Thermodynamics and Energy

1608 Submissions

[14] viXra:1608.0406 [pdf] submitted on 2016-08-30 04:11:11

Impact of Biofield Energy Treatment on Soil Fertility

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 5 Pages.

Measurement of soil components such as microbial population, minerals and obviously the content of organic carbon play the important roles for the productivity of crops and plants. The present study was attempted to evaluate the impact of Mr. Trivedi’s biofield energy treatment on soil for its physical (electrical conductivity), chemical (minerals) and microbial flora (bacteria and fungi). A plot of lands was assigned for this study with some already grown plants. This plot was divided into two parts. One part was considered as control, while another part was subjected to Mr. Trivedi’s biofield energy treatment without physically touching and referred as treated. In the treated soil the total bacterial and fungal counts were increased by 546 and 617%, respectively as compared to the untreated soil. Additionally, the conductivity of soil of the treated plot was increased by 79% as compared to the soil of control plot. Apart from microbes, the content of various minerals were also changed in the biofield energy treated soil. The calcium carbonate content showed 2909 ppm in the control, while in the treated soil it was increased to 3943 ppm i.e. 36% increased. Various other minerals such as nitrogen and potassium were increased by 12% and 7%, respectively as compared to the control. Besides, the level of some minerals such as potassium, iron, and chloride were decreased by 9%, 23%, and 41%, respectively as compared to the control. Apart from chemical constituents of soil, the content of organic carbon was also reduced by 8% in the treated soil as compared to the control soil. The overall results envisaged that the biofield energy treatment on the soil showed a significant improvement in the physical, chemical, and microbial functions of soil component. Thus, improved the conductance, supportive microbes, minerals and overall productivity of crops. In conclusion, the biofield energy treatment could be used as an alternative way to increase the yield of quality crops by increasing soil fertility.
Category: Thermodynamics and Energy

[13] viXra:1608.0326 [pdf] submitted on 2016-08-24 23:10:12

Quantitative Determination of Isotopic Abundance Ratio of 13C, 2H, and 18O in Biofield Energy Treated Ortho and Meta Toluic Acid Isomers

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 7 Pages.

O-Toluic acid (OTA) and m-toluic acid (MTA) are two isomers of toluic acid that act as an important organic intermediates, mostly used in medicines and pesticides. The aim of the study was to evaluate the impact of biofield energy treatment on isotopic abundance ratios of 2H/1H, 13C/12C, (PM+1)/PM and 18O/16O, (PM+2)/PM, in toluic acid isomers using gas chromatography-mass spectrometry (GC-MS). The OTA and MTA samples were divided into two parts: control and treated. The control sample remained as untreated, while the treated sample was further divided into four groups as T1, T2, T3, and T4. The treated group was subjected to biofield energy treatment. The GC-MS spectra of both the isomers showed five m/z peaks due to the molecular ion peak and fragmented peaks of toluic acid derivatives. The isotopic abundance ratio of (PM+1)/PM and (PM+2)/PM were calculated for both the isomers and found significant alteration in the treated isomers. The isotopic abundance ratio of (PM+1)/PM in treated samples of OTA was decreased and then slightly increased upto 2.37% in T2, where the (PM+2)/PM in treated OTA, significantly decreased by 55.3% in T3 sample. Similarly, in case of MTA, the isotopic abundance ratio of (PM+1)/PM in the treated sample showed a slight increase the (PM+2)/PM was decreased by 11.95% in T2 as compared to their respective control. GC-MS data suggests that the biofield energy treatment on toluic acid isomers had significantly altered the isotopic abundance of 2H, 13C, and 18O in OTA and MTA as compared to the control.
Category: Thermodynamics and Energy

[12] viXra:1608.0298 [pdf] submitted on 2016-08-23 23:21:48

Characterization of Physicochemical and Spectroscopic Properties of Biofield Energy Treated Bio Peptone

