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Abstract. This article is one of a series explaining the nature of mathematical

undecidability discovered within quantum theory. Signi�cantly, a formula's

undecidability certi�es its indeterminacy and vice versa. This paper describes the

algebraic environment in which the undecidability and indeterminacy originate;

provides proof of their existence; and demonstrates the role these play in a three-

valued logic which is free to permeate mathematical physics via this algebra.

The radical idea applied in this research is taken from very well-known results

in mathematical logic. All scalars engage in the arithmetic of scalars by way of

a single algebra. But in terms of validity, these scalars partition into sets which

are logically distinct: those with valid existence with respect to this algebra, and

those with indeterminate existence. Failure of mathematical physics to notice this

distinction is the reason why quantum theory is logically at odds with quantum

experiments.
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1. Introduction

Inherent within quantum measurement experiments is a decision process which

current theory fails to express and does not explain. Each act of measurement

decides on a single outcome from a spectrum of values. Nature executes this decision,

but evidence indicates that the outcome is elected indeterminately and does not

result from any physical in�uence. Profoundly, physical in�uences of which we may

be in ignorance, are rules out [1].

The exclusion of physical in�uences tends to support the notion that this

decision process is rooted in some non-classical logic. This has motivated an

extensive history of study, scrutinising mathematical structures in quantum theory

for clues. Nevertheless, the absence of any reference in the physics literature

indicates that this scrutiny does not extend as far as the non-classical logic inherent

within the arithmetic beneath quantum theory, upon which the subject rests. Yet

most curiously, personal experience of mathematical logicians reveals them to be

acquainted with elements of this logic, to the extent that they are regarded as

obvious and self-evident.

The non-classical logic of the said arithmetic is identi�able with the 3-valued

quantum logic of Hans Reichenbach. As shown by Reichenbach, when implemented,

discrepancy between experiment and theory disappears [17]. This discrepancy is

traceable to a logical detail of arithmetic, not encoded in mathematical physics.
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The arithmetic in question is that of scalars : mathematical objects basic to applied

mathematics generally. And scalars are the mathematical objects whose rules of

algebra are the Field Axioms. See Table 1.

Mathematical physics assumes the a priori existence of scalars. In this article,

apriority is transferred to the Field Axioms themselves. This initiative promotes

mathematical physics from a semantic theory to a logical theory. Validity in the

logical theory has greater complexity. Well known theorems of model theory, a

branch of mathematical logic, set the Field Axioms within a rigorous environment

that naturally di�erentiates between scalars that Axioms derive, distinct from scalars

that satisfy them. Scalars which are not derivable exist independent of Axioms

[9, 15, 18]. They contain information not present in Axioms.

Model theory proves existence of such independent scalars are mathematically

undecidable and logically indeterminate. Logical indeterminacy and mathematical

undecidability are complementary aspects of a logical condition present in certain

axiomatised mathematical theories [4, 5, 15]. In such theories, indeterminacy

describes the state of validity of propositions that are neither valid nor invalid.

Undecidability refers to the provability of these indeterminate propositions, being

neither provable nor disprovable.

In 1944, Hans Reichenbach proposed a quantum logic consisting of values: true,

false and indeterminate. This was in response to `causal anomalies' evident in the

results of quantum experiments. His logic is an adaptation of the 3-valued logic of

Jan �ukasiewicz [8, 13], which Reichenbach gives certain truth tables, conjunctions,

disjunctions, tautology etc,. During its formation, Reichenbach arrived at the

particular qualities of his indeterminate middle through detailed, reasoned analysis

of results of quantum experiments.

He found that his 3-valued logic `suppresses' the causal anomalies [8, 16, 17].

It furnishes a consistent epistemology for prepared and measured states: typically

the question of what we may know about the state of a photon immediately before

measurement. It derives complimentary propositions: if statement A is either true

or false, statement B is indeterminate, and vice versa. Such statements correspond

to measurements of complimentary pairs such as momentum and position. And his

logic also overcomes the problem of action at a distance, a paradox identi�ed by

Einstein, Podolsky & Rosen [12].

Though his results are compelling, Reichenbach's logic is hypothetically based

and is not in simple agreement with mainstream quantum logics based on the

quantum postulates, originating with Birkho� and von Neumann [2]. Acceptance

of these would tend to imply the unacceptability of Reichenbach's logic. That said,

Hardegree argues that these logics are not in opposition but describe di�erent things

[11]. While the mainstream logics are based on Hilbert space quantum theory,

Reichenbach's logic is a framework for an alternative formulation. This present

paper expounds foundation for Reichenbach's alternative.

