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Abstract

The Lambda CDM model or “concordance model” is the standard model of modern cosmology.

This model contains a number of separate theories with different mathematical formulations. The

subject of this paper is a proposed Lagrangian which would provide a unified mathematical frame-

work for the concordance model of cosmology. This unification is achieved by a combination of the

f(R) approach, with the standard LCDM approach. It is postulated that Dark matter-energy fields

depend on the Ricci curvature R, and dark energy fields weaken (R) increases or strengthen as R

decreases. The utility of this is a great simplification compared to the currently accepted formu-

lation. One Lagrangian plus one constraint can model the same physics as the three Lagrangian’s

found in the standard formulations. Further certain observations are explained quite naturally in

this model.

∗Electronic address: hfarmer@mail.depaul.edu; URL: www.hontasfarmer.com; Thanks are due to Dr.

Jesus Pando and Dr. Anuj Sarma of DePaul University for teaching me cosmology.
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I. INTRODUCTION

The ΛCDM model or “concordance model” is the standard model of modern cosmology.

This model contains a number of separate theories with different mathematical formulations.

f(R) gravity is an actively researched alternative in which gravity is modeled with functions

of the Ricci curvature R in the action. The f(R) program, and the inflation with dark matter

plus dark energy program both have desirable traits. Suppose they were both combined,

by parameterizing the scalar and vector fields of inflation using the Ricci curvature. This

unification would in effect make the scalar and vector inflationary models into f(R) models.

What would be the consequences of such a unification? Can a unified model explain the

negative results of searches for dark matter particles on earth[2, 4], or the halos of dark

matter around galaxy’s[7]?

The subject of this paper is a proposed Lagrangian which would provide a unified math-

ematical framework for the concordance model of cosmology. In the process new insight will

be gained into the nature of dark matter and dark energy which the separate formulations

do not provide. The motivation for writing this paper is to provide a unified mathematical

basis for Lambda CDM.

There are certain mysteries to the standard model of cosmology. It contains vast amounts

of matter and energy of a mysterious type described as “dark”. Dark matter which we cannot

detect in spite of massive efforts such as the cryogenic dark matter search II (CDMS II) and

XENON100[2, 4]. Energy which we can only detect by it’s effect on the acceleration of the

expansion of the universe. Energy which is then modeled with a simple constant Λ. This

simple model makes very good predictions and matches observations.

There has to be a mathematically more elegant, informative, and dynamic formulation

than the current collection of no less than three very different parts (depending on how one

counts). The following outlines an attempt at a unified and ultimately simpler model.

II. THE LAGRANGIAN

We have not observed any dark matter particles on Earth to date. The best results

available are signals indistinguishable from noise[2, 4]. It has also been observed that dark

matter halo’s form at a characteristic distance from galaxys[7]. One way to explain these
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observations would be to have dark matter decay as the Ricci curvature increases. Based on

those observations I postulate the following:

Dark matter-energy fields depend on the Ricci curvature R, dark energy fields

weaken as (R) increases or strengthen as R decreases.

The fields precise behavior will depend on which metric and hence which R is in effect. In

the case of a galaxy the Ricci curvature corresponding to Schwarzchild’s metric would be

used, in the case of the universe the Friedman-Lemaitre-Robertson-Walker R would be used.

To realize the postulate mathematically first write the fields with R as a parameter.

Aµ = Aµ (R) , φ = φ (R) (1)

Upon review of the published literature one finds Lagrangian’s for inflation, dark matter,

dark energy, etc[3, 5, 6, 8–11]. The standard formulation of Lambda CDM would consist

of Einsteins field equation, a Lagrangian for inflation, another one for dark matter, and

another one for dark energy. These all model the universe very well. So, it makes sense to

use these theories as a starting point. To realize this postulate mathematically let us write

the Lagrangian for a scalar and vector field, parameterized with and dependent upon Ricci

curvature R, in curved space time. Each field has a mass which is at least an effective mass

that has no assumed dependence on any dynamical variables. The resulting action is....

s =

ˆ √−g

(

− R

16π
− k(φ)∇µφ∇µφ− 1
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F µνFµν −

1
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AA
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)

− R

6

(
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)

)

d4x
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Using functions of the Ricci curvature has been done before in a program known as f of R

gravity. Here the functions f(R) are identified with the scalar and vector fields of inflation.

It is assumed that said fields have at least an effective mass. This mass is not assumed to

depend on any variables at the outset, however it will be shown that a value for this effective

mass is derivable and can depend on both R and Λ. Mass dependence on Ricci curvature is

a feature of many published models of f(R) gravity[1, 12].

These fields are similar, yet not identical, to those found in theories of inflation in which

they drive the rapid expansion [3, 5, 6, 8–11]. To see how inflation arises in this theory the

equations of motion need to be derived and solved.
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III. EQUATIONS OF MOTION.

Following all the elementary steps of classical field theory the Euler-Lagrange equations

for this theory can be derived. One of those equations is for R itself. That is none other

than the Einstein field equation. Then there are two more equations one for the scalar and

one for the vector fields. One more constraint is desirable. The Stress energy tensor of this

field must be proportional to the cosmological constant. This ensures agreement with known

observations. The result is a set of three equations, derived from the above action.


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
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In which the stress energy tensor has the following form.

