test has been subject to various "loopholes," scenarios that might account for the observed correlations even if the world were not governed by quantum mechanics. [11] Using a Bose-Einstein condensate composed of millions of sodium atoms, researchers at the Georgia Institute of Technology have observed a sharp magnetically-induced quantum phase transition where they expect to find entangled atomic pairs. The work moves scientists closer to an elusive entangled state that would have potential sensing and computing applications beyond its basic science interests. [10] A team of researchers at the University of Cambridge has succeeded in creating turbulence in a Bose–Einstein condensate (BEC) and in the process, have possibly opened the door to a new avenue of research. In their paper published in the journal Nature, the team describes how they achieved this feat and the evidence they found for a cascade. Brian Anderson with the University of Arizona offers a News & Views piece describing the work done by the team in the same journal issue and offers a brief overview of the characteristic distribution of kinetic energy in turbulent fluids. [9] Bose-Einstein condensates (BECs) are macroscopic systems that have quantum behaviour, and are useful for exploring fundamental physics. Now researchers at the Gakushuin University and the University of Electro-Communications have studied how the miscibility of multicomponent BECs affects their behaviour, with surprising results. [8] Particles can be classified as bosons or fermions. A defining characteristic of a boson is its ability to pile into a single quantum state with other bosons. Fermions are not allowed to do this. One broad impact of fermionic antisocial behavior is that it allows for carbon-based life forms, like us, to exist. If the universe were solely made from bosons, life would certainly not look like it does. Recently, JQI theorists have proposed an elegant method for achieving transmutation—that is, making bosons act like fermions. This work was published in the journal Physical Review Letters. [7] Quantum physics tell us that even massive particles can behave like waves, as if they could be in several places at once. This phenomenon is typically proven in the diffraction of a matter wave at a grating. Researchers have now carried this idea to the extreme and observed the delocalization of molecules at the thinnest possible grating, a mask milled into a single layer of atoms. [6] Researchers in Austria have made what they call the "fattest Schrödinger cats realized to date". They have demonstrated quantum superposition – in which an object exists in two or more states simultaneously – for molecules composed of up to 430 atoms each, several times larger than molecules used in previous such experiments1. [5] Patrick Coles, Jedrzej Kaniewski, and Stephanie Wehner made the breakthrough while at the Centre for Quantum Technologies at the National University of Singapore. They found that 'wave-particle duality' is simply the quantum 'uncertainty principle' in disguise, reducing two mysteries to one. [4] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
Category: Quantum Physics

[14] viXra:1702.0086 [pdf] replaced on 2017-04-23 13:45:58

Can Two Differently Prepared Mixed Quantum-Ensembles be Discriminated Via Measurement Variance ?

Authors: C S Sudheer Kumar
Comments: 21 Pages.

Alice prepares two large qubit-ensembles E1 and E2 in the following states: She individually prepares each qubit of E1 in |0> or |1>, the eigenstates of Pauli-z operator Z, depending on the outcome of an unbiased coin toss. Similarly, she individually prepares each qubit of E2 in |+> or |-> the eigenstates of Pauli-x operator X. Bob, who is aware of the above states preparation procedures, but knows neither which of the two is E1 nor Alice's outcomes of coin tosses, needs to discriminate between the two maximally mixed ensembles. Here we argue that Bob can partially purify the mixed states (E1, E2), using the information supplied by central limit theorem. We will show that, subsequently Bob can discriminate between ensembles E1 and E2 by individually rotating each qubit state about the x-axis on Bloch sphere by a random angle, and then projectively measuring Z. By these operations, the variance of sample mean of Z measurement outcomes corresponding to the ensemble E1 gets reduced. On the other hand, qubit states in E2 are invariant under the x-rotations and therefore the variance remains unaltered. Thus Bob can discriminate between the two maximally mixed ensembles. We analyse the above problem both analytically as well as numerically, and show that the latter supports the former.
Category: Quantum Physics

[13] viXra:1702.0072 [pdf] submitted on 2017-02-05 12:11:01

Why Theory of Quantum Computing Should be Based on Finite Mathematics

Authors: Felix M Lev
Comments: 8 Pages.

We discuss finite quantum theory (FQT) developed in our previous publications and give a simple explanation that standard quantum theory is a special case of FQT in the formal limit $p\to\infty$ where $p$ is the characteristic of the ring or field used in FQT. Then we argue that FQT is a more natural basis for quantum computing than standard quantum theory.
Category: Quantum Physics

[12] viXra:1702.0053 [pdf] submitted on 2017-02-04 02:25:16

Free Dirac Current for Superposed States

Authors: Anamitra palit
Comments: 10 Pages.