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

Bio peptone is a combination of enzymatic digest of animal tissues and casein; and generally used for the growth of several varieties of microbes. The aim of present study was to investigate the impact of biofield energy treatment on the physicochemical and spectroscopic properties of bio peptone. The present study was carried out in two groups i.e. control and treated. The control group was kept without treatment, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. Subsequently, both the samples were assessed using numerous analytical techniques. The X-ray diffractograms (XRD) showed the halo patterns of XRD peaks in both the samples. The particle size analysis exhibited about 4.70% and 17.58% increase in the d50 (average particle size) and d99 (particle size below which 99% particles are present), respectively of treated bio peptone as compared to the control. The surface area analysis revealed the 253.95% increase in the specific surface area of treated sample as compared to the control. The differential scanning calorimetry (DSC) analysis showed the 29.59% increase in the melting temperature of treated bio peptone sample as compared to the control. Thermogravimetric analysis (TGA) showed the increase in onset of degradation temperature by 3.31% in the treated sample with respect to the control. The Fourier transform infrared (FT-IR) study revealed the changes in the wavenumber of functional groups such as O-H stretching from 3066 cm-1 to 3060 cm-1; C-H stretching from 2980, 2893, and 2817 cm-1 to 2970, 2881, and 2835 cm-1, respectively; N-H bending from 1589 cm-1 to 1596 cm-1; C=C stretching from 1533 cm-1 to 1525 cm-1; and P=O stretching from 1070 cm-1 to 1078 cm-1 in treated sample as compared to the control. The UV-vis spectroscopy showed the similar patterns of absorbance maxima (λmax) i.e. at 259 nm and 257 nm in both the control and treated samples, respectively. Overall, the analytical results suggested that Mr. Trivedi’s biofield energy treatment has substantial effect on physicochemical and spectral properties of bio peptone. Owing to this, the treated bio peptone might be more effective as culture medium than the corresponding control.
Category: Thermodynamics and Energy

[11] viXra:1608.0253 [pdf] submitted on 2016-08-22 23:31:57

Biochemical Differentiation and Molecular Characterization of Biofield Treated Vibrio Parahaemolyticus

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

The recent emergence of the Vibrio parahaemolyticus (V. parahaemolyticus) is a pandemic. For the safety concern of seafood, consumer monitoring of this organism in seafood is very much essential. The current study was undertaken to evaluate the impact of Mr. Trivedi’s biofield energy treatment on [ATCC-17802] strain of V. parahaemolyticus for its biochemical characteristics, biotype and 16S rDNA analysis. The lyophilized strain of V. parahaemolyticus was divided into two parts, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analyzed on day 10, whereas, Gr. IIB was stored and analyzed on day 142 (Study I). After retreatment of Gr. IIB on day 142 (Study II), the sample was divided into three separate tubes. The tubes first, second and third were analyzed on day 5, 10, and 15, respectively. The biochemical reaction and biotyping were performed using automated MicroScan Walk-Away® system. The 16S rDNA sequencing was carried out to correlate the phylogenetic relationship of V. parahaemolyticus with other bacterial species after the treatment. The results of biochemical reactions were altered 24.24%, out of thirty-three in the treated groups with respect to the control. Moreover, negative (-) reaction of urea was changed to positive (+) in the revived treated Gr. IIB, Study II on day 15 as compared to the control. Besides, biotype number was substantially changed in all the treated groups as compared to the control. However, change in organisms were reported in Gr. IIA on day 10 and in Gr. IIB; Study II on day 5 as Shewanella putrefaciens and Moraxella/Psychrobacter spp., respectively with respect to the control i.e. Vibrio sp. SF. 16S rDNA analysis showed that the identified sample in this experiment was V. parahaemolyticus after biofield treatment, and the nearest homolog genus-species was observed as Vibrio natriegens with 98% gene identity. The results envisaged that the biofield energy treatment showed an alteration in biochemical reaction pattern and biotype number on the strain of V. parahaemolyticus.
Category: Thermodynamics and Energy

[10] viXra:1608.0252 [pdf] submitted on 2016-08-22 23:33:36

Impact of Biofield Treatment on Chemical and Thermal Properties of Cellulose and Cellulose Acetate

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 7 Pages.