Gödel's First Incompleteness Theorem proves that mathematical undecidability

necessarily exists in arithmetic [4, 6, 7, 19]. This is not the kind of undecidability

forced upon us through ignorance of information; the distinction is that information

necessary for decision does not exist. Chaitin takes this informational approach to



Indeterminacy in arithmetic is missing from quantum theory 3

Gödel's Theorem. He argues: `if a theorem [proposition] contains more information

than a given set of axioms, then it is impossible for the theorem [proposition] to

be derived from the axioms' [6]. Svozil uses Turing's proof of Gödel's Theorem to

argue that undecidability exists in Physics [19].

The subject matter of this paper is the Field Axioms, the theory they derive, and

the indeterminacy inherent within. I call this the Theory of Fields to distinguish

from Field Theory in Physics, which is not under study. Interest in the Theory

of Fields is motivated in knowledge of the fundamental position occupied by the

arithmetic of the Field Axioms; and in consideration of the non-classical logic

this theory must proliferate, most profoundly, throughout applied mathematics,

mathematical physics and quantum theory. The object of the investigation is to

con�rm the existence of indeterminate propositions within the Theory of Fields

and establish distinct conditions that guarantee either determinacy, or otherwise,

indeterminacy. An inherent 3-valued logic consisting of values: valid, invalid and

indeterminate, will become apparent.

Propositions under consideration are mathematical statements proposing the

existence of particular scalars, written as formulae in �rst-order logic [3, 4, 5].

Examples of interest are:

∃α (α× α = 4) ; (1)

∃α (α× α = 2) ; (2)

∃α (α× α = −1) ; (3)

∃α
(
α−1 = 0

)
. (4)

For the sake of accessibility, I have used a slightly relaxed form here. Strictly,

existence of the negative sign and the inverse should also to be proposed.

Naturally, certain propositions are valid and provable, while others are invalid

and disprovable. But of special interest is a further set which are neither of these.

Instead, these propositions are in independent of Axioms; they are indeterminate and

they are mathematically undecidable. For instance: of the four propositions above,

the Field Axioms prove only (1). Each of propositions (2) and (3) is neither provable

nor disprovable. In both these cases, existence of α can neither be con�rmed nor

denied. Even so, the square roots of 2 and −1 are nevertheless objects that satisfy

the Field Axioms and therefore, they do engage in the arithmetic. Proposition (4)

is disproved by the Field Axioms. Together, (1), (2), (3) and (4) illustrate examples

of provable, undecidable and disprovable propositions.

These claims of provability and validity are explained in terms of Model theory.

This is a branch of Mathematical Logic that considers validity of propositions in

relation to associated mathematical structures. In the context of the Field Axioms

these associated structures are �elds : not to be confused with �elds in quantum

�eld theory. Normal interpretation of the + and × operators restricts these to the

in�nite �elds, of which there are at least three: the complex plane C, the real line
R and the smallest, the rational �eld Q. Each is a closed structure; but jointly

they form a �eld-sub�eld hierarchy where the smallest �eld is special because it is a
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sub�eld of each. This fact has critical in�uence on which propositions are valid and

provable, and which are indeterminate and undecidable.

2. Algebraic and logical environment

The radical observation of this paper came while noticing the distinction between

necessary existence, entailing derivation from Axioms, and possible existence that

entails satisfying those Axioms. This distinction spurns two related logics. One

is notionally causal where necessary and possible, together with necessarily-not

constitute a modal logic [8]. The other is notionally existential, consisting of logically

valid, logically invalid and logically indeterminate; identi�able with Reichenbach.

The environment in which this second logic emerges from the Field Axioms is now

discussed.

From the perspective of applied mathematics, the Field Axioms are seen as

a selection of combination rules for addition and multiplication, applied ad hoc,

in our most familiar arithmetic. These rules of combination are regarded as

properties belonging to scalars and so signi�cance, meaning and `reality' is placed

on scalars, with Axioms taking an incidental, appended role. In this applied

mathematical scenario, scalars are the semantic interpretations of the objects:

α, β, γ, 0, 1, . . . in Table 1. This interpretation arises when the mathematician

designates α, β, γ, 0, 1, . . . to the real line or complex plane, whichever suits the

application. This interpretational approach deals in semantic information. And

the act of such designation irreversibly discards logical information imparted by the

Axioms.