The article aims to investigate the four current due to the superposition of free Dirac states with a special view towards the terms containing oscillatory factors responsible for “the trembling motion of electrons”----Zitterbewegung. As we shall see that these terms simply disappear. Zitterbewegung is not possible with free Dirac States
Category: Quantum Physics

[11] viXra:1702.0048 [pdf] submitted on 2017-02-03 08:23:18

Quantum Devices Cleaning

Authors: George Rajna
Comments: 35 Pages.

The advancement of quantum computing faces a tremendous challenge in improving the reproducibility and robustness of quantum circuits. One of the biggest problems in this field is the presence of noise intrinsic to all these devices, the origin of which has puzzled scientists for many decades. [25] Characterising quantum channels with non-separable states of classical light the researchers demonstrate the startling result that sometimes Nature cannot tell the difference between particular types of laser beams and quantum entangled photons. [24] Physicists at Princeton University have revealed a device they've created that will allow a single electron to transfer its quantum information to a photon. [23] A strong, short light pulse can record data on a magnetic layer of yttrium iron garnet doped with Co-ions. This was discovered by researchers from Radboud University in the Netherlands and Bialystok University in Poland. The novel mechanism outperforms existing alternatives, allowing the fastest read-write magnetic recording accompanied by unprecedentedly low heat load. [22] It goes by the unwieldy acronym STT-MRAM, which stands for spin-transfer torque magnetic random access memory. [21] Memory chips are among the most basic components in computers. The random access memory is where processors temporarily store their data, which is a crucial function. Researchers from Dresden and Basel have now managed to lay the foundation for a new memory chip concept. [20] Researchers have built a record energy-efficient switch, which uses the interplay of electricity and a liquid form of light, in semiconductor microchips. The device could form the foundation of future signal processing and information technologies, making electronics even more efficient. [19] The magnetic structure of a skyrmion is symmetrical around its core; arrows indicate the direction of spin. [18] According to current estimates, dozens of zettabytes of information will be stored electronically by 2020, which will rely on physical principles that facilitate the use of single atoms or molecules as basic memory cells. [17] EPFL scientists have developed a new perovskite material with unique properties that can be used to build next-generation hard drives. [16]
Category: Quantum Physics

[10] viXra:1702.0045 [pdf] submitted on 2017-02-03 04:44:49

Quantum State Tomography

Authors: George Rajna
Comments: 38 Pages.

Quantum state tomography is the process of reconstructing – or more precisely completely characterizing – the quantum state of an object as it is emitted by its source, before a possible measurement or interaction with the environment takes place. [25] A team of researchers led by LMU physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. [24] A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation, corresponding to different frequencies. Calculating these frequencies is part of the tools of the trade in theoretical physics. Recently, however, a special class of systems has caught the attention of the scientific community, forcing physicists to abandon well-established rules. [20] Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first-ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics. [19] A combined team of researchers from Columbia University in the U.S. and the University of Warsaw in Poland has found that there appear to be flaws in traditional theory that describe how photodissociation works. [18] Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17]
Category: Quantum Physics

[9] viXra:1702.0044 [pdf] replaced on 2017-02-04 06:33:28

The Hybrid-Epistemic Model of Quantum Mechanics and the Possible Solution to the Measurement Problem

Authors: Jiri Soucek
Comments: 16 Pages.

In this study we introduce and describe in details the hybrid-epistemic model for quantum mechanics. The main differences with respect to the standard model are following: (1) the measurement process is considered as an internal process inside quantum mechanics, i.e. it does not make a part of axioms and (2) the process of the observation of the state of the individual measuring system is introduced into axioms. The intrinsic measurement process is described in two variants (simplified and generalized). Our model contains hybrid, epistemic and hybrid-epistemic systems. Each hybrid system contains a unique orthogonal base composed from homogeneous (i.e. ontic) states. We show that in our model the measurement problem is consistently solvable. Our model represents the rational compromise between the Bohr’s view (the ontic model) and the Einstein’s view (the epistemic model).
Category: Quantum Physics

[8] viXra:1702.0043 [pdf] submitted on 2017-02-03 07:15:38

Entangled Atoms in a Bose-Einstein Condensate

Authors: George Rajna
Comments: 20 Pages.