Cellulose being an excellent biopolymer has cemented its place firmly in many industries as a coating material, textile, composites, and biomaterial applications. In the present study, we have investigated the effect of biofield treatment on physicochemical properties of cellulose and cellulose acetate. The cellulose and cellulose acetate were exposed to biofield and further the chemical and thermal properties were investigated. X-ray diffraction study asserted that the biofield treatment did affect the crystalline nature of cellulose. The percentage of crystallite size was found increased significantly in treated cellulose by 159.83%, as compared to control sample. This showed that biofield treatment was changing the crystalline nature of treated cellulose. However treated cellulose acetate showed a reduction in crystallite size (-17.38%) as compared to control sample. Differential Scanning Calorimetry (DSC) of treated cellulose showed no improvement in melting temperature as compared to control sample. Contrarily cellulose acetate showed significant improvement in melting temperature peak at 351.91ºC as compared to control (344ºC) polymer. Moreover percentage change in latent heat of fusion (ΔH) was calculated from the DSC thermogram of both treated and control polymers. A significant increase in percentage ΔH of both treated cellulose (59.09%) and cellulose acetate (105.79%) polymers indicated that biofield treatment enhanced the thermal stability of the treated polymers. CHNSO analysis revealed a significant change in percentage hydrogen and oxygen of treated cellulose (%H-17.77, %O-16.89) and cellulose acetate (%H-5.67, %O-13.41). Though minimal change was observed in carbon percentage of both treated cellulose (0.29%) and cellulose acetate (0.39%) polymers as compared to their respective control samples. Thermo gravimetric analysis and Differential thermo gravimetric (TGA-DTG) analysis of treated cellulose acetate (353ºC) showed increased maximum thermal decomposition temperature as compared to control polymer (351ºC). This showed the higher thermal stability of the treated cellulose acetate polymer; although the maximum thermal decomposition temperature of treated cellulose (248ºC) was decreased as compared to control cellulose (321ºC). These outcomes confirmed that biofield treatment has changed the physicochemical properties of the cellulose polymers.
Category: Thermodynamics and Energy

[9] viXra:1608.0237 [pdf] submitted on 2016-08-21 23:32:35

Effect of Biofield Treatment on Physical, Thermal, and Spectral Properties of SFRE 199-1 Mammalian Cell Culture Medium

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

SFRE 199-1 medium (SFRE-M) is important mammalian cell culture medium, used for the culture of primary cells of mammals such as baboon kidney cells. The present study was attempted to evaluate the impact of biofield energy treatment on the physical, thermal and spectral properties of SFRE-M. The study was accomplished in two groups; one was set as control while another was subjected to Mr. Trivedi’s biofield energy treatment and coded as treated group. Subsequently, the control and treated samples were analyzed using various analytical techniques. The CHNO analysis showed about 2.16, 4.87, and 5.89% decrease in percent contents of carbon, hydrogen, and oxygen, respectively; while 9.49% increase in nitrogen contents of treated sample as compared to the control. X-ray diffraction (XRD) analysis showed 7.23% decrease in crystallite size of treated sample as compared to the control. The thermogravimetric analysis (TGA) analysis showed the increase in onset temperature of thermal degradation by 19.61% in treated sample with respect to the control. The control sample showed the 48.63% weight loss during the thermal degradation temperature (Tmax) while the treated sample showed only 13.62% weight loss during the Tmax. The differential scanning calorimetry (DSC) analysis showed the 62.58% increase in the latent heat of fusion of treated sample with respect to the control sample. The Fourier transform infrared spectroscopy (FT-IR) spectrum of treated SFRE-M showed the alteration in the wavenumber of C-O, C-N and C-H vibrations in the treated sample as compared to the control. Altogether, the XRD, TGA-DTG, DSC, and FT-IR analysis suggest that Mr. Trivedi’s biofield energy treatment has the impact on physical, thermal and spectral properties of SFRE-M. The treated SFRE-M was more thermal stable than the control SFRE-M and can be used as the better culture media for mammalian cell culture.
Category: Thermodynamics and Energy

[8] viXra:1608.0208 [pdf] submitted on 2016-08-19 00:10:52

Experimental Investigation on Physical, Thermal and Spectroscopic Properties of 2-Chlorobenzonitrile: Impact of Biofield Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 9 Pages.