The Field Axioms

Additive Group

FA0 ∀α∀β∃γ (γ = α + β) Closure

FA1 ∃0∀α (0 + α = α) Identity 0

FA2 ∀α∃β (α + β = 0) Inverses

FA3 ∀α∀β∀γ ((α + β) + γ = α + (β + γ)) Associativity

FA4 ∀α∀β (α + β = β + α) Commutativity

Multiplicative Group

FM0 ∀α∀β∃γ (γ = α× β) Closure

FM1 ∃1∀α (1α = α1 = α ∧ 0 6= 1) Identity 1

FM2 ∀α∃β (α× β = 1 ∧ α 6= 0) Inverses

FM3 ∀α∀β∀γ ((α× β)× γ = α× (β × γ)) Associativity

FM4 ∀α∀β (α× β = β × α) Commutativity

FAM ∀α∀β∀γ (α× (β + γ) = (α× β) + (α× γ)) Distributivity

Table 1. The Field Axioms written as sentences in �rst-order logic. The variables:

α, β, γ, 0, 1 represent mathematical objects complying with these axioms. The

semantic interpretations of these objects are known as scalars.
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In contrast to the emphasis of applied mathematics on the existence of scalars,

�rst-order theory places precedence on Axioms. The Theory of Fields is the �rst-

order theory under the Field Axioms. This poses a quite di�erent scenario in which

Axioms de�ne and generate the objects α, β, γ, 0, 1, . . . along with their arithmetical

behaviour. First-order theory is a stricter and stronger system of derivation than

applied mathematics. It takes full account of all logical information imparted by

Axioms, including information that is indeterminate. That said, no indeterminate

information, independent of Axioms, can be proved to exist by the �rst-order theory

itself. Proof that (1) is a theorem may indeed be established by direct derivation

from the Axioms. But direct proof that (2) and (3) are, or are not theorems is

impossible because no information in the Axioms proves or negates them.

In order to con�rm the existence of indeterminate information, theorems of

Model Theory are applied to the �elds. Fields are mathematical structures satisfying

the Field Axioms [14]. Despite this trivial relationship linking �elds and Field

Axioms, their logical relationship is not straightforward. Note that: satisfying the

Field Axioms is a condition of possible existence and not a condition of necessary

existence. We shall see that the smallest �eld necessarily exists while others possibly

exist.

Model Theory demands that any given proposition is proved by the Field

Axioms, if and only if, it is true across all �elds. All indeterminate propositions,

independent of Axioms always have mixed true/ false values, disagreeing between

some �eld and another. For existential propositions such as (1), (2), or (3),

the condition of agreeing truths is satis�ed only for scalars in the rational �eld.

Therefore, only (1) is a theorem because it is the only case where α is rational.

Figure 1 gives a preview of how this works. A consequence is that Axioms prove

the existence of all rational scalars; existence of other scalars is undecidable. These

are surprising facts considering nothing in the arithmetic distinguishes the rational

scalars.

Figure 1. Validity under the Field Axioms. Due to theorems of Model Theory,

sentences (small circles) such as ∃α (αα = 4), whose semantic validities agree are

logically valid and are theorems. Sentences such as ∃α (αα = −1 ), whose semantic

validities disagree are logically indeterminate and are mathematically undecidable.

These exhaust all possibilities.
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The non-rational scalars are logically independent of the Axioms. That is to

say: scalars of the non-rational �elds express extraneous information, absent in

the Axioms. The rational scalars, whose existence can be proved, contain no such

extraneous information; they contain only information already in the Axioms. In

short, the Field Axioms are unable to prove or disprove the existence of logically

independent scalars. Logical independence is synonymous with mathematically

undecidability.

3. Concepts

True is a semantical reference, synonymous with semantically valid. A

proposition modelled by a given mathematical structure is true when interpreted

in that structure.

Valid is a logical reference. It is more fully referred to as logically valid.

A proposition is logically valid if: purely symbolically, independent of

interpretation, by following rules of inference, Axioms imply the proposition.

Connectives: ∧ = and; ¬ = negates; ` = derives; |= = models.