Using a Bose-Einstein condensate composed of millions of sodium atoms, researchers at the Georgia Institute of Technology have observed a sharp magnetically-induced quantum phase transition where they expect to find entangled atomic pairs. The work moves scientists closer to an elusive entangled state that would have potential sensing and computing applications beyond its basic science interests. [10] A team of researchers at the University of Cambridge has succeeded in creating turbulence in a Bose–Einstein condensate (BEC) and in the process, have possibly opened the door to a new avenue of research. In their paper published in the journal Nature, the team describes how they achieved this feat and the evidence they found for a cascade. Brian Anderson with the University of Arizona offers a News & Views piece describing the work done by the team in the same journal issue and offers a brief overview of the characteristic distribution of kinetic energy in turbulent fluids. [9] Bose-Einstein condensates (BECs) are macroscopic systems that have quantum behaviour, and are useful for exploring fundamental physics. Now researchers at the Gakushuin University and the University of Electro-Communications have studied how the miscibility of multicomponent BECs affects their behaviour, with surprising results. [8] Particles can be classified as bosons or fermions. A defining characteristic of a boson is its ability to pile into a single quantum state with other bosons. Fermions are not allowed to do this. One broad impact of fermionic antisocial behavior is that it allows for carbon-based life forms, like us, to exist. If the universe were solely made from bosons, life would certainly not look like it does. Recently, JQI theorists have proposed an elegant method for achieving transmutation—that is, making bosons act like fermions. This work was published in the journal Physical Review Letters. [7] Quantum physics tell us that even massive particles can behave like waves, as if they could be in several places at once. This phenomenon is typically proven in the diffraction of a matter wave at a grating. Researchers have now carried this idea to the extreme and observed the delocalization of molecules at the thinnest possible grating, a mask milled into a single layer of atoms. [6] Researchers in Austria have made what they call the "fattest Schrödinger cats realized to date". They have demonstrated quantum superposition – in which an object exists in two or more states simultaneously – for molecules composed of up to 430 atoms each, several times larger than molecules used in previous such experiments1. [5] Patrick Coles, Jedrzej Kaniewski, and Stephanie Wehner made the breakthrough while at the Centre for Quantum Technologies at the National University of Singapore. They found that 'wave-particle duality' is simply the quantum 'uncertainty principle' in disguise, reducing two mysteries to one. [4] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
Category: Quantum Physics

[7] viXra:1702.0041 [pdf] submitted on 2017-02-03 03:01:17

Chiral Quantum Optics

Authors: George Rajna
Comments: 38 Pages.

Surprising direction-dependent effects emerge when light is guided in microscopic structures. This discovery shows promise for both classical and quantum information processing. [25] A team of researchers led by LMU physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. [24] A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation, corresponding to different frequencies. Calculating these frequencies is part of the tools of the trade in theoretical physics. Recently, however, a special class of systems has caught the attention of the scientific community, forcing physicists to abandon well-established rules. [20] Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first-ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics. [19] A combined team of researchers from Columbia University in the U.S. and the University of Warsaw in Poland has found that there appear to be flaws in traditional theory that describe how photodissociation works. [18] Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16]
Category: Quantum Physics

[6] viXra:1702.0037 [pdf] submitted on 2017-02-02 19:15:37

Theoretical Analysis of a Possible Method to Quantum Communication of Exceed Velocity of Light

Authors: Jue Wang
Comments: 5 Pages.

If the projection of two photon entangled state in two orthogonal state basis are not equal,the direction of observation of one photon would have influence on the probability distribution of the polarization state of the other photon, which affects the statistical results of a large number of photons. non-local communication can be realized with this method. To get these type of two photon entangled state, this paper designs a method: put the calcium atoms in strong magnetic field.According to the Zeeman effect,calcium atoms would have energy level splitting. Then if the angle between the direction of observation and magnetic field is acute angle, the π light of the calcium atoms’ cascade radiation from 4p2 1S0→4s4p 1P1→4s1 1S0 would meet the requirement. Thus we demonstrate the method of non fixed domain transfer information is feasible.
Category: Quantum Physics

[5] viXra:1702.0036 [pdf] replaced on 2017-02-04 14:43:56

Quantum Waves in Nature, a New Interpretation of Quantum Mechanics

Authors: John R. Carlson
Comments: 24 Pages. You may contact me at johncarlson33@aol.com