2-chlorobenzonitrile (2-ClBN) is widely used in the manufacturing of azo dyes, pharmaceuticals, and as intermediate in various chemical reactions. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of 2-ClBN. 2-ClBN sample was divided into two groups that served as treated and control. The treated group received Mr. Trivedi’s biofield treatment. Subsequently, the control and treated samples were evaluated using X-ray diffraction (XRD), surface area analyser, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy. XRD result showed a decrease in crystallite size in treated samples i.e. 4.88% in 2-ClBN along with the increase in peak intensity as compared to control. However, surface area analysis showed a decrease in surface area of 64.53% in treated 2-ClBN sample as compared to the control. Furthermore, DSC analysis results showed a significant increase in the latent heat of fusion (28.74%) and a slight increase in melting temperature (2.05%) in treated sample as compared to the control. Moreover, TGA/DTG studies showed that the control and treated 2-ClBN samples lost 61.05% and 46.15% of their weight, respectively. The FT-IR spectra did not show any significant change in treated 2-ClBN sample as compared to control. However, UV-Vis spectra showed an increase in the intensity of peak as compared to control sample. These findings suggest that biofield treatment has significantly altered the physical, thermal and spectroscopic properties of 2-ClBN, which could make them more useful as a chemical intermediate.
Category: Thermodynamics and Energy

[7] viXra:1608.0202 [pdf] submitted on 2016-08-19 00:22:40

Physical, Thermal and Spectroscopic Characterization of Biofield Treated P-Chloro-M-Cresol

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

p-Chloro-m-cresol(PCMC) is widely used in pharmaceutical industries as biocide and preservative. However, it faces the problems of solubility in water and photo degradation. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectral properties of PCMC. For this study, PCMC sample was divided into two groups i.e., one served as treated and other as control. The treated group received Mr. Trivedi’s biofield treatment and both control and treated samples of PCMC were characterized using X-ray diffraction (XRD), surface area analyser, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-Vis) spectroscopy and gas chromatography–mass spectrometry (GCMS). The XRD result showed a 12.7% increase in crystallite size in treated samples along with increase in peak intensity as compared to control. Moreover, surface area analysis showed a 49.36% increase in surface area of treated PCMC sample as compared to control. The thermal analysis showed significant decrease (25.94%) in the latent heat of fusion in treated sample as compared to control. However, no change was found in other parameters like melting temperature, onset temperature of degradation, and Tmax (temperature at which maximum weight loss occur). The FT-IR spectroscopy did not show any significant change in treated PCMC sample as compared to control. Although, the UV-Vis spectra of treated samples showed characteristic absorption peaks at 206 and 280 nm, the peak at 280 nm was not found in control sample. The control sample showed another absorbance peak at 247 nm. GC-MS data revealed that carbon isotopic ratio (δ13C) was changed up to 204% while δ18O and δ37Cl isotopic ratio were significantly changed up to 142% in treated samples as compared to control. These findings suggest that biofield treatment has significantly altered the physical, thermal and spectroscopic properties, which can affect the solubility and stability of p-chloro-m-cresol and make it more useful as a pharmaceutical ingredient.
Category: Thermodynamics and Energy

[6] viXra:1608.0173 [pdf] submitted on 2016-08-17 04:26:04

Physicochemical and Spectroscopic Characterization of Biofield Energy Treated Gerbera Multiplication Medium

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 7 Pages.

The micropropagation technique is used for Gerbera species due to their high demand all over the world as the decorative potted plants and cut flowers. The present study was done to investigate the impact of biofield energy treatment on the physicochemical properties of gerbera multiplication medium. A part of the sample was treated with Mr. Trivedi’s biofield energy, and the other part was kept as untreated and termed as the control sample. Both the parts were subsequently analysed for their physical, thermal and spectral properties using X-ray diffraction (XRD), particle size analysis, surface area analysis, thermogravimetric analysis (TGA), elemental analysis, and Fourier transform infrared (FT-IR) spectroscopy. The XRD results showed 13.98% increase in crystallite size of treated sample (104.01 nm) as compared to the control (91.25 nm). The particle size data revealed an increase in d50 (average particle size) and d99 (size below which 99% particles are present) by 72.57% and 42.26%, respectively of the treated sample as compared to the control. Moreover, the surface area of the treated sample was reduced from 0.694 m2/g (control) to 0.560 m2/g in the treated sample. The TGA data showed the increase in onset temperature along with the reduction in the percent weight loss of the treated sample as compared to the control. Besides, the elemental analysis revealed the significant decrease in the percentage of nitrogen (10.47%) and hydrogen (9.35%) as well as the presence of sulphur in the treated sample. The FT-IR results showed the differences in the IR frequencies corresponding to pyridine ring and N-H2 deformation of the treated sample as compared to the control. Hence, the overall data revealed that the biofield energy treatment had a significant impact on the physicochemical properties of the treated sample that might help to improve its uses in the in vitro tissue culture techniques as compared to the control sample.
Category: Thermodynamics and Energy

[5] viXra:1608.0104 [pdf] submitted on 2016-08-10 04:50:54

Use of Energy Healing Medicine Against Escherichia coli for Antimicrobial Susceptibility, Biochemical Reaction and Biotyping

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 7 Pages.