First-order theories comprise formulae written as propositions in �rst-order logic.

The term �rst-order refers to depth of recursion of logical operations; it is

not reference to approximation. Any �rst-order theory is speci�ed in a set of

axiom sentences, drawn up for the purpose. A crucial feature that distinguishes

�rst-order theories from applied mathematics is their strict accounting of

logical information. Variables satisfy all axiom sentences but are attributed

with nothing more. They are purely abstract and meaningless. If this is

misunderstood, the integrity of any derivation is at risk. In particular, the

mathematician may not introduce new information, logically independent of

Axioms, without recording the fact in an account of assumed dependencies.

She may not, for example, assign a variable to the real line, simply by saying

so, as is done in applied mathematics. E�ectively, a �rst-order theory is a

computational machine that runs according to a programme of axiom sentences.

Output from this machine exhibits richer conceptualisations of theorem and

validity than does applied mathematics. In absence of any logically independent

input, output of the machine consists solely of theorems. In cases when there

is logically independent input, output relying on that independency is always

undecidable and indeterminate.

Bound variable: when we write the equation:

α + β = β + α , (5)

this is an informal use of bound variables. Notice this relation speci�es

something about the algebraic behaviour of the objects α and β rather than

suggesting the performance of some arithmetic. Bound variables occur where

there is speci�cation. When writing the formal version of (5), quanti�ers ∀ are
shown. These explicitly state the logic but also do the job of highlighting the

fact that speci�cation is intended rather than arithmetic. Thus:

∀α∀β (α + β = β + α) . (6)
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The format of parenthesisation is typical of formulae in �rst-order logic.

Quanti�ers ∀α and ∀β apply to every occurrence of α and β within the brackets.

Sentence: formulae such as (6), where every variable is bound, are known as

sentences. (6) happens to be the sentence adopted as axiom FA4 in Table

1. An example of a formula which is not a sentence is the formula:

∀β∃α (α = β + ϑ) . (7)

In this ϑ is not bound.

Free variable: In (7), ϑ is a free variable as opposed to a bound variable. It is free

to be substituted by a particular value; thus inviting the performance of some

arithmetic rather than speci�cation.

The Field Axioms are listed in Table 1. They comprise a set of axiom sentences

formed by the union of axioms for the Additive Group and the Multiplicative

Group. In addition to these, there is one axiom for distributivity. In these

Axioms, di�erent possibilities of interpretation exist for the symbols + and

×. For example, modulo arithmetics are options, but these are not under

consideration here. In this paper, + and × are interpreted in the usual way, as

symbols of an unbounded (in�nite) arithmetic.

Model: This is a mathematical structure that satis�es a sentence. It is usual to

say that such a structure models the sentence. As an illustration, consider the

axiom sentence FA4 from Table 1, specifying additive commutativity. This is

modelled by any of the sets: N, Z, Q, R, C, {1}, {1,−1}, {1, 2, 3}, {all 4 × 3

matrices}, etc.. As well as individual sentences, sets of sentences also have

models. To illustrate, take two sentences. As before, take axiom FA4 from

Table 1, but now model axiom FM4 also. Together these two sentences specify

both additive and multiplicative commutativity. The addition of this second

sentence eliminates the former inclusion of 4×3 matrices from the set of models.

Semantic interpretation: Bound variables, such as the objects α, β, γ, 0, 1, . . .

complying with Axioms in Table 1, convey no more meaning than the properties

bestowed upon them by those Axioms. That said, they may be interpreted as

elements of a particular model of the Axioms. For instance, these objects

might be interpreted as members of the real line R. This would be a semantic

interpretation of α, β, γ, 0, 1, . . ., and would involve an injection of information

originating not from the Axioms but from elsewhere.

Field: This is the general name for mathematical structures that model the Field

Axioms. There are at least three in�nite �elds. These are the complex plane C,
the real line R and the rational �eld Q. The term �eld is likely to cause

confusion. In quantum �eld theory, �elds are entities associated with the

mechanics of elementary particles. This meaning is not intended here. In this

paper, de�nition is taken from Linear Algebra.

Scalar: An element of a �eld. Semantic interpretation of the objects α, β, γ, 0, 1, . . .

in Table 1 are scalars : either complex scalars, real scalars or rational scalars,

depending on the �eld elected. The term scalar is likely to cause confusion.