T µν = −2k(φ)∇µφ∇νφ− F µνgλδF
λδ −

(
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The stress energy needs to be at least proportional to the cosmological constant times

the metric. This results in the following equation of constraint, which is not derivable from

the Lagrangian. In the following λis simply a constant of proportionality.This constraint is

introduced in the same spirit as the cosmological constant. Λ is an important part of most

any viable cosmological model. This equation of constraint ensures that the proposed model

can match observations which have already been made.

T µν = λgµνΛ (5)

A. Solutions

The next task is to solve these equations for the scalar and vector fields. First the scalar

fields solution.

φ (R) = φ0Exp





ˆ R

1

(

m2

φ

2
+ R′

6

)

�R′
dR′



 (6)
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Next we will solve for the vector field. The A0 component must be zero in order to

satisfy the equation of motion. The derivatives which make up F 00 work out that way just

as one would expect for an electromagnetism like field. In the process of solving for A0 the

effective mass of the A field can be calculated.

m2

A

2
+

R

6
= 0 → mA =

√

−R

3
(7)

On the cosmic scale space time is very nearly flat. In fact the curvature of space time

observed to date it slightly negative. Therefore this effective mass would be small but at a

characteristic distance from concentrations of lumious matter succh as galaxys. This is in

accord with the observations reported in[7]. In a positively curved space time the mass of

this field is imaginary. This would appear to be a problem, but for the fact that so far no

dark matter particles have been detected on Earth inspite of very concerted efforts [2, 4].

This theory predicts that no WIMP corresponding to the type of vector field described here

will ever be detected near a concentration of luminous matter such as the Earth.

For the space like components the solution is almost identical to that for the scalar field.

Aµ =



0, Ai
0
Exp


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2
+ R′

6

)

�R′
dR′






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Where i ∈ {1, 2, 3}.
The effective masses of these fields are fixed theoretically by the constraint that the stress

energy tensor T µν needs to be proportional to the cosmological constant. It is possible to

determine the effective mass mφ from that constraint. To find an expression for this mass

note that the T 00 component of the stress energy tensor will be of a simple form. Terms

which depend on the vector field drop out as it’s zero in that component. Terms which

depend on the velocity ∇0φ can be set to zero to ensure the resulting effective mass acts

as a rest mass of the particle. The resulting equation is

T 00 = g00
(

1

2
m2

φ +
R

6

)

φ2 = λg00Λ (9)

Which simplifies to...

mφ =

√

6λΛ− Rφ

3φ
(10)
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The effective mass of this scalar field cannot be zero unless the following equation holds

true.

Rφ(R) = 6λΛ (11)

This equation determines a characteristic radius at which a dark matter halo would be

observed from a galaxy. This is a point at which the Schwarzchild curvature due to the galaxy

gives way to the large scale FLRW space time. This is in accordance with the observations

in [7]. Within this radius the space time curvature would be large enough to make the mass

of the scalar field imaginary, meaning no particles. Only outside of this radius can particles

associated with this field exist.

This effective mass was not a priori assumed to depend on explicitly on the Ricci curvature

R. However in the f of R gravity regime implicit dependence of effective mass m on R is a

standard feature found in many publications [1, 12]. The bare rest masses of these particles

would be found by setting R equal to zero. When R equals zero mA is zero. The vector

field is then fundamentally massless. The scalar fields effective massmφ wold be non zero at

that point. The scalar field has a bare rest mass the vector field only has an effective mass.

The fields would still contribute stress energy to the stress-energy tensor regardless of their

effecctive mass.

B. Inflation

Inflation is in this model. To see it consider the effective masses shown in equations seven

and ten. The physics of standard big bang theory is modled using the FLRW metric. In

this metric at time equals zero the curvature of space time is infinite. At that point the

effective masses of these fields would be imaginary infinity. At the same time the strenth

of the fields would be zero. When the universe begins to expand the curvature begins to

decrease, this in turn causes the mass of the field to roll towards zero. As the mass rolls it

drives the inflationary expansion of the universe. All the while the dark mass of the particles

is converted into dark energy of the associated fields.

Thus the story of the universe is the story of two massive fields transforming one form of

energy into another, along with some other stuff we call ordinary matter.
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IV. CONCLUSIONS

The proposed Lagrangian contains all the physics needed to represent the Lambda CDM

model. There is a source of dark matter, dark energy, and inflation. The behavior of the

fields is in agreement with our overall observations . This Lagrangian also provides a minimal

explanation for why dark matter has been so hard to observe in experiments such as CDMS

II and XENON100. The dark matter simply decays into dark energy when the curvature R

is too high. Thus there are not “particles” to detect in a region of high space time curvature,

like on Earth. This would provide an explanation for why it would be harder than expected

to detect these particles in a ground based experiment.

This model also explains observations of a dark matter halo around galaxys at a charac-

teristic distance in a simple and natural way. The dark matter’s effective mass is imaginary

when the curvature is positive. Which means it physically and classically cannot exist.

The dark matter mass in this theory is simply the effective mass of the fields and their

associated bosonic particles. There may well be other fermionic and super symmetric types

of dark matter. Certainly numerous particles which will be discovered at accelerator lab-

oratories in the future which may or may not be dark matter candidates exist. I have no

hypothesis about such dark matter, or how the hypothesized particles could be produced

via accelerator based experiments in this model at this time.

Note, the above conclusions have been arrived at from purely classical considerations. I

will refrain from speculating on what a quantizeation of this field could tell us.
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