Escherichia coli (E. coli) infections are the major health concern, as it causes infections in human mainly in urinary tract, ear, and wound infections. The present study evaluates the impact of biofield energy treatment on E. coli regarding antimicrobial sensitivity assay, biochemical study and biotype number. Four multidrug resistant (MDR) clinical lab isolates (LSs) of E. coli (LS 12, LS 13, LS 42, and LS 51) were taken in two groups i.e. control and treated. After treatment, above mentioned parameter were evaluated on day 10 in control and treated samples using MicroScan Walk-Away® system. The antimicrobial sensitivity assay was reported with 46.67% alteration (14 out of 30 tested antimicrobials) in treated group of MDR E. coli isolates. The minimum inhibitory concentration (MIC) study showed the alteration in MIC values of about 34.37% (11 out of 32) tested antimicrobials, after biofield treatment in clinical isolates of E. coli. Piperacillin/tazobactam was reported with improved sensitivity and four-fold decrease in the MIC value (64 to ≤16 μg/mL) in LS 42, as compared with the control. Amoxicillin/kclavulanate reported with improved sensitivity pattern from resistance to susceptible, with two-fold decrease in MIC value (>16/8 to ≤8/4 μg/mL) in biofield treated LS 51. Further, biochemical study showed 24.24% alteration (8 out of 33) in tested biochemical reactions after treatment among four isolates of E. coli as compared to the control. A change in biotype number (7774 4272) was reported as compared to the control, (7311 4012), with new organism identified as Klebsiella pneumoniae in biofield treated LS 13 with respect to the control organism, E. coli. Overall, data suggested that Mr. Trivedi’s biofield energy treatment can be applied to alter the antimicrobial sensitivity, biochemical reactions and biotype number of E. coli.
Category: Thermodynamics and Energy

[4] viXra:1608.0087 [pdf] submitted on 2016-08-09 04:18:18

Physicochemical and Spectroscopic Characterization of Biofield Treated Butylated Hydroxytoluene

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 7 Pages.

The antioxidants play an important role in the preservation of foods and the management of oxidative stress related diseases by acting on reactive oxygen species and free radicals. However, their use in high temperature processed food and pharmaceuticals are limited due to its low thermal stability. The objective of the study was to use the biofield energy treatment on butylated hydroxytoluene (BHT) i.e. antioxidant and analyse its impact on the physical, thermal, and spectral properties of BHT. For the study, the sample was divided into two groups and termed as control and treated. The treated group was subjected to biofield energy treatment. The characterization of treated sample was done using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and UV-visible (UV-Vis) spectroscopy. The XRD results showed the alteration in lattice parameters, unit cell volume, and molecular weight along with 14.8% reduction in the crystallite size of treated sample as compared to the control. The DSC analysis showed an increase in the latent heat of fusion from 75.94 J/g (control) to 96.23 J/g in the treated BHT sample. The TGA analysis showed an increase in onset temperature of decomposition (130°C→136°C) and maximum thermal decomposition temperature (152.39°C→158.42°C) in the treated sample as compared to the control. Besides, the FT-IR analysis reported the shifting of aromatic C-H stretching peak towards higher frequency (3068→3150 cm-1) and C=C stretching towards lower frequency (1603→1575 cm-1) as compared to the control sample. Moreover, the UV spectrum also revealed the shifting of the peak at λmax 247 nm (control) to 223 nm in the treated sample. The overall results showed the impact of biofield energy treatment on physical, thermal and spectral properties of BHT sample.
Category: Thermodynamics and Energy

[3] viXra:1608.0086 [pdf] submitted on 2016-08-09 04:20:30

Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Potato Micropropagation Medium