In relativity, a scalar is a zero rank tensor: under change of inertial reference
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frame, an object that transforms as a constant number. In this paper, de�nition

is taken from Linear Algebra.

4. Model Theory

Our speci�c interest in Model Theory is the Soundness Theorem and its converse,

the Completeness Theorem. These are two standard theorems in model theory

which apply to all �rst-order theories [4, 5]. We shall see that jointly, they isolate an

excluded middle of mathematically undecidable sentences, from the set of all other

sentences which are theorems.

4.1. Standard theorems

The Soundness Theorem:

Σ ` S ⇒ ∀MΣ
(
MΣ |= S

)
. (8)

If structure MΣ models axiom-set Σ, and Σ derives sentence S, then every

structure MΣmodels S.
Alternatively: If a sentence is a theorem, provable under an axiom-set, then

that sentence is true for every model of that axiom-set.

The Completeness Theorem:

Σ ` S ⇐ ∀MΣ
(
MΣ |= S

)
. (9)

If structure MΣ models axiom-set Σ, and every structure MΣ models sentence

S, then Σ derives sentence S.
Alternatively: If a sentence is true for every model of an axiom-set, then that

sentence is a theorem, provable under that axiom-set.

4.2. Proofs

We now proceed to prove further theorems of model theory. Jointly, (8) and (9)

result in the 2-way implication:

Validity Theorem:

Σ ` S ⇔ ∀MΣ
(
MΣ |= S

)
. (10)

If structure MΣ models axiom-set Σ, then axiom-set Σ derives sentence S , if

and only if all structures MΣ model sentence S.
Alternatively: A sentence is provable under an axiom-set, if and only if, that

sentence is true for all models of that axiom-set.

Furthermore, for every sentence S there is a sentence ¬S; hence, jointly, (8) and
(9) also guarantee a second 2-way implication:

Invalidity Theorem:

Σ ` ¬S ⇔ ∀MΣ
(
MΣ |= ¬S

)
. (11)

If structure MΣ models axiom-set Σ, then axiom-set Σ derives the negation of

sentence S, if and only if all structures MΣ model the negation of S.
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Alternatively: A sentence is disprovable under an axiom-set, if and only if, that

sentence is false for all models of that axiom-set.

Each of (10) and (11) excludes the sentences of the other. And moreover, together

they isolate sentences excluded by both. In the left hand sides of (10) and (11), there

is no indication of other sentences existing which satisfy neither, that is: sentences

that are neither provable nor disprovable. And so, it is of particular interest that

the right hand sides of (10) and (11) do indeed imply the existence of sentences that

correspond precisely to this condition. These are the sentences excluded by the right

hand sides of (10) and (11) and so satisfy the following condition on modelling:

¬∀MΣ
(
MΣ |= S

)
∧ ¬∀MΣ

(
MΣ |= ¬S

)
. (12)

The aim now is to �nd the status of provability for sentences excluded by (12). We

�rstly deduce (13) and (14), the negations of (10) and (11):

¬ (Σ ` S)⇔ ¬∀MΣ
(
MΣ |= S

)
; (13)

¬ (Σ ` ¬S)⇔ ¬∀MΣ
(
MΣ |= ¬S

)
; (14)

and combine these, so as to construct:

¬ (Σ ` S) ∧ ¬ (Σ ` ¬S)⇔ ¬∀MΣ
(
MΣ |= S

)
∧ ¬∀MΣ

(
MΣ |= ¬S

)
. (15)

This limits sentences that are neither provable nor negatable, to those that are

neither true nor false across all structures that model the Axioms. For theories

whose axioms are modelled by more than one single structure, whereMΣ
1 andMΣ

2

are distinct, we can assert (16):

Indeterminacy Theorem:

¬ (Σ ` S) ∧ ¬ (Σ ` ¬S)⇔ ∃MΣ
1

(
MΣ

1 |= S
)
∧ ∃MΣ

2

(
MΣ

2 |= ¬S
)
. (16)

Axiom-set Σ derives neither S nor its negation, if and only if there exist

structures MΣ
1 and MΣ

2 which model axiom-set Σ, such that MΣ
1 models

sentence S, andMΣ
2 models the negation of S.

Alternatively: A sentence is true for some but not all models of an axiom-set,

if and only if, that sentence is undecidable under that axiom-set.