We propose a new interpretation of quantum mechanics to address challenges of the Copenhagen Interpretation and to explain observations from certain double-slit experiments. We explore some characteristics of quantum mechanics and analyze a quantum mechanical model which leads us to the assumptions for our new interpretation. We show how quantized waves, like those in Schrödinger’s wave equation, might exist in nature and explain the fundamentals of quantum-scale processes including: the above-mentioned double-slit experiments, wave function collapse, quantum entanglement and quantum tunneling. We classify our interpretation based on commonly used criteria. Finally, we consider some future theoretical points and list some experimental questions. Our new interpretation has the potential to facilitate new theory and experiments leading to a better understanding of fundamental processes in nature and possibly new applications for quantum theory. Page 18 is updated and there is a new suggestion about entanglement on page 20.
Category: Quantum Physics

[4] viXra:1702.0031 [pdf] submitted on 2017-02-02 11:29:09

Large Scale Quantum Computer

Authors: George Rajna
Comments: 37 Pages.

An international team, led by a scientist from the University of Sussex, have today unveiled the first practical blueprint for how to build a quantum computer, the most powerful computer on Earth. [26] Data centers are the central point of many, if not most, information systems today, but the masses of wires interconnecting the servers and piled high on racks begins to resemble last year's tangled Christmas-tree lights disaster. Now a team of engineers is proposing to eliminate most of the wires and substitute infrared free-space optics for communications. [25] Characterising quantum channels with non-separable states of classical light the researchers demonstrate the startling result that sometimes Nature cannot tell the difference between particular types of laser beams and quantum entangled photons. [24] Physicists at Princeton University have revealed a device they've created that will allow a single electron to transfer its quantum information to a photon. [23] A strong, short light pulse can record data on a magnetic layer of yttrium iron garnet doped with Co-ions. This was discovered by researchers from Radboud University in the Netherlands and Bialystok University in Poland. The novel mechanism outperforms existing alternatives, allowing the fastest read-write magnetic recording accompanied by unprecedentedly low heat load. [22] It goes by the unwieldy acronym STT-MRAM, which stands for spin-transfer torque magnetic random access memory. [21] Memory chips are among the most basic components in computers. The random access memory is where processors temporarily store their data, which is a crucial function. Researchers from Dresden and Basel have now managed to lay the foundation for a new memory chip concept. [20] Researchers have built a record energy-efficient switch, which uses the interplay of electricity and a liquid form of light, in semiconductor microchips. The device could form the foundation of future signal processing and information technologies, making electronics even more efficient. [19] The magnetic structure of a skyrmion is symmetrical around its core; arrows indicate the direction of spin. [18]
Category: Quantum Physics

[3] viXra:1702.0028 [pdf] submitted on 2017-02-02 08:24:23

Experiment About Advanced Wave or Advanced Potential by Classical Method

Authors: Shuang-ren Zhao, Kevin Yang, Kang Yang, Xingang Yang, Xintie Yang
Comments: 7 Pages. Hope someone spend time to make this experiment. The result is positive or negative all will be very interesting.

Experiments to produce advanced wave and send single from current to the past is proposed using classical method. The experiment method is by change the impedance of the load, then output power of the power source is measured. According to the mutual energy theorem, the load will suck the energy form the source by advanced wave or potential, hence the change in the power source should happens before the change of the load. Hence it is possible to send the signal to the past. The communication from current time to the past time should be possible. 3 experiments will be applied to test it. The experiments are all classical with using the quantum entangle effects.
Category: Quantum Physics

[2] viXra:1702.0026 [pdf] submitted on 2017-02-02 09:44:49

Superconducting Quantum Phase Transition

Authors: George Rajna
Comments: 35 Pages.

A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation, corresponding to different frequencies. Calculating these frequencies is part of the tools of the trade in theoretical physics. Recently, however, a special class of systems has caught the attention of the scientific community, forcing physicists to abandon well-established rules. [20] Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first-ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics. [19] A combined team of researchers from Columbia University in the U.S. and the University of Warsaw in Poland has found that there appear to be flaws in traditional theory that describe how photodissociation works. [18] Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15]
Category: Quantum Physics

[1] viXra:1702.0025 [pdf] submitted on 2017-02-02 10:12:13

Exotic Quantum System

Authors: George Rajna
Comments: 36 Pages.

A team of researchers led by LMU physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. [24] A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation, corresponding to different frequencies. Calculating these frequencies is part of the tools of the trade in theoretical physics. Recently, however, a special class of systems has caught the attention of the scientific community, forcing physicists to abandon well-established rules. [20] Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first-ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics. [19] A combined team of researchers from Columbia University in the U.S. and the University of Warsaw in Poland has found that there appear to be flaws in traditional theory that describe how photodissociation works. [18] Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15]
Category: Quantum Physics