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

Potato Micropropagation Medium (PMM) is the growth medium used for in vitro micropropagation of potato tubers. The present study was intended to assess the effect of biofield energy treatment on the physical, thermal and spectroscopic properties of PMM. The study was attained in two groups i.e. control and treated. The control group was remained as untreated, while the treated group was received Mr. Trivedi’s biofield energy treatment. Finally, both the samples (control and treated) were evaluated using various analytical techniques such as X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis- differential thermal analysis (TGA-DTA), UV-Vis spectrometry, and Fourier transform infrared (FT-IR) spectroscopy. The XRD analysis showed the crystalline nature of both control and treated samples of PMM. The X-ray diffractogram showed the significant increase in the intensity of XRD peaks in treated sample as compared to the control. The XRD analysis revealed 6.64% increase in the average crystallite size of treated PMM with respect to the control. The DSC analysis showed about 8.66% decrease in the latent heat of fusion in treated sample with respect to the control. The TGA-DTA analysis exhibited about 4.71% increase in onset temperature of thermal degradation after biofield treatment with respect to the control, while the maximum thermal degradation temperature (Tmax) was also increased (5.06%) in treated sample with respect to the control. This increase in Tmax might be correlated with increased thermal stability of treated sample as compared to the control. The UV spectroscopic study showed the slight blue shift in λmax of treated sample with respect to the control. FT-IR spectrum of control PMM showed the peak at 3132 cm-1 (C-H stretching) that was observed at higher wavenumber i.e. at 3161 cm-1 in the treated sample. Other vibrational peaks in the treated sample were observed in the similar region as that of the control. Altogether, the XRD, DSC, TGA-DTA, UV-Vis, and FT-IR analysis suggest that Mr. Trivedi’s biofield energy treatment has the impact on physicochemical properties of PMM. This treated PMM might be more effective as a micropropagation medium as compared to the control.
Category: Thermodynamics and Energy

[2] viXra:1608.0083 [pdf] submitted on 2016-08-08 14:22:29

Is Thermodynamic Irreversibility a Consequence of the Expansion of the Universe?

Authors: Szabolcs Osváth
Comments: 16 Pages.

This paper explains thermodynamic irreversibility by applying the expansion of the Universe to thermodynamic systems. The effect of metric expansion is immeasurably small on shorter scales than intergalactic distances. Multi-particle systems, however, are chaotic, and amplify any small disturbance exponentially. Metric expansion gives rise to time-asymmetric behavior in thermodynamic systems in a short time (few nanoseconds in air, few ten picoseconds in water). In contrast to existing publications, this paper explains without any additional assumptions the rise of thermodynamic irreversibility from the underlying reversible mechanics of particles. Calculations for the special case which assumes FLRW metric, slow motions (v<<c) and approximates space locally by Euclidean space show that metric expansion causes entropy increase in isolated systems. The rise of time-asymmetry, however, is not affected by these assumptions. Any influence of the expansion of the Universe on the local metric causes a coupling between local mechanics and evolution of the Universe.
Category: Thermodynamics and Energy

[1] viXra:1608.0018 [pdf] submitted on 2016-08-01 23:16:36

Physical, Thermal and Spectroscopical Characterization of Biofield Treated Triphenylmethane: An Impact of Biofield Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

Triphenylmethane is a synthetic dye used as antimicrobial agent and for the chemical visualization in thin layer chromatography of higher fatty acids, fatty alcohols, and aliphatic amines. The present study was an attempt to investigate the impact of biofield treatment on physical, thermal and spectroscopical charecteristics of triphenylmethane. The study was performed in two groups i.e., control and treatment. The treatment group subjected to Mr. Trivedi’s biofield treatment. The control and treated groups of triphenylmethane samples were characterized using X-ray diffraction (XRD), surface area analyzer, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-Vis) spectroscopy, and gas chromatographymass spectrometry (GC-MS). XRD study revealed decreases in average crystallite size (14.22%) of treated triphenylmethane as compared to control sample. Surface area analysis showed a slight increase (0.42%) in surface area of treated sample with respect to control. DSC thermogram of treated triphenylmethane showed the slight increase in melting point and latent heat of fusion with respect to control. TGA analysis of control triphenylmethane showed weight loss by 45.99% and treated sample showed weight loss by 64.40%. The Tmax was also decreased by 7.17% in treated sample as compared to control. The FT-IR and UV spectroscopic result showed the similar pattern of spectra. The GC-MS analysis suggested a significant decrease in carbon isotopic abundance (expressed in δ13C, ‰) in treated sample (about 380 to 524‰) as compared to control. Based on these results, it is found that biofield treatment has the impact on physical, thermal and carbon isotopic abundance of treated triphenylmethane with respect to control.
Category: Thermodynamics and Energy