5. Application

The Theory of Fields is a �rst-order theory and so the above theorems apply. Our

interest in deriving these theorems is the construction of practical tests for the

detection of indeterminacy, and validity.

Indeterminacy Test: when scalars of a given sentence are interpreted, in turn, as

members of the complex plane C, the real line R, the rational �eld Q; the Field

Axioms neither prove nor disprove that sentence, if and only if, that sentence

is true in at least one case and false in at least one case.

This reduces to a simple check for disagreement within truth-tables.
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The Indeterminacy Test serves the purpose we require, but note that it is not

exhaustively comprehensive because it samples only three �elds. A Validity Test,

constructed form the Validity Theorem is an impractical prospect since it requires

the sampling of every in�nite �eld, no matter how obscure. For a realistic test for

validity we embrace the model theory characterising direct derivation from Axioms.

When a formula asserting existence of some particular number is proved directly

from the Field Axioms, that number will be rational. This follows because scope

for construction of such numbers is restricted to arithmetical combinations of the

numbers 0 and 1, and are therefore limited in form to p/q, where p and q are

integers. Moreover, proof of existence for every rational derives from the Field

Axioms in this way. Hence, every formula asserting existence of a rational number

is provable; and therefore, by the Soundness Theorem, is true in every �eld. And so,

any such formulae is true independent of interpretation, and consequently, is valid

by de�nition. These arguments summarise simply as:

Validity Test: A formula is valid if and only if it is true in the rational �eld Q.

5.1. Examples

Existence of scalars Formulae (1), (2), (3) and (4) on page 3, each proposes the

existence of a particular scalar. In the context of the Theory of Fields, each of these

propositions poses the question: do the Field Axioms derive this formula? These

questions are answered in the four truth-tables of Table 2. In the �rst, proposition

(1) is seen to be true for all three �elds, so by the Validity Test, (1) is a theorem. The

second two truth-tables show disagreeing truth values; hence, by the Indeterminacy

Test, (2) and (3) are undecidable. In the last of these truth tables, all three truth

values agree false; hence by the Invalidity Test, proposition (4) is negated.

α ∈ C α ∈ R α ∈ Q

∃α (α× α = 4) T T T

α ∈ C α ∈ R α ∈ Q

∃α (α× α = 2) T T F

α ∈ C α ∈ R α ∈ Q

∃α (α× α = −1) T F F

α ∈ C α ∈ R α ∈ Q

∃α (α−1 = 0) F F F

Table 2. Truth-tables for propositions: ∃α (α× α = 4), ∃α (α× α = 2),

∃α (α× α = −1) and ∃α
(
α−1 = 0

)
. In these T and F denote true and false.
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α ∈ C α ∈ R α ∈ Q

∃α
(
α = ξQ

)
T T T

α ∈ C α ∈ R α ∈ Q

∃α
(
α = ζR

)
T T F

α ∈ C α ∈ R α ∈ Q

∃α
(
α = ηC

)
T F F

Table 3. Truth-tables for propositions ∃α
(
α = ξQ

)
, ∃α

(
α = ζR

)
and

∃α
(
α = ηC

)
.

Existence of rational scalars The rational �eld is a sub�eld of all �elds.

Consequently, propositions of existence that are true in this smallest �eld are

necessarily true in all �elds. See Figure 1. This means that rational scalars exist

by theorem. Table 3 illustrates the provability of the general rational scalar ξQ, the

undecidability of the general real scalar ζR and the undecidability of the general

complex scalar ηC.

Existence of functions A function in applied mathematics can spurn di�erent �rst-

order propositions; some of which might be theorems and some which might

be undecidable. Propositions: ∀x∃y (y = x2) and ∀y∃x (y = x2) have quanti�ers

reversed. This makes an important logical di�erence. Table 4 shows the �rst of

these two propositions is a theorem, yet the second is undecidable.

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = x2) T T T

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = x2) T F F

Table 4. Truth-tables concerning the function y = x2.

Existence of �nite polynomials versus transcendental functions Table 5 compares

formulae proposing the existence of a �nite polynomial with an example of

transcendental function: the exponential. The �rst truth-table in Table 5 is for

the proposition: ∀x∃y (y = p (x)). In this, p is a �nite polynomial, so if x is rational

then so also is any �nite sum of terms p (x). Corresponding reasoning applies to
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real or complex x. In contrast, in the proposition ∀x∃y (y = exp (x)) where

exp (x) ≡ lim
n→∞

[
1 + x+

x2

2
+ · · ·+ xn

n!
+ · · ·

]
,

rational x is not necessarily mapped to a rational point by the exponential function.

Hence, p (x) exists by theorem but exp (x) exists undecidably.

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = p (x)) T T T

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = exp (x)) T T F

Table 5. Truth-table for �nite polynomial: ∀x∃y (y = p (x)) and the

transcendental function: ∀x∃y (y = exp (x)).

5.2. Theorems from undecidability

Arithmetical combination Scalars that exist undecidably can be combined to yield

scalars that exist by theorem. Consider the two propositions: ∃α (α = 3 + 4i) and

∃α∗ (α∗ = 3− 4i). These are undecidable, but the product of these scalars is the

rational scalar: 25, which is logically valid and so exists by theorem. See Table 6.

α ∈ C α ∈ R α ∈ Q

∃α (α = 3 + 4i) T F F

α∗ ∈ C α∗ ∈ R α∗ ∈ Q

∃α∗ (α∗ = 3− 4i) T F F

β ∈ C β ∈ R β ∈ Q

∃β (β = αα∗) T T T

Table 6. Truth-tables for the proposition ∃α (α = 3 + 4i), ∃α∗ (α∗ = 3− 4i) and

∃β (β = αα∗).

Limiting Theorems The limit of an undecidable scalar can exist by theorem. The

proposition ∃y (y2 = −x2) is undecidable. Nevertheless, it has a limiting case:

∃y (limx→0 [y2 = −x2]) which is a theorem. See Table 7.
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y ∈ C y ∈ R y ∈ Q

∃y (y2 = −x2) T F F

y ∈ C y ∈ R y ∈ Q

∃y (limx→0 [y2 = −x2]) T T T

Table 7. Truth-table for proposition ∃y
(
y2 = −x2

)
and its limiting case:

∃y
(
limx→0

[
y2 = −x2

])
.

Conclusions

This paper documents profound facts well-known amongst mathematical logicians

but never taken on-board by quantum theorists. There is a logical feature hidden,

inherent within the everyday arithmetic with which we are most familiar. We

commonly understand formulae in algebra to be either true or false, depending on

whether they are derived correctly or erroneously and we expect no alternative to

these possibilities. But this paper shows there does exist another alternative: that of

indeterminate or mathematically undecidable. This logical information is not picked

up by the standard algebraic formalism and perpetuates unnoticed throughout

applied mathematics and into quantum mechanics where its absence is conspicuous.

Consequently, as it presently stands, physical theory is denied the possibility of

linking these theoretical indeterminacies with indeterminacies we observe in Nature.

This paper shows that the said logical information is exposed in an existential version

of the algebra.

This research is a study in mathematical logic applied to the algebra of the

Field Axioms. These Axioms de�ne the algebra or arithmetic of scalars : objects

basic throughout mathematics. Scalars are realised to exist in two modes. By

de�nition, all scalars satisfy the Field Axioms and so all are possible. On top of

this, a subset of scalars necessarily exists because these derive directly from the

Axioms. Derivation and satisfaction are seen as causally distinct; a distinction not

noted in applied mathematics.

The central point on which the above claims rest is proof, given in this paper,

of a theorem in model theory that con�rms the existence of indeterminacy under

the Field Axioms: indeterminacy that cannot be derived directly. Application of

this and other closely related theorems in model theory furnish two simple tests

identifying those formulae which Axioms render logically indeterminate and those

they render logically valid theorems in the Theory of Fields. The said theorems in

model theory strictly identify undecidable propositions as those with truth values

that do not concur across all semantic interpretations, but disagree. That is: they

are not consistently true, or false, when interpreted in turn as members of the

complex plane C, the real line R, and the rational �eld Q. This result is used in

various examples of interest, checking truth-tables for agreement or disagreement.

Rational scalars are shown to exist by theorem while strictly imaginary or irrational



Indeterminacy in arithmetic is missing from quantum theory 14

scalars are undecidable. This ultimately follows from the fact that only the rational

�eld is a sub�eld of all �elds.

An important �nding of this research is that performance of algebraic operations

on undecidable propositions can produce propositions that are theorems. This has

rami�cations for our understanding of the mechanism for measurement in quantum

mechanics and will be explored in greater detail in a subsequent paper.
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